文档库 最新最全的文档下载
当前位置:文档库 › 各种色谱方法简单介绍

各种色谱方法简单介绍

各种色谱方法简单介绍
各种色谱方法简单介绍

第一课色谱法概述

色谱法是一种重要的分离分析方法,它是利用不同物质在两相中具有不同的分配系数(或吸附系数、渗透性),当两相作相对运动时,这些物质在两相中进行多次反复分配而实现分离。在色谱技术中,流动相为气体的叫气相色谱,流动相为液体的叫液相色谱。固定相可以装在柱内,也可以做成薄层。前者叫柱色谱,后者叫薄层色谱。根据色谱法原理制成的仪器叫色谱仪,目前,主要有气相色谱仪和液相色谱仪。

色谱法的创始人是俄国的植物学家茨维特。1905年,他将从植物色素提取的石油醚提取液倒人一根装有碳酸钙的玻璃管顶端,然后用石油醚淋洗,结果使不同色素得到分离,在管内显示出不同的色带,色谱一词也由此得名。这就是最初的色谱法。后来,用色谱法分析的物质已极少为有色物质,但色谱一词仍沿用至今,在50年代,色谱法有了很大的发展。1952年,詹姆斯和马丁以气体作为流动相分析了脂肪酸同系物并提出了塔板理论。1956年范第姆特总结了前人的经验,提出了反映载气流速和柱效关系的范笨姆特方程,建立了初步的色谱理论。同年,高莱(Golay)发明了毛细管拄,以后又相继发明了各种检测器,使色谱技术更加完善。50年代末期,出现了气相色谱和质谱联用的仪器,克服了气相色谱不适于定性的缺点。则年代,由于检测技术的提高和高压泵的出现,高效液相色谱迅远发展,使得色谱法的应用范围大大扩展。目前,由于高效能的色谱往、高灵敏的检测器及微处理机的使用,使得色谱法已成为一种分析速度快、灵敏度高、应用范围广的分析仪器。

在这里主要介绍气相色谱分析法。同时也适当介绍液相色谱法。气相色谱法的基本理论和定性定量方法也适用于液相色谱法。其不同之处在液相色谱法中介绍。

第二课气相色谱仪

典型的气相色谱仪具有稳定流量的载气,将汽化的样品由汽化室带入色谱柱,在色谱柱中不同组分得到分离,并先后从色谱柱中流出,经过检测器和记录器,这些被分开的组分成为一个一个的色谱峰。色谱仪通常由下列五个部分组成:

载气系统(包括气源和流量的调节与测量元件等)

进样系统(包括进样装置和汽化室两部分)

分离系统(主要是色谱柱)

检测、记录系统(包括检测器和记录器)

辅助系统(包括温控系统、数据处理系统等)

第三课气相色谱仪-载气系统

载气通常为氮、氢和氢气,由高压气瓶供给。由高压气瓶出来的载气需经过装有活性炭或分子筛的净化器,以除去载气中的水、氧等有害杂质。由于载气流速的变化会引起保留值和检测灵敏度的变化,因此,一般采用稳压阀、稳流阀或自动流量控制装置,以确保流量恒定。载气气路有单柱单气路和双柱双气路两种。前者比较简单,后者可以补偿因固定液流失、温度被动所造成的影响,因而基线比较稳定。

第四课气相色谱仪-进样系统

进样系统包括进样装置和汽化室。气体样品可以用注射进样,也可以用定量阀进样。液体样品用微量注射器进样。固体样品则要溶解后用微量注射器进样。样品进入汽化室后在一瞬间就被汽化,然后随载气进入色谱柱。根据分析样品的不同,汽化室温度可以在50一400℃范围内任意设定。通常,汽化室的温度要比使用的最高柱温高 10一50℃以保证样品全部汽化。进洋量和进样速度会影响色谱柱效率。进样量过大造成色谱柱超负荷,进样速度慢会使

色谱峰加宽,影响分离效果。

第五课气相色谱仪-分离系统

色谱柱是色谱仪的分离系统。试样中各组分的分离在色谱柱中进行,因此,色谱柱是色谱仪的核心部分。色谱往主要有两类:填充柱和毛细管柱,现分别叙述如下: 1.填充柱

填充柱由柱管和固定相组成,柱管材料为不锈钢或玻璃,内径为2—4毫米,长为1—3米。往内装有固定相,固定相又包括固体固定相和液体固定相两种。

2.毛细管往

毛细管柱又叫空心柱,空心柱分涂壁空心柱,多孔层空心柱和涂载体空心柱。涂壁空心柱是将固定液均匀地涂在内径0.1—0.5毫米的毛钢管内壁而成。毛细管的材料可以是不锈钢、玻璃或石英。这种色谱柱具有渗透性好、传质阻力小等特点,因此柱子可以做得很长(一般几十米,最长可到三百米)。和填充柱相比,其分离效率高,分析速度快,样品用量小。其缺点是样品负荷量小,因此经常需要采用分流技术。柱的制备方法也比较复杂;多孔层空心柱是在毛细管内壁适当沉积上一层多孔性物质,然后涂上固定液。这种柱容量比较大,渗透性好,故有稳定、高效、决速等优点。

第六课气相色谱仪-检测系统

1.热导检测器

热导检测器( Thermal coductivity detector,简称 TCD ),是应用比较多的检测器,不论对有机物还是无机气体都有响应。热导检测器由热导池池体和热敏元件组成。热敏元件是两根电阻值完全相同的金属丝(钨丝或白金丝),作为两个臂接入惠斯顿电桥中,由恒定的电流加热。如果热导池只有载气通过,载气从两个热敏元件带走的热量相同,两个热敏元件的温度变化是相同的,其电阻值变化也相同,电桥处于平衡状态。如果样品混在载气中通过测量池,由于样号气和载气协热导系数不同,两边带走的热量不相等,热敏元件的温度和阻值也就不同,从而使得电桥失去平衡,记录器上就有信号产生。这种检测器是一种通用型检测器。被测物质与载气的热导系数相差愈大,灵敏度也就愈高。此外,载气流量和热丝温度对灵敏度也有较大的影响。热丝工作电流增加—倍可使灵敏度提高3—7倍,但是热丝电流过高会造成基线不稳和缩短热丝的寿命。热导检测器结构简单、稳定性好,对有机物和无机气体都能进行分析,其缺点是灵敏度低。

2.氢火焰离子化检测器

氢火焰离子化检测器(Flame Ionization Detector,FID)简称氢焰检测器。它的主要部件是一个用不锈钢制成的离子室。离子室由收集极、极化极(发射极)、气体入口及火焰喷嘴组成。在离子室下部,氢气与载气混合后通过喷嘴,再与空气混合点火燃烧,形成氢火焰。无样品时两极间离子很少,当有机物进入火焰时,发生离子化反应,生成许多离子。在火焰上方收集极和极化极所形成的静电场作用下,离子流向收集极形成离子流。离子流经放大、记录即得色谱峰。有机物在氢火焰中离子化反应的过程如下:当氢和空气燃烧时,进入火焰的有机物发生高温裂解和氧化反应生成自由基,自由基又与氧作用产生离子。在外加电压作用下,这些离子形成离子流,经放大后被记录下来。所产生的离子数与单位时间内进入火焰的碳原子质量有关,因此,氢焰检测器是一种质量型检测器。这种检测器对绝大多数有机物都有响应,其灵敏度比热导检测器要高几个数量级,易进行痕量有机物分析。其缺点是不能检测惰性气体、空气、水、C0,CO2、NO、S02及H2S等。

3.电子捕获检测器

电子捕获检测器是一种选择性很强的检测器,它只对合有电负性元素的组分产生响应,

因此,这种检测器适于分析合有卤素、硫、磷、氮、氧等元素的物质。在电子捕获检测器内一端有一个多放射源作为负极,另一端有一正极。两极间加适当电压。当载气(N2)进入检测器时,受多射线的辐照发生电离,生成的正离子和电子分别向负极和正极移动,形成恒定的基流。合有电负性元素的样品AB进入检测器后,就会捕获电子而生成稳定的负离子,生成的负离子又与载气正离子复合。结果导致基流下降。因此,样品经过检测器,会产生一系列的倒峰。电子捕获检测器是常用的检测器之一,其灵敏度高,选择性好。主要缺点是线性范围较窄。

第七课液相色谱仪

气相色谱法是一种很好的分离、分析方法,它具有分析速度快、分离效能好和灵敏度高等优点。但是气相色谱仅能分析在操作温度下能汽化而不分解的物质。据估计,在已知化合物中能直接进行气相色谱分析的化合物约占15%,加上制成衍生物的化合物,也不过20%左右。对于高沸点化合物;难挥发及热不稳定的化合物、离子型化合物及高聚物等,很难用气相色谱法分析。为解决这个问题,70年代初发展了高效液相色谱。高效液相色谱的原理与经典液相色谱相同,但是它采用了高效色谱拄、高压泵和高灵敏度检测器。因此,高效液相色谱的分离效率、分析速度和灵敏度大大提高。就其分离机理的不同,高效液相色谱可以分为液-固吸附色谱、液-液分配色谱、离子交换色谱和凝胶渗透色谱四类。液—固色谱的色谱柱内填充固体吸附剂,由于不同组分具有不同的吸附能力,因此,流动相带着被测组分经过色谱柱时,各组分被分开。液—液色谱的流动相和固定相都是液体。作为固定相的液体涂在惰性担体上,流动相与固定液不互溶。当带有被测组分的流动相进入色谱柱时,组分在两相间很快达分配平衡,由于各组分在两相间分配系数不同而彼此分离。以非极性溶液作流动相,极性物质作固定相的液—液色谱叫正相色谱;极性溶液作流动相,非极性物质作固定相的液—液色谱叫反相色谱。离子交换色谱的色谱柱内填充离子交换树脂,依靠样品离子交换能力的差别实现分离。而凝胶色谱是按试样中分子大小的不同来进行分离的。在上述四类色谱中,应用最广泛的是液—液色谱,因此,在本节的讨论中以液—液色谱为主。高效液相色谱的基本理论和定性定量分析方法与气相色谱基本相同。高效液相色谱仪由输液系统、进样系统、分离系统、检测系统和数据处理系统组成。

第八课液相色谱仪-输液系统

输液系统

高效液相色谱的输液系统包括流动相贮存器、高压泵和梯度淋洗装置。流动相贮存器为不锈钢或玻璃制成的容器,可以贮存不同的流动相。高压泵是高效液相色谱仪最重要的部件之一。由于高效液相色谱仪所用色谱柱直径细,固定相粒度小,流动相阻力大,因此,必须借助于高压泵使流动相以较快的速度流过色谱这。高压泵需要满足以下条件:能提供150-450kg/cm2的压强;流速稳定,流量可以调节;耐腐蚀。目前所用的高压泵有机械泵和气动放大泵两种。梯度淋洗装置可以将两种或两种以上的不同极性溶剂,按一定程序连续改变组成,以达到提高分离效果,缩短分离时间的目的。它的作用与气相色谱中的程序升温装置类似。

梯度淋洗装置分为两类:一类叫外梯度装置;一类内梯度装置。外梯度装置是流动相在常压下混合,靠一台高压泵压至色谱柱;内梯度装置是先将溶剂分别增压后,再由泵按程序压入混合室,再注入色谱柱。

第九课液相色谱仪-进样系统,分离系统

进样系统

一般高效液相色谱多采用六通阀进样。先由注射器将样品常压下注入样品环。然后切换阀门到进样位置,由高压泵输送的流动相将样品送人色谱柱。样品环的容积是固定的,因此进样重复性好。

分离系统

分离系统包括色谱柱、连接管、恒温器等。色谱柱是高效液相色谱仪的心脏。它是由内部抛光的不锈钢管制成,一般长10—50cm,内径2—5mm,柱内装有固定相。液相色谱的固定相是将固定该涂在担体上而成。担体有两类:一类是表面多孔型担体;另一类是全多孔型担体。近年来又出现了全多孔型微粒担体。这种担体检度为5—10 um,是由nm级的硅胶微粒堆积而成,又叫堆积硅珠。由于颗粒小,所以柱效高,是目前最广泛使用的一种担体。在高效液相色谱分析中,适当提高柱温可改善传质,提高桂效,缩短分析时间。因此,在分析时可以采用带有恒温加热系统的金属夹套来保持色谱拄的温度。温度可以在室温到60℃间调节。

第十课液相色谱仪-检测系统

检测系统

高效液相色谱的检测器很多,最常用的有紫外检测器、示差折光检测器和荧光检测器等。

(1)紫外检测器

紫外检测器是液相色谱中应用最广泛的检测器,适用有紫外吸收物质的检测。在进行高效液相色谱分析的样品中,约有80%的样品可以使用这种检测器。紫外检测器的工作原理如下:由光源产生波长连续可调的紫外光或可见光,经过透镜和遮光板变成两束平行光,无样品通过时,参比池和样品池通过的光强度相等,光电管输出相同,无信号产生;有样品通过时,由于样品对光的吸收,参比池和样品池通过的光强度不相等,有信号产生。根据朗伯—比尔定律,样品浓度越大,产生的信号越大,这种检测器灵敏度高,检测下限约为 10(-10) g/ml,而且线性范围广,对温度和流速不敏感,适于进行梯度洗脱。

(2)示差折光检测器

示差折光检测器是根据不同物质具有不同折射率来进行组分检测的。凡是具有与流动相折射率不同的组分,均可以使用这种检测器。如果流动相选择适当,可以检测所有的样品组分。示差折光检测器分为反射式和沂射式两种。反射式示差折光检测器是根据下述原理制成的:光在两种不同物质界面的反射百分率与入射角和两种物质的折射率成正比。如果入射角固定,光线反射百分率仅与这两种物质的沂射率成正比。光通过仅有流动相的参比池时,由于流动相组成不变,故其折射率是固定的;光通过工作池时,由于存在待测组分而使折射串改变,从而引起光强度的变化,测量光强度的变化,即可测出该组分浓度的变化。偏转式示差折光检测器是根据下述原理:当一束光透过折射率不同的两种物质时,此光束会发生一定程度的偏转,其偏转程度正比于两物质折射率之差。示差折光检测器的优点是通用性强,操作简便;缺点是灵敏度低,最小检出限约为 10(-7)g/ml ,不能做痕量分析。此外,由于

洗脱液组成的变化会使折射率变化很大,因此,这种检测器也不适用于梯度洗脱。

(3)荧光检测器

物质的分子或原子经光照射后,有些电子被激发至较高的能级,这些电子从高能级跃至低能级时,物质会发出比入射光波长较长的光,这种光称为荧光。在其他条件一定的情况下,荧光强度与物质的浓度成正比。许多有机化合物具有天然荧光活性,另外,有些化合物可以利用柱后反应法或柱前反应法加入荧光化试剂,使其转化为具有荧光活性的衍生物。在紫外光激发下,荧光活性物质产生荧光,由光电倍增管转变为电信号。荧光检测器是一种选择性检测器,它适合于稠环芳烃、氨基酸、胺类、维生素、蛋白质等荧光物质的测定。这种检测器灵敏度非常高,其检出限可达10(-12)_10(-13)g/ml,比紫外检测器高2—3个数量级,适

合于痕量分析。而且可以用于梯度洗脱。其缺点是适用范围有一定的局限性。

第十一课离子色谱法

离子色谱法

离子色谱法是利用离子交换原理和液相色谱技术测定溶液中阴离子和阳离子的一种分析方法。离子色谱是液相色谱的一种。离子色谱是利用不同离子对固定相亲合力的差别来实现分离的。离子色谱的固定相是离子交换树脂,离子交换树脂是苯乙烯- 二乙烯基苯的共聚物。树脂核外是一层可离解的无机基团,由于可离解基团的不同,离子交换树脂又分为阳离子交换树脂和阴离子交换树脂。当流动相将样品带到分离柱时,由于样品离子对离子交换树脂的相对亲合能力不同而得到分离,由分离柱流出的各种不同离子,经检测器检测,即可得到一个个色谱峰。然后用通常的色谱定性定量方法进行定性定量分析.离子色谱法是进行离子测定的快速、灵敏、选择性好的方法,它可以同时检测多种离子.特别是对阴离子的测定更是其他方法所不能相比的。如果说高频感应等离子光谱是同时测定多种元素的快速、准确的分析方法,那么,同时测定多种阴离子的快速、灵敏的方法便是离子色谱法了。离子色谱自1975年问世以来,已经得到了飞快的发展,并且引起了分析工作者的广泛注意。目前,离子色谱法已经在能源、环境、冶金、电镀、半导体、水文地质等方面广泛应用,并且开始进入了与生命科学有关的分析领域。我国从80年代初期引进离子色谱仪,开始了离子色谱的应用研究工作,同时也开始了仪器的研制,目前已能生产离子色谱仪。随着离子色谱技术的发展,离于色谱仪在我国的应用将日益普及。

一。离子色谱的工作原理

(1)离子交换平衡

离子色谱中使用的固定相是离子交换树脂。离子交换树脂上分布有固定的带电荷的基团和能游动的配位离子。当样品加入离子交换色谱往后,如果用适当的溶液洗脱,样品离子即与树脂上能游动的离子进行交换,并且连续进行可逆交换吸附和解吸,最后达到吸附平衡。

(2)化学抑制型离子色谱工作原理待测样品由流动相带入分离柱,由分离柱将不同离子分开,由检测器得色谱峰。但是,用于离子色谱的洗脱液,一般都是强电解质溶液,其电导值一般较待测离子高2—3个数量级,如果用电导检测器检测待测离子,待测离子信号将完全被洗脱液所淹没。为了解决这一问题,采取

第十二课气质联用

气相色谱-质谱联用

色谱法是有机物的有效分离分析方法,特别适用于进行有机物的定量分析,但定性分析比较困难。质谱法擅长定性分析,但对复杂的有机混合物分析则无能为力。如果把二者结合起来,则能发挥两种仪器各自的优点。因此,目前所有的质谱仪都与气相色谱相连。组成气相色谱-质谱联用(GC—MS)系统。该技术是在50年代后期开始研究的。到60年代后期已经成熟并出现了商品仪器。色谱仪是在常压下工作,而质谱仪是在高真空下工作,因此,必须有一个连接装置,将色谱流出的载气去掉,使压强降低,样品气进入离子源。这个连接装置叫分子分离器。目前一般使用喷射式分子分离器,样品气和载气(He)一起由色谱柱流出进入分子分离器。由于载气分子量小,扩散快;经过喷咀后,很快扩散开并被抽走。样品气分子量大,扩散慢,依靠惯性进入质谱仪。这样,经过分子分离器后,压强由常压降到10(-2)Pa,载气被抽除,实现了载气和样品气的分离。如果色谱仪使用毛细管柱,由于毛细管柱流量很小,可以不必经过分子分离器而直接进入离子源。这样,混合物样品由色谱仪一个一个分开,由质谱仪一个一个鉴定,并且根据需要由数据系统进行数据处理,快速地得到各种信息。因此,GC—MS系统已成为有机物分析的重要工具。

第十三课液质联用

液相色谱—质谱联用

对于热稳定性差或不易汽化的样品,使用GC—MS有一定的困难。因此,近年来又发展了液相色谱—质谱(LC—MS)联用技术。LC和MS连接的主要问题是如何去除溶剂。目前应用较多的接口装置有传送带式和热喷雾式两种。传送带接口是依靠不锈钢或高聚物的传送带将样品送入离子源。在传送过程中,溶剂被加热汽化并用泵抽走,样品在离子源汽化并电离,这种接口适用于非极性溶剂。对于极性溶剂,由于汽化慢,需要分流,因而样品利用率低,影响了整个系统的灵敏度。热喷雾接口是80年代发展起来的新的接口装置。这种装置包括汽化器、电窝室和抽气系统三部分。汽化器是一根金属毛细管,内径约0.15mm,毛细管采用直接电加热法加热。电离室有发射电子的灯丝和放电电离装置。抽气系统主要是一个机械泵,有的加冷阱,目的为了捕集溶剂。热喷雾接口的电离方式有三种:直接热喷雾电离、放电电离和电子束电离。热喷雾电离是在流动相中加入电解质(如醋酸铵),当流动相通过加热的汽化器后,以接近汽化(或部分汽化)的状态从毛细管喷出,形成合有细微雾滴的气流,因为溶液中合有电解质,溶液中就含有一定量的离子,微小雾滴因而带电。随着雾滴的不断蒸发变小,形成局部强电场,发生场解吸电离。场解吸电离生成的溶剂离子和样品离子还可以通过离子分子反应生成新的离子。此外,还可以利用放电电离和电子束使热喷雾气流产生化学电离。先使溶剂分子电离,然后与样品分子反应生成样品离子。电离生成的离子进入分析器,溶剂气体由抽气系统抽出。热喷雾方式的特点:

(1)直接热喷雾电离产生的样品离子一般为质子化的离子或所加阳离子与样品分子的合成离子,如(M十H)+,(M十NH4)+等。这种电离方式比化学电离温和,谱图往往有较强的准分子离子。因而更适用于难汽化和热不稳定样品的分子;

(2)能满足一船液相色谱流量要求,100%的水也能分析;

(3)有良好的色谱分辨率,灵敏度等于或优于传送带方式;

(4)需加入电解质,操作麻烦,结构信息少,适合于四极质谱而不适合于磁质谱。

以上两种联接装置,虽然使液相色谱和质谱的联用成为可能,但都有不足之处。目前正在发展中的超临界流体色谱(SFC)和质谱(MS)联用,可能是对难挥发、易分解物质进行联用分析最有前途的方法。

第十四课质-质联用

质谱—质谱联用

80年代初,在传统的质谱仪基础上,发展了质谱—质语(MS—MS)联用技术。它和GC—MS 不同, GC—MS是依靠GC将混合物分离,然后由MS定性。而MS—MS则是依靠第一级MS分离出特定的离子,经过碰撞活化后,再依靠第二级MS进行定性分析。质谱—质谱联用方式很多,既有磁式质谱—质谱联用,如BEB型、EBE型、BEBE型(B:磁分析器,E:静电分析器),又有四极质谱—质谱联用,如QQQ型(Q:四极场),也有混合质谱项谱联用,如EBQQ型。无论哪种类型的联用,都采用了碰撞诱导分解(CID)技术。质谱—质谱联用技术对于有机物结构研究是非常有用的。利用它可以进行于离子扫描、母离子扫描以及中性丢失扫描。子离子扫描可以用来研究某个化合物的结构;母离子扫描则用以研究一组相关的化合物;而中性丢失扫描。可以在复杂的混合物中,寻找县有相同官能团的系列化合物。同时,采用MS—MS 技术还可以直接进行混合有机物的分析。由第一级MS选择复杂混合物中的特定离子,碰撞活化后由第二级MS定性测定。另外,对于分子量大的热不稳定的化合物,可以利用场解吸—质谱—质谱(FD—MS—MS)或快原于轰击—质谱—质谱(FAB—MS—MS)联用方法,充分发挥MS—MS联用的优势。

高效液相色谱仪使用注意事项[1]全解

岛津液相色谱仪使用注意事项 1.流动相必须用HPLC级的试剂,使用前过滤除去其中的颗粒性杂质和其他物质(使用0.45um或更细的膜过滤)。 2.流动相过滤后要用超声波脱气,脱气后应该恢复到室温后使用。 3.不能用纯乙腈作为流动相,这样会使单向阀粘住而导致泵不进液。 4.使用缓冲溶液时,做完样品后应立即用去离子水冲洗管路及柱子一小时,然后用甲醇(或甲醇水溶液)冲洗40分钟以上,以充分洗去离子。对于柱塞杆外部,做完样品后也必须用去离子水冲洗20ml以上。 5.长时间不用仪器,应该将柱子取下用堵头封好保存,注意不能用纯水保存柱子,而应该用有机相(如甲醇等),因为纯水易长霉。 6.每次做完样品后应该用溶解样品的溶剂清洗进样器。 7.C18柱绝对不能进蛋白样品,血样、生物样品。 8.堵塞导致压力太大,按预柱→混合器中的过滤器→管路过滤器→单向阀检查并清洗。清洗方法;①以异丙醇作溶剂冲洗:②放在异丙醇中间用超声波清洗;⑧用10%稀硝酸清洗。 9.气泡会致使压力不稳,重现性差,所以在使用过程中要尽量避免产生气泡。 10.如果进液管内不进液体时,要使用注射器吸液:通常在输液前要进行流动相的清洗。 11.要注意柱子的pH值范围,不得注射强酸强碱的样品,特别是碱性样品。 12.更换流动相时应该先将吸滤头部分放入烧杯中边振动边靖洗,然后插入新的流动相中。更换无互溶性的流动相时要用异丙醇过渡一下。 液相色谱柱使用经验谈 色谱柱在使用前,最好进行柱的性能测试,并将结果保存起来,作为今后评价柱性能变化的参考。但要注意:柱性能可能由于所使用的样品、流动相、柱温等条件的差异而有所不同;另外,在做柱性能测试时是按照色谱柱出厂报告中的条件进行(出厂测试所使用的条件是最佳条件),只有这样,测得的结果才有可比性。 1、样品的前处理: a、最好使用流动相溶解样品。 b、使用预处理柱除去样品中的强极性或与柱填料产生不可逆吸附的杂质。 c、使用0.45μm的过滤膜过滤除去微粒杂质。 流动相的配制 液相色谱是样品组分在柱填料与流动相之间质量交换而达到分离的目的,因此要求流动相具备以下的特点: a、流动相对样品具有一定的溶解能力,保证样品组分不会沉淀在柱中(或长时间保留在柱中)。 b、流动相具有一定惰性,与样品不产生化学反应(特殊情况除外)。

气相色谱仪进样系统

气相色谱仪进样系统 目录 第一节概述 第二节气相填充柱色谱仪进样系统 第三节气相毛细管柱色谱仪进样系统 第四节气相色谱仪进样系统的选择与使用 第一节概述 在气相色谱仪分析中,由于样品成分、样品性能、样品状态、样品含量、色谱柱类型、分析目的和分析要求等不同,需要各式各样的进样系统。进样系统结构、进样系统材料、进样方法、进样温度、进样时间、进样量、进样工具、进样准确性和重复性等都会对气相色谱仪的定性和定量分析结果产生影响,进样系统是气相色谱仪分析中误差的主要来源之一。 气相色谱仪进样系统种类繁多,按结构特点可分为填充柱进样系统和毛细管柱进样系统。 第二节气相填充柱色谱仪进样系统 气相填充柱色谱仪进样系统有常压气体进样系统、液体进样系统、柱上进样系统和液体自动进样器等。 一、常压气体进样系统: 1、常压气体进样器: (1)一般医用液体注射器: 1)优点:简单,灵活。 2)缺点:定量误差大,重复性误差约为2.5%。这是由于进样时柱前压高于大气压,使气体样品沿注射器针管内壁渗透造成的。虽然可以在针管内壁涂上一层真空硅脂来提高气密性,但硅脂对碳氢化合物有吸附作用,定量误差仍然很大。(2)高气密性注射器: 重复性有所提高,但目前价格偏高。 (3)进样阀:

操作方便,迅速。 分析结果较准确,重复性误差<0.5%。 环境温度和压力变化时校正方便。 可直接用于高压气体样品进样。 2、进样阀: (1)类型: 有六通阀、八通阀、十通阀和十二通阀等。 GC分析已进入痕量分析范围。如氦离子化检测器要求气路系统特别是进样系统必须保持十分良好的气密性,任何气体的微量渗透将会使分析失败,必须采用带隔离层的防扩散进样阀,通常用流动氮气作隔离层。 (2)操作方式: 有手动控制和自动控制。自动控制有气驱动和电驱动。 (3)结构: 有滑动阀和旋转阀(60度)。旋转阀芯有平面阀芯和锥面阀芯。 (4)阀芯材料: 主要有聚四氟乙烯和含石墨的聚酰亚胺复合材料等。 (5)使用温度: 1)聚四氟乙烯阀芯:最高为200℃,一般在75℃为宜。 2)复合材料:最高为300~350℃,耐压高,密封性好,寿命长,但可能对某些组分有吸附作用。 (6)定量管: 有0.25mL、0.5mL、1mL、2mL、3mL、5mL和10mL等。 (7)安装位置: 1)安装在柱箱外:方便,但死体积大,控温困难。 2)安装在柱箱内:不方便,死体积小,易恒温和控温。 (8)连接方式: 1)阀出口和柱入口直接连接:死体积小,但液体样品不能进样(没有气化室)。 2)串接在气化室的载气入口处:安装方便,对柱效稍有影响,不影响液体样品从进样口进样。 3)用辅助载气通过阀出口,直接插入气化室进样口:拆装方便,有利于提高分辨率,但用户实现比较困难。 (9)阀温: 从理论上讲,为保证进样量准确,阀温必须恒定。 实际操作时视要求而定。对于永久气体分析,室温下操作完全能保证分析精度要求。

高效液相色谱法简介

高效液相色谱法简介 “色谱”一词是由俄国科学家斯威特提出的。色谱法是基于补充物质在相对运动物的两相之间分布时,物理或物理化学性质的微小的差异而使混合物相互分离的一类分离或分析方法。发展与上世纪初,飞速发展于五十年代,有超过30位科学家家因为它而获得诺贝尔奖,其有自己的理论和研究方法,同时也有众多的应用领域。 色谱法常见的方法有:柱色谱法、薄层色谱法、气相色谱法、高效液相色谱法等。 柱色谱:柱色谱法是最原始的色谱方法,这种方法将固定相注入下端塞有棉花或滤纸的玻璃管中,将被样品饱和的固定相粉末摊铺在玻璃管顶端,以流动相洗脱。常见的洗脱方式有两种,一种是自上而下依靠溶剂本身的重力洗脱,一种是自下而上依靠毛细作用洗脱。收集分离后的纯净组分也有两种不同的方法,一种方法是在柱尾直接接受流出的溶液,另一种方法是烘干固定相后用机械方法分开各个色带,以合适的溶剂浸泡固定相提取组分分子。柱色谱法被广泛应用于混合物的分离,包括对有机合成产物、天然提取物以及生物大分子的分离。 薄层色谱:薄层色谱法是应用非常广泛的色谱方法,这种色谱方法将固定相图布在金属或玻璃薄板上形成薄层,用毛细管、钢笔或者其他工具将样品点染于薄板一端,之后将点样端浸入流动相中,依靠毛细作用令流动相溶剂沿薄板上行展开样品。薄层色谱法成本低廉操作简单,被用于对样品的粗测、对有机合成反应进程的检测等用途。

气相色谱:GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽化室汽化后被惰性气体(即载气,也叫流动相)带入色谱柱,柱内含有液体或固体流动相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来。也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解吸附,结果是在载气中浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器。检测器能够将样品组分的与否转变为电信号,而电信号的大小与被测组分的量或浓度成正比。当将这些信号放大并记录下来时,就是气相色谱图了。气相色谱被广泛应用于小分子量复杂组分物质的定量分析。 高效液相色谱:高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9-107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。高效液相色谱(HPLC)是目前应用最多的色谱分析方法,高效液相色谱系统由流动相储液体瓶、输液泵、进样器、色谱柱、检测器和记录器组成,其整体组成类似于气相色谱,但是针对其流动相为液体的特点作出很多调整。HPLC的输液泵要求输液量恒定平稳;进样系统要求进样便利切换严密;由于液体流动相粘度远远高于气体,为了减低柱压高效

气相色谱仪原理(图文详解)

气相色谱仪原理(图文详解) 什么是气相色谱 本章介绍气相色谱的功能和用途,以及色谱仪的基本结构。 气相色谱(GC)是一种把混合物分离成单个组分的实验技术。它被用来对样品组分进行鉴定和定量测定: 基子时间的差别进行分离 和物理分离(比如蒸馏和类似的技术)不同,气相色谱(GC)是基于时间差别的分离技术。 将气化的混合物或气体通过含有某种物质的管,基于管中物质对不同化合物的保留性能不同而得到分离。这样,就是基于时间的差别对化合物进行分离。样品经过检测器以后,被记录的就是色谱图(图1),每一个峰代表最初混合样品中不同的组分。 峰出现的时间称为保留时间,可以用来对每个组分进行定性,而峰的大小(峰高或峰面积)则是组分含量大小的度量。 图1典型色谱图

系统 一个气相色谱系统包括 可控而纯净的载气源.它能将样品带入GC系统进样口,它同时还作为液体样品的气化室色谱柱,实现随时间的分离 检测器,当组分通过时,检测器电信号的输出值改变,从而对组分做出响应 某种数据处理装置图2是对此作出的一个总结。 样品 载气源一^ 进样口一^ 色谱柱一^ 检测器一_ 数据处理」 图2色谱系统 气源 载气必须是纯净的。污染物可能与样品或色谱柱反应,产生假峰进入检测器使基线噪音增大等。推荐使用配备有水分、烃类化合物和氧气捕集阱的高纯载气。见图

钢瓶阀 若使用气体发生器而不是气体钢瓶时,应对每一台GC都装配净化器,并且使气源尽可能靠近仪器的背面。 进样口 进样口就是将挥发后的样品引入载气流。最常用的进样装置是注射进样口和进样阀。注射进样口 用于气体和液体样品进样。常用来加热使液体样品蒸发。用气体或液体注射器穿透隔垫将样品注入载气流。其原理(非实际设计尺寸)如图4所示。

Waters_2695_型高效液相色谱仪操作方法

Waters 2695 型高效液相色谱仪操作方法 1 仪器组成及开机 1.1 仪器组成本仪器由Waters 2695 分离单元、2996型二极管阵列检测器、2420蒸发光散射检测器、色谱管理工作站和打印机组成。 2695 分离单元包括四元梯度洗脱的溶剂输送系统,四通道在线真空脱气机(或氦气脱气机),可容纳120 个样品瓶的自动进样系统,柱温箱,内置的柱塞杆密封垫清洗系统,溶剂瓶托盘,液晶显示器,键盘用户界面及软盘驱动器。 1.2 开机依次接通2695 分离单元、检测器、计算机和打印机的电源。接通2695 分离单元后,约20s 仪器开始自检,约1min 后,显示主屏幕,此时继续各部件的初始化,待主屏幕上方标题区出现“Idle ”时,仪器进入待命状态。 2 溶剂管理系统的准备 2.1 流动相脱气确认所有溶剂管路都充满溶剂,按【Menu/Status 】,进入“Status (1 )”屏幕,光标选“Degasser ”,按【Enter 】,显示选项屏幕,光标下移选“Continuous ”,按【Enter 】。 2.2 启动溶剂管理系统 2.2.1 干启动,当溶剂的管路是干的或是需要更换溶剂时,在“Status (1 )”屏幕下,按【Direct Function 】,光标选“Dry Prime ”,按【Enter 】,显示“Dry Prime ”屏幕,按欲启动的溶剂管路的屏幕键,如【OpenA 】,光标选“Duration ”,按数字键输入5min ,按【Continue 】,待限定时间结束后,重复操作,使实验所需的各溶剂管路均启动、排气并充满流动相。 2.2.2 湿启动在“Status (1 )”屏幕下,光标选“Compomtion ”中欲使用的流动相,输入10 0%,按【Direct Function 】,光标选“Wet Prime ”,按【Enter 】,显示“Wet Prime ”屏幕,输入7.5Ml/min 和6min ,按【OK 】,待限定时间结束后,对每种流动相重复操作。 2.2.3 平衡真空脱气机在“Status (1 )”屏幕下,光标选“Composition ”,输入流动相的组成,按【Enter 】再用光标选“Degasser ”中的“Normal ”,按【Enter 】,按【Direct Function 】,光标选“Wet Prime ”,输入0.000mL/min 和10min. ,按【OK 】。待限定时间结束后,按【Abort Prime 】。 3 样品管理系统的准备 3.1 冲洗自动进样器在“Status (1 )”屏幕下,光标选“Composition ”,输入流动相的组成。按【Direct Function 】,光标选“PurgeInjector ”,按【Enter 】,显示“Purge Injector ”屏幕,输入“Sample Loop Volumes 6.0 ”,光标下移“Compression Check ”,按任意数字键,按【OK 】。 3.2 冲洗进样针在主屏幕下,按【Diag 】,显示“Diagnositcs ”屏幕,按【Prime Ndl Wash 】,显示“Prime Needle Wash ”屏幕,按【Start 】,30s 内应见溶剂从废液排放口流出。按【Close】、【Exit 】。 3.3 冲洗柱塞杆密封垫在主屏幕下,按【Diag 】,显示“Diagnosities ”屏幕,按Prime Seal Wash ,显示“Prime Seal Wash ”屏幕,按【Start 】,待排放口有水流出,按【Halt 】、【Close】、【Exit 】。 3.4 装入样品与转盘将样品瓶插到样品盘合适的位置,打开样品仓门,显示“Door is Open ”屏幕,装入样品盘,按【Next 】,直至所有样品盘装毕,关仓门。 4 编辑分析方法及执行样品分析表 在主屏幕下,按【Develop Methods 】,显示“Methods ”屏幕。 4.1 编辑分析方法 4.1.1 建立新的分离方法在“Method ”屏幕下,按【New 】、【Separation Methods 】,输入方法名,按【Enter 】,显示分离方法屏幕,该屏幕共有6 页,通过按【Next 】或【Prev 】切换。如需设定梯度,在第( 1 )页按【Gradient 】,输入后按【Exit 】;如需设定色谱柱的温度,在第( 4 )页输入后按【Exit 】;在第(6 )页设定检测器的种类,光标选“Absorbance Detector ”,按【Enter 】,光标选“48 6﹨2487 ”,按Abs (1 )图标,设定检测波长,按【OK 】、【Exit 】、【Save 】。 4.1.2 编辑已建立的分离方法在“Methods ”屏幕下,光标选欲编辑﹨修改的分离方法的图标,按【Edit 】,编辑\ 改各种分析参数,按【Exit 】、【Save 】。 4.2 编辑执行样品分析表 4.2.1 建立新的样品组在“Methods ”屏幕下,按【New 】、【Sample Set 】,输入样品组名,按【Enter 】,显示方法组屏幕,在样品组表中输入待分析样品的信息。在“Vial ”中输入样品放置的位

(推荐)高效液相色谱法的分类及原理

高效液相色谱法的分类及其分离原理 高效液相色谱法分为:液-固色谱法、液-液色谱法、离子交换色谱法、凝胶色谱法。 1.液-固色谱法(液-固吸附色谱法) 固定相是固体吸附剂,它是根据物质在固定相上的吸附作用不同来进行分配的。 ①液-固色谱法的作用机制 吸附剂:一些多孔的固体颗粒物质,其表面常存在分散的吸附中心点。 流动相中的溶质分子X(液相)被流动相S带入色谱柱后,在随载液流动的过程中,发生如下交换反应: X(液相)+nS(吸附)<==>X(吸附)+nS(液相) 其作用机制是溶质分子X(液相)和溶剂分子S(液相)对吸附剂活性表面的竞争吸附。 吸附反应的平衡常数K为: K值较小:溶剂分子吸附力很强,被吸附的溶质分子很少,先流出色谱柱。 K值较大:表示该组分分子的吸附能力较强,后流出色谱柱。 发生在吸附剂表面上的吸附-解吸平衡,就是液-固色谱分离的基础。 ②液-固色谱法的吸附剂和流动相 常用的液-固色谱吸附剂:薄膜型硅胶、全多孔型硅胶、薄膜型氧化铝、全多孔型氧化铝、分子筛、聚酰胺等。 一般规律:对于固定相而言,非极性分子与极性吸附剂(如硅胶、氧化铜)之间的作用力很弱,分配比k较小,保留时间较短;但极性分子与极性吸附剂之间的作用力很强,分配比k大,保留时间长。 对流动相的基本要求: 试样要能够溶于流动相中 流动相粘度较小 流动相不能影响试样的检测 常用的流动相:甲醇、乙醚、苯、乙腈、乙酸乙酯、吡啶等。 ③液-固色谱法的应用 常用于分离极性不同的化合物、含有不同类型或不;数量官能团的有机化合物,以及有机化合物的不同的异构体;但液-固色谱法不宜用于分离同系物,因为液-固色谱对不同相对分子质量的同系物选择性不高。 2.液-液色谱法(液-液分配色谱法) 将液体固定液涂渍在担体上作为固定相。 ①液-液色谱法的作用机制 溶质在两相间进行分配时,在固定液中溶解度较小的组分较难进入固定液,在色谱柱中向前迁移速度较快;在固定液中溶解度较大的组分容易进入固定液,在色谱柱中向前迁移速度较慢,从而达到分离的目的。 液-液色谱法与液-液萃取法的基本原理相同,均服从分配定律:K=C固/C液 K值大的组分,保留时间长,后流出色谱柱。 ②正相色谱和反相色谱 正相分配色谱用极性物质作固定相,非极性溶剂(如苯、正己烷等)作流动相。 反相分配色谱用非极性物质作固定相,极性溶剂(如水、甲醇、己腈等)作流动相。

高效液相色谱仪操作步骤

高效液相色谱仪操作步骤: 1).过滤流动相,根据需要选择不同的滤膜(0.45um)。 2).对抽滤后的流动相进行超声脱气10-20分钟。 3).打开HPLC工作站(包括计算机软件和色谱仪),连接好流动相管道,连接检测系统。 4).进入HPLC控制界面主菜单,点击manual,进入手动菜单。 5).有一段时间没用,或者换了新的流动相,需要先冲洗泵和进样阀。冲洗泵,直接在泵的出水口,用针头抽取。冲洗进样阀,需要在manual菜单下,先点击purge,再点击start,冲洗时速度不要超过10 ml/min。 6).调节流量,初次使用新的流动相,可以先试一下压力,流速越大,压力越大,一般不要超过2000。点击injure,选用合适的流速,点击on,走基线,观察基线的情况。 7).设计走样方法。点击file,选取select users and methods,可以选取现有的各种走样方法。若需建立一个新的方法,点击new method。选取需要的配件,包括进样阀,泵,检测器等,根据需要而不同。选完后,点击protocol。一个完整的走样方法需要包括:a.进样前的稳流,一般2-5分钟;b.基线归零;c.进样阀的loading-inject转换;d.走样时间,随不同的样品而不同。 8).进样和进样后操作。选定走样方法,点击start。进样,所有的样品均需过滤。方法走完后,点击postrun,可记录数据和做标记等。全部样品走完后,再用上面的方法走一段基线,洗掉剩余物。 9).关机时,先关计算机,再关液相色谱。 10).填写登记本,由负责人签字。 注意事项: 1).流动相均需色谱纯度,水用20M的去离子水。脱气后的流动相要小心振动尽量不引起气泡。 2).柱子是非常脆弱的,第一次做的方法,先不要让液体过柱子。 3).所有过柱子的液体均需严格的过滤。

实用高效液相色谱法的建立破解版

液相色谱方法开发(实例讲解) 2010? 未经许可,不得复制。转载请注明出处。 色谱分离与在线检测技术已经成为当今分析化学的一门重要学科,而因其衍生出的相关产品也日益丰富。对色谱工作者来说,在面对具体方法开发中如何获得适当的分离度则成为关注的焦点。本文仅从网络上的资源收集简要介绍反相液相色谱法的建立思路。 一、 基本术语基本术语 读者可跳过本部分内容,直接阅读实例讲解部分 在评价色谱分离的品质时,通常用以下相关术语来反映色谱特征(如图1.): 图1. 典型色谱图 1. 保留因子(k): t t t k R ?= (1) 用于反映化合物的色谱保留性质,跟化合物性质有密切关系。如图1,设t R1 =3.65min, t 0 =1.20min, 则峰1的保留因子为:(3.65-1.20)/1.20=2.04 2. 拖尾因子(T f )

液相色谱方法开发(实例讲解) 2010? 未经许可,不得复制。转载请注明出处。 a b a f W W W T 2+= (2) 图2. 典型拖尾峰 在理想情况下,色谱峰为高斯型对称峰,其拖尾因子为1.0,但在实际情况中,由于化合物的二次保留等其他因素,色谱峰大多会呈现一定程度的拖尾。如图2中,该色谱峰的拖尾因子可计算得:{(41.5-37.0)+(37.0-35.0)}/{2*(37.0-35.0)}=1.63. 3. 理论塔板数(N )

液相色谱方法开发(实例讲解) 2010? 未经许可,不得复制。转载请注明出处。 图3. 峰高与峰宽的关系 2(16W t N R = (3) 或 2( 54.55 .0W t N R = (4) 注意:在上式中W 为图3中的W b ,为基线峰宽(4σ),W 0.5 为峰高一半处的峰宽W h (2.335σ), 并非峰宽的一半(2σ)。 设图1中峰1的基线峰宽为0.25min, 则塔板数为:16*(3.65/0.25)^2=3410 4. 分离因子(α) 10 212t t t t k k R R ??= =α (5) 又称两个色谱峰的相对保留值。只有当α>1时,两个色谱峰才有分离的可能性。 设在图1中峰2的保留时间为6.50min, 则分离因子为: (6.50-1.20)/(3.65-1.20)=2.16

高效液相色谱仪的操作步骤及注意事项

高效液相色谱仪的操作步骤及注意事项 一、操作步骤: 1.开机前先将流动相过滤和超声:水流动相用混合滤膜(0.2μm)过滤,有机流动相用有机滤膜过滤,之后超声脱气15-20分钟。(过滤的目的是除去流动相里的杂质,以免杂质进入色谱柱堵塞色谱柱;超声的目的是排除流动相里面的气体,以防气体进入色谱柱损害色谱柱,影响柱效能) 注:试验过程中由于只有0.45μm的混合滤膜,第一次使用时感觉效果不好,于是过滤水时同时使用两张混合滤膜过滤水流动相。 2.超声结束后,将流动相放置到规定位置(1号泵接水流动相,2号泵接有机流动相),开机逐个排气(先启动泵,排气结束后再打开检测器)。 3.排气结束后,关闭所有排气阀。先用纯有机流动相冲洗色谱柱20-30分钟,基线走稳之后,再打开水流动相(注意:水流动相和有机流动相流速之和为1ml/min),继续走基线,直到基线平稳。 注意:实验结束后,再用纯有机流动相冲洗色谱柱20-30分钟,冲出色谱柱内残留的样品物质,预防长时间不使用仪器样品的残留物质沉积在色谱柱内,导致下次使用难以冲出,色谱柱柱压偏高,基线不稳,出现大量鬼峰。(不同规格的色谱柱其所允许的最大流速之和不同) 4.走基线时,应将进样阀处于Load状态,用注射器进样时应快速进样,进样后将进样阀立即扳回到Inject状态,此时液相系统开始进入采样状态。采样结束后,可在数据分析里面查看分析结果并可进行编辑,也可以在脱机状态下查看样品的分析结果并编辑。 二、使用中常见的问题及注意事项 1.过滤时有时会出现流动相漏液。可能的原因是滤膜放置不正确(有点偏)和接头有点错位,导致流动相从缝隙中漏出。 注意:操作时,应先向滤瓶内倒入少量流动相,观察是否漏液并开始过滤,若未漏液,再向滤瓶中添加流动相。 2.超声时,瓶外液体的液面应高于瓶内流动相的液面,否则流动相内的气体可能无法排出液体,气体仍然残留在流动相内,以致开机排气时无气泡排出。

气相色谱相关文件

色谱资料(气相) 一、气相色谱法概述―――――――――――――――――――――――――第2页 二、气相色谱使用注意事项及常见问题―――――――――――――――――第3页 三、气相色谱柱知识及常见问题――――――――――――――――――――第7页 四、气相色谱分析测试常见问题及解决―――――――――――――――――第12页

一、气相色谱法概述 气相色谱法系采纳气体为流淌相(载气)流经装有填充剂的色谱柱进行分离测定的色谱方法。物质或其衍生物气化后,被载气带入色谱柱进行分离,各组分先后进入检测器,用记录仪、积分仪或数据处理系统记录色谱信号。 气相色谱的分离机制要紧有吸附、分配等。

1.对仪器的一般要求 所用的仪器为气相色谱仪,气相色谱仪由气源、进样部分、色谱柱、检测器和数据采集系统组成。进样部分、色谱柱和检测器的温度均在操纵状态。由于柱箱温度的波动会阻碍色谱分析结果的重现性,因此柱箱控温精度应在±1℃,且温度波动小于0.1℃。温度操纵系统分为恒和气程序升温两种。 载气气相色谱法的流淌相为气体,称为载气,氦、氮和氢可用作载气,可由高压钢瓶或高纯度气体发生器提供,通过适当的减压装置,以一定的流速通过进样器和色谱柱;依照供试品的性质和检测器种类选择载气,除另有规定外,氢火焰和电子捕获检测器常用载气为氮气,热导检测器常用载气为氢气。当使用氢气作为载气或燃气时,要注意氢气可能会流入柱箱引起爆炸危险。因此在把管线连接好往常一定要把气源关闭,同时在把氢气连接到仪器上往常,一定要把进样口和检测器的接头连接到色谱柱上,或全部戴上堵头。氢气是可燃性气体。泄漏气体假如封闭在一个密闭空间,就有引起燃烧和爆炸的危险。在任何需要使用氢气的场合,在使用仪器往常,要对所有的连接处、管线和阀进行检漏。在使用仪器往常,要使氢气气源一直保持关闭。 进样器进样方式一般可采纳溶液直接进样或顶空进样。

最新高效液相色谱使用方法

最新高效液相色谱使用方法 一、流动相准备 将流动相按比例混合,注意混合的流动相必须相互溶解,最好能将流动相混合在一起,若相互溶解性不好,可分成两种。流动相配好后,将管路放入,注意不要将瓶口密封。 二、开机 首先将真空泵打开,待泵的指示灯由黄变绿打; 打开600泵开关,按Direct键,进入操作菜单。 三、抽气 抽取管路A液体:先将注射器旋转插入,将旋钮由Run转至 Draw,抽液,完成后将旋钮由Draw至Run,再将注射器旋转取下,反复1-2次,抽至管路内无气泡。 抽取管路B液体:在泵操作菜单上将B设为100%,给0.2ml/min的流速,听到泵转换的声音后,将流速设为0,以抽取管路A的步骤进行抽气。 四、调节流动相比例与流速 在泵操作菜单上设定流动相比例,并以0.2、0.4、0.6、0.8、1.0ml/min的速度逐步升高流速,每次间隔3-5分钟。 五、2410示差检测器的使用 1、打开2410示差检测器开关 2、调整检测器内、外温度 3、实验前一天晚上,使用“purge”状态平衡过夜,若第二天还要做实验,结束工作后不关机,节省第二天的平衡时间,保持0.2ml/min的流速。 六、2487紫外检测器的使用 1、打开2487示差检测器开关,机器自动进入自检过程,约需7分钟。 2、设置检测波长 3、预热30分钟左右,即可注样测定。

试验四、番茄内源激素高效液相色谱法测定 一、样品准备 取新鲜番茄根、茎、叶5克左右,液氮冷冻,放入冰箱储存。配80%甲醇,冰箱冷冻。 二、提取 样品放入预冷研钵,加l0ml 80%的冰冻甲醇研磨至匀浆,转入小烧杯中,再用甲醇清洗研钵2次,每次l0ml,转入小烧杯中。小烧杯放入冰箱(0~4℃)冷藏14小时以上。 三、过滤 取出用漏斗滤纸过滤,并用10m180%甲醇清洗残渣,合并滤液;如果提取液中沉淀物或色素多,则用10000g离心l0~12min,上清液转入冻干瓶中。 四、浓缩 将冻干瓶中的液体用减压蒸干机蒸干(至瓶中液体结冰),然后用2m1 80%的甲醇冲洗,如果有浑浊物,再次用离心机12000g离心l0min,倒入带有刻度的试管中,为保证试管中的液体有5ml左右,将不足5ml的试管中再加入一些甲醇。 五、萃取 提取液中加入等量石油醚萃取,用力振荡,待静止分层后,用胶头滴管吸取上层液体弃去,此过程反复进行,直至醚层不再有颜色。 六、过柱纯化 萃取脱色后液体吸入针管,通过C18小柱滤除色素,用1~2m1甲醇清洗小柱一次,若滤出色素,将液体吸回,用新小柱重新滤一次(小柱使用前要用甲醇浸泡,用后再用甲醇反复冲洗,再浸泡)。 七、二次浓缩 液体转入蒸发皿中,60℃蒸干,用lml甲醇洗脱。 八、过滤 0.45um滤膜过滤,滤液收集到小瓶中,冷冻待测定。 九、测定与计算 用标样做标准曲线,分别为10,50,100,200,500mg/ml。进样量为20ul。 测定条件:流速为lml/min,柱温设定为35℃,测定波长为260nm,流动相甲醇:3%乙醇=45:55 计算:通过曲线计算样品中激素浓度。

高效液相色谱法(HPLC)的概述

此帖与GC版的对应,是为了让大家更好的学习和了解LC 主要内容包括: 1.高效液相色谱法(HPLC)的概述 2. 高效液相色谱基础知识介绍(1——13楼) 3. 高压液相色谱HPLC发展概况、特点与分类 4. 液相色谱的适用性 5.应用 高效液相色谱法(HPLC)的概述 以高压液体为流动相的液相色谱分析法称高效液相色谱法(HPLC)。其基本方法是用高压泵将具有一定极性的单一溶剂或不同比例的混合溶剂泵入装有填充剂的色谱柱,经进样阀注入的样品被流动相带入色谱柱内进行分离后依次进入检测器,由记录仪、积分仪或数据处理系统记录色信号或进行数据处理而得到分析结果。 由于高效液相色谱法具有分离效能高、选择性好、灵敏度高、分析速度快、适用范围广(样品不需气化,只需制成溶液即可)、色谱柱可反复使用的特点,在《中国药典》中有5 0种中成药的定量分析采用该法,已成为中药制剂含量测定最常用的分析方法。 高效液相色谱法按固定相不同可分为液-液色谱法和液-固色谱法;按色谱原理不同可分为分配色谱法(液-液色谱)和吸附色谱法(液-固色谱)等。 目前,化学键合相色谱应用最为广泛,它是在液-液色谱法的基础上发展起来的。将固定液的官能团键合在载体上,形成的固定相称为化学键合相,不易流失是其特点,一般认为有分配与吸附两种功能,常以分配作用为主。C18(ODS)为最常使用的化学键合相。 根据固定相与流动相极性的不同,液-液色谱法又可分为正相色谱法和反相色谱法,当流动相的极性小于固定相的极性时称正相色谱法,主要用于极性物质的分离分析;当流动相

的极性大于固定相的极性时称反相色谱法,主要用于非极性物质或中等极性物质的分离分析。 在中药制剂分析中,大多采用反相键合相色谱法。 系统组成: (一)高压输液系统 由贮液罐、脱气装置、高压输液泵、过滤器、梯度洗脱装置等组成。 1.贮液罐 由玻璃、不锈钢或氟塑料等耐腐蚀材料制成。贮液罐的放置位置要高于泵体,以保持输液静压差,使用过程应密闭,以防止因蒸发引起流动相组成改变,还可防止气体进入。2.流动相 流动相常用甲醇-水或乙腈-水为底剂的溶剂系统。 流动相在使用前必须脱气,否则很易在系统的低压部分逸出气泡,气泡的出现不仅影响柱分离效率,还会影响检测器的灵敏度甚至不能正常工作。脱气的方法有加热回流法、抽真空脱气法、超声脱气法和在线真空脱气法等。 3.高压输液泵 是高效液相色谱仪的关键部件之一,用以完成流动相的输送任务。对泵的要求是:耐腐蚀、耐高压、无脉冲、输出流量范围宽、流速恒定,且泵体易于清洗和维修。高压输液泵可分为恒压泵和恒流泵两类,常使用恒流泵(其压力随系统阻力改变而流量不变)。 (二)进样系统 常用六通阀进样器进样,进样量由定量环确定。操作时先将进样器手柄置于采样位置(L OAD),此时进样口只与定量环接通,处于常压状态,用微量注射器(体积应大于定量环体积)注入样品溶液,样品停留在定量环中。然后转动手柄至进样位置(INJECT),使定量环接入输液管路,样品由高压流动相带入色谱柱中。 (三)色谱柱 由柱管和填充剂组成。柱管多用不锈钢制成。柱内填充剂有硅胶和化学键合固定相。在化学键合固定相中有十八烷基硅烷键合硅胶(又称ODS柱或C18柱)、辛烷基硅烷键合硅

气相色谱仪原理、结构及操作(精)

气相色谱仪原理、结构及操作 1、基本原理 气相色谱(GC )是一种分离技术。实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析。混合物的分离是基于组分的物理化学性质的差异,GC 主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽化室汽化后被惰性气体(即载气,一般是N2、He 等)带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来,也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解附,结果在载气中分配浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器,检测器能够将样品组分的存在与否转变为电信号,而电信号的大小与被测组分的量或浓度成比例,当将这些信号放大并记录下来时,就是如图2所示的色谱图(假设样品分离出三个组分),它包含了色谱的全部原始信息。在没有组分流出时,色谱图的记录是检测器的本底信号,即色谱图的基线。 2、气相色谱结构及维护 2.1 进样隔垫 进样隔垫一般为硅橡胶材料制成,一般可分普通型、优质型和高温型三种,普通型为米黄色,不耐高温,一般在200℃以下使用;优质型可耐温到300℃;高温型为绿色,使用温度可高于350℃,至色谱柱最高使用温度的400℃。正因为进样隔垫多为硅橡胶材料制成,其中不可避免地含有一些残留溶剂和/或低分子齐聚物,另外由于汽化室高温的影响,硅橡胶会发生部分降解,这些残留的溶剂和降解产物如果进入色谱柱,就可能出现“鬼峰”(即不是样品本身的峰),从而影响分析。解决的办法有:一是进行“隔垫吹扫”,二是更换进样隔垫。一般更换进样隔

高效液相色谱使用方法

高效液相色谱使用方法 一、流动相准备 将流动相按比例混合,注意混合的流动相必须相互溶解,最好能将流动相混合在一起,若相互溶解性不好,可分成两种。流动相配好后,将管路放入,注意不要将瓶口密封。 二、开机 首先将真空泵打开,待泵的指示灯由黄变绿打; 打开600泵开关,按Direct键,进入操作菜单。 三、抽气 抽取管路A液体:先将注射器旋转插入,将旋钮由Run转至 Draw,抽液,完成后将旋钮由Draw至Run,再将注射器旋转取下,反复1-2次,抽至管路内无气泡。 抽取管路B液体:在泵操作菜单上将B设为100%,给0.2ml/min的流速,听到泵转换的声音后,将流速设为0,以抽取管路A的步骤进行抽气。 四、调节流动相比例与流速 在泵操作菜单上设定流动相比例,并以0.2、0.4、0.6、0.8、1.0ml/min的速度逐步升高流速,每次间隔3-5分钟。 五、2410示差检测器的使用 1、打开2410示差检测器开关 2、调整检测器内、外温度 3、实验前一天晚上,使用“purge”状态平衡过夜,若第二天还要做实验,结束工作后不关机,节省第二天的平衡时间,保持0.2ml/min的流速。 六、2487紫外检测器的使用 1、打开2487示差检测器开关,机器自动进入自检过程,约需7分钟。 2、设置检测波长 3、预热30分钟左右,即可注样测定。

试验四、番茄内源激素高效液相色谱法测定 一、样品准备 取新鲜番茄根、茎、叶5克左右,液氮冷冻,放入冰箱储存。配80%甲醇,冰箱冷冻。 二、提取 样品放入预冷研钵,加l0ml 80%的冰冻甲醇研磨至匀浆,转入小烧杯中,再用甲醇清洗研钵2次,每次l0ml,转入小烧杯中。小烧杯放入冰箱(0~4℃)冷藏14小时以上。 三、过滤 取出用漏斗滤纸过滤,并用10m180%甲醇清洗残渣,合并滤液;如果提取液中沉淀物或色素多,则用10000g离心l0~12min,上清液转入冻干瓶中。 四、浓缩 将冻干瓶中的液体用减压蒸干机蒸干(至瓶中液体结冰),然后用2m1 80%的甲醇冲洗,如果有浑浊物,再次用离心机12000g离心l0min,倒入带有刻度的试管中,为保证试管中的液体有5ml左右,将不足5ml的试管中再加入一些甲醇。 五、萃取 提取液中加入等量石油醚萃取,用力振荡,待静止分层后,用胶头滴管吸取上层液体弃去,此过程反复进行,直至醚层不再有颜色。 六、过柱纯化 萃取脱色后液体吸入针管,通过C18小柱滤除色素,用1~2m1甲醇清洗小柱一次,若滤出色素,将液体吸回,用新小柱重新滤一次(小柱使用前要用甲醇浸泡,用后再用甲醇反复冲洗,再浸泡)。 七、二次浓缩 液体转入蒸发皿中,60℃蒸干,用lml甲醇洗脱。 八、过滤 0.45um滤膜过滤,滤液收集到小瓶中,冷冻待测定。 九、测定与计算 用标样做标准曲线,分别为10,50,100,200,500mg/ml。进样量为20ul。 测定条件:流速为lml/min,柱温设定为35℃,测定波长为260nm,流动相甲醇:3%乙醇=45:55 计算:通过曲线计算样品中激素浓度。

高效液相色谱仪简介

高效液相色谱仪简介 系统组成、工作原理 高效液相色谱仪的系统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相) 内, 由于样品溶液中的各组分在两相中具有不同的分配系数, 在两相中作相对运动时, 经过反复多次的吸附- 解吸的分配过程, 各组分在移动速度上产生较大的差别, 被分离成单个组分依次从柱内流出, 通过检测器时, 样品浓度被转换成电信号传送到记录仪,数据以图谱形式打印出来。 高效液相色谱 (high performance liquid chromatography, HPLC)也叫高压液相色谱(high pressure liquid chromatography)、高速液相色谱(high speed liquid chromatography)、高分离度液相色谱(high resolution liquid chromatography)等。是在经典液相色谱法的基础上,于60年代后期引入了气相色谱理论而迅速发展起来的。它与经典液相色谱法的区别是填料颗粒小而均匀,小颗粒具有高柱效,但会引起高阻力,需用高压输送流动相,故又称高压液相色谱。又因分析速度快而称为高速液相色谱。 高效液相色谱是目前应用最多的色谱分析方法,高效液相色谱系统由流动相储液体瓶、输液泵、进样器、色谱柱、检测器和记录器组成,其整体组成类似于气相色谱,但是针对其流动相为液体的特点作出很多调整。HPLC的输液泵要求输液量恒定平稳;进样系统要求进样便利切换严密;由于液体流动相粘度远远高于气体,为了减低柱压高效液相色谱的色谱柱一般比较粗,长度也远小于气相色谱柱。HPLC应用非常广泛,几乎遍及定量定性分析的各个领域。 使用高效液相色谱时,液体待检测物被注入色谱柱,通过压力在固定相中移动,由于被测物种不同物质与固定相的相互作用不同,不同的物质顺序离开色谱柱,通过检测器得到不同的峰信号,最后通过分析比对这些信号来判断待侧物所含有的物质。高效液相色谱作为一种重要的分析方法,广泛的应用于化学和生化分析中。高效液相色谱从原理上与经典的液相色谱没有本质的差别,它的特点是采用了高压输液泵、高灵敏度检测器和高效微粒固定相,适于分析高沸点不易挥发、分子量大、不同极性的有机化合物。 发展历史

高效液相色谱使用方法

高效液相色谱使用方法 一、开机 1、开机前准备:流动相使用前必须过0.45um的滤膜(有机相的流动相必须为色谱纯;水相必须用新鲜注射用水,不能使用超过3天的注射用水,以防止长菌或长藻类);把流动相放入溶剂瓶中。A瓶:为水相B瓶:为有机相。 2、打开电脑,选Win 2000,进入Win 2000界面。 3、双击CAG Boodp server图标,放大CAG Boodp server小图标,出现窗口,5min内打开液相各部件电源开关,等待1100广播信息后,表示通讯成功连接,关闭CAG Boodp serve窗口。 4、双击online图标,仪器自检,进入工作站。 该页面主要由以下几部分组成: ——最上方为命令栏,依次为File,Run Control,Instrumen…等; ——命令栏下方为快捷操作图标,如多个样品连续进行分析、单个样品进样分析、调用文件保存文件……等; ——中部为工作站各部件的工作流程示意图;依次为进样器-输液泵-柱温箱-检测器-数据处理-报告; ——中下部为动态监测信号; ——右下部为色谱工作参数:进样体积、流速、分析停止时间、流动相比例、柱温、检测波长等。 4、从“View”菜单中选择“Method and control”画面。 二、编辑参数及方法 1、开始编辑完整方法: 从“Method”菜单中选择“New method”,出现DEF-LC.M,从“Method”菜单中选择“Edit entire method”,选择方法信息、仪器参数及收集参数、数据分析参数和运行时间表等各项,单击OK,进入下一画面。 2、方法信息: 在“Method Comments”中加入方法的信息,如方法的用途等。单击OK,进入下一画面。 3、泵参数设定:

顶空进样-气相色谱分析技术

顶空进样-气相色谱分析技术 静态顶空分析法普遍应用于环境样品土壤、泥浆和水等机体中易挥发物的分析。例如,水中三氯甲烷、四氯化碳、三氯乙烯、四氯乙烯、三溴甲烷等这样一类挥发性有机物,由于其成分的吸入对人和动物的肝脏造成严重危害,因此,相关的管理部门制订出了关于饮用水、水源水、排放污水等严格的控制指标,水质监测部门广泛应用顶空进样技术进行监测分析工作。 静态顶空分析法还普遍应用于制药行业中溶剂残留的分析。在美国药典中,最早检测的5种溶剂为:二氯甲烷、氯仿、三氯乙烯、1、4-二氧六环和苯等。随着药品生产过程中溶剂种类的增加,为保证药品的安全性,中国药品监督管理部门还要求检测其他的溶剂残留量。 通过测量血液中的酒精含量,静态顶空分析法还被法院用来加强对酒后驾驶的法律监督。法律监督部门也用顶空方法分析纵火现场的挥发性毒物或助燃剂的种类。 静态顶空分析法还可用于聚合物中的单体、溶剂和添加剂的分析、变压器油的气体分析等。例如,塑料制品当作食品外包装或容器时,产品质量监测部门将严格其中的有毒有害残余物的含量。 静态顶空分析技术是顶空分析法发展中所出现的最早形态,而得到广泛的推广和应用,静态顶空分析技术(简称顶空进样技术)主要用于测量那些在200摄氏度下可挥发的被分析物,以及比较难于进行前处理的样品。静态顶空分析法在仪器模式上可分为三类: 顶空气体直接进样模式: 由气密进样针取样,一般在气体取样针的外部套有温度控制装置.这种静态顶空分析法模式具有适用性广和易于清洗的特点,适合于香精香料和烟草等挥发性含量较大的样品.加热条件下顶空气的压力太大时,会在注射器拔出顶空瓶的瞬间造成挥发性成分的损失,因此在定量分析上存在一定的不足.为了减少挥发性物质在注射器中的冷凝,应该将注射器加热到合适的温度,并且在每次进样前用气体清洗进样器,以便尽可能地消除系统的记忆效应。 平衡加压采样模式: 由压力控制阀和气体进样针组成,待样品中的挥发性物质达到分配平衡时对顶空瓶内施加一定的气压将顶空气体直接压入到载气流中.这种采样模式靠时间程序来控制分析过程,所以很难计算出具体的进样量.但平衡加压采样模式的系统死体积小,具有很好的重现性.同样为了减少挥发性物质在管壁和注射器中的冷凝,应该对管壁和注射器加热到适当的温度,而且在每次进样前用气体清洗进样针。 加压定容采样进样模式:

相关文档
相关文档 最新文档