文档库 最新最全的文档下载
当前位置:文档库 › 2020届人教版高中物理选修3-3教学案:第七章 第4节 温度和温标含答案

2020届人教版高中物理选修3-3教学案:第七章 第4节 温度和温标含答案

2020届人教版高中物理选修3-3教学案:第七章 第4节 温度和温标含答案
2020届人教版高中物理选修3-3教学案:第七章 第4节 温度和温标含答案

第4节温度和温标

1.平衡态:如果容器与外界没有能量交换,经过一段时

间后,容器内各点的压强和温度都不再变化。

2.热平衡:两个相互接触的系统,经过一段时间以后

状态参量不再发生变化,这说明两个系统对传热来

说已经达到了平衡。

3.热平衡定律:如果两个系统分别与第三个系统达到

热平衡,那么这两个系统彼此之间也必定处于热平

衡。一切达到热平衡的系统都具有相同的温度。

4.摄氏温度t与热力学温度T的关系:T=t+273.15 K。

一、状态参量与平衡态

1.热力学系统

通常把由大量分子组成的研究对象称为热力学系统。

2.外界

指系统之外与系统发生相互作用的其他物体的统称。

3.状态参量

描述系统热学性质的物理量,常用的物理量有几何参量体积V、力学参量压强p、热学参量温度T。

4.平衡态

系统在没有外界影响的情况下,经过足够长的时间,各部分的状态参量达到稳定的状态。

二、热平衡与温度

1.热平衡:两个相互接触的热力学系统的状态参量不再变化。

2.热平衡定律:如果两个系统分别与第三个系统达到热平衡,那么这两个系统彼此之间也必定处于热平衡。

3.热平衡的性质:一切达到热平衡的系统都具有相同的温度。

4.温度:表征互为热平衡系统的共同热学性质的物理量。

三、温度计与温标

1.常见温度计的测温原理

名称测温原理

水银温度计根据水银的热膨胀的性质来测量温度

金属电阻温

根据金属铂的电阻随温度的变化来测量温度

度计

气体温度计根据气体压强随温度的变化来测量温度

热电偶温度

根据不同导体,因温差产生电动势的大小不同来测量温度

2.温标

(1)摄氏温标:

一种常用的表示温度的方法,规定标准大气压下冰的熔点为0_℃,水的沸点为100_℃。在0 ℃和100 ℃之间均匀分成100等份,每份算做1 ℃。

(2)热力学温标:

现代科学中常用的表示温度的方法,规定摄氏温度的-273.15_℃为零值,它的一度等于摄氏温度的一度。

(3)摄氏温度与热力学温度:

①摄氏温度:摄氏温标表示的温度,用符号t表示,单位摄氏度,符号为℃。

②热力学温度:热力学温标表示的温度,用符号T表示,单位开尔文,简称开,符号为K。

③换算关系:T=t+273.15_K。

1.自主思考——判一判

(1)平衡态是一种理想情况。(√)

(2)处于热平衡的两个系统具有相同的热量。(×)

(3)现代技术可以达到绝对零度。(×)

(4)摄氏温度和热力学温度都是从零开始的。(×)

(5)0 ℃的温度可以用热力学温度粗略地表示为273 K。(√)

(6)温度升高了10 ℃也就是升高了10 K。(√)

2.合作探究——议一议

(1)一根长铁丝一端插入100 ℃的沸水中,另一端放入0 ℃恒温源中,经过足够长的

时间,温度随铁丝有一定的分布,而且不随时间变化,这种状态是否为平衡态?

提示:这种状态不是平衡态,只是一种稳定状态,因为存在外在因素的影响。

(2)当系统处于平衡态时,系统的所有性质都不随时间变化,是绝对不变的吗?

提示:不是。平衡态是一种理想情况,因为任何系统完全不受外界影响是不可能的,即使系统处于平衡态,仍可能发生偏离平衡态的微小变化。

(3)试从宏观和微观两个角度理解温度这个概念。

提示:宏观上,温度表示物体的冷热程度;微观上温度反映分子热运动的激烈程度,是分子平均动能大小的标志。

对平衡态与热平衡的理解

1.正确理解平衡态

(1)热力学的平衡态是一种动态平衡,组成系统的分子仍在不停地做无规则运动,只是分子运动的平均效果不随时间变化,表现为系统的宏观性质不随时间变化。

(2)平衡态是一种理想状态,因为任何系统完全不受外界影响是不可能的。

2.对热平衡的理解

两个系统达到热平衡后再把它们分开,如果分开后它们都不受外界影响,再把它们重新接触,它们的状态不会发生新的变化。因此,热平衡概念也适用于两个原来没有发生过作用的系统。因此可以说,只要两个系统在接触时它们的状态不发生变化,我们就说这两个系统原来是处于热平衡的。

3.平衡态与热平衡的区别

(1)平衡态是对某一系统而言的,是系统的状态,热平衡是对两个接触的系统之间的关系而言的。

(2)分别处于平衡态的两个系统在相互接触时,它们的状态可能会发生变化,直到温度相同时,两个系统便达到了热平衡。达到热平衡的两个系统都处于平衡态。

[典例] 关于平衡态和热平衡,下列说法中正确的有( )

A.只要温度不变且处处相等,系统就一定处于平衡态

B.两个系统在接触时它们的状态不发生变化,说明这两个系统原来的温度是相等的C.热平衡就是平衡态

D.处于热平衡的几个系统的压强一定相等

[思路点拨] 解答本题应注意以下两点:

(1)一个系统的温度、压强、体积等都不变化时,才是处于平衡状态。

(2)若两个系统的温度相等,则两个系统已达到热平衡。

[解析] 一般来说,描述系统的状态参量不只是一个,根据平衡态的定义知所有性质都不随时间变化,系统才处于平衡态,A错误;根据热平衡的定义知处于热平衡的两个系统温度相同,故B正确、D错误;平衡态是针对某一系统而言的,热平衡是两个系统相互影响的最终结果,可见C错误。

[答案] B

解答热平衡问题的三个要点

(1)平衡态与热平衡不同,平衡态指的是一个系统内部达到的一种动态平衡。

(2)必须要经过较长一段时间,直到系统内所有性质都不随时间变化为止。

(3)系统与外界没有能量的交换。

1.(多选)下列说法正确的是( )

A.两个系统处于热平衡时,它们一定具有相同的热量

B.如果两个系统分别与第三个系统达到热平衡,那么这两个系统也必定处于热平衡C.温度是决定两个系统是否达到热平衡状态的唯一物理量

D.热平衡定律是温度计能够用来测量温度的基本原理

解析:选BCD 热平衡的系统都具有相同的状态参量——温度,所以A项错,C项正确;由热平衡定律知,若物体A与物体B处于热平衡,它同时也与物体C处于热平衡,则物体B 与C的温度也相等,这也是温度计用来测量温度的基本原理,故B、D项正确。

2.关于热平衡,下列说法中错误的是( )

A.系统甲与系统乙达到热平衡就是它们的温度达到相同的数值

B.标准状况下冰水混合物与0 ℃的水未达到热平衡

C.量体温时体温计需要和身体接触十分钟左右是为了让体温计跟身体达到热平衡

D.冷热程度相同的两系统处于热平衡状态

解析:选B 两个系统达到热平衡时的标志是它们的温度相同,或者说它们的冷热程度相同,所以A、C、D三项都正确,B项错误。

3.(多选)下列物体中处于热平衡状态的是( )

A.冰水混合物处在0 ℃的环境中

B.将一铝块放入沸水中加热足够长的时间

C.冬天刚打开空调的教室内的空气

D.一个装有气体的密闭绝热容器匀速运动,容器突然停止运动时,容器内的气体

解析:选AB 冰水混合物的温度为0 ℃,和环境的温度相同,处于热平衡状态,A正

确;铝块在沸水中加热足够长的时间,铝块和水的温度相同,处于热平衡状态,B正确;冬天刚打开空调的教室内的气体各部分温度不相同,未处于热平衡状态,C错误;匀速运动的容器突然停止运动时,机械能转化为气体的内能,容器内的气体温度升高,未达到热平衡状态,D错误。

热力学温标与摄氏温标

摄氏温标和热力学温标的比较

摄氏温标热力学温标

名称/符号摄氏温度/t 热力学温度/T

单位/符号摄氏度/℃开尔文/K

一个标准大气压下冰水混合

零度的规定

-273.15 ℃

物的温度

①T=t+273.15 K,粗略表示为T=t+273 K

两者关系

②升高或降低1 K与升高或降低1 ℃相等

1.(多选)下列关于摄氏温标和热力学温标的说法正确的是( )

A.用摄氏温标和热力学温标表示温度是两种不同的表示方法

B.用两种温标表示温度的变化时,两者的数值相等

C.1 K就是1 ℃

D.当温度变化1 ℃时,也可说成温度变化274.15 K

解析:选AB 中学常用的两种表示温度的方法就是摄氏温标和热力学温标,A对;两者关系是:T=t+273.15 K,所以用两者表示温度的变化时,两者的数值相等,B对;当温度变化1 ℃时,也可说成温度变化1 K,不能说1 K就是1 ℃,只能是1开尔文的温差等于1摄氏度的温差,C、D错。

2.(多选)下列关于热力学温度的说法中正确的是( )

A.热力学温度的零点是-273.15 ℃

B.-136 ℃比136 K温度高

C.0 ℃等于273.15 K

D.1 ℃就是1 K

解析:选ABC 热力学温度的零点是-273.15 ℃,A正确;由热力学温度与摄氏温度的关系T=273.15 K+t可知,-136 ℃等于137.15 K,0 ℃等于273.15 K,1 ℃就是274.15 K,故B、C正确,D错误。

3.(多选)关于热力学温度,下列说法中正确的是( )

A.-33 ℃=240 K

B.温度变化1 ℃,也就是温度变化1 K

C.摄氏温度与热力学温度都可能取负值

D.温度由t℃升至2t℃,对应的热力学温度升高了273 K+t

解析:选AB 由T=273 K+t可知:-33 ℃=240 K,A、B正确;D中初态热力学温度为273 K+t,末态为273 K+2t,温度变化t K,故D错误;对于摄氏温度可取负值的范围为0~-273 ℃,因绝对零度达不到,故热力学温度不可能取负值,故C错误。

1.(多选)关于系统的状态参量,下列说法正确的是( )

A.描述运动物体的状态可以用压强等参量

B.描述系统的力学性质可以用压强来描述

C.描述气体的性质可用温度、体积等参量

D.温度能描述系统的热学性质

解析:选BCD 描述运动物体的状态可以用速度、加速度、位移等参量,A错;描述系统的力学性质可以用压强、电场强度、磁感应强度等来描述,B对;描述气体的性质可用温度、体积、压强等参量,C对;温度是用来描述物体冷热程度的物理量,可以描述系统的热学性质,D对。

2.当甲、乙两物体相互接触后,热量从甲物体流向乙物体,这样的情况表示甲物体具有( )

A.较高的热量B.较大的比热容

C.较大的密度D.较高的温度

解析:选D 热量总是从高温物体传到低温物体,或从物体的高温部分传递到低温部分,因此决定热量传播的决定因素是温度,A、B、C各选项所提到的条件均与此无关,故D项正确。

3.(多选)下列说法正确的是( )

A.用温度计测量温度是根据热平衡的原理

B.温度相同的棉花和石头相接触,需要经过一段时间才能达到热平衡

C.若a与b、c分别达到热平衡,则b、c之间也达到了热平衡

D.两物体温度相同,可以说两物体达到热平衡

解析:选ACD 当温度计的液泡与被测物体紧密接触时,如果两者的温度有差异,它们之间就会发生热交换,高温物体将向低温物体传热,最终使二者的温度达到相等,即达到

热平衡。A、D对;温度相同,不会进行热传递,B错;若a与b、c分别达到热平衡,三者温度就相等了,所以b、c之间也达到了热平衡,C对。

4.(多选)下列说法中正确的有( )

A.处于热平衡的两个系统的状态参量不再变化

B.达到热平衡的两个系统分开后,再接触时有可能发生新的变化

C.两个未接触的系统不可能处于热平衡

D.处于热平衡的几个系统的温度一定相等

解析:选AD 根据热平衡的定义,两个处于热平衡的系统,无论分开,还是再接触,系统的状态参量都不再发生变化,故A正确、B错误;一切达到热平衡的系统一定都具有相同的温度,两个未接触的系统也可能处于热平衡,故C错误、D正确。

5.有关温标的说法正确的是 ( )

A.温标不同,测量时得到同一系统的温度数值可能是不同的

B.不同温标表示的温度数值不同,则说明温度不同

C.温标的规定都是人为的,没有什么理论依据

D.热力学温标和摄氏温标是两种不同的温度表示方法,表示的温度数值没有关系

解析:选A 温标不同,测量同一系统的温度数值一般不同,A正确,B错误;每一种温标的规定都有一定意义,如摄氏温标的0 ℃表示一个标准大气压下冰的熔点,100 ℃为一个标准大气压下水的沸点,C错误;热力学温标和摄氏温标的数值关系有T=t+273 K,D错误。

6.下列关于热力学温标说法不正确的是( )

A.热力学温度的零度是-273.15 ℃,叫做绝对零度

B.热力学温度的每一度的大小和摄氏温度的每一度大小是相同的

C.绝对零度是低温的极限,永远达不到

D.1 ℃等于1 K

解析:选D 热力学温度和摄氏温度的每一度大小是相同的,两种温度的区别在于它们的零值规定不同,所以A、B、C均正确;根据T=t+273.15 K知,1 ℃为274.15 K,所以D不正确。

7.“在测铜块的比热容时,先把质量已知的铜块放入沸水中加热,经过一段时间后把它迅速放入质量已知、温度已知的水中,并用温度计测量水的温度,当水温不再上升时,这就是铜块与水的共同温度,根据实验的数据就可以计算铜块的比热容。”以上的叙述中,哪个地方涉及了“平衡态”和“热平衡”的概念?

解析:铜块放入水中加热经过一段时间后铜块和沸水各自达到“平衡态”,它们这两个系统达到“热平衡”,铜块的温度就等于沸水的温度。当把铜块和温度计放入质量已知、

温度已知的水中时,铜块、温度计和水三者发生热传递,当水温不再上升时,水、铜块和温度计各自达到“平衡态”,三者达到“热平衡”。

答案:见解析

8.假设房间向环境传递热量的速率正比于房间和环境之间的温度差,暖气片向房间传递热量的速度也正比于暖气片与房间之间的温度差。暖气片温度恒为T 0,当环境温度为-5 ℃时,房间温度保持在22 ℃。当环境温度为-15 ℃时,房间温度保持为16.5 ℃。

(1)求暖气片的温度 T 0;

(2)给房子加一层保温材料,使得温差一定时房间散热的速率下降 20%,求环境温度为-15 ℃时房间的温度。

解析:(1)设两次房间温度分别为T 1=22 ℃,T 1′=16.5 ℃,环境温度分别为T 2=-5 ℃,T 2′=-15 ℃;设暖气片向房间的散热系数为k 1,房间向环境的散热系数为k 2,当房间温度平衡时暖气片向房间的散热速率与房间向环境的散热速率相同,则有:

k 1(T 0-T 1)=k 2(T 1-T 2)①

k 1(T 0-T 1′)=k 2(T 1′-T 2′)②

整理得:

T 0=T 2T 1′-T 2′T 1T 1′-T 2′-(T 1-T 2)

=-5×16.5-(-15)×2216.5-(-15)-[22-(-5)]

℃=55 ℃ (2)设此时房间的温度为T 1″

则k 1(T 0-T 1″)=(1-20%)k 2(T 1″-T 2′)③

由①式可知,k 1k 2=

T 1-T 2T 0-T 1=22-(-5)55-22=911

则由③式得 T 1″=

k 1T 0+0.8k 2T 2′k 1+0.8k 2 =9×55+0.8×11×(-15)9+0.8×11

≈20.4 ℃。 答案:(1)55 ℃ (2)20.4 ℃

人教版高中物理选修3-1 全册知识点总结大全

人教版高中物理选修3-1 全册知识点总结大全 第一章 静电场 第1课时 库仑定律、电场力的性质 考点1.电荷、电荷守恒定律 自然界中存在两种电荷:正电荷和负电荷。例如:用毛皮摩擦过的橡胶棒带负电,用丝绸摩擦过的玻璃棒带正电。同种电荷互相排斥,异种电荷相互吸引;电荷的基本性质:能吸引轻小物体 1. 元电荷:电荷量c e 191060.1-?=的电荷,叫元电荷。说明:任意带电体的电荷量都是 元电荷电荷量的整数倍。 2.使物体带电也叫起电。使物体带电的方法有三种:①摩擦起电 ②接触带电 ③感应起电。 3电荷守恒定律:电荷既不能被创造,又不能被消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,电荷的总量保持不变。 考点2.库仑定律 1. 内容:在真空中静止的两个点电荷之间的作用力跟它们的电荷量的乘积成正比,跟它们之间的距离的平方成反比,作用力的方向在他们的连线上。 2. 公式:叫静电力常量)式中,/100.9(2 292 21C m N k r Q Q k F ??== 3. 适用条件:真空、点电荷。 4. 点电荷:如果带电体间的距离比它们的大小大得多,以致带电体的形状体积对相互作用力的影响可忽略不计,这样的带电体可以看成点电荷。 考点3.电场强度 1.电场 ⑴ 定义:存在电荷周围能传递电荷间相互作用的一种特殊物质。 ⑵ 基本性质:对放入其中的电荷有力的作用。 ⑶ 静电场:静止的电荷产生的电场 2.电场强度 ⑴ 定义:放入电场中的电荷受到的电场力F 与它的电荷量q 的比值,叫做该点的电场强度。

⑵ 定义式: q F E = E 与 F 、q 无关,只由电场本身决定。 ⑶ 单位:N/C 或V/m 。 ⑷ 电场强度的三种表达方式的比较 定义式 决定式 关系式 表达式 q F E /= 2/r kQ E = d U E /= 适用 范围 任何电场 真空中的点电荷 匀强电场 说明 E 的大小和方向与检验电荷 的电荷量以及电性以及存在与否无关 Q :场源电荷的电荷量 r:研究点到场源电荷的距离 U:电场中两点的电势差 d :两点沿电场线方向的距离 (5)矢量性:规定正电荷在电场中受到的电场力的方向为该点电场强度的方向,或与负电荷在电场中受到的电场力的方向相反。 (6)叠加性:多个电荷在电场中某点的电场强度为各个电荷单独在该点产生的电场强度的矢量和,这种关系叫做电场强度的矢量叠加,电场强度的叠加遵从平行四边形定则。 考点4.电场线、匀强电场 1. 电场线:为了形象直观描述电场的强弱和方向,在电场中画出一系列的曲线,曲线上的各点的切线方向代表该点的电场强度的方向,曲线的疏密程度表示场强的大小。 2. 电场线的特点 ⑴ 电场线是为了直观形象的描述电场而假想的、实际是不存在的理想化模型。 ⑵ 始于正电荷或无穷远,终于无穷远或负电荷,电场线是不闭合曲线。 ⑶ 任意两条电场线不相交。 ⑷ 电场线的疏密表示电场的强弱,某点的切线方向表示该点的场强方向,它不表示电荷在电场中的运动轨迹。 ⑸ 沿着电场线的方向电势降低;电场线从高等势面(线)垂直指向低等势面(线)。 3. 匀强电场 ⑴定义:场强方向处处相同,场强大小处处相等的区域称之为匀强电场。 ⑵特点:匀强电场中的电场线是等距的平行线。平行正对的两金属板带等量异种电荷后,在

教科版高中物理选修3-1全册学案

第一章静电场 第1节电荷及其守恒定律 三种起电方式的区别和联系 摩擦起电感应起电接触起电 产生及条件两不同绝缘体摩擦时导体靠近带电体时带电导体和导体接触时现象 两物体带上等量异种电 荷 导体两端出现等量异种 电荷,且电性与原带电体 “近异远同” 导体上带上与带电体相 同电性的电荷原因 不同物质的原子核对核 外电子的束缚力不同而 发生电子转移 导体中的自由电子受到 带正(负)电物体吸引(排 斥)而靠近(远离) 电荷之间的相互排斥实质 电荷在物体之间和物体 内部的转移 接触起电的电荷分配原则 两个完全相同的金属球接触后电荷会重新进行分配,如图1-1-2所示. 电荷分配的原则是:两个完全相同的金属球带同种电荷接触后平分原来所带电荷量的总和;带异种电荷接触后先中和再平分. 图1-1-2 1.“中性”与“中和”之间有联系吗? “中性”和“中和”是两个完全不同的概念,“中性”是指原子或者物体所带的正电荷和负电荷在数量上相等,对外不显电性,表现为不带电的状态.可见,任何不带电的物体,实际上其中都带有等量的异种电荷;“中和”是指两个带等量异种电荷的物体,相互接触时,由于正负电荷间的吸引作用,电荷发生转移,最后都达到中性状态的一个过程. 2.电荷守恒定律的两种表述方式的区别是什么? (1)两种表述:①电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移的过程中,电荷的总量保持不变.②一个与外界没有电荷交换的系统,电荷的代数和总是保持不变的. (2)区别:第一种表述是对物体带电现象规律的总结,一个原来不带电的物体通过某种方法可以带电,原来带电的物体也可以使它失去电性(电的中和),但其实质是电荷的转移,电荷的数量并没有减少.第二种表述则更具有广泛性,涵盖了包括近代物理实验发现的微观粒子在变化中

高中物理选修3-3知识点整理

选修3—3考点汇编 1、物质是由大量分子组成的 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度 越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子 间斥力随分子间距离加大而减小得更快些,如图1中两条虚线 所示。分子间同时存在引力和斥力,两种力的合力又叫做分子 力。在图1图象中实线曲线表示引力和斥力的合力(即分子力) 随距离变化的情况。当两个分子间距在图象横坐标0r 距离时, 分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为 1010-m ,相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十 分微弱,可以忽略不计了 4、温度

【精准解析】物理人教版选修3-3课时作业:7-4 温度和温标

课时作业4温度和温标 时间:20分钟 一、单项选择题 1.关于热力学温标与摄氏温标的下列说法不正确的是(D) A.热力学温标与摄氏温标的每一分度的大小是相同的 B.热力学温标的0度值对应于-273.15℃ C.热力学温标的0度是不可能达到的 D.气体温度趋近于绝对零度时,其体积趋近于零 解析:由T=t+273K得知,ΔT=Δt,即热力学温标温度的变化总等于摄氏温标温度的变化,故A项正确.热力学温度与摄氏温度的关系是T=t+273K.可知,当T=0时,则t=-273℃,故B项正确.根据热力学第三定律可知,热力学温标的零K达不到,故C项正确.气体温度趋近于绝对零度时,可能是压强p趋近于零,故D项错误. 2.当甲、乙两物体相互接触后,热量从甲物体流向乙物体,这样的情况表示甲物体具有何种特性(D) A.较高的热量B.较大的比热容 C.较大的密度D.较高的温度 解析:根据热量的传递特性:热量总是自发地从高温物体传到低温物体,或从物体的高温部分传递到低温部分,因此决定热能传递方向的决定因素是温度,A、B、C各选项所提到的条件均与此无关,故D正确. 3.三个系统A、B、C处于热平衡状态,则关于它们的温度的说法正确的是(C) A.它们的温度可以有较大的差别 B.它们的温度可以有微小的差别 C.它们的温度一定相同 D.无法判断温度的关系 解析:当三个系统处于热平衡状态时,它们有相同的状态参量,

即具有相同的温度,故C 正确. 4.如图1所示,规格相同的容器装了相同质量的纯净水,用不同的加热器加热,忽略散热,得到图2所示的水温与时间的关系图线,则(D ) A .乙中温度计的示数为32℃ B .加热相同的时间,两杯水吸收的热量相同 C .吸收相同的热量,甲杯中的水升温比乙杯中的水多 D .甲杯中的水加热2min 与乙杯中的水加热3min 吸收的热量相同 解析:由图乙知,温度计10℃之间有10个小格,所以一个小格代表的温度是1℃,温度计显示的温度为37℃,故A 错误;两杯水质量相同,相同时间内升高的温度不同,根据Q 吸=cm Δt ,可知相同 时间内两杯水吸收的热量不同,故B 错误;两杯中水的质量相同,根据Δt =Q 吸cm 可知,吸收相同的热量,两杯水升高的温度相同,故C 错误;根据图2可知,甲杯中的水加热2min 与乙杯中的水加热3min 升高的温度相同,又因为两杯水的质量相同,根据Q =cm Δt 可知,两杯水吸收的热量相同,故D 正确.故选D. 5.严冬,湖面上结了厚厚的冰,为了测出冰下水的温度,徐强同学在冰上打了一个洞,拿来一支实验室温度计,用下列四种方法测水温,正确的做法是(C )A .用线将温度计拴牢从洞中放入水里,待较长时间后从水中提出,读出示数 B .取一塑料饮水瓶,将瓶拴住从洞中放入水里,水灌满瓶后取出,再用温度计测瓶中水的温度 C .取一塑料饮水瓶,将温度计悬吊在瓶中,再将瓶拴住从洞中

人教版高中物理选修3-1知识点归纳总结

物理选修3-1 知识总结 第一章 第1节 电荷及其守恒定律 一、电荷守恒定律 表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个 物体,或从物体的一部分转移到另一部分,在转移的过程中,电荷的总量保持不变。 表述2、在一个与外界没有电荷交换的系统内,正、负电荷的代数和保持不变。 二、电荷量 1、电荷量:电荷的多少。 2、元电荷:电子所带电荷的绝对值1.6×10-19 C 3、比荷:粒子的电荷量与粒子质量的比值。 第一章 第2节 库仑定律 一、电荷间的相互作用 1、点电荷:带电体的大小比带电体之间的距离小得多。 2、影响电荷间相互作用的因素 二、库仑定律:在真空中两个静止点电荷间的作用力跟它们的电荷的乘积成正比,跟它们距离的平方 成反比,作用力的方向在它们的连线上。 2 2 1r Q Q k F 注意(1)适用条件为真空中静止点电荷 (2)计算时各量带入绝对值,力的方向利用电性来判断 第一章 第3节 电场 电场强度 一、电场 电荷(带电体)周围存在着的一种物质,其基本性质就是对置于其中的电荷有力的作用。 二、电场强度 1、检验电荷与场源电荷 2、电场强度 检验电荷在电场中某点所受的电场力F 与检验电荷的电荷q 的比值。 q F E = 国际单位:N /C 电场强度是矢量。规定:正电荷在电场中某一点受到的电场力方向就是那一点的电场强度的方向。 三、点电荷的场强公式 2r Q k q F E == 四、电场的叠加 五、电场线 1、电场线:为了形象地描述电场而在电场中画出的一些曲线,曲线的疏密程度表示场强的大小,

曲线上某点的切线方向表示场强的方向。 2、几种典型电场的电场线 3、电场线的特点 (1)假想的 (2)起----正电荷;无穷远处 止----负电荷;无穷远处 (3)不闭合 (4)不相交 (5)疏密----强弱 切线方向---场强方向 第一章 第4节 电势能 电势 一、电势能 1、电势能:电荷处于电场中时所具有的,由其在电场中的位置决定的能量称为电势能. 注意:系统性、相对性 2、电势能的变化与电场力做功的关系 3、电势能大小的确定 电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处电场力所做的功 二、电势 1.电势:置于电场中某点的检验电荷具有的电势能与其电量的比叫做该点的电势 q E 电= ? 单位:伏特(V ) 标量 2.电势的相对性 3.顺着电场线的方向,电势越来越低。 三、等势面 1、等势面:电场中电势相等的各点构成的面。 2、等势面的特点 a:在同一等势面的两点间移动电荷,电场力不做功。 b:电场线总是由电势高的等势面指向电势低的等势面。 c:电场线总是与等势面垂直。 第一章 第5节 电势差 电场力的功 一、电势差:电势差等于电场中两点电势的差值 B A AB U ??-= 电电电电电电)=--=-(-=E E E E E W A B B A AB ?)(电势能为零的点点电=A A W E

全套下载(共15份145页)人教版高中物理选修3-3教学案全集(含全套练习)

(共15套145页)人教版高中物理选修3-3教学案全集(含全册练习)

第1节 气体的等温变化 1.一定质量的气体,在温度不变的条件下,其压强与体积变化时的关系,叫做气体的等温变化. 2.玻意耳定律:一定质量的某种气体,在温度不变的情况下,压强p 与体积V 成反比,即pV =C . 3.等温线:在p -V 图像中,用来表示温度不变时,压强和体积关系的图像,它们是一些双曲线. 在p -1V 图像中,等温线是倾斜直线.

一、探究气体等温变化的规律 1.状态参量 研究气体性质时,常用气体的温度、体积、压强来描述气体的状态. 2.实验探究

二、玻意耳定律 1.内容 一定质量的某种气体,在温度不变的情况下,压强与体积成反比. 2.公式 pV=C或p1V1=p2V2. 3.条件 气体的质量一定,温度不变. 4.气体等温变化的p -V图像 气体的压强p随体积V的变化关系如图8-1-1所示,图线的形状为双曲线,它描述的是温度不变时的p -V关系,称为等温线. 一定质量的气体,不同温度下的等温线是不同的. 图8-1-1 1.自主思考——判一判

(1)一定质量的气体压强跟体积成反比. (×) (2)一定质量的气体压强跟体积成正比. (×) (3)一定质量的气体在温度不变时,压强跟体积成反比. (√) (4)在探究气体压强、体积、温度三个状态参量之间关系时采用控制变量法. (√) (5)玻意耳定律适用于质量不变、温度变化的气体. (×) (6)在公式pV =C 中,C 是一个与气体无关的参量. (×) 2.合作探究——议一议 (1)用注射器对封闭气体进行等温变化的实验时,在改变封闭气体的体积时为什么要缓慢进行? 提示:该实验的条件是气体的质量一定,温度不变,体积变化时封闭气体自身的温度会发生变化,为保证温度不变,应给封闭气体以足够的时间进行热交换,以保证气体的温度不变. (2)玻意耳定律成立的条件是气体的温度不太低、压强不太大,那么为什么在压强很大、温度很低的情况下玻意耳定律就不成立了呢? 提示:①在气体的温度不太低、压强不太大时,气体分子之间的距离很大,气体分子之间除碰撞外可以认为无作用力,并且气体分子本身的大小也可以忽略不计,这样由玻意耳定律计算得到的结果与实际的实验结果基本吻合,玻意耳定律成立. ②当压强很大、温度很低时,气体分子之间的距离很小,此时气体分子之间的分子力引起的效果就比较明显,同时气体分子本身占据的体积也不能忽略,并且压强越大,温度越低,由玻意耳定律计算得到的结果与实际的实验结果之间差别越大,因此在温度很低、压强很大的情况下玻意耳定律也就不成立了. (3)如图8-1-2所示,p -1 V 图像是一条过原点的直线,更能直观描述压强与体积的关系, 为什么直线在原点附近要画成虚线?

高中物理选修全套教案(人教版)

高二物理选修3-4教案 11、1简谐运动 一、三维目标 知识与技能 1、了解什么就是机械振动、简谐运动 2、正确理解简谐运动图象得物理含义,知道简谐运动得图象就是一条正弦或余弦曲线过程与方法 通过观察演示实验,概括出机械振动得特征,培养学生得观察、概括能力 情感态度与价值观 让学生体验科学得神奇,实验得乐趣 二、教学重点 使学生掌握简谐运动得回复力特征及相关物理量得变化规律 三、教学难点 偏离平衡位置得位移与位移得概念容易混淆;在一次全振动中速度得变化 四、教学过程 引入:我们学习机械运动得规律,就是从简单到复杂:匀速运动、匀变速直线运动、平抛运动、匀速圆周运动,今天学习一种更复杂得运动——简谐运动 1、机械振动 振动就是自然界中普遍存在得一种运动形式,请举例说明什么样得运动就就是振动? 微风中树枝得颤动、心脏得跳动、钟摆得摆动、声带得振动……这些物体得运动都就是振动。请同学们观察几个振动得实验,注意边瞧边想:物体振动时有什么特征? [演示实验] (1)一端固定得钢板尺[见图1(a)] (2)单摆[见图1(b)] (3)弹簧振子[见图1(c)(d)] (4)穿在橡皮绳上得塑料球[见图1(e)] 提问:这些物体得运动各不相同:运动轨迹就是直线得、曲线得;运动方向水平得、竖直得;物体

各部分运动情况相同得、不同得……它们得运动有什么共同特征? 归纳:物体振动时有一中心位置,物体(或物体得一部分)在中心位置两侧做往复运动,振动就是机械振动得简称。 2、简谐运动 简谐运动就是一种最简单、最基本得振动,我们以弹簧振子为例学习简谐运动 (1)弹簧振子 演示实验:气垫弹簧振子得振动 讨论:a.滑块得运动就是平动,可以瞧作质点 b.弹簧得质量远远小于滑动得质量,可以忽略不计,一个轻质弹簧联接一个质点,弹簧得另一端固定,就构成了一个弹簧振子 c.没有气垫时,阻力太大,振子不振动;有了气垫时,阻力很小,振子振动。我们研究在没有阻力得理想条件下弹簧振子得运动。 (2)弹簧振子为什么会振动? 物体做机械振动时,一定受到指向中心位置得力,这个力得作用总能使物体回到中心位置,这个力叫回复力,回复力就是根据力得效果命名得,对于弹簧振子,它就是弹力。 回复力可以就是弹力,或其它得力,或几个力得合力,或某个力得分力,在O点,回复力就是零,叫振动得平衡位置。 (3)简谐运动得特征 弹簧振子在振动过程中,回复力得大小与方向与振子偏离平衡位置得位移有直接关系。在研究机械振动时,我们把偏离平衡位置得位移简称为位移。 3、简谐运动得位移图象——振动图象 简谐运动得振动图象就是一条什么形状得图线呢?简谐运动得位移指得就是什么位移?(相对平衡位置得位移) 演示:当弹簧振子振动时,沿垂置于振动方向匀速拉动纸带,毛笔P就在纸带上画出一条振动曲线 说明:匀速拉动纸带时,纸带移动得距离与时间成正比,纸带拉动 一定得距离对应振子振动一定得时间,因此纸带得运动方向可以代

高中物理选修3-4全册导学案

选修3-4全册教学学案 选修3-4_11.1简谐振动 【学习目标】 1.认识弹簧振子并能判断出振动的平衡位置。 2.理解简谐运动的位移-时间图像是一条正(余)弦曲线,知道简谐运动图 像的意义。 3.能够根据简谐运动图像弄清楚各时刻质点的位移、速度和加速度的方向 和大小规律。 【自主学习】 1.弹簧振子 (1).组成:由______和________组成的系统叫弹簧振子,它是一个理想化 的模型(为什么?)。 (2).平衡位置:振子__________时的位置。 (3).机械振动:振子在______位置附近的________运动,简称________。 2.简谐运动及其图像 (1).简谐运动:质点的位移与时间的关系遵从___________规律,即它的振 动图像(x-t 图像)是一条________曲线。简谐运动是最简单、最基本的振动, 弹簧振子的运动就是__________。 (2).简谐运动的图像 ①坐标系的建立:在简谐运动的图像中,以横坐标表示______,以纵坐标表 示振子离开平衡位置的_________。 ②物理意义:表示振动物体的_______随_______的变化规律。 重点知识或易混知识 问题1.根据对平衡位置的理解,判断正误并举例说明 ① 在弹簧振子中弹簧处于原长时的状态为平衡状态。 ② 在弹簧振子中物块速度为零时的状态为平衡状态。 ③在弹簧振子中合外力为零时的状态为平衡状态。 问题2.振动图像的理解,结合判断正误 ① 如右图所示正弦曲线为质点的运动轨迹。 ② 如右图,3s 内的位移为x 1大小为cm cm 10910322=+。 ③ 如右图,3s 内的位移为x 2 大小为10cm 。 ④ 如右图,1.5s 时的速度方向为曲线上该点的切线方向。 ⑤ 0.5s 和1.5s 时的位移相同,速度也相同。 ⑥ 0.5s 和3.5s 时的位移相反,速度相反。 X X 1

高中物理选修3-3知识点整理

选修3—3期末复习知识点汇总 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径-V=Sd V 是滴入浅水盘中纯油酸的体积,等于油酸溶液的体积乘以浓度。S 是单分子油膜在水面上形成的面积。 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成 立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N =【固体和液体-分子体积,气体--分子平均占有空间体积】 c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= ===【M-任意质量;v--任意体积】 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同 时还说明分子间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体颗粒的无规则运动,不是分子热运动,但颗粒很小,是在显微镜下才能观察到的。 ①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显; 温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞 击的不均匀性造成的。

③布朗运动间接地反映了液体分子的无规则运动,扩散现象的产生原因是物体分子 做无规则热运动。两者都有力地说明分子在永不停息地做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈。 布朗运动不是分子热运动,扩散现象是分子热运动。 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间 斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。 分子间同时存在引力和斥力,两种力的合力又叫做分子力,随距 离的增加,分子力先减小,后增加,再减小。。在图1图象中实 线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横 坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010-m , 相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十分微弱,可以忽略不计了 4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志,不同分子温度相同,平均速率不一定相同。热力学温度与摄氏温度的关系: 273.15T t K =+。热力学温度是国际单位制中的基本单位。 5、分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分 子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小)固体分子和液体内部分子通常处于平衡位置, 势能最小。分子势能随距离增加,先减小,再增加。 当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加 当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加

新人教版高中物理选修3-2全册导学案

新人教版高中物理选修全册导学案

目录 第四章第1节划时代的发现导 第四章第2节探究电磁感应的产生条件 第四章第3节楞次定律 第四章第4节《法拉第电磁感应定律》 第四章第5节《电磁感应规律的应用》 第四章第5节《电磁感应规律的应用》 第四章第6节《互感与自感》 第四章第6节《互感与自感》 第四章第7节《涡流电磁阻尼和电磁驱动》 第四章第《涡流电磁阻尼和电磁驱动》 第五章第1节交变电流 第五章第2节描述交变电流物理量 第五章第3节《电感和电容对交变电流的影响》第五章第4节变压器 第五章第5节《电能的输送》 第六章第1节传感器及其工作原理 第六章第2节传感器的应用(一) 第六章第3节传感器的应用(二) 第六章第4节传感器的应用实验

选修3-2第四章电磁感应 第1节《划时代的发现》 课前预习学案 一、预习目标 预习奥斯特梦圆“电生磁”;法拉第心系“磁生电”,初步了解物理学中奥斯特和法拉第的贡献。 二、预习内容 奥斯特梦圆“电生磁”标题和法拉第心系“磁生电”标题。 问题1:奥斯特在什么思想的启发下,发现了电流的磁效应的? 问题2:奥斯特发现了电流的磁效应,能说明他是一个“幸运儿”吗?是偶然还是必然? 问题3:1803年奥斯特总结了一句话内容是什么? 问题4:法拉第在了奥斯特的电流磁效应的基础上,思考对称性原理,从而得出了什么样的结论? 问题5:其他很多科学家例如安培,科拉顿等物理学家也做过磁生电的试验,可他们都没有成功,他们问题出现在那里? 问题6:法拉第经过无数次试验,经历10年的时间,终于领悟到了什么? 问题7:什么是电磁感应?什么是感应电流? 问题8:通过学习你从奥斯特、法拉第等科学家身上学到了什么? 问题9:通过查阅资料,了解法拉第的生平,详细写出法拉第一生中的伟大成就和伟大发现。 三、提出疑惑

温度和温标

高中物理新课程教学设计 课题:温度和温标 【教材分析】 本节内容知识面宽,,又能密切联系学生的生活实际,所以教学方法宜灵活多样,充分调动学生的学习兴趣和学习积极性。 本节的内容有平衡态和状态参量,热平衡与温度,温度计与温标,包括温度的物理意义、温度计的原理、结构、摄氏温度的规定、热平衡定律等。 在整个教学过程中,以学生为中心,教师起组织者、指导者、帮助者、和促进者的作用,利用情境、协作、会话等学习环境要素充分发挥学生的主动性、积极性和首创精神,最终达到使学生有效地实现对当前所学知识的意义构建的目的,并在整个学习过程中使学生的各种能力得到锻炼和提高。 【学生分析】本课时教学中学生可能会出现主要的思维障碍与困惑: 1.,几个状态参量非常抽象,学生不易理解。必须让学生搞清楚平衡态是热动平衡,存在涨落(矛盾统一体)在外场中,或对非均匀系统,平衡态下系统宏观性质可不均匀,平衡态是理想概念,2学生对于热平衡的理解停留在一个肤浅的阶段,可以通过联系学生的生活实际教学。 【教学目标】

(一)知识与技能 1.了解系统的状态参量以及平衡态的概念。 2.掌握热平衡的概念及热平衡定律 3.掌握温度与温标的定义以及热力学温度的表示。 (二)过程与方法 通过学习温度与温标,体会热力学温度与摄氏温度的关系。 (三)情感、态度与价值观 体会生活中的热平衡现象,感应热力学温度的应用。 教学重点 热平衡的定义及热平衡定律的内容。 教学难点 有关热力学温度的计算。 教学方法 讲练法、举例法、阅读法 教学用具: 投影仪、投影片 【教学过程】

一. 平衡态和状态参量 研究物理问题 一个物体 研究对象系统 多个物体 研究的问题不同选取的系统常不同 例如: 测定某金属块的比热容实验 热学研大量分子组成的热力学如气体、液 究对象物体或物体系统系统体、固体等系统之外的物质我们称为外界或环境 状态参量——描写系统状态的物理量 对于一个封闭系统,只要经过足够长的时间,系统内的各部分状态参量将不随时间而变化、且具有确定的状态 ——平衡状态,简称平衡态。 二.热平衡与温度

(完整word)高中物理选修3-3资料

高中物理选修3-3复习 专题定位本专题用三讲时分别解决选修3-3、3-4、3-5中高频考查问题,高考对本部分内容考查的重点和热点有: 选修3-3:①分子大小的估算;②对分子动理论内容的理解;③物态变化中的能量问题; ④气体实验定律的理解和简单计算;⑤固、液、气三态的微观解释和理解;⑥热力学定律的理解和简单计算;⑦用油膜法估测分子大小等内容. 选修3-4:①波的图象;②波长、波速和频率及其相互关系;③光的折射及全反射;④光的干涉、衍射及双缝干涉实验;⑤简谐运动的规律及振动图象;⑥电磁波的有关性质. 选修3-5:①动量守恒定律及其应用;②原子的能级跃迁;③原子核的衰变规律;④核反应方程的书写;⑤质量亏损和核能的计算;⑥原子物理部分的物理学史和α、β、γ三种射线的特点及应用等. 应考策略选修3-3内容琐碎、考查点多,复习中应以四块知识(分子动理论、从微观角度分析固体、液体、气体的性质、气体实验定律、热力学定律)为主干,梳理出知识点,进行理解性记忆. 选修3-4内容复习时,应加强对基本概念和规律的理解,抓住波的传播和图象、光的折射定律这两条主线,强化训练、提高对典型问题的分析能力. 选修3-5涉及的知识点多,而且多是科技前沿的知识,题目新颖,但难度不大,因此应加强对基本概念和规律的理解,抓住动量守恒定律和核反应两条主线,强化典型题目的训练,提高分析综合题目的能力. 第1讲热学 高考题型1热学基本知识 解题方略 1.分子动理论 (1)分子大小 ①阿伏加德罗常数:N A=6.02×1023 mol-1. ②分子体积:V0=V mol N A(占有空间的体积).

③分子质量:m0=M mol N A. ④油膜法估测分子的直径:d=V S. (2)分子热运动的实验基础:扩散现象和布朗运动. ①扩散现象特点:温度越高,扩散越快. ②布朗运动特点:液体内固体小颗粒永不停息、无规则的运动,颗粒越小、温度越高,运动越剧烈. (3)分子间的相互作用力和分子势能 ①分子力:分子间引力与斥力的合力.分子间距离增大, 引力和斥力均减小;分子间距离减小,引力和斥力均增大,但斥力总比引力变化得快. ②分子势能:分子力做正功,分子势能减小;分子力做负功,分子势能增大;当分子间距为r0(分子间的距离为r0时,分子间作用的合力为0)时,分子势能最小. 2.固体和液体 (1)晶体和非晶体的分子结构不同,表现出的物理性质不同.晶体具有确定的熔点.单晶体表现出各向异性,多晶体和非晶体表现出各向同性.晶体和非晶体在适当的条件下可以相互转化. (2)液晶是一种特殊的物质状态,所处的状态介于固态和液态之间.液晶具有流动性,在光学、电学物理性质上表现出各向异性. (3)液体的表面张力使液体表面具有收缩到最小的趋势,表面张力的方向跟液面相切.

人教版高中物理选修全册教案完整

第四章电磁感应 划时代的发现 教学目标 (一)知识与技能 1.知道与电流磁效应和电磁感应现象的发现相关的物理学史。 2.知道电磁感应、感应电流的定义。 (二)过程与方法 领悟科学探究中提出问题、观察实验、分析论证、归纳总结等要素在研究物理问题时的重要性。 (三)情感、态度与价值观 1.领会科学家对自然现象、自然规律的某些猜想在科学发现中的重要性。 2.以科学家不怕失败、勇敢面对挫折的坚强意志激励自己。 教学重点 知道与电流磁效应和电磁感应现象的发现相关的物理学史。领悟科学探究的方法和艰难历程。培养不怕失败、勇敢面对挫折的坚强意志。 教学难点 领悟科学探究的方法和艰难历程。培养不怕失败、勇敢面对挫折的坚强意志。教学方法 教师启发、引导,学生自主阅读、思考,讨论、交流学习成果。 教学手段 计算机、投影仪、录像片 教学过程 一、奥斯特梦圆“电生磁”------电流的磁效应 引导学生阅读教材有关奥斯特发现电流磁效应的内容。提出以下问题,引导学

生思考并回答: (1)是什么信念激励奥斯特寻找电与磁的联系的在这之前,科学研究领域存在怎样的历史背景 (2)奥斯特的研究是一帆风顺的吗奥斯特面对失败是怎样做的 (3)奥斯特发现电流磁效应的过程是怎样的用学过的知识如何解释 (4)电流磁效应的发现有何意义谈谈自己的感受。 学生活动:结合思考题,认真阅读教材,分成小组讨论,发表自己的见解。二、法拉第心系“磁生电”------电磁感应现象 教师活动:引导学生阅读教材有关法拉第发现电磁感应的内容。提出以下问题,引导学生思考并回答: (1)奥斯特发现电流磁效应引发了怎样的哲学思考法拉第持怎样的观点 (2)法拉第的研究是一帆风顺的吗法拉第面对失败是怎样做的 (3)法拉第做了大量实验都是以失败告终,失败的原因是什么 (4)法拉第经历了多次失败后,终于发现了电磁感应现象,他 发现电磁感应现象的具体的过程是怎样的之后他又做了大量的实 验都取得了成功,他认为成功的“秘诀”是什么 (5)从法拉第探索电磁感应现象的历程中,你学到了什么谈谈 自己的体会。 学生活动:结合思考题,认真阅读教材,分成小组讨论,发表自己的见解。 三、科学的足迹 1、科学家的启迪教材P3 2、伟大的科学家法拉第教材P4 四、实例探究 【例1】发电的基本原理是电磁感应。发现电磁感应现象的科学家是(C)

高中物理选修3-3知识总结

高中物理3-3知识点总结 一、分子动理论 1、物体是由大量分子组成的 微观量:分子体积V0、分子直径d 、分子质量m 0 宏观量:物质体积V 、摩尔体积V A、物体质量m、摩尔质量M、物质密度ρ。 联系桥梁:阿伏加德罗常数(N A =6.02×1023 mol -1 ) A V M V m ==ρ (1)分子质量:A A 0N V N M N m m A ρ=== (2)分子体积:A A 0N M N V N V V A ρ=== (对气体,V 0应为气体分子占据的空间大小) (3)分子大小:(数量级10-1 0m) 球体模型.30)2 (34d N M N V V A A A πρ=== 直径3 06πV d =(固、液体一般用此模型) 油膜法估测分子大小:S V d = S —单分子油膜的面积,V —滴到水中的纯油酸的体积 错误!立方体模型.3 0=V d (气体一般用此模型;对气体,d应理解为相邻分子间的平均距离) 注意:固体、液体分子可估算分子质量、大小(认为分子一个挨一个紧密排列); 气体分子间距很大,大小可忽略,不可估算大小,只能估算气体分子所占空间、分子质量。 (4)分子的数量:A A N M V N M m nN N A ρ== = 或者 A A N M V N V V nN N A A ρ=== 2、分子永不停息地做无规则运动 (1)扩散现象:不同物质彼此进入对方的现象。温度越高,扩散越快。直接说明了组成物体的分子总是不停地做无规则运动,温度越高分子运动越剧烈。 (2)布朗运动:悬浮在液体中的固体微粒的无规则运动。

发生原因是固体微粒受到包围微粒的液体分子无规则运动地撞击的不平衡性造成的.因而间接 ..说明了液体分子在永不停息地做无规则运动. 错误!布朗运动是固体微粒的运动而不是固体微粒中分子的无规则运动. ②布朗运动反映液体分子的无规则运动但不是液体分子的运动. ③课本中所示的布朗运动路线,不是固体微粒运动的轨迹. ④微粒越小,布朗运动越明显;温度越高,布朗运动越明显. 3、分子间存在相互作用的引力和斥力 ①分子间引力和斥力一定同时存在,且都随分子间距离的增大而减小,随分子间距离的减小而增大,但斥力变化快,实际表现出的分子力是分子引力和分子斥力的合力 ②分子力的表现及变化,对于曲线注意两个距离,即平衡距离r0(约10-10m)与10r0。 (ⅰ)当分子间距离为r0时,引力等于斥力,分子力为零。 (ⅱ)当分子间距r>r0时,引力大于斥力,分子力表现为引力。当分子间距离由r0增大时,分子力先增大后减小 (ⅲ)当分子间距r<r0时,斥力大于引力,分子力表现为斥力。当分子间距离由r0减小时,分子力不断增大 二、温度和内能 1、统计规律:单个分子的运动都是不规则的、带有偶然性的;大量分子的集体行为受到统计规律的支配。多数分子速率都在某个值附近,满足“中间多,两头少”的分布规律。 2、分子平均动能:物体内所有分子动能的平均值。 ①温度是分子平均动能大小的标志。 ②温度相同时任何物体的分子平均动能相等,但平均速率一般不等(分子质量不同). 3、分子势能 (1)一般规定无穷远处分子势能为零, (2)分子力做正功分子势能减少,分子力做负功分子势能增加。 (3)分子势能与分子间距离r0关系(类比弹性势能) ①当r>r0时,r增大,分子力为引力,分子力做负功分子势能增大。 x 0 E P r0

高中物理选修3-2全册学案

第四章电磁感应 4.1划时代的发现 教学目标 (一)知识与技能 1.知道与电流磁效应和电磁感应现象的发现相关的物理学史。 2.知道电磁感应、感应电流的定义。 (二)过程与方法 领悟科学探究中提出问题、观察实验、分析论证、归纳总结等要素在研究物理问题时的重要性。 (三)情感、态度与价值观 1.领会科学家对自然现象、自然规律的某些猜想在科学发现中的重要性。 2.以科学家不怕失败、勇敢面对挫折的坚强意志激励自己。 教学重点、难点 教学重点 知道与电流磁效应和电磁感应现象的发现相关的物理学史。领悟科学探究的方法和艰难历程。培养不怕失败、勇敢面对挫折的坚强意志。 教学难点 领悟科学探究的方法和艰难历程。培养不怕失败、勇敢面对挫折的坚强意志。 教学方法 教师启发、引导,学生自主阅读、思考,讨论、交流学习成果。 教学手段 计算机、投影仪、录像片 教学过程 一、奥斯特梦圆“电生磁”------电流的磁效应 引导学生阅读教材有关奥斯特发现电流磁效应的内容。提出以下问题,引导学生思考并回答: (1)是什么信念激励奥斯特寻找电与磁的联系的?在这之前,科学研究领域存在怎样的历史背景? (2)奥斯特的研究是一帆风顺的吗?奥斯特面对失败是怎样做的? (3)奥斯特发现电流磁效应的过程是怎样的?用学过的知识如何解释? (4)电流磁效应的发现有何意义?谈谈自己的感受。 学生活动:结合思考题,认真阅读教材,分成小组讨论,发表自己的见解。 二、法拉第心系“磁生电”------电磁感应现象 教师活动:引导学生阅读教材有关法拉第发现电磁感应的内容。提出以下问题,引导学生思考并回答: (1)奥斯特发现电流磁效应引发了怎样的哲学思考?法拉第持怎样的 观点? (2)法拉第的研究是一帆风顺的吗?法拉第面对失败是怎样做的? (3)法拉第做了大量实验都是以失败告终,失败的原因是什么?

温度和温标 每课一练 (3)

7.4温度和温标 1、有关热力学温度的说法中,正确的是( ) A. 热力学温度的零度是273.15 ℃ B. 热力学温标表示的温度数值和摄氏温标表示的温度数值不同,则说明温度不同 C. 绝对零度是低温的极限,永远达不到 D. 1℃就是1 K 【答案】C 【解析】热力学温度与摄氏温度的关系是T=t+273K.可知,当T=0时,则t=-273℃,叫绝对零度,A错误;数值不同,但只要满足T=t+273K,则说明是同一个温度,B错误;根据热力学第三定律可知,热力学温标的零K达不到)作合理外推,C正确;1℃、1K 是不同的概念,物理意义不同,由T=t+273K,得知,,即热力学温标温度的变化总等于摄氏温标温度的变化,故D错误. 2、三个系统A,B,C处于热平衡状态,则关于它们的温度的说法正确的是()A.它们的温度可以有较大的差别 B.它们的温度可以有微小的差别 C.它们的温度一定相同 D.无法判断温度的关系 【答案】C 【解答】解:根据热力学第零定律:如果两个系统分别与第三个系统达到热平衡,那么这两个系统彼此之间必定处于热平衡.所以三个系统A,B,C处于热平衡状态,则关于它们的温度一定相同. 故选:C 3、温度计是生活、生产中常用的测温装置.图为一个简易温度计,一根装有一小段有色水柱的细玻璃管穿过橡皮塞插入烧瓶内,封闭一定质量的气体.当外界温度发生变化时,水柱位置将上下变化.已知A、D间的测量范围为20℃~80℃,A、D间刻度均匀分布.由图可知,A、D及有色水柱下端所示温度分别为() A.20℃、80℃、64℃B.20℃、80℃、68℃ C.80℃、20℃、32℃D.80℃、20℃、34℃ 【答案】C 【解答】解:温度计是利用热胀冷缩原理制成的,温度升高时烧瓶内气体膨胀,有色水柱上升;温度降低时烧瓶内气体收缩,有色水柱下降,已知A、D间的测量范围为20℃~ 80℃,可得A点为80℃,D点为20℃,A、D间刻度均匀分布,每格表示=4℃,则有色水柱下端温度为20℃+3×4℃=32℃,故C正确,ABD错误; 故选:C 4、关于分子热运动和布朗运动,下列说法正确的是()

高中物理选修3-3知识点与题型复习

热学知识点复习→制作人:湄江高级中学:吕天鸿 一、固、液、气共有性质 1、组成物质的分子永不停息、无规则运动。温度T越高,运动越激烈,分子平均动能。 注意:对于理想气体,温度T还决定其内能的变化。 扩散现象:相互渗透的反应 2、分子运动的表现 布朗运动:看不见的固体小颗粒被分子不平衡碰撞,颗粒越大,运动越 3、分子间同时存在引力与斥力,且都随着分子间距r的增加而。 (1)分子力的合力F表现:是为F引还是F斥?看间距与分界点r0关系,看下图 当r=r0时,F引=F斥,分子力为0; 当r>r0时,F引>F斥,分子力表现为 当r

非晶体:无确定的熔点。 → 物理性质:各向同性。原子排列:无规则 2,、同一种物质可能以晶体与非晶体两种不同形态出现。如碳形成的金刚石与石墨 3、有些晶体与非晶体可以相互转化。 4、常考晶体有:金刚石与石墨、石英、云母、食盐。常考非晶体有:玻璃、蜂蜡、松香。 三、热力学定律→研究高考对象为→主要还是理想气体 1、热力学第一定律:ΔU =W+Q 表达式中正、负号法则:如下图 2、气体实验定律与热力学第一定律的结合量是气体的体积和温度,当温度变化时,气体的内能变化,当体积变化时,气体将伴随着做功,解题时要掌握气体变化过程的特点: (1)等温过程:内能不变,即ΔU=0。温度T ↑,则内能增加,ΔU >0 (2)等容过程:W=0。若体积V ↑,则气体对外界做功,W 取“—”负号计算。反之亦然 (3)绝热过程:Q=0。 3、再次强调:温度T 决定分子平均动能的变化。也决定理想气体的内能变化 四、气体实验定律→ 理想气体→P 、V 、T=t 0c+273 三个物理量关系 1、三条特殊线 (等温线:P 1V 1=p 2V 2 ) 2、液体柱模型 (1)明确点:P 液=egh 一般不用。当液体为汞时,大气压以 为单位时,高为h cm 时,P 液=h .计算气

相关文档
相关文档 最新文档