文档库 最新最全的文档下载
当前位置:文档库 › 4.用因式分解法求解一元二次方程.4 用因式分解法求解一元二次方程教学设计

4.用因式分解法求解一元二次方程.4 用因式分解法求解一元二次方程教学设计

4.用因式分解法求解一元二次方程.4 用因式分解法求解一元二次方程教学设计
4.用因式分解法求解一元二次方程.4 用因式分解法求解一元二次方程教学设计

第二章一元二次方程

4.用因式分解法求解一元二次方程

一、学生知识状况分析

学生的知识技能基础:在前几册学生已经学习了一元一次方程、二元一次方程组、可化为一元一次方程的分式方程等,初步感受了方程的模型作用,并积累了解一元一次方程的方法,熟练掌握了解一元一次方程的步骤;在八年级学生学习了因式分解,掌握了提公因式法及运用公式法(平方差、完全平方)熟练的分解因式;在本章前几节课中又学习了配方法及公式法解一元二次方程,掌握了这两种方法的解题思路及步骤。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了用配方法和公式法求一元二次方程的解的过程,并在现实情景中加以应用,切实提高了应用意识和能力,也感受到了解一元二次方程的必要性和作用;同时在以前的数学学习中,学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

二、教学任务分析

教科书基于用因式分解法解一元二次方程是解决特殊问题的一种简便、特殊的方法的基础之上,提出了本课的具体学习任务:能根据已有的分解因式知识解决形如“x(x -a)=0”和“x2-a2=0”的特殊一元二次方程。但这仅仅是这堂课具体的教学目标,或者说是一个近期目标。数学教学由一系列相互联系而又渐次递进的课堂组成,因而具体的课堂教学也应满足于远期目标,或者说,数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。本课《因式分解法》内容从属于“方程与不等式”这一数学学习领域,因而务必服务于方程教学的远期目标:“经历由具体问题抽象出一元二次方程的过程,体会方程是刻画现实世界中数量关系的一个有效数学模型,并在解一元二次方程的过程中体会转化的数学思想,进一步培养学生分析问题、解决问题的意识和能力。”

同时也应力图在学习中逐步达成学生的有关情感态度目标。为此,本节课的教学目标是:知识与技能目标

1、能根据具体一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的

多样性;

2、会用因式分解法(提公因式法、公式法)解决某些简单的数字系数的一元二次

方程;

3、通过因式分解法的学习,培养学生分析问题、解决问题的能力,并体会转化的

思想。

过程与方法目标

1、通过学生探究一元二次方程的解法,使学生知道分解因式法是解一元二次方程

的一种简便、特殊的方法,通过“降次”把一元二次方程转化为两个一元一次方程;

2、通过小组合作交流,尝试在解方程过程中,多角度地思考问题,寻求从不同角

度解决问题的方

法,并初步学会不同方法之间的差异,学会在与他人的交流中获益。

情感与态度目标

1、经历观察,归纳分解因式法解一元二次方程的过程,激发好奇心;

2、进一步丰富数学学习的成功体验,使学生在学习中培养良好的情感、态度和主

动参与、合作交流的意识,进一步提高观察、分析、概括等能力。

三、教学过程分析

本节课设计了七个教学环节:第一环节:复习回顾;第二环节:情境引入,探究新知;第三环节:例题解析;第四环节:巩固练习;第五环节:拓展延伸;第六环节:感悟与收获;第七环节:布置作业。

第一环节:复习回顾

内容:1、用配方法解一元二次方程的关键是将方程转化为(x+m)2=n(n≥0)的形式。

2、用公式法解一元二次方程应先将方程化为一般形式。

3、选择合适的方法解下列方程:

①x2-6x=7 ②3x2+8x-3=0

目的:以问题串的形式引导学生思考,回忆两种解一元二次方程的方法,有利于学生衔接前后知识,形成清晰的知识脉络,为学生后面的学习作好铺垫。

实际效果:第一问题学生先动笔写在练习本上,有个别同学少了条件“n≥0”。

第二问题由于较简单,学生很快回答出来。

第三问题由学生独立完成,通过练习学生复习了配方法及公式法,并能灵活应用,

提高了学生自信心。

第二环节:情景引入、探究新知

内容:1、师:有一道题难住了我,想请同学们帮助一下,行不行?

生:齐答行。

师:出示问题,一个数的平方与这个数的3倍有可能相等吗?如果能,这个数是几?你是怎样求出来的?

说明:学生独自完成,教师巡视指导,选择不同答案准备展示。

附:学生A:设这个数为x,根据题意,可列方程

x2=3x

∴x2-3x=0

∵a=1,b= -3,c=0

∴b2-4ac=9

∴x1=0, x2=3

∴这个数是0或3。

学生B::设这个数为x,根据题意,可列方程

x2=3x

∴x2-3x=0

x2-3x+(3/2)2=(3/2) 2

(x-3/2) 2=9/4

∴x-3/2=3/2或x-3/2= -3/2

∴x1=3, x2=0

∴这个数是0或3。

学生C::设这个数为x,根据题意,可列方程

x2=3x

∴x2-3x=0

即x(x-3)=0

∴x=0或x-3=0

∴x1=0, x2=3

∴这个数是0或3。

学生D:设这个数为x,根据题意,可列方程

x2=3x

两边同时约去x,得

∴x=3

∴这个数是3。

2、师:同学们在下面用了多种方法解决此问题,观察以上四个同学的做法是否存在问题?你认为那种方法更合适?为什么?

说明:小组内交流,中心发言人回答,及时让学生补充不同的思路,关注每一个学生的参与情况。

超越小组:我们认为D小组的做法不正确,因为要两边同时约去X,必须确保X不等于0,但题目中没有说明。虽然我们组没有人用C同学的做法,但我们一致认为C同学的做法最好,这样做简单又准确.

学生E:补充一点,刚才讲X须确保不等于0,而此题恰好X=0,所以不能约去,否则丢根.

师:这两位同学的回答条理清楚并且叙述严密,相信下面同学的回答会一个比一个棒!(及时评价鼓励,激发学生的学习热情)

3、师:现在请C同学为大家说说他的想法好不好?

生:齐答好

学生C:X(X-3)=0 所以X

1=0或X

2

=3 因为我想3×0=0, 0×(-3)=0 , 0×0=0反过来,

如果ab=0,那么a=0或b=0,所以a与b至少有一个等于0

4、师:好,这时我们可这样表示:

如果a×b=0,那么a=0或b=0 这就是说:当一个一元二次方程降为两个一元一次方程

时,这两个一元一次方程中用的是“或”,而不用“且”。

所以由x(x-3)=0得到x=0和x-3=0时,中间应写上“或”字。

我们再来看c同学解方程x2=3x的方法,他是把方程的一边变为0,而另一边可以分解成两个因式的乘积,然后利用a×b=0,则a=0或b=0,把一元二次方程变成一元一次方程,从而求出方程的解。我们把这种解一元二次方程的方法称为因式分解法,即

当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,我门就采用因式分解法来解一元二次方程。

目的:通过独立思考,小组协作交流,力求使学生根据方程的具体特征,灵活选取适当的解法.在操作活动过程中,培养学生积极的情感,态度,提高学生自主学习和思考的能力,让学生尽可能自己探索新知,教师要关注每一位学生的发展.问题3和4进一步点明了因式分解的理论根据及实质,教师总结了本节课的重点.

实际效果:对于问题1学生能根据自己的理解选择一定的方法解决,速度比较快。第2问让学生合作解决,学生在交流中产生了不同的看法,经过讨论探究进一步了解了分解因式法解一元二次方程是一种更特殊、简单的方法。C同学对于第3问的回答从特殊到一般讲解透彻,学生语言学生更容易理解。问题4的解决很自然地探究了新知——因式分解法.并且也点明了运用因式分解法解一元二次方程的关键:将方程左边化为因式乘积,右边化为0,这为后面的解题做了铺垫。

说明:如果ab=0,那么a=0或b=0,“或”是“二者中至少有一个成立”的意思,包括两种情况,二者同时成立;二者有一个成立。“且”是“二者同时成立”的意思。

第三环节例题解析

内容:解下列方程 (1)、 5X2=4X (仿照引例学生自行解决)

(2)、 X-2=X(X-2) (师生共同解决)

(3)、 (X+1)2-25=0 (师生共同解决)

学生G:解方程(1)时,先把它化为一般形式,然后再因式分解求解。

解:(1)原方程可变形为

5X2-4X=0

∴ X(5X-4)=0

∴ X=0或5X-4=0

∴ X

1=0, X

2

=4/5

学生H:解方程(2)时因为方程的左、右两边都有(x-2),所以我把(x-2)看作整体,

然后移项,再因式分解求解。

解:(2)原方程可变形为

(X-2)-X(X-2)=0

∴ (X-2)(1-X)=0

∴ X-2=0或1-X=0

∴ X

1=2 , X

2

=1

学生K:老师,解方程(2)时能否将原方程展开后再求解

师:能呀,只不过这样的话会复杂一些,不如把(x-2)当作整体简便。

学生M:方程(x+1) 2-25=0的右边是0,左边(x+1) 2-25可以把(x+1)看做整体,这样左边就是一个平方差,利用平方差公式即可因式分解。

解:(3)原方程可变形为

[(X+1)+5][(X+1)-5]=0

∴ (X+6)(X-4)=0

∴ X+6=0或X-4=0

∴ X

1=-6 , X

2

=4

师:好﹗这个题实际上我们在前几节课时解过,当时我们用的是开平方法,现在用的是因式分解法。由此可知:一个一元二次方程的解法可能有多种,我们在选用时,以简便为主。

问题:1、用这种方法解一元二次方程的思路是什么?步骤是什么? (小组合作交流)

2、对于以上三道题你是否还有其他方法来解? (课下交流完成)

目的:例题讲解中,第一题学生独自完成,考察了学生对引例的掌握情况,便于及时反馈。第2、3题体现了师生互动共同合作,进一步规范解题步骤,最后提出两个问题。问题1进一步巩固因式分解法定义及解题步骤,而问题2体现了解题的多样化。

实际效果:对于例题中(1)学生做得很迅速,正确率比较高;(2)、(3)题经过探究合作最终顺利的完成,所以学生情绪高涨,讨论热烈,思维活跃,正是因为这,问题1、2学生们有见地的结论不断涌现,叙述越来越严谨。

说明:在课本的基础上例题又补充了一题,目的是练习使用公式法因式分解。

第四环节:巩固练习

内容:1、解下列方程:(1) (X+2)(X-4)=0

(2 ) X2-4=0

(3 ) 4X(2X+1)=3(2X+1)

2、一个数平方的两倍等于这个数的7倍,求这个数?

目的:华罗庚说过“学数学而不练,犹如入宝山而空返”该练习对本节知识进行巩固,使学生更好地理解所学知识并灵活运用。

实际效果:此处留给学生充分的时间与空间进行独立练习,通过练习基本能用因式分解法解一元二次方程,收到了较好的效果。

第五环节拓展与延伸

师:想不想挑战自我?

学生:想

内容:1、一个小球以15m/s的初速度竖直向上弹出,它在空中的速度h(m),与时间t(s)满足关系:h=15t-5t2 小球何时能落回地面?

2、一元二次方程(m-1)x2 +3mx+(m+4)(m-1)=0有一个根为0,求m 的值

说明:a学生交流合作后教师适当引导提出两个问提,1、第一题中小球落回地面是什么意思?2、第二题中一个根为0有什么用?

b这组补充题目稍有难度,为了激发优秀生的学习热情。

目的:学生在对因式分解法直接感知的基础上,在头脑加工组合,呈现感知过的特点,使认识从感知不段发展,上升为一种可以把握的能力。同时学生通过独立思考及小组交流,寻找解决问题的方法,获得数学活动的经验,调动了学生学习的积极性,也培养了团结协作的精神,使学生在学习中获得快乐,在学习中感受数学的实际应用价值。

实际效果:对于问题1,个别学生不理解问题导致没列出一元二次方程;问题2由于在配方法时接触过此类型的题目,因此掌握比较不错。

说明:小组内交流时,教师关注小组中每个学生的参与积极性及小组内的合作交流情况。

第六环节感悟与收获

内容:师生互相交流总结

1、因式分解法解一元二次方程的基本思路和关键。

2、在应用因式分解法时应注意的问题。

3、因式分解法体现了怎样的数学思想?

目的:鼓励学生结合本节课的内容谈自己的收获与感想。

实际效果:学生畅所欲言,在民主的氛围中培养学生归纳概括能力和语言表达能力;同

时引导学生反思探究过程,帮助学生肯定自我、欣赏他人。

第七环节布置作业

课本49页习题2.7 1、2题。

四、教学反思

1.评价的目的是为了全面了解学生的学习状况,激励学生的学习热情,促进学生的全面发展.

所以本节课在评价时注重关注学生能否积极主动的思考,能否清楚的表达自己的观点,及时发现学生的闪光点,给予积极肯定地表扬和鼓励增强他们对数学活动的兴趣和应用数学知识解决问题的意识,帮助学生形成积极主动的求知态度

2.这节课的“拓展延伸”环节让学生切实体会到方程在实际生活中的应用.拓展了学生的思

路,培养了学生的综合运用知识解决问题的能力.

3.本节中应着眼干学生能力的发展,因此其中所设计的解题策略、思路方法在今后的教学中

应注意进一步渗透,才能更好地达到提高学生数学能力的目标.

4.

因式分解之套公式法

因式分解之套公式法 【知识精读】 1.把乘法公式反过来,就可以得到因式分解的公式。 常用公式有:平方差公式 a b a b a b 2 2 -=+-()() 完全平方公式 a ab b a b 2 2 2 2±+=±() 立方和、立方差公式 a b a b a ab b 3 3 2 2 ±=±?+()()μ 2. 补充:欧拉公式: a b c abc a b c a b c ab bc ca 3 3 3 2 2 2 3++-=++++---()() = ++-+-+-1 2 222()[()()()]a b c a b b c c a 特别地:(1)当a b c ++=0时,有a b c abc 3333++= (2)当c =0时,欧拉公式变为两数立方和公式。 【典例精析】 (一)运用公式分解因式 1. 把a a b b 22 22+--分解因式的结果是( ) A. ()()()a b a b -++22 B. ()()a b a b -++2 C. ()()a b a b -++2 D. ()()a b b a 2 2 22-- 分析:a a b b a a b b a b 2 2 2 2 2 2 22212111+--=++---=+-+()()。 再利用平方差公式进行分解,最后得到()()a b a b -++2,故选择B 。 说明:解这类题目时,一般先观察现有项的特征,通过添加项凑成符合公式的形式。同时 要注意分解一定要彻底。 2.因式分解:x xy 3 2 4-=________。 解:x xy x x y x x y x y 3 2 2 2 4422-=-=+-()()()

因式分解之换元法、待定系数法、因式定理及其它.题库教师版

换元法、待定系数法、因式定理及其它 板块一:换元法 【例1】 分解因式:2222(48)3(48)2x x x x x x ++++++ 【考点】因式分解 【难度】4星 【题型】解答 【关键词】换元法 【解析】将248x x u ++=看成一个字母,可利用十字相乘得 原式2232()(2)u xu x u x u x =++=++22(48)(482)x x x x x x =++++++ 22(58)(68)x x x x =++++2(2)(4)(58)x x x x =++++,其实也可用十字相乘的思想解答 【答案】2(2)(4)(58)x x x x ++++ 【例2】 分解因式:22(52)(53)12x x x x ++++- 【考点】因式分解 【难度】5星 【题型】解答 【关键词】希望杯培训试题,换元法 【解析】方法1:将25x x +看作一个整体,设25x x t +=,则 原式=22(2)(3)1256(1)(6)(2)(3)(51)t t t t t t x x x x ++-=+-=-+=+++- 方法2:将252x x ++看作一个整体,设252x x t ++=,则 原式=22(1)1212(3)(4)(2)(3)(51)t t t t t t x x x x +-=+-=-+=+++- 方法3:将253x x ++看作一个整体,过程略.如果学生的能力到一定的程度,甚至连换元都不用,直 接把25x x +看作一个整体,将原式展开,分组分解即可, 则原式22222(5)5(5)6(51)(56)(2)(3)x x x x x x x x x x =+++-=+-++=++2(51)x x +-. 【答案】2(2)(3)(51)x x x x +++- 【例3】 分解因式:(1)(3)(5)(7)15x x x x +++++ 【考点】因式分解 【难度】4星 【题型】解答 【关键词】换元法 【解析】2(2)(6)(810)x x x x ++++ 【答案】2(2)(6)(810)x x x x ++++ 【例4】 分解因式:(1)(2)(3)(4)24a a a a ----- 【考点】因式分解 【难度】4星 【题型】解答 【关键词】换元法

一元二次方程因式分解法

解一元二次方程(因式分解法) 教学内容 用因式分解法解一元二次方程. 教学目标 掌握用因式分解法解一元二次方程. 通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法──因式分解法解一元二次方程,并应用因式分解法解决一些具体问题. 重难点关键 1.重点:用因式分解法解一元二次方程. 2.?难点与关键:让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题简便. 教学过程 一、复习引入 (学生活动)解下列方程. (1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法) 老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为1 2 , 1 2 的一半应为 1 4,因此,应加上( 1 4 )2,同时减去( 1 4 )2.(2)直接用公式求解. 二、探索新知 (学生活动)请同学们口答下面各题. (老师提问)(1)上面两个方程中有没有常数项 (2)等式左边的各项有没有共同因式 (学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解: 2x2+x=x(2x+1),3x2+6x=3x(x+2) 因此,上面两个方程都可以写成: (1)x(2x+1)=0 (2)3x(x+2)=0 因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0, 所以x1=0,x2=-1 2 . (2)3x=0或x+2=0,所以x1=0,x2=-2. 因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法. 例1.解方程 (1)4x2=11x (2)(x-2)2=2x-4 分析:(1)移项提取公因式x;(2)等号右侧移项到左侧得-2x+4提取-2因式,即-2(x-2),再提取公因式x-2,便可达到分解因式;一边为两个一次式的乘积,?另一边为

运用公式法因式分解

运用公式法因式分解 一、教学目标 1. 认知目标:分解因式的意义. 2. 能力目标:掌握公式法分解因式的步骤,灵活运用公式法分解因式. 二、教学重难点 1. 重点:观察各项多项式是否含有公因式. 2. 难点:提取公因式要提“全”提“净”;合理选用公式进行因式分解. 三、教学过程 (一)温故 1. 分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式. 2. 乘法公式: 平方差公式:(a+b)(a-b)=a2-b2 完全平方式:(a-b)2=a2-2ab+b2 (a+b)2=a2+2ab+b2 3. 练一练 (二)知新 例1. 把下列各式分解因式: (1) (a+b)2 -1 (2) x4-1 (1) (a+b)2 -1

解析:应先观察多因式的特征,后利用公式法分解. 解: (a+b)2 -1=(a+b)2 -12=(a+b+1)(a+b-1) (2) x4-1 解析:发现两项均可写成平方的形式,并且两项符号相反,故可用平方差公式分解,且注意一定要分解彻底. x4-1= x4-12=(x2+1)(x2-1)= (x2+1)(x+1)(x-1) 小练手1: (1) (x-3y)2-4x2 (2) 9(a+2b)2-4(a-b)2 例 2. x3-xy2 分析:观察多项式的特征,主要看它的项数、次数,根据其特点,首先采取提公因式法,之后利用公式法分解。 x3-xy2=x(x2-y2)=x(x+y)(x-y) 小小总结: 分解因式步骤:提取公因式法---公式法---直到各个因式能化简到不能化简为止. 小练手2 (x-3y)2-4x2 9(a+2b)2-4(a-b)2 例 3.把下列各式分解因式: (1) m2-12m+36 (2) –a2+2ab-b2 (1) m2-12m+36 解析:直接利用完全平方差公式

初中数学因式分解中的换元法学法指导

初中数学因式分解中的换元法学法指导 徐卫东 刘建英 因式分解是初中数学的重要内容之一,是多项式乘法的逆运算,在代数式的化简、求值、解方程等领域中都有着广泛、直接的应用。但当一个多项式的项数、字母较多,次数较高或还含有代数式乘积的项时,结构复杂,容易造成思路混乱,这时可对多项式中某些相同的部分设辅助元代换,达到减少项数、降低次数,便于分解因式。把复杂、繁难的问题变得简单、容易的目的。举例简解如下。 一、整体换元 例1 因式分解.2)1x x ()1x x (2424--++-+ 解:设A 1x x 24=-+,原式)1x x )(2x x ()2A )(1A (2A A 24242++-+=+-=-+= ). 1x x )(1x x ()2x )(1x )(1x (]x )1x )[(2x )(1x ()x 1x 2x )(2x x (2222222222424+-+++-+=-++-=-++-+= 例2 若βα、是方程0c bx x 2=++的两根。因式分解.c ]c x )1b (x [b ]c x )1b (x [222++++++++ 解:因为βα、是方程0c bx x 2=++的两根,所以.c ),(b αβ=β+α-= 设A c x )1b (x 2=+++,原式).A )(A (A )(A c bA A 22β-α-=αβ+β+α-=++= 但-αβ+β-α-+=α-αβ+β-α-+=α-+++=α-x x x x x )1(x c x )1b (x A 222 ),x )(1()1x ()1x (x )x ()x x x (2α-+β-α=+β-α-+β-=α+αβ-α-+β-=α 同理),x )(1x (A β-+α-=β- 所以原式).1x )(1x )(x )(x (+β-+α-β-α-= 二、局部换元 例3 因式分解.14)8x 5x )(5x 5x (22-++-+ 解:设,A x 5x 2=+ 原式14)8A )(5A (-+-= ). 9x 5x )(6x )(1x () 9x 5x )(6x 5x () 9A )(6A (54 A 3A 2222+++-=++-+=+-=-+= 例4 因式分解.x )6x 5x )(6x 7x (222+++++ 解:设A 6x 5x 2=++,原式.)6x 6x ()x A (x Ax 2A x )x 2A (A 222222++=+=++=++= 三、局部分解后,重组再换元 例5 因式分解.91)9x )(35x 4x 4(22---- 解:原式91)]3x )(5x 2[()]3x )(7x 2[(91)3x )(3x )(5x 2)(7x 2(--+?+-=--++-= ,A 21x x 291)15x x 2)(21x x 2(222=-------=设原式91A 6A 91)6A (A 2-+=-+= )8x x 2)(7x 2)(4x ()8x x 2)(28x x 2()13A )(7A (222--+-=----=+-=

用因式分解法解一元二次方程练习题

用因式分解法解一元二次方程 一.公因式: (一)1.解方程 x2-5x=0 x(x-1)=0 3x2=6x x2-5x=7x t(t+3)=28 x2=7x x2+12x=0(1+2)x2-(1-2)x=0 (3-y)2+y2=9 (二)1.解方程 4x(x+3)+3(x+3)=0 3x(x+1)+4(x+1)=0 (2x+1)2+3(2x+1)=0 x(x-5)=5-x (2t+3)2=3(2t+3) 二、平方差,解方程: (x+5)(x-5)=0 x2-25=0 4x2-1=0 (x-2)2=256 0 1 92x 三、十字交叉,解方程: 4x2-4x+1=0 (x+3)(x+2)=0 x2-5x+6=0 x2-2x-3=0 x2-4x-21=0 (x-1)(x+3)=12 3x2+2x-1=0 (x-1)2-4(x-1)-21=0 5x2-(52+1)x+10=0 四、完全平方,解方程: x2-6x+9=04X2-4X+1=0 (Y-1)2+2(Y-1)+1=0 五、三角形的一边长为10,另两边长为方程x2-14x+48=0的两个根,求三角形的周长? 六、解关于x的方程(1)x2-2mx-8m2=0;(2)x2+(2m+1)x+m2+m=0 七、6.已知x2+3xy-4y2=0(y≠0),试求 y x y x 的值 八、已知(x2+y2)(x2-1+y2)-12=0.求x2+y2的值. 九、已知x2+3x+5的值为9,试求3x2+9x-2的值 十、一跳水运动员从10米高台上跳水,他跳下的高度h(单位:米)与所用的时间t(单位:秒)的关系式h=-5(t-2)(t+1).求运动员起跳到入水所用的时间.

用换元法分解因式

用换元法分解因式 我们的课本中介绍了对一个多项式进行因式分解的很多方法,比如提公因式法、运用公式法、分组分解法等等,这些方法都是最基础的因式分解方法.一些同学在解答课外题时,往往感到只用这些方法还是有点力不从心,于是他们纷纷找到李老师,请她“再传授几招,以便能够解答更多类型的因式分解题目”. 李老师欣然应允,当场就为同学们介绍了一种因式分解的常用方法——换元法.李老师把换元法分解因式分成了三种情况: 一、换单项式 例1分解因式x6+14x3y+49y2. 分析:注意到x6=(x3)2,若把单项式x3换元,设x3=m,则x6=m2,原式变形为 m2+14my+49y2 =(m+7y)2 =(x3+7y)2. 二、换多项式 例2分解因式(x2+4x+6)+(x2+6x+6)+x2. 分析:本题前面的两个多项式有相同的部分,我们可以只把相同部分换元,设x2+6=m,则x2+4x+6=m+4x,x2+6x+6=m+6x,原式变形为 (m+4x)(m+6x)+x2 =m2+10mx+24x2+x2 =m2+10mx+25x2 =(m+5x)2 =(x2+6+5x)2 =[(x+2)(x+3)]2 =(x+2)2(x+3)2.

以上这种换元法,只换了多项式的一部分,所以称为“局部换元法”.当然,我们还可以把前两个多项式中的任何一个全部换元,就成了“整体换元法”.比如,设x2+4x+6=m,则x2+6x+6=m+2x,原式变形为 m(m+2x)+x2 =m2+2mx+x2 =(m+x)2 =(x2+4x+6+x)2 =(x2+5x+6)2 =[(x+2)(x+3)]2 =(x+2)2(x+3)2. 另外,还可以取前两个多项式的平均数进行换元,这种换元的方法被称为“均值换元法”,可以借用平方差公式简化运算.对于本例,设m= [(x2+4x+6)+(x2+6x+6)]=x2+5x+6,则x2+4x+6=m-x,x2+6x+6=m+x, (m+x)(m-x)+x2 =m2-x2+x2 =m2 =(x2+5x+6)2 =[(x+2)(x+3)]2 =(x+2)2(x+3)2. 例3分解因式(x-1)(x+2)(x-3)(x+4)+24. 分析:这道题的前面是四个多项式的乘积,可以把它们分成两组相乘,使之转化成为两个多项式的乘积.无论如何分组,最高项都是x2,常数项不相等,所以只能设法使一次项相同.因此,把(x-1)(x+2)(x-3)(x+4)分组为[(x-1)(x+2)][(x-3)(x+4)]=(x2+x-2)(x2+x-12),从而转化成例2形式加以解决. 我们采用“均值换元法”,设m=[(x2+x-2)+(x2+x-12)]=x2+x-7,则x2+x-2=m+5,x2+x-2=m-5,原式变形为 (m+5)(m-5)+24 =m2-25+24 =m2-1

人教版九年级数学上册因式分解法解一元二次方程练习题

因式分解法解一元二次方程 1、方程(x -16)(x +8)=0的根是( ) A .x 1=-16,x 2=8 B .x 1=16,x 2=-8 C .x 1=16,x 2=8 D .x 1=-16,x 2=-8 2、下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( ) A .x =21 B .x =2 C .x =1 D .x =-1 3、方程5x (x +3)=3(x +3)解为( ) A .x 1= 53,x 2=3 B .x =5 3 C .x 1=-53,x 2=-3 D .x 1=53,x 2=-3 4、方程(y -5)(y +2)=1的根为( ) A .y 1=5,y 2=-2 B .y =5 C .y =-2 D .以上答案都不对 5、方程(x -1)2-4(x +2)2=0的根为( ) A .x 1=1,x 2=-5 B .x 1=-1,x 2=-5 C .x 1=1,x 2=5 D .x 1=-1,x 2=5 6、已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长 是( ) A .5 B .5或11 C .6 D .11 7、用因式分解法解下列方程: (1)x 2+12x =0; (2)4x 2-1=0; (3) x 2=7x ; (4)x 2-4x -21=0; (5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;

(7)10x 2-x -3=0; (8)(x -1)2-4(x -1)-21=0. (9)x 2-4x +3=0; (10)x 2-2x -3=0; (11)(2t +3)2=3(2t +3); 8、解关于x 的方程: (1)x 2-4ax +3a 2=1-2a ; (2)x 2+5x +k 2=2kx +5k +6; 9、已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值. 10、已知x 2+3x +5的值为9,试求3x 2+9x -2的值. 综合训练题 一、填空: 1.关于x 的方程023)1()1(2=++++-m x m x m ,当m 时为一元一次方程;当m 时为一元二次方程。 3.若a 是方程2x -x -2=0的一个根,则代数式2a -a = 4.已知方程x 2+k x +3=0 的一个根是 - 1,则k= , 另一根为 5.若代数式5242--x x 与122 +x 的值互为相 反数,则x 的值是 。

因式分解公式法完全平方公式教案

第 1 单元(章)第课时编制人纪丽娜审核人吕翠珍审批人于忠翠 课题:公式法 使用人备注课型:新授课第 2 课时 【教学目标】: 知识与技能: 使学生了解运用公式法分解因式的意义;会用公式法(直接 用公式不超过两次)分解因式(指数是正整数);使学生清楚地 知道提公因式法是分解因式的首先考虑的方法,再考虑用平方差 公式或完全平方公式进行分解因式. 过程与方法: 经历通过整式乘法的完全平方公式逆向得出运用公式法分 解因式的方法的过程,发展学生的逆向思维和推理能力. 情感态度价值观: 培养学生灵活的运用知识的能力和积极思考的良好行为,体 会因式分解在数学学科中的地位和价值。 【学情分析】:学生在七年级下册第一章中已经学习过完 全平方公式,将其逆用就是本节课所涉及的主体知识.对于公式 逆用,学生已经不是第一次接触了,在上一节课中学生已经经历 过将平方差公式逆用的过程,应该说是比较熟悉的。 【教学重点难点】:会用公式法分解因式. 【教法与学法】:自主探究、合作归纳 【教具】:多媒体 【板书设计】: 公式法(2) 复习回顾例1.把下列各式因式分解

形如2 22b ab a+ ±的多项式 称为完全平方式例2.把下列各式因式分解:完全平方式可以进行因式分解 a2–2ab+b2=(a–b)2 a2+2ab+b2=(a+b)2 【教学活动过程】: 第一环节复习回顾 活动内容: 活动目的:回顾完全平方公式,直入主题将完全平方公式倒置得新的分解因式方法. 注意事项:在上一课时平方差公式倒置学习的基础上,学生比较容易理解和接受此课时的学习铺垫内容. 第二环节学习新知 活动内容: 49 14 )1(2+ +x x 2 23 6 3)1(ay axy ax+ +

因式分解法解一元二次方程练习题及答案(汇编)

因式分解法解一元二次方程练习题 1.选择题 (1)方程(x -16)(x +8)=0的根是( ) A .x 1=-16,x 2=8 B .x 1=16,x 2=-8 C .x 1=16,x 2=8 D .x 1=-16,x 2=-8 (2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( ) A .x = 2 1 B .x = 2 C .x =1 D .x =-1 (3)方程5x (x +3)=3(x +3)解为( ) A .x 1=53,x 2=3 B .x =53 C .x 1=-53,x 2=-3 D .x 1=5 3,x 2=-3 (4)方程(y -5)(y +2)=1的根为( ) A .y 1=5,y 2=-2 B .y =5 C .y =-2 D .以上答案都不对 (5)方程(x -1)2-4(x +2)2=0的根为( ) A .x 1=1,x 2=-5 B .x 1=-1,x 2=-5 C .x 1=1,x 2=5 D .x 1=-1,x 2=5 (6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( ) A .1 B .2 C .-4 D .4 (7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( ) A .5 B .5或11 C .6 D .11 (8)方程x 2-3|x -1|=1的不同解的个数是( ) A .0 B .1 C .2 D .3 2.填空题 (1)方程t (t +3)=28的解为_______. (2)方程(2x +1)2+3(2x +1)=0的解为__________. (3)方程(2y +1)2+3(2y +1)+2=0的解为__________. (4)关于x 的方程x 2+(m +n )x +mn =0的解为__________. (5)方程x (x -5)=5 -x 的解为__________. 3.用因式分解法解下列方程: (1)x 2+12x =0; (2)4x 2-1=0; (3) x 2=7x ; (4)x 2-4x -21=0; (5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x 2-x -3=0; (8)(x -1)2-4(x -1)-21=0. 4.用适当方法解下列方程: (1)x 2-4x +3=0; (2)(x -2)2=256; (3)x 2-3x +1=0; (4)x 2-2x -3=0; (5)(2t +3)2=3(2t +3); (6)(3-y )2+y 2=9; (7)(1+2)x 2-(1-2)x =0; (8)5x 2-(52+1)x +10=0;

《因式分解---待定系数法、换元法、添项拆项法》知识点归纳

《因式分解---待定系数法、换元法、添项拆项法》知识点归纳知识体系梳理 ◆ 添项拆项法 有的多项式由于“缺项”,或“并项”因此不能直接分解。通过进行合适的添项或拆项后利用分组而分解的方法称为添项、拆项法。 大凡来说,添项拆项后要能运用提公因式法、公式法、十字相乘法、分组分解法分解。如果添项拆项后,不能运用四种基本方法分解,添项拆项也是无用的。 ◆ 待定系数法 有些多项式不能直接分解因式,我们可以先假设它已分解成几个含有待定系数因式的乘积形式。然后再把积乘出来。 用等号两边同次项次系数相等的方法把这些待定系数求出来,进而得出因式分解结果,这种分解因式的方法叫做待定系数法分解因式。 ◆ 换元法 所谓换元,即对结构比较繁复的代数式,把其中某些部分看成一个整体,用新的字母代替(即换元),则能使繁复 的问题简单化、明朗化,象这种利用换元来解决繁复问题的方法,就叫 。换元法在减少代数式的项数、降低多项式结构繁复程度等方面都有着独到的作用。 (1)、使用换元法时,一定要有

意识,即把某些相同或相似的部分看成一个 。 (2)、换元法的种类有:单个换元、多个换元、局部换元、整体换元、分外值换元和几何换元。 (3)、利用换元法解决问题时,最后要让原有的数或式“回归”。 ★★ 典型例题、方法导航 ◆ 方法一:添项拆项法 【例1】分解因式: 分析:此多项式是三次三项式,缺项不能直接分解。可考虑添项拆项法分解。从它的最高次项看是三次,因此我们可以猜想它最多可分解成三个一次二项式的积,即 ,再看常数项可分解成±1、±2,因此我们可猜想分解的结果可能是或或,但的中间项是,因此是不可能的,因此只可能是前面两种的其中一种。下面请看: 解: 其结果是我们猜想中的第一种。此题还有其他分解方法吗?在注意到分解结果中有和的因式,因此还有其他更多的分解方法。 方法二: 方法三: 方法四: 方法五:

因式分解法解一元二次方程

因式分解法解一元二次方程 因式分解法解一元二次方程的一般步骤 因式分解法解一元二次方程的一般步骤是: (1)移项 把方程的右边化为0; (2)化积 将方程的左边分解为两个一次因式的乘积; (3)转化 令每个因式等于0,得到两个一元一次方程; (4)求解 解这两个一元一次方程,得到一元二次方程的两个解. 例1. 用因式分解法解方程:x x 32=. 解:032=-x x ()03=-x x ∴0=x 或03=-x ∴3,021==x x . 例2. 用因式分解法解方程:()()01212 =---x x x . 解:()()0211=---x x x ()()()()0 11011=+-=---x x x x ∴01=-x 或01=+x ∴1,121-==x x . 例3. 解方程:121232-=-x x . 解:0121232=+-x x ()()0230 44322=-=+-x x x ∴221==x x . 例4. 解方程:332+=+x x x . 解:()0332=+-+x x x ()()()()0310 131=-+=+-+x x x x x

∴01=+x 或03=-x ∴3,121=-=x x . 因式分解法解高次方程 例5. 解方程:()()013122 2=---x x . 解:()()031122=---x x ()()()()()()022*******=-+-+=--x x x x x x ∴01=+x 或01=-x 或02=+x 或02=-x ∴2,2,1,14321=-==-=x x x x . 例6. 解方程:()()034322 2=+-+x x . 解:()()043322=-++x x ()()()()()0113013222=-++=-+x x x x x ∵032>+x ∴()()011=-+x x ∴01=+x 或01=-x ∴1,121=-=x x . 用十字相乘法分解因式解方程 对于一元二次方程()002≠=++a c bx ax ,当ac b 42-=?≥0且?的值为完全平方数时,可以用十字相乘法分解因式解方程. 例7. 解方程:0652=+-x x . 分析:()124256452 =-=?--=?,其结果为完全平方数,可以使用十字相乘法分解因式. 解:()()032=--x x ∴02=-x 或03=-x ∴3,221==x x .

因式分解综合应用(换元法与添项拆项)(人教版)(含答案)

学生做题前请先回答以下问题 问题1:目前我们学习的因式分解的方法有哪些? 问题2:换元、添项拆项是复杂多项式进行分解因式的常用技巧之一,通过对复杂多项式的处理,最终都转化为____________. 问题3:换元是复杂多项式进行分解因式的常用技巧之一,当多项式中的某一部分_______时,我们会________将其替换,从而简化式子的形式. 以下是问题及答案,请对比参考: 问题1:目前我们学习的因式分解的方法有哪些? 答:提公因式法,公式法,分组分解法,十字相乘法. 问题2:换元、添项拆项是复杂多项式进行分解因式的常用技巧之一,通过对复杂多项式的处理,最终都转化 为. 答:四种基本方法. 问题3:换元是复杂多项式进行分解因式的常用技巧之一,当多项式中的某一部分时,我们会将其替换,从而简化式子的形式. 答:重复出现;设元. 因式分解综合应用(换元法与添项拆项)(人教 版) 一、单选题(共10道,每道10分) 1.把因式分解,正确结果是( ) A. B. C. D.

答案:B 解题思路: 试题难度:三颗星知识点:因式分解的技巧——换元法 2.把因式分解,正确结果是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:因式分解的技巧——换元法 3.把因式分解,正确结果是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:因式分解的技巧——换元法

4.把因式分解,正确结果是( ) A. B. C. D. 答案:A 解题思路: 试题难度:三颗星知识点:因式分解的技巧——换元法 5.把因式分解,正确结果是( ) A. B. C. D. 答案:C 解题思路:

数学:12.3运用公式法教案(鲁教版七年级下)

12.3运用公式法 ●教学目标 (一)教学知识点 1.使学生了解运用公式法分解因式的意义; 2.使学生掌握用平方差公式分解因式. 3.使学生了解,提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式分解因式. (二)能力训练要求 1.通过对平方差公式特点的辨析,培养学生的观察能力. 2.训练学生对平方差公式的运用能力. (三)情感与价值观要求 在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识,同时让学生了解换元的思想方法. ●教学重点 让学生掌握运用平方差公式分解因式. ●教学难点 将某些单项式化为平方形式,再用平方差公式分解因式;培养学生多步骤分解因式的能力. ●教学方法 引导自学法 ●教具准备 投影片两张 第一张(记作§12.3 A) 第二张(记作§12.3 B) ●教学过程 Ⅰ.创设问题情境,引入新课 [师]在前两节课中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式. 如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本节课我们就来学习另外的一种因式分解的方法——公式法. Ⅱ.新课讲解 [师]1.请看乘法公式

(a +b )(a -b )=a 2-b 2 (1) 左边是整式乘法,右边是一个多项式,把这个等式反过来就是 a 2- b 2=(a +b )(a -b ) (2) 左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否是因式分解? [生]符合因式分解的定义,因此是因式分解. [师]对,是利用平方差公式进行的因式分解.第(1)个等式可以看作是整式乘法中的平方差公式,第(2)个等式可以看作是因式分解中的平方差公式. 2.公式讲解 [师]请大家观察式子a 2-b 2,找出它的特点. [生]是一个二项式,每项都可以化成整式的平方,整体来看是两个整式的平方差. [师]如果一个二项式,它能够化成两个整式的平方差,就可以用平方差公式分解因式,分解成两个整式的和与差的积. 如x 2-16=(x )2-42=(x +4)(x -4). 9 m 2-4n 2=(3 m )2-(2n )2 =(3 m +2n )(3 m -2n ) 3.例题讲解 [例1]把下列各式分解因式: (1)25-16x 2; (2)9a 2-4 1b 2. 解:(1)25-16x 2=52-(4x )2 =(5+4x )(5-4x ); (2)9a 2-41 b 2=(3a )2-(2 1b )2 =(3a +21b )(3a -2 1b ). [例2]把下列各式分解因式: (1)9(m +n )2-(m -n )2; (2)2x 3 -8x . 解:(1)9(m +n )2-(m -n )2 =[3(m +n )]2-(m -n )2

精品 2014年八年级数学上册整式乘除与因式分解08 因式分解--运用公式法

第08课 因式分解--运用公式法 知识点: 平方差公式: 完全平方公式: 平方差公式基础练习: (1)x 2-4=x 2-22= ( )( ) (2)x 2-16 =( )2-( )2= ( )( ) (3)9-y 2=( )2-( )2= ( )( ) (4)1-a 2 =( )2-( )2= ( )( ) 完全平方公式基础练习: (1)a 2+6a+9=a 2+2× × +( )2=( )2 (2)a 2-6a+9=a 2-2× × +( )2=( )2 辨析,下面那些多项式可以使用公式法。 平方差: (1)x 2-y 2 (2)x 2+y 2 (3)-x 2-y 2 (4)-x 2+y 2 (5)64-a 2 (6)4x 2-9y 2 完全平方:(1)a 2-4a +4 (2)x 2+4x +4y 2 (3)4a 2+2ab +14 b 2 (4)a 2-ab +b 2 (5)x 2-6x -9 (6)a 2+a +0.25 例1.把下列各式分解因式. (1)11002-x (2)92+-x (3)2225401.0y x - (4)x x -5 (5)m m 43- (6)2633x x - (7)33ab b a - (8)222)21()2(y y x --- 例2.把下列各式分解因式. (1)122++m m (2)41292+-x x (3)110252+-x x

(4)9)(6)(2++-+n m n m (5)1)4(2)4(222++-+x x (6))1(4)(2-+-+y x y x 例3.用公式法计算下列各题. (1)22)412()435(- (2)1198992++ (3)22201420144026-2013+? (4)11435-1156522?? 例4.把下列各式分解因式. (1))()(22x y y y x x -+- (2))()(22y x b y x a --- (3)814-x (4)4416y x - (5)2232ab b a a +- (6)x x x +-232 (7)xy y x 4)(2+- (8)22216)4(x x -+ (9)42242b b a a +- 例5.已知3 12=-y x ,2=xy ,求43342y x y x -. 例6.已知3,5==+ab b a ,求32232ab b a b a ++. 例7.对于任意自然数n ,22)5()7(--+n n 都能被动24整除。

八年级数学因式分解综合应用(换元法与添项拆项)(北师版)(含答案)

学生做题前请先回答以下问题 问题1:因式分解的基本方法有哪几种? 问题2:换元、添项拆项是复杂多项式进行分解因式的常用技巧之一,通过对复杂多项式的处理,最终都转化为____________. 问题3:换元是复杂多项式进行分解因式的常用技巧之一,当多项式中的某一部分_______时,我们会________将其替换,从而简化式子的形式. 因式分解综合应用(换元法与添项拆项)(北师 版) 一、单选题(共10道,每道10分) 1.把因式分解,正确结果是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:因式分解的技巧——换元法 2.把因式分解,正确结果是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:因式分解的技巧——换元法 3.把因式分解,正确结果是( ) A. B. C. D. 答案:A 解题思路:

试题难度:三颗星知识点:因式分解的技巧——换元法 4.把因式分解,正确结果为( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:因式分解的技巧——换元法 5.把因式分解,正确结果是( ) A. B. C. D. 答案:C 解题思路:

试题难度:三颗星知识点:因式分解的技巧——添项拆项法 6.把因式分解,正确结果是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:因式分解的技巧——添项拆项法 7.把因式分解,正确结果是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:因式分解的技巧——添项拆项法 8.把因式分解,正确结果是( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:因式分解的技巧——添项拆项法 9.把因式分解,正确结果是( ) A. B. C. D. 答案:B 解题思路:

用因式分解法解方程

课题:2.3 用因式分解法求解一元二次方程 学情分析 学生已经学习了解方程的方法,也学习了因式分解的方法,掌握了配方法和公式法解方程。具备一定的合作与交流的能力。 教学目标1.掌握用因式分解法解一元二次方程. 2.通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法──因式分解法解一元二次方程,并应用因式分解法解决一些具体问题. 重难点关键 1.重点:用因式分解法解一元二次方程. 2.?难点与关键:让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题简便. 教学过程 一、复习引入 (学生活动)解下列方程. (1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法) 老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为,的一半应为,因此,应加上()2,同时减去()2.(2)直接用公式求解. 二、探索新知 (学生活动)请同学们口答下面各题. (1)上面两个方程中有没有常数项? (2)等式左边的各项有没有共同因式? 上面两个方程中都没有常数项;左边都可以因式分解:2x2+x=x(2x+1),3x2+6x=3x(x+2)因此,上面两个方程都可以写成:(1)x(2x+1)=0 (2)3x(x+2)=0 因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=- . (2)3x=0或x+2=0,所以x1=0,x2=-2. 因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法. 例1.解方程 (1)4x2=11x (2)(x-2)2=2x-4 分析:(1)移项提取公因式x;(2)等号右侧移项到左侧得-2x+4提取-2因式,即-2(x-2),再提取公因式x-2,便可达到分解因式;一边为两个一次式的乘积,?另一边为0的形式解:(1)移项,得:4x2-11x=0 因式分解,得:x(4x-11)=0 于是,得:x=0或4x-11=0 x1=0,x2= (2)移项,得(x-2)2-2x+4=0 (x-2)2-2(x-2)=0 因式分解,得:(x-2)(x-2-2)=0 整理,得:(x-2)(x-4)=0 于是,得x-2=0或x-4=0 x1=2,x2=4 例2.已知9a2-4b2=0,求代数式的值.

初二公式法因式分解练习题

14.3.2公式法因式分解练习题 思维导航:运用公式法是分解因式的常用方法,运用公式法分解因式的思路主要有以下几种情况: 一、直接用公式:当所给的多项式是平方差或完全平方式时,可以直接利用公式法分解因式。 例1、分解因式: (1)x2-9 (2)9x2-6x+1 二、提公因式后用公式:当所给的多项式中有公因式时,一般要先提公因式,然后再看是否能利用公式法。 例2、分解因式: (1)x5y3-x3y5(2)4x3y+4x2y2+xy3 三、系数变换后用公式:当所给的多项式不能直接利用公式法分解因式,往往需要调整系数,转换为符合公 式的形式,然后再利用公式法分解. 例3、分解因式: (1)4x2-25y2 (2)4x2-12xy2+9y4 四、指数变换后用公式:通过指数的变换将多项式转换为平方差或完全平方式的形式,然后利公式法分解因 式,应注意分解到每个因式都不能再分解为止. 例4、分解因式: (1)x4-81y4 (2)16x4-72x2y2+81y4 五、重新排列后用公式:当所给的多项式不能直接看出是否可用公式法分解时,可以将所给多项式交换位 置,重新排列,然后再利用公式。 例5、分解因式: (1)-x2+(2x-3)2 (2)(x+y)2+4-4(x+y) 六、整理后用公式:当所给的多项式不能直接利用公式法分解时,可以先将其中的项去括号整理,然后再 利用公式法分解。 例6 、分解因式: (x-y)2-4(x-y-1) 七、连续用公式:当一次利用公式分解后,还能利用公式再继续分解时,则需要用公式法再进行分解,到 每个因式都不能再分解为止。 例7、分解因式:(x2+4)2-16x2

因式分解(双十字相乘法)换元法,添拆项法,

板块二:选主元 【例1】 分解因式:1a b c ab ac bc abc +++++++ 【例2】 分解因式:(6114)(31)2a a b b b +++-- 【例3】 分解因式:2222a b ab bc ac --++ 【例4】 分解因式:2222223a b ab a c ac abc b c bc -+--++ 【例5】 分解因式:22(1)(1)(221)y y x x y y +++++ 【例6】 分解因式:222222()()(1)()()ab x y a b xy a b x y ---+-++ 【例7】 分解因式:322222422x x z x y xyz xy y z --++- 板块三:双十字相乘 双十字相乘法: 对于某些二元二次六项式22ax bxy cy dx ey f +++++,可以看作先将关于x 的二次三项式 22()ax by d x cy ey f +++++的“常数项”2cy ey f ++用十字相乘法分解,然后再次运用十字相乘法将关于x 的二次三项式分解。 由于这种方法两次使用了十字相乘法,故称之为双十字相乘法. 【例8】 分解因式:222332x xy y x y +-+++ 【例9】 分解因式:22344883x xy y x y +-+--

【例10】 分解因式:2265622320x xy y x y --++- 【例11】 分解因式:22276212x xy y x y -++-- 【例12】 分解因式:22121021152x xy y x y -++-+ 【例13】 分解因式:22243x y x y ---- 【例14】 分解因式:22534x y x y -+++ 【例15】 分解因式:2222()3103x a b x a ab b ++-+- 【例16】 分解因式:22265622320x xy y xz yz z ----- 【例17】 已知:a 、b 、c 为三角形的三条边,且222433720a ac c ab bc b ++--+=,求证: 2b a c =+ 【例18】 分解因式:2262288x xy y x y +-+-- 【例19】 分解因式:223224x xy y x y ++++ 【例20】 分解因式:222695156x xy y xz yz z -+-++

相关文档
相关文档 最新文档