文档库 最新最全的文档下载
当前位置:文档库 › SWRH82B盘条拉拔断裂原因分析

SWRH82B盘条拉拔断裂原因分析

SWRH82B盘条拉拔断裂原因分析
SWRH82B盘条拉拔断裂原因分析

汽车半轴断裂原因分析及对策研究

汽车半轴断裂原因分析及对策研究 摘要 在当今社会,汽车已经走入了寻常百姓的家里,可以说汽车已经成为了我们生活中的一个重要部分。而半轴是汽车传动系统的一个重要组成部分,它是差速器与驱动轮之间传递扭矩的实心轴,其内端一

般通过花键与半轴齿轮连接,外端与轮毂连接。根据其支承型式不同,可分为全浮式半轴和半浮式半轴。 汽车半轴在使用过程中常出现弯曲、扭曲和断裂以及花键齿磨损或扭斜等敌障。我们课题将对半轴所出现的断裂问题进行分析,并对其提出相应的对策。首先是对半轴材料以及处理工艺上进行分析,找出其对于半轴断裂的影响,并提出解决方案;其次是对半轴结构上的受力分析,运用ANSYS有限元分析软件,对半轴模型施加不同作用力,通过分析其位移云图,节点等效应力图,位移矢量图等,分析半轴受力与变形情况,对此在半轴结构上提出相应的解决对策。 最终,我们通过分析研究,发现对于半轴材料及处理工艺上,往往是在材料选取上以及热处理工艺上出现不达标等问题造成的。而你对于半轴结构的受力分析,我们通过对软件结构进行分析,最终得出半轴两端部以及花键,变直径等应力集处,最容易产生断裂现象,所以在半轴的设计与制造时,应当尽量避免这些不利因素。 关键词汽车半轴全浮式半浮式 ANSYS软件受力分析 引言 汽车自19世纪末诞生至今100余年期间,汽车工业从无到有,以惊人的速度发展,写下了人类近代文明的重要篇章。汽车是数量最多、最普及、活动范围最广泛、运输量最大的现代化交通工具。而汽车半轴是汽车的一个重要部件,它是差速器与驱动轮之间传递转矩的实心

轴,其内端一般通过花键与半轴齿轮连接,外端以凸缘与轮毂连接。汽车半轴的结构形式取决于驱动车轮的结构,根据半轴的受力情况,半轴分为全浮式半轴和半浮式半轴。由此可见汽车半轴是汽车正常行驶的一个重要的部件,半轴性能的好坏对于汽车的安全行驶起着重要的因素。我们的课题将对汽车半轴常出现的断裂问题进行分析,通过查找资料并运用ANSYS有限元分析软件,找到半轴断裂原因并提出相应的解决方案。 汽车半轴介绍 汽车半轴是差速器与驱动轮之间传递转矩的实心轴,其内端一般通过花键1与半轴齿轮连接,外端以凸缘2与轮毂连接。 汽车半轴分类 汽车半轴的结构形式取决于驱动车轮的结构,根据半轴的受力情况,半轴分为全浮式半轴和半浮式半轴。 全浮式半轴:这种支承形式的半轴除受扭矩外,不在承受任何反力以及弯矩。这一类比较常用。

汽车膜片弹簧离合器应用与发展

机械工程学报 汽车膜片弹簧离合器应用与发展 肖啸 摘要:离合器在我们的生活中并不陌生厂、生活中的很多机械装置都包含离合器。虽然具体的安装和结构形式不同,但它们的作用都是相同的。深入了解离合器的工作原理,对我们更好地理解生活中的机械有很大的益处。离合器是汽车传动系中的重要部件,主要功用是是切断和实现发动机对传动系的动力传递,保证汽车平稳起步,保证传动系统换挡时工作平顺以及限制传动系统所承受的最大转矩,防止传动系统过载。膜片弹簧离合器是近年来在轿车和轻型汽车上广泛采用的一种离合器,它的转矩容量大而且较稳定,操作轻便,平衡性好,也能大量生产,对于它的研究已经变得越来越重要。膜片弹簧离合器相对于螺旋弹簧离合器有着一系列的优点:膜片弹簧的非线性特性使在摩擦片整个磨损过程中保证压盘受到压紧力基本保持不变,保证离合器工作性能更稳定;膜片弹簧的分离指起到分离杠杆的作用,这样,省去了多组分离杠杆装置,零件数目减少,质量也减轻;在满足相同压紧力的情况下,膜片弹簧的轴向尺寸较螺旋弹簧小,在有限的空间内便于布置,使离合器的结构更为紧凑;同时膜片弹簧是圆形旋转对称零件,平衡性好,在高速时,其压紧力降低很少。并且制造工艺水平的不断提高,膜片弹簧离合器越来越广泛运用在现在汽车中。 关键词:离合器膜片弹簧摩擦片操纵机构压盘 Automobile diaphragm spring clutch application and development Xiao Xiao Abstract:the clutch in our life, life is no stranger to plant many mechanical devices are included in the clutch. Though the installation and structure is different, but their functions are the same. Insight into the working principle of the clutch for us to understand life better machinery is of great benefit. Clutch is an important part in automotive transmission system, is the main function is to cut off the and realize the engine to the transmission of power transmission, ensure smooth start of the car, for ensuring the smooth and transmission when shifting transmission system on the maximum torque, to prevent the transmission system overload. Diaphragm spring clutch is widely used in cars and light motor vehicles in recent years of a clutch, its great capacity of torque and relatively stable, convenient operation, good balance, can also be a large number of production, has become more and more important for its research. Diaphragm spring clutch is relative to the spiral spring clutch has a series of advantages: the nonlinear characteristics of diaphragm spring to make the whole process of wear and tear in friction, maintain invariable pressure plate by basic compaction force, to ensure the clutch performance is more stable; Separation of the diaphragm spring refers to the separation of leverage effect, in this way, eliminating the leverage multiple sets of separation device, part number, quality and to reduce; To meet the same compression force, axial size of the diaphragm spring is a spiral spring is small, within the limited space to decorate, make the structure of the clutch is more compact; Diaphragm spring is round rotation symmetric parts at the same time, good balance, at high speed, reduce the pressure force is seldom. And manufacturing technology level unceasing enhancement, the diaphragm spring clutch is more and more widely used in the car now. Key words:clutch Diaphragm spring friction plate Operating mechanism Pressure plat 0 国内外研究现状 汽车离合器有摩擦式离合器、液力偶合器、电磁离合器等几种。摩擦式离合器又分为湿式和干式两种。液力偶合器:靠工作液(油液)传递转矩,外壳与泵轮连为一体,是主动件;涡轮与泵轮相对,是从动件。当泵轮转速较低时,涡轮不能被带动,主动件与从动件之间处于分离状态;随着泵轮转速的提高,涡轮被带动,主动件与从动件之间处于接合状态。电磁离合器:靠线圈的通断电来控制离合器的接合与分离。如在主动与从动件之间放置磁粉,则可以加强两者之间的接合力,这样的离合器称为磁粉式电磁离合器。摩擦式离合器:按其从动盘的数目,又分为单盘式、双盘式和多盘式等几种。湿

弹簧失效的原因分析

弹簧失效的原因分析 弹簧失效的原因分析 一、佛山弹簧分解弹簧永久变形及其影响因素 弹簧的永久变形是弹簧失效的主要原因之一 弹簧的永久变形,会使弹簧的变形或负荷超出公差范围,而影响机器设备的正常工作。 检查弹簧永久变形的方法 1.快速高温强压处理检查弹簧永久变形:是把弹簧压缩到一定高度或全部并紧,然后放在开水中或温箱保持10~60分钟,再拿出来卸载,检查其自由高度和给定工作高度下的工作载荷。 2.长时间的室温强压处理检查弹簧永久变形:是在室温下,将弹簧压缩或压并若干天,然后卸载,检查其自由高度和给定工作高度下的工作载荷。 二、弹簧断裂及其影响因素 弹簧的断裂破坏也是弹簧的主要失效形式之一 弹簧断裂形式可分为;疲劳断裂,环境破坏(氢脆或应力腐蚀断裂)及过载断裂。 弹簧的疲劳断裂: 弹簧的疲劳断裂原因:属于设计错误,材料缺陷,制造不当及工作环境恶劣等因素。 疲劳裂纹往往起源于弹簧的高应力区,如拉伸弹簧的钩环、压缩弹簧的内表面、压缩弹簧(两端面加工的压缩弹簧)的两端面。 受力状态对疲劳寿命的影响 (a)恒定载荷状态下工作的弹簧比恒定位移条件下工作的弹簧,其疲劳寿命短得多。 (b)受单向载荷的弹簧比受双向载荷的弹簧的疲劳寿命要长得多。 (c)载荷振幅较大的弹簧比载荷振幅较少的弹簧的疲劳寿命要短得多。 腐蚀疲劳和摩擦疲劳 腐蚀疲劳:在腐蚀条件下,弹簧材料的疲劳强度显著降低,弹簧的疲劳寿命也大大缩短。 摩擦疲劳:由于摩擦磨损产生细微的裂纹而导致破坏的现象叫摩擦疲劳。 弹簧过载断裂 弹簧的外加载荷超过弹簧危险截面所有承受的极限应力时,弹簧将发生断裂,这种断裂称为过载断裂。 过载断裂的形式 (a)强裂弯曲引起的断裂; (b)冲击载荷引起的断裂; (c)偏心载荷引起的断裂 佛山弹簧后处理的缺陷原因及防止措施 缺陷一:脱碳 对弹簧性能影响:疲劳寿命低 缺陷产生原因:1、空气炉加热淬火未保护气2、盐浴脱氧不彻底 防止措施:1、空气炉加热淬火应通保护气或滴有机溶液保护:盐浴炉加热时,盐浴应脱氧,杂质BAO质量分数小于0.2%。2、加强对原材料表面质量检查 缺陷二:淬火后硬度不足

齿轮断裂原因分析

概况描述:生产上的齿轮轴在使用两个星期后,突然发生断齿,给生产造成了很大的损失。为了弄清楚产生断裂的原因, 1、化学成份分析 从成份上看,大有材料为38 Cr Mo Al ,小的材料为20 Cr MnMo 2、宏观形貌 大:断口处晶粒粗大稍发亮,为脆性断裂。小:断口处晶粒细小,瓷性灰色断口,为韧性断裂。(如图示) 3、金相组织分析 (1)大的金相组织 100X 40X 200X 齿轮表面的渗氮层厚:0.30mm ,渗层硬度801HV 1,表面有数条垂直于表面的微裂纹,裂纹周围组织无脱碳,裂纹长度稍长于渗层。 200X 断裂处的显微组织形貌

200X 中心组织:回火索氏体加屈氏体加条状及半网状铁素体。 (2)小的金相组织 200X 40X 齿轮渗碳层厚1.5 mm,有效硬化层厚0.8 mm,表面有数条细小的裂纹沿晶向里延伸,渗层硬度637HV1。 200X 表面渗碳和过渡区组织,表面为高碳马氏体和细小的颗粒状碳化物,往里为马氏体组织。500X 中心组织:低碳板条马氏体组织。 4、原因分析 (1)大的材料为氮化钢,小的材料为渗碳钢,符合材料的牌号。(2)从金相组织上分析 大的心部组织为回火索氏体加屈氏体加条状、半网状的铁素体,为非正常的调质组织,这是因为淬火时,由于加热温度太低或保温时间太短,使铁素体未能完全溶解,经过淬火、回火后,仍存在于基体中。调质后出现这种组织,属于不良的显微组织。齿轮表面有数条微小的细裂纹,这些裂纹的产生是氮化时,由于氮在铁素体中的扩散速度较大,氮化后铁素体中的氮浓度较高,易形成须状氮化物从而从使氮化层脆性较大。因此渗层组织不均匀(?),致使在使用过程中齿根部受到拉应力的作用而导致脆性断裂。

汽车离合器拉式膜片弹簧结构参数多目标优化设计

文章编号: 1009-3818(2000)03-0059-03 汽车离合器拉式膜片弹簧结构 参数多目标优化设计 郭惠昕 何哲明 唐黔湘 (常德师范学院机械工程系 湖南常德 415003) 摘 要: 通过对拉式膜片弹簧载荷-变形特性和应力-变形特性的综合分析,考虑各种约束条件,提出了一种新的多目标优化设计数学模型,该模型可以使摩擦片磨损前后离合器后备系数和离合器分离力的变化较小。模型的求解采用多目标优化设计的理想点法。设计实例表明,模型建立合理,具有实用意义。 关键词: 汽车离合器;拉式膜片弹簧;结构参数;多目标优化设计 中图分类号: TH 135:TH122 文献标识码: A 1 拉式膜片弹簧的载荷-变形特性 目前通用的拉式膜片弹簧载荷-变形特性仍采 用1936年J.O.Almen 与https://www.wendangku.net/doc/775151276.html,slo 提出的近似公式 [1][2] ,在结合位置,载荷P 1作用在支承半径L 与 加载半径e 处(图1),在L 或e 处产生的大端变形量为 1,则 : 图1 拉式膜片弹簧结构尺寸简图 P 1= Eh 1 ln R r 6(1- 2)(L -e) 2 (H - 1 R -r L -e )(H - 12 R -r L -e )+h 2(1) 收稿日期:2000-06-14第一作者:男 38岁 副教授 在分离位置时,小端分离载荷P 2作用在小端半径r P 处,小端总变形量为 2(不包括分离指弯曲变形),则: P 2= Eh 2 ln R r 6(1- 2)(L -r p ) 2 (H - 2 R -r L -r p )(H - 22 R -r L -r p )+h 2(2) 2 多目标优化设计目标函数和设计变 量 2.1 第一子目标函数 如图2(a)所示,离合器结合时工作点为b,摩擦片磨损到极限位置时工作点变为a ,由于膜片弹簧的非线性特性,压紧力将随着磨损量不同而变化。为了使离合器后备系数稳定,结合可靠不打滑,应使离合器在使用过程中压紧力随摩擦片磨损的变化最小。为此,在bsa 范围内取包括端点a 和凸点s 的10点,取各点压紧力对b 点压紧力变化量的平均值为目标函数: F 1(x )=1 10 10 k=1|P 1k -P 1b |(3)式中: 1a = 1b -i !s 0,其中i 为摩擦面对数,单摩擦片离合器其值为2,!s 0为每对摩擦面的最大容 许磨损量,取0.5~1.0mm ; 1s =L -e R -r [H -1/3(H 2-2h 2)]。2.2 第二子目标函数 膜片弹簧离合器具有分离轻便的特点,若再追 求分离力最小,将导致asb 段曲线上拱,离合器后备系数稳定性变差。但计算和实际使用发现,分离力随摩擦片的磨损而变化,且分离力增加幅度较大。如图2(b ),新离合器彻底分离点为c ,磨损到极限位置时为c ,与! 1 对应的小端变形变化量为! 2 。第12卷第3期常德师范学院学报(自然科学版) Vol.12No.3 2000年9月 Journal of Changde Teachers University(Natural Science Edition) Sep.2000

螺栓断裂原因分析

螺栓断裂原因分析 螺栓的抗拉强度比想象中强得多,以一只M20×80的8.8级高强螺栓为例,它的重量只有0.2公斤,而它的最小拉力载荷是20吨,高达它自身重量的十万倍,一般情况下,我们只会用它紧固几十公斤的部件,只使用它最大能力的千分之一。即便是设备中其它力的作用,也不可能突破部件重量的千倍,因此螺栓的抗拉强度是足够的,不可能因为螺栓的强度不够而损坏。 很多螺栓断裂的最终分析认为是超过螺栓的疲劳强度而损坏,但是螺栓在横向振松实验中只需一百次即可松动,而在疲劳强度实验中需反复振动一百万次才会损坏。换句话说,螺栓在使用其疲劳强度的万分之一时即松动了,我们只使用了螺栓能力的万分之一,所以说螺栓的损坏也不是因为螺栓疲劳强度。 静态紧固用螺栓很少会自行松动,也很少出现断裂情况。但是在冲击,振动,变载荷情况下使用的螺栓就会出现松动和断裂的情况。 所以我认为螺栓损坏的真正原因是松动。螺栓松动后,螺纹和连接件之间产生微小间隙,冲击和振动会产生巨大的动能mv^2,这种巨大的动能直接作用于螺栓,受轴向力作用的螺栓可能会被拉断。受径向力作用的螺栓可能会被剪断。 因此设计时,对于关键的运动部位的连接紧固要注意防松设计。 自锁螺母尼龙锁紧螺母以上为两种形式的锁紧螺母。 对于弹簧垫片的放松效果,一直存在争议。 弹簧垫圈的放松原理是在把弹簧垫圈压平后,弹簧垫圈会产生一个持续的弹力,使螺母和螺栓连接副持续保持一个摩擦力,产生阻力矩,从而防止螺母松动。同时弹簧垫圈开口处的尖角分别嵌入螺栓和被连接件的表面,从而防止螺栓相对于被连接件回转。

以M16螺栓连接为例,实验显示用约10N.m的螺栓预紧力矩就可以将16弹簧垫圈完全压平。弹簧垫圈只能提供10N.m的弹力,而10N.m的弹力对于280N.m的螺栓预紧力矩来说可以忽略,其次,这么小的力,不足以使弹簧垫圈切口处的尖角嵌入螺栓和被连接件表面。折卸后观察,螺栓和被连接件表面都没有明显的嵌痕。所以,弹簧垫圈对螺栓的防松作用可以忽略。另外,在螺栓与被连接件之间增加一个垫圈,如果垫圈质量有问题,相当于给螺栓连接又增加了一个安全隐患。

断口分析

故障件的断口分析 在形形色色的故障分析过程中,人们常会瞧到一些损坏零件的断口,但就是人们缺乏“读懂”它的经验,不能从它的断口处判断其损坏的真正原因而贻误了战机。这里结合整改过程中的一些实例作些介绍,希望能对您有所帮助! 对于汽车常用碳素钢与合金钢而言,其常见断口有: 1.韧性(塑性)断口:发生明显塑性变形的断裂统称为塑性断裂。断口形貌为韧性(塑性)断口,断口呈暗灰色没有金属光泽瞧不到颗粒状形貌,断口上有相当大的延伸边缘。 2.疲劳弯曲断口: 2-1 在抗拉极限范围内的疲劳弯曲断口:出现典型的疲劳裂纹源区、裂纹扩展区与瞬时断裂区特征(下面将详 述)。 2-2 超过抗拉极限范围内的弯曲断口:不具有典型的疲劳断口特征,属于不正常的弯曲断裂。其断口特征:沿弯 曲方向上下呈灰褐色无金属光泽的断层;而内层呈银 灰色白亮条状新断口(见图1)。

图1 3.典型的金属疲劳断口 典型的疲劳断口定会出现疲劳裂纹源区、裂纹扩展区与瞬时断裂区三个特征。断口具有典型的“贝壳状”或称“海滩状”。

3-1 疲劳裂纹源区:就是疲劳裂纹萌生的策源地,它处于机件的表面,形状呈平坦、白亮光滑的半圆或椭圆形,这就是因为疲劳裂纹的扩展过程速度缓慢,裂纹经反复挤压摩擦而形成的。它所占有的面积较其她两个区要小很多。疲劳裂纹大多就是因受交变载荷的机件表面有缺陷;譬如裂纹、脱碳、硬伤痕、焊点等缺陷形成应力集中而引起的。疲劳裂纹点在同一个机件上可能有多处,换句话说可能有多处疲劳裂纹源区,这需要我们去仔细解读疲劳断口。 3-2 疲劳裂纹扩展区:就是形成疲劳裂纹后慢速扩展的区域。它就是判断疲劳断裂的最重要的特征区。它以疲劳源区为中心,与裂纹扩展方向垂直呈半圆形或扇形的弧线,也称疲劳弧线呈“贝纹状”。疲劳

膜片弹簧离合器的设计与分析

膜片弹簧离合器的设计与分析 第一章离合器概述 1.1离合器的简介: 联轴器、离合器和制动器是机械传动系统中重要的组成部分,共同被称为机械传动中的三大器。它们涉与到了机械行业的各个领域。广泛用于矿山、冶金、航空、兵器、水电、化工、轻纺和交通运输各部门。 离合器是一种可以通过各种操作方式,在机器运行过程中,根据工作的需要使两轴分离或结合的装置。 对于以内燃机为动力的汽车,离合器在机械传动系中是作为一个独立的总成而存在的,它是汽车传动系中直接与发动机相连的总成。目前,各种汽车广泛采用的摩擦离合器是一种依靠主从动部分之间的摩擦来传递动力且能分离的装置。它主要包括主动部分、从动部分、压紧机构、和操纵机构等四部分。 离合器作为一个独立的部件而存在。它实际上是一种依靠其主、从动件之间的摩擦来传递动力且能分离的机构,见图1-1离合器工作原理图 图1-1离合器工作原理图 1—飞轮;2—从动盘;3—离合器踏板;4—压紧弹簧;5—变速器第一轴;6—从动盘毂

1.2汽车离合器的主要的功用: 1.保证汽车平稳起步: 起步前汽车处于静止状态,如果发动机与变速箱是刚性连接的,一旦挂上档,汽车将由于突然接上动力突然前冲,不但会造成机件的损伤,而且驱动力也不足以克服汽车前冲产生的巨大惯性力,使发动机转速急剧下降而熄火。如果在起步时利用离合器暂时将发动机和变速箱分离,然后离合器逐渐接合,由于离合器的主动部分与从动部分之间存在着滑动磨擦的现象,可以使离合器传出的扭矩由零逐渐增大,而汽车的驱动力也逐渐增大,从而让汽车平稳地起步。 2.便于换档: 汽车行驶过程中,经常换用不同的变速箱档位,以适应不断变化的行驶条件。如果没有离合器将发动机与变速箱暂时分离,那么变速箱中啮合的传动力齿轮会因载荷没有卸除,其啮合齿面间的压力很大而难于分开。另一对待啮合齿轮会因二者圆周速度不等而难于啮合。即使强行进入啮合也会产生很大的齿端冲击,容易损坏机件。利用离合器使发动机和变速箱暂时分离后进行换档,则原来啮合的一对齿轮因载荷卸除,啮合面间的压力大大减小,就容易分开。而待啮合的另一对齿轮,由于主动齿轮与发动机分开后转动惯量很小,采用合适的换档动作就能使待啮合的齿轮圆周速度相等或接近相等,从而避免或减轻齿轮间的冲击。 3.防止传动系过载: 汽车紧急制动时,车轮突然急剧降速,而与发动机相连的传动系由于旋转的惯性,仍保持原有转速,这往往会在传动系统中产生远大于发动机转矩的惯性矩,使传动系的零件容易损坏。由于离合器是靠摩擦力来传递转矩的,所以当传动系内载荷超过摩擦力所能传递的转矩时,离合器的主、从动部分就会自动打滑,因而起到了防止传动系过载的作用。 膜片弹簧离合器的优点: (1)、弹簧压紧力均匀,受离心力影响小 (2)、即使摩擦片磨损,压紧负荷也不减小 (3)、离合器结构简单,轴向尺寸小,动平衡性能好

钢锭_坯_在轧制过程中出现翘皮及断裂等常见缺陷的原因分析和防止途径

甘肃冶金 2001年3月 第1期钢锭(坯)在轧制过程中出现翘皮及断裂等常见缺陷的原因分析和防止途径 贾 静 (兰州钢铁公司 甘肃省 兰州市 730020) 摘 要 分析了钢锭(坯)轧制过程中出现翘皮、裂纹、断裂等常见缺陷的原因,并且提出了解决问题的途径。 关键词 分析解决 缺陷 途径 1 前言 钢锭(坯)在轧制过程中会出现翘皮、裂缝、断裂等多种缺陷而致废。由于种种原因,90年代初以来,特别是近几年里,钢锭(坯)轧裂和翘皮的数量骤然上升并有居高不下之势。为此,我们将近几年来发生的钢锭(坯)轧废情况统计分析结果列于表1(数据以每年退换钢锭的数量为依据)。 表1 钢锭(坯)轧裂退换统计表 年 份钢 种废品数量致 废 原 因小 时(t) 1995 1996 1997 1998 1999Q195—Q235沸钢258钢锭重接19.08t,翘皮、断裂Q235镇静钢—  Q195—Q235沸钢118翘皮、断裂 150220M nSi连铸坯70夹杂、断裂 20M nSi钢47断裂 Q195—Q235沸钢44翘皮、断裂 150220M nSi连铸坯80夹杂、断裂 1502Q235连铸坯40脱方 Q235镇静钢100纵裂纹、发纹 Q195—Q235沸钢220翘皮、断裂 Q235镇静钢110裂纹、断裂 Q195—Q235沸钢20断裂、裂口 Q235镇静钢240纵裂纹、裂口、断裂 258 235 264 330 260 9 收稿日期:2000-12-28

表1的统计结果表明: 早期镇静钢锭质量比沸腾钢锭的好,但近两年来质量有下滑趋势。 钢锭(坯)在轧制过程中退废的主要缺陷是翘皮、裂纹和断裂。平均每年退换钢锭293t ,由此造成的经济损失30余万元。 根据金属学和钢的热塑性变形原理,结合现场生产的实际情况,作者对这些缺陷的成因从炼钢工艺和轧钢工艺两方面进行分析。2 炼钢工艺对钢锭质量的影响2.1 化学成分的影响 对于碳素结构钢来讲,就元素影响而言造成轧制过程中出现裂纹、断裂极为有关的元素有S 、M n 、P 、Cu 。2.1.1 元素S 、M n 的影响及S 的“ 热脆”缺陷对大量轧裂钢锭化学成分的分析结果表明,元素S 的超标准上限及元素Mn 的低标准下限是钢锭轧裂的重要原因。 高硫钢锭经轧制后通身四面都有严重裂缝,有时只经过粗轧几道就断成碎块。其致废的机理是:S 是生铁或燃料中天然存在的杂质,由于S 在固态Fe 中的溶解度很小,几乎不能溶解。它在钢中以FeS 的形式存在,而FeS 和Fe 易形成熔点较低(仅有985℃)的共晶体,当钢在1100~1200℃进行热加工时,分布于晶界的低熔点共晶体固熔化而导致开裂,这就是通常所说的S 的“热脆”现象。在冶炼中为了清除S 的有害作用,必须增加钢中的含M n 量,使Mn 与S 优先形成高熔点的M nS,其熔点高达1620℃而且呈粒状分布于晶粒中,从而可以有效地防止或避免S 在钢中的“热脆”现象。2.1.2 元素P 的影响及P 的“冷脆”缺陷 通常,元素P 超标的钢锭在热轧过程中不出现裂纹或断裂,但成品坯(材)冷却至室温就会发生“冷脆”现象,在远远小于钢材力学指标力的作用下就发生脆断。 其机理是:室温下钢中的P 可全部溶于钢的铁素体中,使钢的强度、硬度增加,塑性、韧性显著降低。这种钢坯(材)的“冷脆”现象在我厂的生产中偶有发生。2.1.3 元素Cu 的影响及富Cu 轧制的网状裂纹 1997年10月,我厂轧制的Q 235镇静钢68方坯有两批总重量101.36t 成品钢坯表面出现了严重的裂纹,其症状如图1所示,可见钢坯通身有网状裂纹。经取样做成分分析发现Cu 含量在0.6%~0.8%,严重超标。 图1 富铜轧制的网状裂纹 元素Cu 超标造成钢锭热轧开裂的原因是:由于西域废钢资源的特点,含Cu 量有时较高。当钢中含Cu 量超过0.4%且它在加热炉中的氧化性气氛中较长时间加热时,由于选择性氧化的结果,在钢的表面氧化铁皮下会富集一薄层熔点低于1100℃的富Cu 合金,这层合金在约1100℃时熔化并浸蚀钢的表层,使钢在热加工时开裂并多形成网状裂纹。 因此,在技术标准中对碳素结构钢中残余铜元素的含量有明确规定,应该不高于0.3%。2.2 炼钢脱氧操作及浇注工艺的影响 我厂轧制钢锭从脱氧方式上分沸腾钢和镇静钢。由于钢液脱氧方式及结晶热力学的条件10

螺栓断裂原因分析

螺栓断裂原因的分析 一般情况下,我们对于螺栓断裂从以下四个方面来分析: 第一、螺栓的质量 第二、螺栓的预紧力矩 第三、螺栓的强度 第四、螺栓的疲劳强度 实际上,螺栓断裂绝大多数情况都是因为松动而断裂的,是由于松动而被打坏的。因为螺栓松动打断的情况和疲劳断裂的情况大体相同,最后,我们总能从疲劳强度上找到原因,实际上,疲劳强度大得我们无法想象,螺栓在使用过程中根本用不到疲劳强度。 一、螺栓断裂不是由于螺栓的抗拉强度: 以一只M20×80的8.8级高强螺栓为例,它的重量只有0.2公斤,而它的最小拉力载荷是20吨,高达它自身重量的十万倍,一般情况下,我们只会用它紧固20公斤的部件,也只使用它最大能力的千分之一。即便是设备中其它力的作用,也不可能突破部件重量的千倍,因此螺纹紧固件的抗拉强度是足够的,不可能因为螺栓的强度不够而损坏。 二、螺栓的断裂不是由于螺栓的疲劳强度: 螺纹紧固件在横向振松实验中只需一百次即可松动,而在疲劳强度实验中需反复振动一百万次。换句话说,螺纹紧固件在使用其疲劳强度的万分之一时即松动了,我们只使用了它大能力的万分之一,所以说螺纹紧固件的松动也不是因为螺栓疲劳强度。 三、螺纹紧固件损坏的真正原因是松动: 螺纹紧固件松动后,产生巨大的动能mv2,这种巨大的动能直接作用于紧固件及设备,致使紧固件损坏,紧固件损坏后,设备无法在正常的状态下工作,进一步导致设备损坏。 受轴向力作用的紧固件,螺纹被破坏,螺栓被拉断。 受径向力作用的紧固件,螺栓被剪断,螺栓孔被打成橢圆。 四、选用防松效果优异的螺纹防松方式是解决问题的根本所在: 以液压锤为例。GT80液压锤的重量是1.663吨,其侧板螺栓为7套10.9级M42螺栓,每根螺栓的抗拉力为110吨,预紧力取抗拉力一半计算,预紧力高达三、四百吨。但是螺栓一样会断,现在准备改成M48的螺栓,根本原因是螺栓防松解决不了。 螺栓断裂,人们最容易得出的结论是强度不够,因而大都采用加大螺栓直径强度等级的办法。这种办法可以增加螺栓的预紧力,其摩擦力也得到了增加,当然防松效果也可以得到改善,但这种办法其实是一种非专业的办法,它的投入太大,收益太小。 总之,螺栓是:“不松不断,一松就断。”

合肥工业大学汽车构造2013试题及答案解析

一、判断题(正确打√、错误打×,每题1分,共10分) 1、汽车驱动力的大小主要取决于发动机输出扭矩的大小。(√) 2、发动机曲轴主轴颈曲拐数相同,且都与发动机的气缸数和排列方式有关(X ) 3、活塞径向呈椭圆形,椭圆的长轴与活塞销轴线同向。(X) 4、排气门头部直径通常要比进气门的头部大。(X ) 5、消声器有迫击声(放炮),可能是由于混合气过浓造成的。(√) 6、一般来说,柴油机采用的过量空气系数比汽油机大。(√) 7、柴油发动机涡流燃烧室的涡流室为主燃烧室。(X ) 8、柴油机供油调节机构能根据负荷的变化自动增减喷油泵的供油量。(X ) 9、离合器接合和分离时,压紧弹簧都处于压缩状态。(√) 10、膜片弹簧工作中兼起压紧弹簧和分离杠杆的作用。(√) 11、变速器第一轴与第二轴在同一条直线上,因此,第一轴转动第二轴也随着转动。(X) 12、在无同步器的汽车中,低档换高档易打齿,高档换低档易实现。(X) 13、液力变矩器与液力耦合器最大的区别是增加了导轮。(√) 14、按主减速器能够提供的挡数可将主减速器分为单级主减速器和双级主减速器(X)15 16 17 18 19 20 1 2 A、1∶1 B、1∶2 C、2∶1 D、4∶1 3、汽油机功率混合气的混合气成份应是(C ) A、α=1.05~1.15 B、α=1 C、α=0.85~0.95 D、α=0.6~0.8 4、柴油机混合气是在内完成的。( B ) A、进气管 B、燃烧室 C、化油器 D、进气歧管 5、汽车发动机各零件最理想的摩擦形式是( C ) A、干摩擦 B、半干摩擦 C、液体摩擦 D、半液体摩擦 6、四冲程直列六缸发动机中,各缸作功的间隔角是:( C ) A、60° B、90° C、120° D、180 7、汽车转弯行驶时,差速器中的行星齿轮( C ) A、只有自转,没有公转 B、只有公转,没有自转 C、既有公转,又有自转 D、既没自转,也没公转 8、真空助力器应用在( B ) A、人力制动系统 B、伺服制动系统 C、动力制动系统 D、都可以 9、在麦弗逊式悬架中,螺旋弹簧和减振器连接方式为( B ) A、混联 B、并联 C、串联 D、不清楚 10、装普通行星齿轮差速器的汽车,当一个驱动轮陷入泥坑时,难于驶出的原因是 ( B ) 14、普通十字轴万向节等速传动条件是( D ) A、等角速输入 B、α1=α2 C、传动轴两端的万向节叉在同一平面内 D、同时具备b、c两条件 考生 注意:答题内容勿超过装订线左侧装线订

单趾弹簧扣件PR弹条断裂原因分析论文

单趾弹簧扣件PR弹条断裂原因分析摘要:采用化学分析、金相检验、硬度测定和受力分析方法,对单趾弹簧扣件pr弹条在使用过程中出现的断裂现象进行了分析。认为弹条断裂的原因是安装工艺不规范、导致弹条的工作弹程和应力超过设计状态引起的。 关键词:弹条断裂检验受力分析 abstract: the chemical analysis, metallographic examination, the hardness testing and stress analysis method, the single toe spring fastener pr play in use article appeared in the process of fracture is analyzed. think of the fracture reason is article installation process is not standard, lead to the work of the article cheng and stress caused by more than design state. key words: article the fracture inspection stress analysis 中图分类号:u213.2+1文献标识码:a文章编号: 1 前言 弹条是轨道结构的重要部件,其有效与否直接关系到行车的安全。它主要利用弹性变形时所储存的能量起到缓和机械上的震动和冲击作用,在动荷载下承受长期的、周期性的弯曲、扭转等交变应力。 某单位生产的弹条为单趾弹簧扣件pr弹条,其结构型式如图1

高压水泵主轴断裂失效分析

动设备石油化工设备技术,2010,31(4)?35? Petro-ChemicalEquipmentTechnology高压水泵主轴断裂失效分析 马小明.熊烨 (华南理S-大学机械与汽车工程学院,广东广州510640) 摘要:文章通过化学成分、力学性能、金相组织、宏微观断口等分析方法,系统分析了高压水泵轴断裂的原因,表明材料组织夹杂物多,脆性明显,操作中受循环水腐蚀作用,并在退刀槽处产生点蚀坑,致使退刀槽部位产生应力集中,形成疲劳裂纹源,最终主轴在退刀槽部位发生低应力高周疲劳断裂。 关键词:高压水泵;疲劳断裂;失效分析;点蚀 某炼油焦化装置中HSG625型高压水泵主 轴发生了断裂失效,该轴经调质处理,3Crl3材 料,转速为3750r/min,工作介质为含焦的循环 水。2009年1月4日,高压水泵正常启动10S 后,泵轴位移联锁自停,突然发生断裂。该水泵累 计运行5760h,为分析失效原因,防止同类事故 重复发生,对断裂主轴进行了如下分析。 l理化检验 对失效的高压水泵主轴样品进行了化学成分 分析、力学性能测试、金相组织分析、以及用扫描电镜对断口表面的微观形态观察,并对局部区域进行能谱分析,以深入了解水泵轴断裂的原因。1.1断口宏观观察 水泵轴断口宏观的形貌如图1所示,断裂发生在退刀槽处,断裂面垂直于泵轴的轴线。断面宏观形貌呈现疲劳断裂的特质。断口明显地分为3个区:疲劳裂纹的起源区、疲劳裂纹扩展区及瞬断区;疲劳扩展区与瞬断区之间的界限清晰;断口疲劳裂纹源区呈多台阶特征,清晰可见5个疲劳台阶,如图1中箭头所示;疲劳裂纹扩展区存在清晰的贝纹线,约占整个断口面积的2/3;贝纹线区域平滑,颜色较深;贝纹线间距和密集度不规则,说明泵轴工作过程承受不稳定的扭转载荷[1];瞬断区断口清晰可见层叠状形貌,且存在黄色氧化物斑点;在疲劳台阶附近的源区外侧,退刀槽圆角半径过渡表面处密集分布着很多较小且较浅的点蚀坑。 i.2微观观察 (1)断口微观观察 图1泵轴试样断口的宏观形貌 对断口样品的扫描电镜分析发现断口表面呈解理和准解理形貌特征,如图2,断口存在二次裂纹,如图3;裂纹扩张方向不一致,二次裂纹较多,表明材料具脆性特征[21;瞬断区局部呈现层叠状形貌;疲劳台阶附近的退刀槽部位有许多大小、深度不等的点腐蚀坑,为疲劳裂纹源,如图4。 微观分析表明,退刀槽部位受介质腐蚀并形成点蚀坑,为疲劳裂纹起源提供基本条件。 (2)能谱分析 对金相表面的杂质进行X射线能谱分析,表明夹杂物主要由O、Mg、Al、Ca等元素组成。该杂质应是钢在冶炼时形成。承受疲劳载荷的钢轴中若含有A1203,CaO?A1203?Si02,CaO? 收稿日期:2009—08—05。 作者简介:马小明(1962一),男,甘肃天水人。1986年毕业于华南理工大学化机系化工机械专业,获硕士学位,主要从事设备安全检测与失效分析、液化天然气技术等方面的教学、科研等工作,已发表论文40余篇.副教授。 Email:xiongye87@hotmail.corn 万方数据

机械花键轴断裂原因分析

机械花键轴断裂原因分析 1.状态说明 (1)该失效件曾送交某研究院检测,最终检测结果为调质处理淬火裂纹。对热处理工艺进行排查,从工件来料装筐、设备使用前检查、热处理工艺的制订及实施、热处理后试样的检测,结果没有发现任何问题。 (2)我们对送检的样件重新检测,客户提供的裂纹样块为20mm×20mm×40mm,未见到失效件本体、断裂部位和断裂形式,工件实际服役状况也没详细了解。据客户介绍,工件的材质为42CrMo低合金调质钢,零件的工艺路线为:下料→锻造→粗加工→调质。 (3)将样件分成两块,经镶嵌、磨制、抛光、浸蚀,目测就可以看到,断口为凹凸不平的断面,断口边缘有一层非常明显的较深的白亮层,推测可能是脱碳层(见图1、图2)。 2.化学成分 在样块上线切割截取15mm×15mm×10mm(长×宽×厚)的试样,进行化学成分检测,检测设备为Labspark5000精密直读火花光谱仪,检查结果表明化学成分符合材料标准要求。化学成分的检查结果见附表。 3. 金相组织 (1)用1E-200M型金相显微镜进行金相组织观察,试样断口表面的白亮层,为细小等轴状铁素体。这种组织是较低奥氏体温度下,由原始锻造柱状晶组织重结晶细化形成的。该组织为锻造开裂后高温氧化脱碳,脱碳层组织经过奥氏体化重结晶的典型形貌特征(见图3)。 (2)断口处的二次裂纹两侧,被以铁素体组织为主的脱碳层完全包围,裂纹内充满浅灰色的高温氧化产物,说明二次裂纹仍然是在锻造加工过程中形成的(见图4)。

(3)主裂纹断口表面堆积大量的高温形成的氧化物,表明锻造加工时加热温度高,裂纹边缘氧化脱碳现象严重,其中全脱碳层较深,半脱碳层较浅(见图5)。裂纹的次表层镶嵌有较多量的氧化物夹杂,这是由于锻造加工时,裂纹内表层高温氧化形成的氧化皮,在锻轧焊合过程中嵌入到次表层而形成(见图6)。 (4)试样主裂纹断口处沿晶开裂,晶粒剥落坑极粗大,剥落坑的宽度显示出晶粒的直径。经测量晶粒的直径为0.40mm,对应晶粒度的级别达0级,属于严重的过热组织。锻造加热时局部区域加热温度过高,晶粒急剧长大,晶界宽化及晶间弱化,晶间结合力急剧降低。此时的锻造应力远大于晶间结合力,造成锻造热裂纹脆性开裂(见图7)。 (5)断口表面全脱碳层的铁素体组织,呈细小等轴状分布。该组织属于锻造开裂氧化脱碳后的重结晶组织。锻造开裂后裂纹内高温氧化脱碳,断口表层形成粗大柱状晶组织,调质处理过程的再加热,使柱状晶组织重新奥氏体化形核,转变为细小等轴状组织(见图8)。

膜片弹簧载荷变形特性有限元分析

膜片弹簧载荷变形特性有限元分析 付建蓉1,王青春1,牛浩龙1,王玉鑫1 (1.北京林业大学工学院,北京100083) 摘要:本文通过实验研究、理论计算和有限元方法对膜片弹簧载荷变形进行了研究。首先进行了膜片弹簧大端加载时的载荷变形实验,然后根据A-L理论公式进行了计算,最后根据实验工况利用MSC.MARC进行了有限元计算。将理论计算所得的膜片弹簧大端载荷变形曲线、有限元模拟分析所得的膜片弹簧大端载荷变形曲线与实验所得的膜片弹簧大端载荷变形曲线进行比较,分析膜片弹簧几个关键大端位移处的载荷与实验对应值的误差。通过对比,得出采用有限元模拟计算所得计算结果与实验值更为接近的结论。 关键词:膜片弹簧;非线性;有限元分析;载荷变形曲线 Load Deformation Characteristics of Diaphragm Spring Based on Finite Element Analysis FU Jian-rong1, WANG Qing-chun1, NIU Hao-long1, WANG Yu-xin1 (1.School of Technology, Beijing Forestry University, Beijing 100083, China) Abstract: In this article, experimental research、theoretical calculation and finite element method have been used to analyze the load deformation characteristics of diaphragm spring. First, an experiment of diaphragm spring load deformation has been done, and then a calculation based on the A-L theoretical formula has been done, finally, according to the experimental conditions by using the finite element method MSC.MARC to do a calculation. We compare the load deformation cure of A-L and FEA to the one figured out by experiment, analysis the errors which compare to the experiment of several key big end diaphragm spring load and displacement values. By contrast, the finite element simulation results are quite closer to the experimental results. Key words: diaphragm spring; nonlinear; finite element analysis; load deformation curve 1 引言 膜片弹簧离合器采用膜片弹簧为压紧弹簧,与采用圆柱弹簧为压紧弹簧的离合器相比突出的优越性是膜片弹簧具有更理想的非线性弹性特性。膜片弹簧是膜片弹簧离合器中最重要的零部件,由碟簧部分和分离指部分组成。在离合器中采用膜片弹簧为压紧弹簧具有以下几方面优点[1-3]:第一,膜片弹簧兼起压紧弹簧和分离杠杆的作用,零件数目少、重量轻;第二,离合器结构简化、显著缩短了离合器轴间尺寸;第三,设计合适时,良好的非线性特性可使摩擦片磨损到极限时压紧力仍维持不变,使离合器分离轻便。虽然膜片弹簧离合器比普通螺旋弹簧离合器具有更多的优点,但是其设计、制造技术要求也比普通的螺旋弹簧离合器更高;如果设计、制造不当,其性能可能还不如普通的螺旋弹簧离合器。因此国内外很多学者对膜片弹簧载荷-变形特性进行了研究。 目前,膜片弹簧设计所采用的设计计算方法主要是美国通用汽车公司Almen和Laszlo 于1936年提出A-L法[4]。A-L公式是在碟形弹簧的基础上推导出来的,有学者指出用碟形弹簧近似计算膜片弹簧,其假设本身存在缺陷,同时会忽略分离指的弯曲变形和分离指端部的应力集中[5],将其运用在膜片弹簧的设计计算时存在一定误差。为了降低设计误差,一些外国学者做了如下研究:利用计算机程序计算不同高厚比的膜片弹簧载荷变形曲线,其中Curti、Niepage6]采用NON-SAP程序计算了不同高厚比碟簧的载荷-变形特性曲线;Wagner 编制了适用于具有非线性和负刚度区段非稳定特性的、各种高厚比碟形弹簧的计算程序

相关文档