文档库 最新最全的文档下载
当前位置:文档库 › 水轮发电机小知识

水轮发电机小知识

水轮发电机小知识
水轮发电机小知识

1、导叶分段关闭规律的作用

导叶分段关闭规律的作用是:在机组发生事故或甩负荷时要求导叶迅速关闭,在导叶迅速关闭过程中,输水管道的压力和机组转速均要暂态上升,特别是轴流式机组,由于水锤的作用还会导致机组转轮上抬,严重威胁水轮发电机组的安全运行。为此,在满足调节保证值的条件下,将接力器关闭特性设计为折线关闭特性,有效地减少关机过程中水压上升值和抬机量。

2、水轮机转轮静平衡试验的目的

水轮机转轮静平衡试验的目的是为了消除由于水轮机转轮在铸造加工,尤其是经过多次补焊处理过程中出现的质量偏心。由于质量偏心的存在使机组在运行中产生一个附加离心力,如果该力较大,很可能导致水轮机转轮的水力不平衡,主轴摆度增大,轴承偏磨以及不同形式、不同程度的机组振动等不良现象,影响机组安全稳定运行。

3、立式水轮发电机导轴承有何作用?一个性能良好的导轴承的主要标志是什么?

立式水轮发电机导轴承的作用是:承受机组转动部分的径向机械不平衡力和电磁不平衡力,使机组轴线在规定数值范围内摆动。一个性能良好的导轴承的主要标志是:

(1)能形成足够的工作油膜厚度;

(2)瓦温应在允许范围之内,一般在50℃左右;

(3)循环油路畅通,冷却效果好;

(4)油槽油面和轴瓦间隙满足设计要求;

(5)密封结构合理,不甩油;

(6)结构简单,便于安装和检修。

水轮机补气装置的作用是什么?常用的有哪几种补气方式?

混流式水轮机一般在30%~60%额定出力时容易在尾水管内发生水流涡带,引起空腔汽蚀和机组振动。补气装置的作用,就是在机组出现不稳定工况时,补入空气,可增加水的弹性,改善机组的运行条件。同时,由于补气破坏了真空,还能防止机组突然甩负荷导水机构紧急关闭时,由于尾水管内产生负水击,下游尾水反冲所产生的强大冲击力或抬机现象。

补气分自然补气和强迫补气两种方式。一般均采用自然补气,只有在水轮机吸出高度H。的负值较大,尾水管内压力较高,很难用自然补气方式补气时,才采用压缩空气强迫补气方式。常用的补气装置有轴心孔补气装置、尾水十字架补气装置和尾水短管补气装置。

4、水轮发电机的基本工作原理

电能是现代社会最主要的能源之一。发电机是将其他形式的能源转换成电能的机械设备,它由水轮机、汽轮机、柴油机或其他动力机械驱动,将水流,气流,燃料燃烧或原子核裂变产生的能量转化为机械能传给发电机,再由发电机转换为电能。发电机在工农业生产,国防,科技及日常生活中有广泛的用途。发电机的形式很多,但其工作原理都基于电磁感应定律和电磁力定律。因此,其构造的一般原则是:用适当的导磁和导电材料构成互相进行电磁感应的磁路和电路,以产生电磁功率,达到能量转换的目的。

发电机分为直流发电机和交流发电机两大类。后者又可分为同步发电机和异步发电机两种。现代发电站中最常用的是同步发电机。这种发电机的特点是由直流电流励磁,既能提供有功功率,也能提供无功功率,可满足各种负载的需要。异步发电机由于没有独立的励磁绕组,其结构简单,操作方便,但是不能向负载提供无功功率,而且还需要从所接电网中汲取滞后的磁化电流。因此异步发电机运行时必须与其他同步电机并联,或者并接相当数量的电容器。这限制了异步发电机的应用范围,只能较多地应用于小型自动化水电站。城市电车、电解、电化工等行业所用的直流电源,在20世纪50年代以前多采用直流发电机。但是直流发电机有换向器,结构复杂,制造费时,价格较贵,且易出故障,维护困难,效率也不如交流发电机。故大功率可控整流器问世以来,有利用交流电源经半导体整流获得直流电以取代直流发电机的趋势。

同步发电机按所用原动机的不同分为汽轮发电机、水轮发电机和柴油发电机三种。它们结构上的共同点是除了小型电机有用永久磁铁产生磁场以外,一般的磁场都是由通直流电的励磁线圈产生,而且励磁线圈放在转子上,电枢绕组放在定子上。因为励磁线圈的电压较低,功率较小,又只有两个出线头,容易通过滑环引出;而电枢绕组电压较高,功率又大,多用三相绕组,有3个或4个引出头,放在定子上比较方便。发电机的电枢(定子)铁心用硅钢片叠成,以减少铁耗。转子铁心由于通过的磁通不变,可以用整体的钢块制成。在大型电机中,由于转子承受着强大的离心力,制造转子的材料必须选用优质钢材。

水电厂的发电机都为同步电机,它能把原动机(水轮机)的机械能转变成电能,通过输电线路等设备送往用户。我们知道,导线切割磁力线能产生感应电动势,将导线连成闭合回路,就有电流通过同步发电机就是利用电磁感应原理将机械能转变为电能的。导线放在空心圆桶铁心槽里,铁心时固定不动的,称为定子。磁力线是由磁极产生的,磁极时转动的,称为转子。定子和转子是发电机最基

本的部分。为了得到三相交流电,沿定子铁芯内圆每相隔120度分别放三相绕组

A-X,B-Y,C-Z,转子上有励磁绕组(又称转子绕组)。通过电刷和滑环的滑动接触,将励磁系统产生的直流电引入转子励磁绕组,产生恒定的磁场。当转子被原动机拖动旋转时,定子绕组不断切割磁力线,就在其中感应出电动势。导线切割磁力线能产生感应电动势,将导线连成闭合回路,就有电流通过,同步发电机就是利用电磁感应原理将机械能转变为电能的。导线放在空心圆桶铁心槽里,铁心是固定不动的,称为定子。磁力线是由磁极产生的,磁极是转动的,称为转子。定子和转子是发电机最基本的部分。为了得到三相交流电,沿定子铁芯

内圆每相隔120度分别放三相绕组A-X,B-Y,C-Z,转子上有励磁绕组(又称转子绕组)。通过电刷和滑环的滑动接触,将励磁系统产生的直流电引入转子励磁绕组,产生恒定的磁场。当转子被原动机拖动旋转时,定子绕组不断切割磁力线,就在其中感应出电动势。

由水轮机驱动的发电机。由于水电站自然条件的不同,水轮发电机组的容量和转速的变化范围很大。通常小型水轮发电机和冲击式水轮机驱动的高速水轮发电机多采用卧式结构,而大、中型代速发电机多采用立式结构(见图)。由于水电站多数处在远离城市的地方,通常需要经过较长输电线路向负载供电,因此,电力系统对水轮发电机的运行稳定性提出了较高的要求:电机参数需要仔细选择;对转子的转动惯量要求较大。所以,水轮发电机的外型与汽轮发电机不同,它的转子直径大而长度短。水轮发电机组起动、并网所需时间较短,运行调度灵活,它除了一般发电以外,特别适宜于作为调峰机组和事故备用机组。水轮发电机组的最大容量已达70万千瓦。

水轮发电机安装结构形式:

1)卧式结构卧式结构的水轮发电机通常有冲击式水轮机驱动。

2)立式结构国产水轮发电机组广泛采用立式结构。立式水轮发电机组通常由混流式或轴流式水轮机驱动。立式结构又可分为悬式和伞式。发电机推力轴承位于转子上部的统称为悬式,位于转子下部的统称为伞式。

3)贯流式结构贯流式水轮发电机组由贯流式水轮机驱动。贯流式水轮机是一种带有固定或可调转轮叶片的轴流式水轮机的特殊型式。它的主要特征是转轮轴线采取水平或倾斜布置,并与水轮机进水管和出水管水流方向一致。贯流式水轮发电机具有结构紧凑,重量轻的优点,广泛用于低水头的电站中。

立式水轮发电机一般由转子、定子、机架、轴承、冷却器、制动系统等组成。

1、转子转子是水轮发电机的旋转部件,位于定子里面,与定子保持一定的空气间隙。转子通过主轴与下面的水轮机连接。它的作用是产生磁场。它主要由主轴、转子支架、磁轭和磁极等组成。

2、主轴主轴的作用是中间连接、传递转矩、承受机组转动部分的总量及轴向推力。

3、转子支架轮毂和轮臂合在一起叫支架。它的作用是连接主轴和磁轭的中间部分,并起到固定磁轭和传递转矩的作用。

4、磁轭磁轭也叫轮环。它的作用是产生转动惯量和固定磁极,同时也是磁路的一部分。磁轭由扇形磁轭冲片、通风槽片、定位销、拉紧镙杆、磁轭上压板、磁轭键、锁定板、卡键、下压板等组成。

5、磁极磁极是产生磁场的部件,由袭击铁芯、磁极线圈、阻尼绕组及极靴等组成。磁极线圈由铜线或是铝线制成,立绕再磁极铁心的外表面上,匝与匝之间用石棉纸板绝缘。线圈饶好后经浸胶热压处理,形成坚固的整体。阻尼绕组的作用是当水轮发电机产生振荡时七阻尼作用,使发电机运行稳定。在不对称运行时,它能提高担负不对称负载的能力。而实心

磁极因为本身有很好的阻尼作用,故不用在装设阻尼绕组。

7、发电机的事故及处理汇总

一、发电机定子单相接地:

发电机定子接地系指发电机定子绕组回路直接相连接的一次系统发生的单相接地。定子接地有瞬时接地、断续接地、永久接地之分,内部接地和外部接地之分,金属性接地、电弧接地、电阻接地之分,以及真、假接地之分。

1.定子接地的原因:

1) 小动物引起定子接地。

2) 定子绕组绝缘损坏。

3) 定子绕组回路中的绝缘瓷瓶受潮或脏物引起定子回路接地。

4) 水冷机组漏水以及内冷却水导电率严重超标,引起接地报警。

5) 发变组单元接线中,主变压器低压侧绕组或者高压厂用变压器高压绕组内部发生单相接地,都会引发定子接地报警信号。

6) 发电机的带开口三角绕组的电压互感器,其高压熔断器熔断时也会发定子接地报警(假接地报警)。

2.定子接地的现象及判断:

1) 发电机发出“定子接地”报警后,应判明接地相别和真、假接地。当定子一相为金属性接地时,通过切换定子电压表可测得接地相对地电压为零,非接地相对地电压为线电压,各线电压不变且平衡。定子绝缘电阻测量测得“定子接地”电压表指示为零序电压值。由于“定子接地”电压表接在发电机电压互感器开口三角绕组的两端,因此,正常运行时“定子接地”电压表的指示为零(开口三角形接线的三相绕组相电压相量和为零),当定子绕组出现一相接地时,因开口三角形连接的二次绕组连接的三相绕组相电压为100/3V,故“定子接地”电压表的指示应为3U0=3ⅹ100/3=100V。

2) 如果一点接地发生在定子绕组的内部或发电机出口,且为电阻性,或接地发生在发变组主变压器低压绕组内,切换测量定子电压表,测得接地相对地电压大于零而小于相电压,非接地相对地电压大于相电压而小于线电压,“定子接地”指示小于100V。

3) 当发电机电压互感器高压侧一相或两相熔断器熔断时,其二次侧开口三角绕组端电压也要升高。如U相熔断器熔断,发电机各相对地电压未发生变化,仍为相电压,但电压互感器的二次侧电压测量值因U相熔断发生了变化,即UuvUwu降低,而Uvw仍为线电压(线电压不平衡),各相对地电压Uu0Uw0接近相电压,Uu0明显降低(相对地无电压升高),“定子接地”电压表指示为100/3V,发“定子接地”信号(假接地)。

真假接地的根本区别:真接地时,定子电压表指示接地相对地电压降低(或等于零),非

接地相对地电压升高(大于相电压但不超过线电压),而线电压仍平衡。假接地时,相对地电压不会升高,线电压也不平衡。

3.发电机定子接地的处理:

1) 规程规定:容量在150MW及以下的发电机,当接地电容电流小于5A时,在未清除故障前允许发电机在电网一点接地的情况下短时运行,但最多不超过2h;单元接线的发电机变压器组寻找接地的时间不得超过30min。对于容量或接地电容电流大于上述规定的发电机,当定子电压回路单相接地时,要求立即将发电机解列并灭磁。这是考虑接地发生在发电机内部,接地电弧电流易使铁心损坏,另外,接地电容电流能使铁心熔化,熔化的铁心又会引起损坏区域的扩大,使有效铁心“着火”,由单相短路发展为相间短路。

2) 当接到“定子接地”报警后,应判明真、假接地。若判明为真接地,应检查发电机本体及所连接的一次回路,如接地点在发电机外部,应设法消除。如将厂用电倒为备用电源供电,观察接地是否消失。如果接地无法消除,对于200MW以上的机组,应在30min内停机。如果查明接地点在发电机内部(在窥视孔能见到放电火花或电弧),应立即减负荷停机,并向上级调度汇报。如果现场检查不能发现明显故障,但“定子接地”报警又不消失,应视为发电机内部接地,30min内必须停机检查处理。

3) 若判明为假接地,应检查并判明发电机电压互感器熔断器熔断的相别,视具体情况带电或停机更换熔断器。

二、发电机转子接地:

发电机转子接地有一点接地和两点接地,另外还会发生转子层间和匝间短路故障。转子接地有瞬时接地、断续接地、永久接地之分,也有内部接地和外部接地,金属性接地和电阻性接地之分。

1.转子接地的原因:

1) 工作人员在励磁回路上工作,因不慎误碰或其他原因造成转子接地。

2) 转子滑环绝缘损坏、转子槽口绝缘损坏、转子槽绝缘和端部绝缘损坏、转子引线绝缘损坏等引起接地。

3) 长期运行绝缘老化、因杂物或振动使转子部分匝间绝缘垫片位移,将转子通风孔局部堵塞,使转子绕组绝缘局部过热老化引起转子接地。

4) 鼠类等小动物窜入励磁回路,定子进出水之路绝缘引水管破裂漏水,励磁回路脏污等引起转子接地。

2.转子接地的现象:

转子回路一点接地时,因一点接地形不成电流回路,故障点无电流通过,励磁系统仍保持正常状态,不影响机组的正常运行。看转子接地信号能否复归,若能复归则为瞬时接地,若不能复归,则用万用表测量转子正负极对地电压,如发现某极对地电压降为零,另一极对

地电压升至全电压,说明确实发生了一点接地。

3.转子接地的处理:

1) 检查励磁回路是否有人工作,如系工作人员引起,应予纠正。

2) 检查励磁回路各部位有无明显损伤或因脏污接地,若因脏污接地应进行吹扫。

3) 对有关回路进行详细外部检查,必要时轮流停用整流柜,以判明是否由于整流柜直流回路接地引起。

4) 检查区分接地是在励磁回路还是在测量保护回路。

5) 若转子接地为一点稳定金属性接地,且无法查明故障点,除加强监视机组运行外,在取得调度同意后,将转子两点接地保护作用于跳闸,并申请尽快停机处理。

6) 转子带一点接地运行,若机组又发生欠励磁或失步,一般可认为转子接地已发展为两点接地,这时转子两点接地保护动作跳闸,否则应立即人为停机。对于双水内冷机组,在转子一点接地时又发生漏水,应立停机。

转子两点接地或转子层间短路的现象及处理:

当转子发生两点接地时,转子电流表指示剧增,转子和定子电压表指示降低,无功功率表指示明显降低,功率因数提高甚至进相,“转子一点接地”光字牌亮,警铃响,机组振动教大。严重时,可能发生发电机失步或失磁保护动作跳闸。

由于转子两点接地时,转子电流增加很多,造成励磁回路设备过热甚至损坏。如果其中一接地点发生在转子绕组内部,部分转子绕组也要出现过热。另外,转子两点接地使磁场的对称性遭破坏,故机组产生强烈振动,特别是两点接地时除发生刺耳的尖叫声外,发电机两端轴承间隙还可能向外喷带火苗的黑烟。为此,发电机发生转子两点接地时,应立即紧急停机。如果“转子一点接地”光字牌未亮,由于转子层间短路引起机组振动超过允许值或转子电流明显增大时,应立即减小负荷,使振动和转子电流减少至允许范围。

三、发电机的非同期并列:

同步发电机与系统并列时必须满足四个条件:即待并发电机的电压与系统的电压大小相等、相位相同;待并发电机的频率与系统的频率相等;待并发电机的电压相序与系统的电压相序一致。若上述四条件之一不满足要求时,人为操作或借助自动装置操作将发电机并入系统,这种并列操作称非同期并列。非同期并列是发电厂电气操作的恶性事故之一,非同期并列对发电机、对系统都会造成严重后果。非同期并列时,由于合闸冲击电流很大,机组产生剧烈振动,使待并发电机绕组变形、扭弯、绝缘崩裂、定子绕组并头套熔化,甚至将定子绕组烧毁。特别是大容量机组与系统非同期并列,将造成对系统的冲击,引起该机组与系统间的功率振荡,危及系统的稳定运行。因此,必须防止发电机的非同期并列。

1.非同期并列的现象:

发电机非同期并列时,发电机定子产生巨大的电流冲击,定子电流表剧烈摆动,定子电压表也随之摆动,发电机发生剧烈振动,发出轰鸣声,其节奏与表计摆动相同。

2.非同期并列的处理:

发电机的非同期并列应根据事故现象正确判断处理。当同期条件相差不悬殊时,发电机组无强烈的振动和轰鸣声,且表计摆动能很快趋于缓和,则机组不必停机,机组会很快被系统拉入同步,进入稳定运行状态。若非同期并列对发电机产生很大的冲击和引起强烈的振动,表计摆动剧烈且不衰减时,应立即解列停机,待试验检查确认机组无损坏后,方可重新起动开机。

四、发电机的失磁:

同步发电机失去直流励磁,称为失磁。发电机失磁后,经过同步振荡进入异步运行状态,发电机在异步运行状态下,以低滑差s与电网并列运行,从系统吸取无功功率建立磁场,向系统输送一定的有功功率,是一种特殊的运行方式。

1.发电机失磁的原因:

引起发电机失磁的原因有励磁回路开路,如自动励磁开关误跳闸,励磁调节装置的自动开关误动;转子回路断线,励磁机电枢回路断线,励磁机励磁绕组断线;励磁机或励磁回路元件故障,如励磁装置中元件损坏,励磁调节器故障,转子滑环电刷环火或烧断;转子绕组短路;失磁保护误动和运行人员误操作等。

2.发电机失磁运行的现象:

1) 中央音响信号动作,“发电机失磁”光字牌亮。

2) 转子电流表的指示等于零或接近于零。转子电流表的指示与励磁回路的通断情况及失磁原因有关,若励磁回路开路,转子电流表指示为零;若励磁绕组经灭磁电阻或励磁机电枢绕组闭路,或AVR、励磁机、硅整流装置故障,转子电流表有指示。但由于励磁绕组回路流过的是交流(失磁后,转子绕组感应出转差频率的交流),故直流电流表有很小的指示值。

3) 转子电压表指示异常。在发电机失磁瞬间,转子绕组两端可能产生过电压(励磁回路高电感而致);若励磁回路开路,则转子电压降至零;若转子绕组两点接地短路,则转子电压指示降低;转子绕组开路,转子电压指示升高。

4) 定子电流表指示升高并摆动。升高的原因是由于发电机失磁运行时,既向系统送出一定的有功功率,又要从系统吸收无功功率以建立机内磁场,且吸收的无功功率比原来送出的无功功率要大,使定子电流加大。摆动的原因是因为力矩的交变引起的。发电机失磁后异步运行时,转子上感应出差频交流电流,该电流产生的单相脉动磁场可以分解为转速相同、方向相反的正向和反向旋转磁场,其中,反向旋转磁场以相对于转子sn1的转速逆转子转向旋转,与定子磁场相对静止,它与定子磁场作用,对转子产生制动作用的异步力矩;另一个正向旋转磁场,以相对于转子sn1的转速顺转子转向旋转,与定子磁场的相对速度为2 sn1,它与定子磁场作用,产生交变的异步力矩。由于电流与力矩成正比,所以力矩的变化引起电

流的脉动。

5) 定子电压降低且摆动。发电机失磁时,系统向发电机送无功功率,因定子电流比失磁前增大,故沿回路的电压降增大,导致机端电压下降。电压摆动是由于定子电流摆动引起的。

6) 有功功率表指示降低且摆动。有功功率输出与电磁转矩直接相关。发电机失磁时,由于原动机的转矩大于电磁转矩,转速升高,汽轮机调整器自动关小汽门,这样,驱动转矩减小,输出的有功功率也减小,直到原动机的驱动转矩与发电机的异步转矩平衡时,调速器停止动作。发电机的有功输出稳定在小于正常值的某一数值下运行。摆动的原因也是由于存在交变异步功率造成的。

7) 无功功率表指示为负值,功率因数表指示进相。发电机失磁进入异步运行后,相当于一个滑差为s的异步发电机,一方面向系统送出有功功率,另一方面自系统吸收大量的无功功率用于励磁,所以发电机的无功功率表指示负值,功率因数表指示进相。

3.发电机失磁运行的影响及应用条件:

失磁对发电机和电力系统都有不良影响,在确定发电机能否允许失磁运行时,应考虑这些影响。发电机失磁运行的影响如下:

1) 严重的无功功率缺额造成系统电压下降。发电机失磁后,不但不能向系统输送无功功率,反而从系统吸收无功功率,造成系统无功功率严重缺额。若系统无功电源不能提供这部分额外的无功功率,则系统电压会显著下降。电压的下降,不仅影响失磁机组厂用电的安全运行,还可能引起其他发电机的过电流。更严重的是电压下降,降低了其他机组的功率极限,可能破坏系统的稳定,还可能因电压崩溃造成系统瓦解。

2) 对失磁机组的影响。发电机失磁时,使定子电流增大,引起定子绕组温度升高;失磁运行是发电机进相运行的极端情况,而进相运行将使机端漏磁增加,故会使端部铁芯、构件因损耗增加而发热,温度升高;由于失磁运行,在转子本体中感应出差频交流电流,差频电流产生损耗而发热,在某些部位,如槽楔与齿壁之间、护环与本体的搭接处,损耗可能引起转子的局部过热;由于转子的电磁不对称产生的脉动转矩将引起机组和基础的振动。

4.根据上述不良影响,允许发电机失磁运行的条件是:

1) 系统有足够的无功电源储备。通过计算,应能确认发电机失磁后能保证电压不低于额定值的90%,这样才能保证系统的稳定。

2) 定子电流不超过发电机运行规程所规定的数值,一般不超过额定值的1.1倍。

3) 定子端部各构件的温度不超过允许值。

4) 转子损耗:对外冷式发电机不超过额定励磁损耗;内冷式发电机不超过0.5倍额定励磁损耗。这是因为内冷式转子在正常运行时,励磁绕组的发热量是由导体内部直接传出,这种结构的转子表面散热面积相对较小,而在异步运行时,转子中的差频电流造成的热流分布

不同于正常,转子的热量只有一部分被导体内的冷却水带走,故转子损耗不能太大。

5.发电机失磁运行的处理:

由于不同电力系统无功功率储备和机组类型的不同,有的发电机允许失磁运行,有的则不允许失磁运行,因此,处理的方式也不同。对于汽轮发电机,如100MW汽轮机组,经大量失磁运行试验表明,发电机失磁后,在30s内若将发电机的有功功率减至额定值的50 %,可继续运行15min;若将有功功率减至额定值的40%,可继续运行30min。但对无功功率储备不足的电力系统,考虑电力系统的电压水平和系统稳定,不允许某些容量的汽轮发电机失磁运行。

对于调相机和水轮发电机,无论系统无功功率储备如何,均不允许失磁运行。因调相机本身是无功电源,失去励磁就失去了无功调节的作用。而水轮发电机其转子为凸极转子,失磁后,转子上感应的电流很小,产生的异步转矩小,故输出有功功率也小,失磁运行无多大实际意义。基于上述分析,发电机失磁后的处理方式如下。

不允许发电机失磁运行的处理步骤如下:

1) 根据表计和信号显示,尽快判明失磁原因。

2) 失磁机组可利用失磁保护带时限动作于跳闸。若失磁保护未动作,应立即手动将机组与系统解列。

3) 若失磁机组的励磁可切换至备用励磁,且其余部分仍正常,在机组解列后,可迅速切换至备用励磁,然后将机组重新并网

4) 在进行上述处理的同时,应尽量增加其他未失磁机组的励磁电流,以提高系统电压稳定能力。

5) 严密监视失磁机组的高压厂用母线电压,在条件允许且必要时,可切换至备用电源供电,以保证该机组厂用电的可靠性。

允许发电机失磁运行的处理步骤如下:

1) 发电机失磁后,若发电机为重载,在规定的时间内,将有功功率减至允许值(减少对系统和厂用电的影响);若发电机为轻载,则不必减有功功率;在允许运行时间内,查找机组失磁的原因。

2) 增加其他机组的励磁电流,维持系统电压。

3) 监视失磁机组定子电流应不超过1.1倍额定电流,定子电压应不低于0.9倍额定电压,并同时监视定子端部温度。

4) 在允许运行时间内,设法迅速恢复励磁电流。如AVR不能正常工作,应切换至备用励磁装置。

5) 如果在允许继续运行的时间内不能恢复励磁,应将失磁发电机的有功功率转移至其他机组,然后解列。

五、发电机的振荡和失步:

同步发电机正常运行时,相对静止的定子磁极(定子三相绕组合成磁场)与转子磁极(转子磁场)之间可看成有弹性的磁力线联系。当负载增加时,转子的位移角δ(功角)将增大,这相当于把磁力线拉长;当负载减小时,δ角将减小,这相当于磁力线缩短,如图4—17所示。当负载突然变化时,由于转子有惯性,转子位移角不能立即稳定在新的数值,而是在新的稳定值左右要经过若干次摆动,这种现象称为同步发电机的振荡。

振荡有两种类型,一种是振荡的幅度愈来愈小,δ角的摆动逐渐衰减,最后稳定在某一新的位移角下,仍以同步转速稳定运行(称同步振荡);另一种是振荡的幅度愈来愈大,δ角不断增大,直至脱出稳定范围,使发电机失步,发电机进行异步运行(称非同步振荡)。

1.发电机发生振荡或失步时有如下现象:

1)定子电流表指示超出正常值,且往复剧烈摆动;

2)定子电压表和其他母线电压表指针指示低于正常值,且往复摆动;

3)有功负荷与无功负荷大幅度剧烈摆动;

4)转子电压、电流表的指针在正常值附近摆动;

5)发电机发出有节奏的鸣声,并与表计指针摆动节奏合拍;

6)低电压继电器和过负荷保护可能动作报警;

7)在控制室可听到有关继电器发出有节奏的动作和释放的响声,其节奏与表计摆动节奏合拍。

2.发电机振荡和失步的原因:

1)静态稳定破坏。这往往发生在运行方式的改变,使输送功率超过当时的极限允许功率。

2)发电机与电网联系的阻抗突然增加。这种情况常发生在电网中与发电机联络的某处发生短路,一部分并联元件被切除,如双回线路中的一回被断开,并联变压器中的一台被切除等。

3)电力系统的功率突然发生不平衡。如大容量机组突然甩负荷,某联络线跳闸,造成系统功率严重不平衡。

4)大机组失磁。大机组失磁,从系统吸取大量无功功率,使系统无功功率不足,系统电压大幅度下降,导致系统失去稳定。

5)原动机调速系统失灵。原动机调速系统失灵,造成原动机输入力矩突然变化,功率突升或突降,使发电机力矩失去平衡,引起振荡。

6)发电机运行时电势过低或功率因数过高。

7)电源间非同期并列未能拉入同步。

3.单机失步引起的振荡与系统性振荡的区别:

1)失步机组的表计摆动幅度比其他机组表计摆动幅度要大;

2)失步机组的有功功率表指针摆动方向正好与其他机组的相反,失步机组有功功率表摆动幅度可能满刻度,其他机组在正常值附近摆动;

3)系统性振荡时,所有发电机表计的摆动是同步的。

4.发电机振荡或失步的处理:

当发生振荡或失步时,应迅速判断是否为本厂误操作所引起,并观察是否有某台发电机发生了失磁。如本厂情况正常,应了解系统是否发生故障,以判断发生振荡或失步的原因。发电机发生振荡或失步的处理如下:

1) 立即增加发电机的励磁电流。通过增加励磁电流,以提高发电机的电势,增加功率极限,提高发电机稳定性。这是由于励磁电流的增加,使定、转子磁极间的拉力增加,削弱了转子的惯性,在发电机到达平衡点时而拉入同步。但发电机励磁系统若处在强励状态,1min 内不应干预。

2) 如果是由于单机高功率因数引起,则应降低有功功率,同时增加励磁电流。这既可降低转子惯量,也提高了功率极限而增加机组稳定运行能力。

3) 当振荡是由于系统故障引起时,应立即增加各发电机的励磁电流,并根据本厂在系统中的地位进行处理。如本厂处于送端,为高频系统,应降低机组的有功功率;反之,本厂处于受端且为低频率系统,则应增加有功功率,必要时采取紧急拉路措施,以提高频率。

4) 如果是单机失步引起的振荡,采取上述措施经一定时间仍未进入同步状态时,根据

现场规程规定,应将机组与系统解列。

以上处理,必须在系统调度统一指挥下进行。

六、发电机的调相运行:

同步发电机既可作发电机运行,也可作电动机运行。当运行中的发电机因汽轮机危急保安器误动或调速系统故障而导致主汽门关闭时,发电机失去原动力,此时若发电机的横向联动保护或逆功率保护未动作,发电机则变为调相机运行。

1.发电机变为调相机运行的现象:

1)汽轮机盘出现“主汽门关闭”光字牌信号报警。

2)发电机有功功率表指示为负值,电能表反转。发电机的主汽门关闭后,发电机从系统吸取少量有功功率维持其同步运行,与原来相比,发电机由发出有功功率变为吸取有功功率,故有功功率表指示为负值,电能表反转。

3)发电机无功功率表指示升高。由于发电机主汽门关闭,输出有功功率突然消失,仅从系统吸取少量有功功率维持空载转动,而发电机的励磁电流未发生变化。由发电机的电压相量图或发电机功率输出P—Q特性曲线可知,其功角d减小时,功率因数角加大,故无功功率增大。

4)发电机定子电压升高,定子电流减小。定子电流的减小是由于发电机输出有功功率突然消失引起的,虽然输出无功功率增加,并从系统吸取少量有功功率,但定子总的电流仍减小。由于定子电流的减小,电流在定子电抗上的压降减小,故定子电压升高。由于发电机与系统相连,发电机向系统输送的无功功率增加,使发电机的去磁作用增加,定子电压自动降低保持发电机电压与系统电压平衡。

5)发电机励磁回路仪表指示正常,系统频率可能有降低。因励磁系统未发生变化,故励磁回路各表计指示正常。发电机调相运行时不仅不输出有功,还要从系统吸取少量有功维持其同步运行。当该发电机占系统总负荷比例较大时,由于系统有功不足,使系统频率下降。

2.发电机变为调相机运行的处理:

发电机变为调相机运行,对发电机本身来说,并无什么危害,但汽轮机不允许长期无蒸汽运行。这是由于汽轮机无蒸汽运行时,叶片与空气摩擦将会造成过热,使汽轮机排汽温度很快升高,故汽轮发电机不允许持续调相运行。

当汽轮发电机发生调相运行后,逆功率保护应动作跳闸,按事故跳闸处理;若逆功率保护拒动,运行人员应根据表计指示及信号情况迅速作出判断,在lmin内将机组手动解列,此时应注意厂用电联动正常。若汽轮机能很快恢复,则可再并列带负荷;若汽轮机不能很快恢复,应将发电机操作至备用状态。

七、发电机断路器自动跳闸:

300MW及以上机组通常接成发变组单元接线,并通过变压器高压侧断路器与系统相连。机组正常运行时,由于种种原因,使断路器自动跳闸,运行人员应正确判断并及时处理,以保证机组安全运行。

1.断路器自动跳闸的原因:

1)继电保护动作跳闸。如机组内部或外部短路故障引起继电保护动作跳闸;发电机因失磁或断水引起失磁保护和利断水保护动作跳闸;热机系统发生故障,由值班员就地紧急跳闸,或热力系统故障由热机保护动作并联动断路器跳闸;

2)工作人员误碰或误操作、继电保护误动作使断路器跳闸。

2.断路器自动跳闸后的现象:

保护正确动作引起的跳闸:

1)喇叭响,机组断路器和灭磁开关的位置指示灯闪光。当机组发生故障时,发电机主断路器、灭磁开关、高压厂用工作分支断路器在继电保护的作用下自动跳闸,各跳闸断路器的绿灯闪光。高压厂用备用分支断路器被联动自动合闸,备用分支断路器的红灯闪光。

2)发电机主断路器、高压厂用工作分支断路器、灭磁开关“事故跳闸”光字牌信号报警,有关保护动作光字牌亮。

3)发电机有关表计指示为零。发电机事故跳闸后,其有功功率、无功功率、定子电流和电压、转子电流和电压等表计指示全部到零。

4)在断路器跳闸的同时,其他机组均有异常信号,表计亦有相应异常指示。如发电机故障跳闸时,其他机组应出现过负荷、过电流等现象,并出现表计指示大幅度上升或摆动。

人员误碰、保护误动引起的跳闸:

1)断路器位置指示灯闪光,灭磁开关仍在合闸位置。

2)发电机定子电压升高,机组转速升高。

3)在自动励磁调节器作用下,发电机转子电压、电流大幅度下降。

4)有功功率、无功功率及其他表计有相应指示。因厂用分支断路器未跳闸,仍带厂用电负荷。

5)其他机组表计无故障指示,无电气系统故障现象。

3.断路器自动跳闸的处理:

当运行中的发电机主断路器自动跳闸时,运行人员应根据表计、信号及保护动作情况,及时作出处理,并分以下几种情况。

保护正确动作的处理:

1)发电机主断路器自动跳闸后,应检查灭磁开关是否已经跳闸,若41SD和GSD未跳闸,应立即断开。

2)发电机主断路器、灭磁开关、高压厂用电源工作分支断路器跳闸后,应检查高压厂用电源工作分支切换至备用分支是否成功。若不成功,应手动合上备用分支断路器(若工作分支断路器未跳闸,应先拉工作分支后合备用分支),以保证机组停机用电的需要。

3)复置断路器控制开关和音响信号。将自动跳闸和自动合闸断路器的控制开关拧至与断路器的实际位置相一致的位置,使闪光信号停止。按下音响信号的复归按钮,使音响停止。

4)停用发电机的自动励磁调节器(AvR)。

5)调节、监视其他无故障机组的运行工况,维持其正常运行。

6)检查继电保护动作情况,并作出相应处理。若发电机因系统故障跳闸(如母线差动、失灵保护),应维持汽轮机的转速,并检查发变组一次系统。在系统故障排除或经倒换运行方式将故障隔离后,联系调度,将机组重新并入系统;若为发变组内部保护动作跳闸,应根据保护范围,对发电机、主变压器、高压厂用变压器及有关设备进行检查,并测量绝缘,查明跳闸原因,确定故障点和故障性质,汇报调度停机检修。待故障排除后,重新起动并网。若为失磁保护动作跳闸,应查明原因,对可切换至备用励磁装置运行的机组,可重新并网,否则,只能停机处理。

发电机误跳闸的处理:

1)发电机保护误动作跳闸。断路器跳闸时,应有继电保护动作信号发出,但机组和系统无故障现象,其他电气设备也无不正常信号,此时,应检查是什么保护误动作引起跳闸。如为后备保护误动作,在征得调度同意后,可将其停用,先将发电机并网,然后消除故障;若为机组主保护误动作引起跳闸,应查明保护误动原因。消除误动故障后,方可重新并网。发电机断路器自动跳闸后,检查发变组一次系统无异常,检查保护也无异常,经厂总工程师及调度同意,可对发电机手动零起升压。升压前,合上主变压器中性点接地隔离开关,升压应缓慢。在升压过程中,应密切监视发电机表计指示和定、转子绝缘情况,升至1.05倍额定电压时停留lmin(即耐压lmin),然后降至额定电压,对发变组本体及相关设备进行详细检查。若无异常,重新并网运行。若升压过程中有异常,应立即停机处理。

2)人为误碰、误操作跳闸。一般情况下,此时灭磁开关仍处于合闸位置,发电机各表计指示为甩负荷现象。此时,应将灭磁开关手动跳闸,在查明确系人为原因引起跳闸后,应尽快将机组重新并网运行。

八、发电机内部爆炸、着火:

1.故障现象:

发电机内部有强烈爆炸声,两侧端盖处冒烟,有焦臭味;发电机内部氢气压力大幅度波动(升高或降低),出口氢温升高,氢气纯度下降,发电机表计指示可能基本正常或发电机内部保护动作。

2.处理:

保护未动作时,应立即打闸停机,切除励磁;迅速切断供氢门,向发电机内充入CO2,将发电机转速降至200—300r/mil,按消防规程规定灭火。

水轮机盘车方法要点

水轮发电机的安装 安装主要分为两大部: a、静止部分:发电机(上机架、下机架、发电机定子)水轮机(座环、基础环、底环、顶盖等) b、转动部件:上端轴、发电机转子、发电机轴、水轮机轴、水轮机转轮。 一、两大部件安装应注意什么问题?为什么注意这些问题? 1、静止部件的安装一定要注意三要素:安装部件标高、安装部件中心、安装部件水平。 标高安装的好与坏直接影响设计要求转动部件的紧张部件的相对位置,对静止不同部件的安装的标高要求是不一样,应严格按图纸和图标要求安装。 中心安装的好与坏是影响各紧张部件的同心度对各静止部件安装中的标准也不同,应严格按图纸和国标要求去安装。 水平安装的好与坏是影响紧张部件的垂直度问题,如定子安装不水平倾斜带机组安装完后会影响定转子上下端之间气隙不均匀造成机组振动故要求各静止部件安装水平应严格按图纸和国标的要求去安装。 2、转动部分的安装应注意一下两个问题 a、分轴在联轴时,如法兰石是无密封条结,在联轴时应注意法兰面一定要干净无毛刺、锈斑,联轴后不能有间隙如法兰面油密封条结应注意密封圈和密封槽配合尺寸问题是否合适。另外把合联轴螺栓时一

定要安图纸要求的螺栓把合紧度去把合。 b、发电机转子组装冷热打磁极键时一定要注意上下因盘法兰面上下止口的同心度问题,并且注意打键前后测量上下止口同心度并做好记录,一边总装时上端轴就位情况有效。 静止部分按照的好与坏总装后是通过定转子间隙及谁路径上下止喽环间隙来验证。另外标高是通过静止部分和转动部分相对位置尺寸是否符合图纸要求来验证。 转动部分安装的好与坏是通过盘车来验证。 二、转动部件盘车部分的盘车问题 1、盘车目的和什么原因会造成判处数据部合格 盘车目的:通过盘车了解轴系的推力头和大轴垂直度情况及各轴组合面的同心度情况。 三方面造成盘车数据不合格: a、制造厂:如制造厂加工上都保证没什么问题的话,小型机组导轴承的滑转子热套方法不当会造成滑转子倾斜或和大轴不同心如图 b、轴的存放:轴的存放一定要注意定期一百八十度转动存放否则由于转子的自重和大轴的自重造成大轴的弯曲,如图所示 c、安装:对于小机组推力头热套有可能套斜,引起大轴和推力头部垂直。对于大机组转子中心体上下园盘止口由于冷打键造成不同心另外各轴连接时法兰面清理不干净或有锈斑。 总的来讲:影响盘车数据不合格有如下几种情况:(1)、大轴和推力头不垂直。(2)、各轴组合不同心。(3)、大轴弯曲。(4)、大轴

水轮机的选型设计说明

水轮机的选型设计 水轮机选型时水电站设计的一项重要任务。水轮机的型式与参数的选择是否合理,对于水电站的功能经济指标及运行稳定性,可靠性都有重要影响。 水轮机选型过程中,一般是根据水电站的开发方式,功能参数,水工建筑物的布置等,并考虑国内外已生产的水轮机的参数及制造厂的生产水平,拟选若干个方案进行技术经济的综合比较,最终确定水轮机的最佳型式与参数。 一:水轮机选型的内容,要求和所需资料 1:水轮机选择的内容 (1)确定单机容量及机组台数。 (2)确定机型和装置型式。 (3)确定水轮机的功率,转轮直径,同步转速,吸出高度及安装高程,轴向水推力,飞逸转速等参数。对于冲击式水轮机,还包括确定射流直径与喷嘴数等。(4)绘制水轮机的运转综合特性曲线。 (5)估算水轮机的外形尺寸,重量及价格。 wertyp9 ed\结合水轮机在结构、材质、运行等方面的要求,向制造厂提出制造任务书。 2.水轮机选择的基本要求 水轮机选择必须要考虑水电站的特点,包括水能、水文地质、工程地质以及电力系统构成、枢纽布置等方面对水轮机的要求。在几个可能的方案中详细地进行以下几方面比较,从中选择出技术经济综合指标最优的方案。 (1)保证在设计水头下水轮机能发生额定出力,在低于设计水头时机组的受阻容量尽可能小。 (2)根据水电站水头的变化,及电站的运行方式,选择适合的水轮机型式及参数,使电站运行中平均效率尽可能高。 (3)水轮机性能及结构要能够适应电站水质的要求,运行稳定、灵活、可靠,有良好的抗空化性能。在多泥沙河流上的电站,水轮机的参数及过流部件的材质要保证水轮机具有良好的抗磨损,抗空蚀性能。 (4)机组的结构先进、合理,易损部件应能互换并易于更换,便于操作及安装维护。 (5)机组制造供货应落实,提出的技术要求要符合制造厂的设计、试验与制造水平。 (6)机组的最大部件及最重要部件要考虑运输方式及运输可行性。 3.水轮机选型所需要的原始技术材料 水轮机的型式与参数的选择是否合理、是否与水电站建成后的实际情况相吻合,在很大程度上取决于对原始资料的调查、汇集和校核。根据初步设计的深度和广度的要求,通常应具备下述的基本技术资料: (1)枢纽资料:包括河流的水能总体规划,流域的水文地质,水能开发方式,水库的调节性能,水利枢纽布置,电站类型及厂房条件,上下游综合利用的要求,工程的施工方式和规划等情况。还应包括严格分析与核准的水能基本参数,诸如电站的最大水头Hmax、最小水头Hmin,加权平均水头Ha,设计水头Hr,各种特征流量Qmin、Qmax、Qa,典型年(设计水平年,丰水年,枯水年)的水头、流量过程。此外还应有电站的总装机容量,保证出力以及水电站下游水位流量关系曲线。 (2)电力系统资料:包括电力系统负荷组成,设计水平年负荷图,典型日负荷

水轮机盘车方法

水轮发电机安装的盘车方法 安装主要分为两大部: a、静止部分:发电机(上机架、下机架、发电机定子)水轮机(座环、基础环、底环、顶盖等) b、转动部件:上端轴、发电机转子、发电机轴、水轮机轴、水轮机转轮。 一、两大部件安装应注意什么问题?为什么注意这些问题? 1、静止部件的安装一定要注意三要素:安装部件标高、安装部件中心、安装部件水平。 标高安装的好与坏直接影响设计要求转动部件的紧张部件的相对位置,对静止不同部件的安装的标高要求是不一样,应严格按图纸和图标要求安装。 中心安装的好与坏是影响各紧张部件的同心度对各静止部件安装中的标准也不同,应严格按图纸和国标要求去安装。 水平安装的好与坏是影响紧张部件的垂直度问题,如定子安装不水平倾斜带机组安装完后会影响定转子上下端之间气隙不均匀造成机组振动故要求各静止部件安装水平应严格按图纸和国标的要求去安装。 2、转动部分的安装应注意一下两个问题 a、分轴在联轴时,如法兰石是无密封条结,在联轴时应注意法兰面一定要干净无毛刺、锈斑,联轴后不能有间隙如法兰面油密封条结应注意密封圈和密封槽配合尺寸问题是否合适。另外把合联轴螺栓时一

定要安图纸要求的螺栓把合紧度去把合。 b、发电机转子组装冷热打磁极键时一定要注意上下因盘法兰面上下止口的同心度问题,并且注意打键前后测量上下止口同心度并做好记录,一边总装时上端轴就位情况有效。 静止部分按照的好与坏总装后是通过定转子间隙及谁路径上下止喽环间隙来验证。另外标高是通过静止部分和转动部分相对位置尺寸是否符合图纸要求来验证。 转动部分安装的好与坏是通过盘车来验证。 二、转动部件盘车部分的盘车问题 1、盘车目的和什么原因会造成判处数据部合格 盘车目的:通过盘车了解轴系的推力头和大轴垂直度情况及各轴组合面的同心度情况。 三方面造成盘车数据不合格: a、制造厂:如制造厂加工上都保证没什么问题的话,小型机组导轴承的滑转子热套方法不当会造成滑转子倾斜或和大轴不同心如图 b、轴的存放:轴的存放一定要注意定期一百八十度转动存放否则由于转子的自重和大轴的自重造成大轴的弯曲,如图所示 c、安装:对于小机组推力头热套有可能套斜,引起大轴和推力头部垂直。对于大机组转子中心体上下园盘止口由于冷打键造成不同心另外各轴连接时法兰面清理不干净或有锈斑。 总的来讲:影响盘车数据不合格有如下几种情况:(1)、大轴和推力头不垂直。(2)、各轴组合不同心。(3)、大轴弯曲。(4)、大轴

现场动平衡操作步骤201113

现场动平衡操作步骤 ?单面动平衡三步 ?传感器安装—准备工作 ?第一步:测量初始振动 ?第二步:加试重,测量试重振动,自动解算配重 ?第三步:加配重,去掉试重,测量残余振动,验证是否达到合格范围。 ?合格,出报表,不合格,二次配重! ?动平衡操作过程 首先在做动平衡之前先要了解机械设备的构造与构成以及测点的选择: ?测点选择 测点就是机器上被测量的部位,它是获取振动信息的窗口。 所选测点在可能时要尽量靠近振源,避开或减少信号在传播通道上的界面、空腔或隔离物(如密封填料等)最好让信号成直线传播。这样可以减少信号在传播途的能量损失。

因为测量时,设备在运行,因此需要注意安全问题。 有足够的空间,有良好的接触,测点部位有足够的刚度等。 通常,轴承是监测振动最理想的部位,因为转子上的振动载荷直接作用在轴承上,并通过轴承把机器和基础联接成一个整体,因此轴承部位的振动信号还反映了基础的状况。所以,在无特殊要求的情况下,轴承是首选测点。如果条件不允许,也应使测点尽量靠近轴承,以减小测点和轴承之间的机械阻抗。此外,设备的地脚、机壳、缸体、进出口管道、阀门、基础等,也是测振的常设测点。 ?轴承位图示

3.振动分析过程 振动分析过程是一个简单的故障诊断过程,根据以往的历史经验以及仪器仪表的显示综合进行的一个分析,简单的判断出故障的所在,从而为进一步解决问题提供辅助判断。 打开软件主界面点击振动分析功能

点击振动分析功能进入振动分析界面: 在振动分析界面中有两个分项目:时域分析、频域分析

对设备进行故障诊断的时候需要提前设定参数,如图所示 在时域分析中有一个重要的技术参数:速度量 所有的机械设备都有振动标准,速度量是衡量振动大小的国际标 准,对于一些特殊的行业(比如电厂,科研单位等)也使用位移量为

水轮机的选型计算

一、水轮机选型计算的依据及其基本要求.....................................................................1 1 水轮机选型时需由水电勘测设计院提供下列原始数据.................................1 2 水轮机选型计算应满足下述基本要求......................................................1 二、反击式水轮机基本参数的选择计算..................................................................1 1 根据最大水头及水头变化范围初步选定水轮机的型号.................................1 2 按已选定的水轮机型号的主要综合特性曲线来计算转轮参数.................................1 3 效率修正..........................................................................................4 4 检查所选水轮机工作范围的合理性.........................................................4 5 飞逸转速计算....................................................................................5 6 轴向推力计算....................................................................................5 三、水斗式水轮机基本参数的选择计算......................................................10 1 水轮机流量.......................................................................................10 2 射流直径d 0.......................................................................................10 3 确定D1/d 0.......................................................................................10 4 水轮机转速n ....................................................................................10 5 功率与效率................................................................................................11 6 飞逸转速..........................................................................................12 7 水轮机的水平中心线至尾水位距离A ......................................................12 8 喷嘴数Z 0的确定....................................................................................12 9 水斗数目Z1的确定.................................................................................12 10 水斗和喷嘴的尺寸与射流直径的关系...................................................13 11 引水管、导水肘管及其曲率半径.........................................................13 12 转轮室的尺寸..............................................................................14 A 水机流量..........................................................................................17 B 射流直径.............................................................................................17 C 水斗宽度的选择..........................................................................................17 D D/B 的选择.............................................................................................17 E 水轮机转速的选择.......................................................................................17 F 单位流量的计算..........................................................................................17 G 水轮机效率................................................................................................18 H 飞逸转速................................................................................................18 I 转轮重量的计算..........................................................................................18 四、调速器的选择.............................................................................................20 1 反击式水轮机的调速功计算公式.....................................................................20 2 冲击式水轮机的调速功计算公式.....................................................................20 五、阀门型号、大小的选择.................................................................................21 1 球阀的选择................................................................................................21 2 蝴蝶阀的选择 (22) 目 录

水斗式水轮机选型实例

水斗式水轮机选型实例 水斗式水轮机选型实例(20080710修改) 2006年曾经写过一篇,方法不再累述,这次的就修改一下,简要说说这2年半来选型的趋势,与时俱进吧。 首先更改一下以前的实例5,最后的型号居然是186/4*12.5.,不好意思,东电哈电的业绩确实太难得到了。 下面是摘抄的各个水斗式生产厂家近2年比较典型的对外宣传业绩: 总的说来具有一下趋势: 1、A475被广泛的应用,基本在600米以下开始取代A237了。横比各个厂家的业绩看出A475成了首选,看来A475比A237的优势被广泛认同。 2、在600~800米水头出现了A870,有几个电站的实例了。 3、在1000米水头段出现了105,有5个以上电站的实例运行了。 4、出现了一些新的型线代号,很多是国外进口转轮的代号。如 A1085 244 520 K001 DF01 T5317 等(新型号有些是厂家自己取的名字,真实性不敢肯定) 5、选型出现了追求价格不计性能的趋势。这个不支持。比如325米 4250千瓦选择105/2*12.5 ;210米2500千瓦选择100/2*12 ;370米4000千瓦110/2*10等等。这样选型都不出问题,什么才会出问题呢,大厂都这样了,小厂是一直都有这种趋势。这2年来钢材上涨的价格吓人,而厂家也在增多,行业价不升反降,分蛋糕的越来越多,所以技术含量不高的厂家报的价格基本都是白菜价了~~~大厂也开始饥不择食了,小机器一样也做。 6、单位转速普遍在39.5~41之间。至于原因上文说到的新的理论已经出版了,名字是《水斗式水轮机基础理论与设计》,书里面有说明。至于485米60MW 选217.2/6*18.1有点太偏颇了。

动平衡实验.doc

实验八 零件设计专项能力训练 ——回转件的动平衡 一、实验目的 1. 熟悉运动平衡机的工作原理及转子动平衡的基本方法 2. 掌握用动平衡机测定回转件动平衡的实验方法。 二、设备和工具 简易动平衡试验机、药架天平。 三、原理和方法 T ?、 ? 内,回转半径分别为r o ?、r o ?的两个不平 G o ?、G o ?所产生,如图8-1所示。因 进行动平衡试验时,只需对G o ?、G o ?进 简易动平衡试验机可以分别测出上述 平衡重径积G o ?r o ?和 o ?r o ?的大小和方位,使回转件达到动平 图8-2是简易动平衡机的工作原理图。 图8-1 图8-2 如图所示,框架1经弹簧2与固定的底座3相联,它只能绕OX 轴线摆动,构成一个振动系统。框架上装有主轴4,由固定在底座上的电动机14通过带和带轮12驱动。主轴4上装有螺旋齿轮6,它与齿轮5齿数相等,并相互啮合,齿轮6可以沿主轴4移动。移动的距离和齿轮的轴向宽度相等,比齿轮5的节圆圆周要大,因此调节手轮18,使齿轮6从左端位置移到右端位置时,齿轮5及和它固定的轴9可以回转一周以上,借此调节φc ,φc 的大小由指针15指示。圆盘7固定在轴9上,通过调节手轮17可以使圆盘8沿轴向9上下移动,以调节两圆盘间的距离l c ,l c 由指针16指示。7、8两圆盘大小、重量完全相等,上面分别

装有一重量为G c的重块,其重心都与轴线相距r c,但相位差180°。 被平衡的回转件10架于两个滚动支承13上,通过挠性联轴器11由主轴4带动,因此回转件10与圆盘7、8转速相等,当选取T?和T?为平衡校正面后,回转件10的不平衡就可以看作平面T?和T?内向径为r o?和r o?的不平衡重量G o?和G o?所产生。平衡时可先令摆架的振摆轴线OX处于平面T?内(如图8-2所示)。当回转构件转动时,不平衡重量G o?的离心力P o?对轴线OX的力矩为零,不影响框架的振动,仅有G o?的离心力P o?对轴线OX形成的力矩M o,使框架发生振动,其大小为 M o=P o??l?cosφ 这个力矩使整个框架产生振动。 为了测出T?面上的不平衡重量大小和相位,加上一个补偿重径积G c r c,使产生一个补偿力矩,即在圆盘7和8上各装上一个平衡重量G c。当电机工作时,带动主轴4并带动齿轮5、6,因而圆盘7、8也旋转,这时G c的离心力P c,就构成一个力偶矩M c,它也影响到框架绕OX轴的振摆,其大小为 M c=P c?l c?cosφc 框架振动的合力矩为 M=M o=M c=P o??l?cosφ-P c?l c?cosφc 如果合力为零,则框架静止不动。此时 M=P o??l?cosφ-P c?l c?cosφc=0 满足上式条件为 G o?r o?=G c r c?l c/l(1) φo=φc(2)在平衡机的补偿装置中G c、r c是已知的,试件的两平衡平面是预先选定的,因而两平衡平面间的距离l也是一定的,因此(1)式可以写成 G o?r o?=A?l c(3)其中A=G c?r c/l 为便于观察和提高测量精度,在框架上装有重块19,移动19,可改变整个振动系统的自振频率,使框架接近共振,即振幅放大。 通过调节手轮17和18,使框架静止不动,读出l c和φc的数值,由公式(3)即可计算出不平衡重量G o?的大小为 G o?=A?l c?r o? 其相位可以这样确定,停车后,使指针15转到图8-2所示与OX轴垂直的虚线位置,此时G o?的位置就在平面T?内回转中心的铅直上方。 测量另一个平衡平面T?上的不平衡重径积,只需将试件调头,使平面T?通过OX轴,测量方法与上述相同。 四、实验步骤 1.在被平衡试件上机以前,先开动电机,调节手轮18,使圆盘8与7的重块G c产生的离心力在一直线上,这时力矩M c=0,从主轴下的指针可看出框架是静止状态,此时标尺16所示的读数为l c的零点位置。 2.装上试件,试件的一端联轴节应与带轮接好,以免开动电机时发生冲击。 3.移动重块19以改变框架的自振频率,使框架接近共振状态,这时框架振幅放大,以提高平衡精度,调共振后锁紧。 4.先调节手轮17,即加一定的补偿力矩(将圆盘7、8分开一定距离),然后调节手轮18,即移动齿轮6,使齿轮5与圆盘7、8得到附加转动,当调节到框架振动的振幅最小时不平衡重量相位已找到。然后再调节手轮18,即调节l c,使框架最后振动消除,振动系统

简易找风机转子动平衡方法

简易找风机转子动平衡 方法 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

简易找风机转子动平衡方作者:罗仁波 时间:2015年10月5日 摘要:引风机振动的原因很多,转子动不平衡是风机振动的原因之一。专业技术书籍中介绍的找风机转子动平衡的方法有多种,但在实际工作中使用这些方法都比较复杂,或需一些高精密仪器检测,但仪器昂贵,切操作困难,因此难以让检修人员所熟练掌握与应用。本人在此介绍一种在以往的长期工作实践中摸索总结得来的简易找风机转子动平衡方法。 论文主题: 风机动平衡的屈指可数。在冶金行业的各类风机中,除尘风机较多,外出做动平衡价格昂贵,且影响环保问题,检修量大,另外新叶轮在加工制造过程中由于各种因素,偶尔也会出现不平衡现象。这些不平衡通过找静平衡的方法是可以解决其中一部分的,而一些经过静平衡校验合格的风机转子在高速旋转时仍会发生试重测振动,这些转子的不平衡就必须通过找动平衡的方法才能加以彻底消除。在实际工作中,能够很好的解决设备各类疑难杂症的人员不是很多,能现场解决 一、常用风机找动平衡的几种方法 现场动平衡方法基本为:两点试重测量法、三点试重测法、闪光测相法、影响系数平衡法、计算法、简易平衡法。具体做法如下:两点法:

测出风机在工作转速下两轴承的振动振幅,若A侧振动大(振动值为Ao),则先平衡A侧,在转子上某一点(作记号1)加上试加质量M,测得振动值为A1,按相同半径将此试加质量M移动180°(作记号2),测得振动值为A2,根据测得的A0、A1、A2值,选适当的比例作图,求出应加平衡质量的位置和大小。做法下图: 作△ODM,使OM:OD:DM=A0:A1/2:A2/2,延长MD至C,使 CD=DM,并连接OC;以O为圆心,OC为半径作圆O;延长CO与O圆交于B,延长MO交圆于S,则OC为试加质量M引起的振动值(按比例放大后的振动值),平衡质量Ma为:Ma=M*OM/OC。由图中量得角∠COS为d,则平衡质量应加在第一次试加质量位置1的逆转向α角或顺转向d角处,具体方位由试验确定。 三点法 此法与两点法基本相同,只是用同一试加质量M按一定的加质量半 径依次加在互为120°的三个方向上,测得的三 个振动值为A1、A2、A3,作图如下: 以o为圆心,取适当的比例,以A1、A2、 A3为半径画三段弧A、B、C,在弧A、B、C上分 别取a、b、c点,使三点距离彼此相等,连接ab、bc、ca得等边三角形,并作三角形三个角的平分线交于s点,连接os,以s为圆心,sa(sa=sb=sc)为半径作圆,交os于s’点,s’点即平衡重量应加的位置,从图中看出,它在第一次与第二次加试块的位置

三点式动平衡方法

利用普通振动仪对离心式风机做现场动平衡(三点式) 使用工具: 1.振动仪 1台 2.M13梅花板手1只 3.电焊机1台 4.瓦斯切割器 1组 5.配重铁块 1只 6.劈灰刀 1把 7.电子天平(量程1000克,精度0.1克) 1台 8.记号笔(黄色或红色) 1支 操作步骤: 1.将风机断电; 2.用M13梅花板手将人孔打开,工作人员进入风机内,用劈灰刀将风机叶轮上污垢去除,再用抹布搽干净; 3.盖上人孔,开启风机,将振动仪固定于最能够反应风机振动的位置(如:风机侧轴承振动水平向),测出该点振动值A0; 4.将风机断电,开启人孔.将叶轮后盘(或前盘)圆周三等分,并用记号笔表识:1点,2点,3点; 5.取配重块mp(一般200g左右),将其点焊于点1处,然后关闭人孔,开启电源,待风机运转平稳后,记录下振动值A1; 6.将风机断电,取下点1处的配重块, 将其点焊于点2处,重复步骤5,记录下振动值A2;同样方法,测得振动值A3; 7.作图,步骤如下 以A0为半径作圆,圆心为O,将该圆3等分,分别记作O1点,O2点,O3点;以O1为圆心,A1为半径作弧;以O2为圆心,A2为半径作弧;以O3为圆心,A3为半径作弧.上述3条弧线分别交于B,C,D三点.作BCD的型心O4,O4 点即为轻点,连接OO4并延长交圆O于O5点,O5点即为加配重铁块的点.侧得OO4的长度为L,则O5点配重质量为m=mp×A0 /2L; 8.在风机叶轮后盘(或前盘)圆周上找出实际O5点位置,将配重块m焊牢即可; 9.将人孔螺栓锁紧,校正结束. 得到振动仪所测量的振动值後,进行作图时需注意,作BCD形心,均质的材料其形心即是重心 BCD三角形的中心线联线即为形心。

水轮机作业

第1章 概论 (一) 单项选择题 1.水轮机的工作水头是( )。 (A )水电站上、下游水位差 (B )水轮机进口断面和出口断面单位重量水流的能量差 2.水轮机的效率是( )。 (A )水轮发电机出力与水流出力之比 (B )水轮机出力与水流出力之比 3.反击式水轮机是靠( )做功的。 (A )水流的动能 (B )水流的动能与势能 4. 冲击式水轮机转轮是( )。 (A )整周进水的 (B )部分圆周进水的 5.喷嘴是( )水轮机的部件。 (A )反击式 (B )冲击式 (二)填空题 1.水电站中通过 把水能转变成旋转机械能,再通过 把旋转机械能转变成电能。 2.水轮机分为 和 两大类。 3.轴流式水轮机分为 和 两种。 4.水轮机主轴的布置形式有 和 两种。 5.冲击式水轮机有 、 和 三种。 (三)计算题 1.某水轮机的水头为18.6m ,流量为1130m 3/s ,水轮机的出力为180MW ,若发电机效率97.0=g η,求水轮机的效率和机组的出力g P 。 2.某水轮机蜗壳进口压力表的读数为a P 310650?,压力表中心高程为887m ,压力表所在钢管内径D = 6.0m ,电站下游水位为884m ,水轮机流量Q = 290 m 3/s ,若水轮机的效率%92=η,求水轮机的工作水头与出力。 第2章 水轮机的工作原理 (一) 单项选择题 1.水轮机中水流的绝对速度在轴面上的投影是( )。 (A )轴向分量z v (B )轴面分量m v 2.水轮机中水流的轴面分量m v 与相对速度的轴面分量m w ( )。 (A )相等 (B )不相等 3.水轮机输出有效功率的必要条件是( )。 (A )进口环量必须大于0 (B )进口环量必须大于出口环量 4.无撞击进口是指水流的( )与叶片进口骨线的切线方向一致。 (A )绝对速度 (B )相对速度 5.法向出口是指( )。 (A )出口水流的绝对速度是轴向的 (B )出口水流的绝对速度与圆周方向垂直 (二)填空题 1.水轮机转轮中的水流运动是 和 的合成。 2.水轮机轴面上所观察到的水流速度分量是 和 。

水轮发电机组盘车

立式水轮发电机组盘车大纲 (采用机械盘车方式)NJB0717 一、基本要求 1、采用机械盘车方式,一般将圆盘式盘车工具,装于发电机推力 头上。 2、机组转动部分应位于机组中心,镜板已调好水平,并使每块推 力瓦受力基本均匀。 3、盘车用润滑脂为无水纯净的猪油,或二硫化钼润滑脂,或者专 用盘车润滑脂。 4、上导轴瓦间隙不大于0.05mm.,其余导轴承(下导、水导)退 出。 5、在镜板、上导轴承、下导轴承、法兰、水导轴承处按逆时针方 向分成八等分,各部分的对应等分点应在同一垂直线上,并做出标记和X、Y座标之标识。 6、在各测量部位的X、Y座标上各装设一块千分表,千分表测杆 应与所测部位表面垂直。 二、盘车及记录 1、盘动转子,每转一个等分点,同时记录各部位对应点的摆度值 (每部位8个点),并做好记录。 2、盘车过程中应校核镜板水平。 三、摆度值分析与计算 1、全摆度,将对面两测点的摆度值相减,计算出全摆度,即计算 上导1-5、2-6、3-7、4-8,下导1-5、2-6、3-7、4-8,法兰1-5、2-6、3-7、4-8,水导1-5、2-6、3-7、4-8

之算术值。 2、净摆度,在垂直对应各点全摆度值上,同时加或同时减上导之 摆度值(使上导摆度值为0)既为各点的净摆度值。 3、根据各点的净摆度值,通过平面座标的形式,(横座标为测点, 纵座标为净摆度值)可绘出各部位的净摆度座标曲线,一般情况下该曲线应近似正弦曲线,从曲线中可以看出最大摆度值和摆度位置。如果座标曲线不接近正弦曲线而是畸形的,应查找原因,并重新盘车。 四、摆度校正 1、当摆度超出规范要求时,根据需要选择刮削推力头与镜板间的 绝缘垫板,或是联轴螺栓之紧度问题。 2、绝缘垫板刮削厚度δ计算式为: δ=φD/2L (mm) 式中D-----推力头与镜板配合直径(mm) φ----净摆度(mm) L----对应净摆度的距离(mm) 3、绝缘垫板刮削方向应是摆度最大的方向,刮削后的绝缘垫板应 按原来位置装入。 五、重新盘车----直到摆度值合格为止。

《转子动平衡——原理、方法和标准》.pdf

技术讲课教案 主讲人:范经伟 技术职称(或技能等级):高级工所在岗位:锅炉辅机点检员 讲课时间: 2011年 06月24日

培训题目:《转子动平衡——原理、方法和标准》 培训目的: 多种原因会引起转子某种程度的不平衡问题,分布在转子上的所有不平衡矢量的和可以认为是集中在“重点”上的一个矢量,动平衡就是确定不平衡转子重点的位置和大小的一门技术,然后在其相对应的位置处移去或添加一个相同大小的配重。 内容摘要: 动平衡前要确认的条件: 1.振动必须是因为动不平衡引起。并且要确认动不平衡力占 振动的主导。 2.转子可以启动和停止。 3.在转子上可以添加可去除重量。 培训教案: 第一章不平衡问题种类 为了以最少的启停次数,获得最佳的平衡效果,我们不仅要认识到动不平衡问题的类型(静不平衡、力偶不平衡、 动不平衡),而且还要知道转子的宽径比及转速决定了采 用单平面、双平面还是多平面进行动平衡操作。同时也要认识到转子是挠性的还是刚性的。

刚性转子与挠性转子 对于刚性转子,任何类型的不平衡问题都可以通过 任选的二个平面得以平衡。 对于挠性转子,当在一个转速下平衡好后,在另一 个转速下又会出现不平衡问题。当一个挠性转子首 先在低于它的70%第一监界转速下,在它的两端平 面内加配重平衡好后,这两个加好的配重将补偿掉 分布在整个转子上的不平衡质量,如果把这个转子 的转速提高到它的第一临界转速的70%以上,这个 转子由于位于转子中心处的不平衡质量所产生的离 心力的作用,而产生变形,如图10所示。由于转子的弯曲或变形,转子的重心会偏离转动中心线,而 产生新的不平衡问题,此时在新的转速下又有必要 在转子两端的平衡面内重新进行动平衡工作,而以 后当转子转速降下来后转子又会进入到不平衡状 态。为了能在一定的转速范围内,确保转子都能处 在平衡的工作状态下,唯一的解决办法是采用多平 面平衡法。 挠性转子平衡种类 1.如果转子只是在一个工作转速下运转,小量的变 形不会产生过快的磨损或影响产品的质量,那么

水轮机复习题

水轮机训练(一) 一、选择题 1.水轮机的效率η() (A)>1; (B)<1; (C)=1; (D)≤1。 2.水轮机是实现()转换的主要部件。 (A)水能;(B)电能;(C)动能;(D)机械能。 3.水斗式水轮机属于()水头水轮机。 (A)低;(B)高; (C)中;(D)中高。 4.可逆式水力机组主要作用是() (A)调频;(B)调相;(C)生产季节性电能;(D)削峰添谷。 5.目前水头大于700m时,惟一可采用的一种机型是()。 (A)混流式水轮机;(B)轴流转浆式水轮机;(C)斜流式水轮机;(D)水斗式水轮机。6.水斗式水轮机与混流式水轮机相比较,其特点是()。 (A)适用高水头,打流量;(B)平均效率高;(C)应用水头范围窄;(D)结构简单,工程造价低。 7.水斗试水轮机喷管相当于反击型水轮机的()。 (A)导水机构;(B)导叶操作机构;(C)导叶;(D)泻水锥。 8.反击式水轮机能量转换主要是()。 (A)水流动能的转换;(B)水流势能的转换;(C)水流压力的转换;(D)水头损失和压力的转换。 9.属于水轮机排水部分的是()。 (A)尾水管;(B)导轴承;(C)止漏装置;(D)蜗壳。 10.水轮机的设计水头是()。 (A)水轮机正常运行水头;(B)水轮机发出额定出力的最低水头;(C)水轮机发出最大出力的最低水头;(D)保证水轮机安全、稳定运行的最低工作水头。 11.ZD510-LH-180属于()水轮机。 (A)轴流转桨式;(B)轴流定桨式;(C)混流式;(D)斜流式。 12.SF表示()。 (A)水轮发电机;(B)气轮发电机;(C)立式发电机;(D)卧式发电机。 13.不属于反击式水轮机的是()。

水轮发电机构造

水轮发电机的构造 本课件2012年8月重新编辑(将图片黑底色更换为白色) 水轮机的转速都比较低,特别是立式水轮机,为了能发出50Hz的交流电,水轮发电机采用多对磁极结构,对于每分钟120转的水轮发电机,需要25对磁极。由于过多磁极不易看清结构,本课件介绍一个有12对磁极的水轮机发电机模型。 水轮发电机的转子采用凸极式结构,图1是发电机的磁轭与磁极,磁极安装在磁轭上,磁轭是磁极磁力线的通路,发电机模型有南北相间的24个磁极,每个磁极上都绕有励磁线圈,励磁电源由安装在主轴端头的励磁发电机提供,或由外部的晶闸管励磁系统提供(由集电环向励磁线圈供电)。 图1 水轮发电机转子有多对磁极 磁轭安装在转子支架上,在转子支架中心安有发电机主轴,在主轴的上端头安装有励磁发电机或集电环。见图2。

图2 水轮发电机转子 发电机定子铁芯由导磁良好的硅钢片叠成,在铁芯内圆均匀分布着许多槽, 用来嵌放定子线圈,见图3。 图3 水轮发电机定子铁芯 定子线圈嵌放在定子槽内,组成三相绕组,每相绕组由多个线圈组成,按一定规律排列,

见图4。 图4 水轮发电机定子绕组 水轮发电机安装在由混凝土浇筑的机墩上,在机墩上安装机座,机座是定子铁芯的安装基座,也是水轮发电机的外壳,在机座外壳安装有散热装置,降低发电机冷却空气的温度;在机墩上还安装下机架,下机架有推力轴承,用来安装发电机转子,推力轴承可承受转子的重量与振动、冲击等力。见图5。

图5 水轮发电机机墩、机座、下机架 在机座上安装定子铁芯与定子线圈,见图6。 图6 水轮发电机的定子 转子插在定子中间,与定子有很小间隙,转子由下机架的推力轴承支撑,可以自由旋转,见图7。

卧式的水轮发电机的安装

卧式的水轮发电机的安装 卧式的水轮发电机,除容量很小的以外,都是由底座、定子、转子、轴承座等组成。而且多数是采用管道式通风冷却,机坑与进、出风道相连。因尺寸较小,转速较高,发电机定子和转子往往在厂内组装,经过试验后整体运到电站工地,安装工程相对简单。一、安装的质量要求和基本程序(一)安装的基本质量要求卧式发电机都是以水轮机轴线为准进行安装的,最基本的质量要求是: 1.发电机主轴法兰按水轮机法兰找正时,偏心量W倾斜旨2.以转子为准调整定子的位置,发电机应气隙均匀一致,最大偏差不大于平均气隙的± 10%实测气隙时,应对 每个磁极的两端,就转子不同的3~4个位置(如每次让转子转过90°测量,取所有实测值的平均值为准,再计算偏差的大小; 3.定子的轴向位置应使定子中心 偏离转子中心,偏向水轮机端1~,以便机组运行时使转子承受与轴向水推力相反方向的磁拉力,减轻推力轴承负荷并有利于机组稳定。 (二)卧式水轮发电机的基本安装程序卧式水轮发电机的安装程序因具体结构的不同有所差异,但基本安装程序如下:1.准备标高中心架、基础板及地脚螺栓;2.安装底座;3.安装定子、轴承座;4.转子检查及轴瓦研刮;5.吊装转子;6. 与水轮机连轴、轴线检查、调整;7.安装附属装置;8.机组启动试运行。 、卧式发电机转子的吊装 卧式发电机底座、定子、轴承座的安装都以水轮机轴线为准,其安装方法与前述相同,但转子吊装与立式机组不同。由于卧式发电机转子两端用轴承座支撑,中部的磁轭、磁极悬空在定子内,且气隙不大,又不允许转子与定子摩擦,所以转子的装入和拆卸都必须沿水平方向移动,这就形成了所谓穿转子”的特殊工艺过程,其过程如图所示。 1.准备工作(1)准备吊具、吊索。起吊转子时钢丝绳不能与转子两端接 触,必须经过吊梁来悬挂转子。吊梁如图(a)所示,是一根 具有足够刚度的横梁,通常用工字钢或槽钢焊接而成。根据需要在吊梁上设置钢丝绳吊点,悬挂转子的钢丝绳尽可能垂直向下,而连接桥吊吊钩的钢丝绳夹角尽可能小。(2)准备临时支撑。穿转子必须分段进行,为了调整钢丝绳, 必须设置可靠的临时支撑,如图(b)、(d)。常用若干条形方木作支撑,但必须稳定可靠。 2.分步穿转子 转子吊入(或吊出)定子要分步进行,其过程中需要调整钢 丝绳。若法兰端的轴长不够,通常是采用一段带法兰的钢管作 为假轴,其法兰按主轴法兰加工,用连轴螺栓连接假轴使主轴加长,但必须保证假轴有足够的刚度。转子开始穿入定子时,为保证转子与定子的气隙,在气隙

水轮发电机选择

水轮发电机的选择计算 一、 发电机型式的选择 水轮发电机按其轴线位置可分为立式布置和卧式布置两类,大中型机组一般采用立式布置,卧式布置通常用于中小型机组及贯流式机组。本电站采用立式布置,立式布置又分为悬式和伞式两种。悬式布置和伞式布置的适用条件,查参考【2】P 149表3-1,悬式适用于转速大于150/min r ,伞式适用于转速小于150/min r 。因为水轮机的标准转速为166.7r/min ,所以水轮发电机选用悬式布置。水轮发电机的冷却方式采用径向通风密闭式空气循环冷却。 二、 主要尺寸估算 待选水轮发电机的有关参数如下: 发电机型式:悬式 标准转速:166.7r/min 磁极对数:18 外形尺寸计算如下: 1、极距τ 根据统计资料分析,极距与每极的容量关系如下: 42p s K f j =τ cm 参考【2】P 159公式3-2 式中 9 ,,,10~8,:18 ;:); (:本设计中取线速度高的取上限容量大一般为系数磁极对数发电机额定容量j f K P p KVA s = f s =N f /cos &, cos &为功率因数角,取cos &取0.875。 f s =247423/ 0.875=282769KV A 。 4 18 *2282769 *9=τ=84.73 cm

由上求出τ后,尚应校核发电机在飞逸状态下,转子飞逸线速度V f 是否在转子材料允许范围内。 V K V f f = 参考【2】P 160公式3-3 式中 飞逸线速度 秒时在数值上等于极距周当频率转子额定线速度的比值确定与额定转速机组的飞逸转速与水轮机型式有关或按飞逸系数:;/50,:;,:f e f f V f V n n K τ= f K = f n /e n =308.4/166.7=1.85; V =τ=84.73 cm. V K V f f ==1.85*84.73=156.75m /s 查参【2】P 160,转子磁轭的材料用整圆叠片。 2、定子内径i D 计算公式: τπ p D i 2== 3.784*18 *2π =971.43 cm 参考【2】P 160公式3-4 3、定子铁芯长度t l 计算公式: e i f t n CD S l 2= cm 参考【2】P 160公式3-5 式中: 冷却方式为空冷 取表见参考系数定子内径额定转速发电机额定容量,107,53]2[,:); (:);(:); (:6160-?=-C P C cm D rpm n KVA S i e f .7 166*3.4971*107282769 26-?= t l =256.79 cm

相关文档