文档库 最新最全的文档下载
当前位置:文档库 › 2020年高三物理一轮复习学案: 光学

2020年高三物理一轮复习学案: 光学

2020年高三物理一轮复习学案: 光学
2020年高三物理一轮复习学案: 光学

2020高三物理一轮复习学案: 光学

教学目标

1.使学生掌握三个概念——折射率、全反射临界角和光的色散;两个规律——反射定律、折射定律;两个作图法——反射、折射光路图和成像作图;一个思想——光路可逆思想。

2.加强学生对概念、作图、规律的分析应用能力和在光线的动态中分析、推理解决几何光学问题的综合能力。

3.让学生了解电磁波谱和光谱的种类及其应用。

4.让学生知道光电效应的产生条件和规律;了解电子说,渗透辩证唯物主义的观点和方法。

教学重点、难点分析

1.重点:反射定律,平面镜成像作图法,折射定律,折射率,全反射和临界角。

2.难点:折射定律,全反射和临界角,光的色散。

3.复习相干光源的获得及光波的干涉和衍射的条件,双缝干涉中为什么能形成明暗相间的条纹及明暗条纹的计算方法,从而确切地理解光的干涉和衍射现象的形成。在新的情景下能够运用波的分析方法解决问题。对光电效应四条基本规律的理解及对光电效应现象的解释。

教学过程设计

一、光的直线传播

1.光在同一种均匀介质中是沿直线传播的

前提条件是在同一种介质,而且是均匀介质。否则,可能发生偏折。如光从空气斜射入水中(不是同一种介质);“海市蜃楼”现象(介质不均匀)。

解光的直线传播方面的计算题(包括日食、月食、本影、半影问题)关键是画好示意图,利用数学中的相似形等几何知识计算。

【例1】如图所示,在A 点有一个小球,紧靠小球的左方有一个点光源S 。现将小球从A 点正对着竖直墙平抛出去,打到竖直墙之前,小球在点光源照射下的影子在墙上的运动是

A .匀速直线运动

B .自由落体运动

C .变加速直线运动

D .匀减速直线运动

解:小球抛出后做平抛运动,时间t 后水平位移是vt ,竖直位移是221gt h =

,根据相似形知识可以由比例求得t t v

gl x ∝=2,因此影子在墙上的运动是匀速运动。

2.光速

光在真空中的转播速度为c =3.00×108m/s 。

(1)光在不同介质中的传播速度是不同的。根据爱因斯坦的相对论光速不可能超过c 。

(2)近年来(1999—2001年)科学家们在极低的压强(10-9Pa )和极低的温度(10-9K )下,得到一种物质的凝聚态,光在其中的速度降低到17m/s ,甚至停止运动。

也有报道称在实验中测得的光速达到1011m/s ,引起物理学界的争论。

二、光的反射平面镜成像

1.平面镜对光线的控制作用

平面镜对光线的作用是:只改变光束的传播方向,不改变光束的散聚性质。

(1)一个平面镜对光线的控制作用。

①平面镜对光线有反射作用,反射光与入射光遵循反射定律。

②一束平行光的情况:入射光方向不变,平面镜转动α角,反射光转动2α角。

③一束发散光的情况:经平面镜反射后,仍是发散光,且发散程度不变。

(2)两平面镜的夹角决定了对光线方向的控制

(3)一个重要的应用:直角镜使光线按原路返回。

【例2】若使一束光先后经两平面镜反射后,反射光线与入射光线垂直,这两平面镜应如何放置?

如图所示,两平面镜的夹角为θ,光线经两平面镜反射后,反射光线与入射光线的夹角为α,讨论α与θ的关系。 学生解答,作出两平面镜的法线,可以证明:α=180°-2θ

讨论:①一般情况θ<90°,α=180°-2θ,

若θ=45°,则α=90°,(反射光与入射光垂直)

若θ=90°,则α=0°(反射光与入射光平行)

若θ>90°,则α=2θ-180°

②两平面镜的夹角决定反射光与入射光的夹角,与这两平面镜的放置位置(这两平面镜是否接触和如何放置)和是否转动无关。

结论:两平面镜的夹角决定了对光线方向的控制。

2.平面镜成像

(1)像的特点:平面镜成的像是正立等大的虚像,像与物关于镜面为对称。

(2)光路图作法:根据平面镜成像的特点,在作光路图时,可以先画像,后补光路图。实际光线画实线并加箭头,镜后的反向延长线要画虚线,虚线不加箭头。

(3)充分利用光路可逆

在平面镜的计算和作图中要充分利用光路可逆。(眼睛在某点a 通过平面镜所能看到的范围和在a 点放一个点光源,该电光源发出的光经平面镜反射后照亮的范围是完全相同的。)

【例3】如图所示,两平面镜夹一定角度,光线a 、b 是一点光源发出经两平面镜反射后的两条光线。在图中确定点光源的位置。

叙述作图过程,如图所示。

a 、

b 光线的反向延长线交于一点,这一点为点光源在平面镜N 中的像S″,根据平面镜的成像特点,延长镜N ,找到S″的对称点S′,S′是S″的物,是点光源S 在平面镜M 中的像,再找到S′对平面镜M 的对称点S ,从而确定了点光源S 的位置。完成光路。

上面的问题是两个平面镜的二次成像问题,S′是物S 在镜M 中的虚像,S″是虚像S′在镜N 中再次成的虚像。根据光路可逆原理,如果光线a 、b 的方向反过来,那么会如何呢?

根据光路的可逆性,经两次反射两束光会聚到一点S ,由实像定义,S 应为实像。

(4)利用边缘光线作图讨论通过平面镜看到的范围。

【例4】(1997年全国高考题)如图所示,AB 表示一平面镜,P 1P 2是水平放置的米尺(有刻度的一面朝着平面镜),MN 是屏,三者互相平行,屏MN 上的ab 表示一条竖直的缝(即a 、b 之间是透光的)。某人眼睛紧贴米尺上的小孔S (其位置见图),可通过平面镜看到米尺的一部分刻度。试在本题的图上用三角板作图求出可看到的部位,并依次写出作图步骤。

作图步骤可如下:(右图所示)

①分别作米尺P 1P 2、屏Ma 、bN 对于平面镜AB 的对称线(即它们对于平面镜AB 的像)P′1P′2、M′a ′、b′N′。

②连接S 、a 并延长交P′1P′2于某一点,作这一点对于AB 在P 1P 2上的对称点,即为通过平面镜看到米尺刻度的左端。 ③连接S 、b′并延长交P′1P′2于某一点,作这一点对于AB 在P 1P 2上的对称点,即为通过平面镜看到米尺刻度的右端。 讨论:(1)还可以用更简单的办法,即作出眼睛S 的像S′,再由S′来确定看到的范围。

(2)作出屏和尺的像,人眼看到像的范围即为人眼看到尺的范围。

两种解题思路:正向思维,尺发光经平面镜反射进入眼睛的范围即为眼睛所能看到的范围:逆向思维,眼睛相当于发光点,其光照射到尺上的范围即为能看到的范围。

确定边界光线的基本思想是:两点确定一条直线。在均匀介质中光是沿直线传播的,在非均匀介质中,光线发生弯曲,但人眼的感觉光仍是沿直线传播的。所以确定尺和屏的像,由两点一线来确定边界光线。

【例5】如图所示,画出人眼在S 处通过平面镜可看到障碍物后地面的范围。

解:先根据对称性作出人眼的像点S ′,再根据光路可逆,设想S 处有一个点光源,它能通过平面镜照亮的范围就是人眼能通过平面镜看到的范围。图中画出了两条边缘光线。

【例6】如图所示,用作图法确定人在镜前通过平面镜可看到A B 完整像的范围。

解:先根据对称性作出A B 的像A′B ′,分别作出A 点、B 点发出的光经平面镜反射后能射到的范围,再找到它们的公共区域就是能看到完整像的范围。

三、光的折射

1.折射定律

折射定律:折射光线在入射光线和法线所在的平面上,折射光线和入射光线分居在法线的两侧;入射角的正弦跟折射角的正弦之比为一常数。 折射率:①光从真空射入某种介质时,入射角的正弦跟折射角的正弦之比为,γ

sin sin i n =。

②折射率等于光在真空中的速度c 跟光在这种介质中的速度v 之比,n=c/v 。 折射定律的各种表达形式:021sin 1sin

sin C v c n ='===

λλθθ(θ1为入折射角中的较大者) 2.平行玻璃砖的光路问题

所谓平行玻璃砖一般指横截面为矩形的棱柱。当光线从上表面入射,从下表面射出时,其特点是:

(1)射出光线和入射光线平行;(2)各种色光在第一次入射后就发生色散;(3)射出光线的侧移和

折射率、入射角、玻璃砖的厚度有关;(4)可利用玻璃砖测定玻璃的折射率。

【例7】如图所示,平行玻璃板的厚度为d ,折射率为n ,光线AO 以入射角i 射到平行玻璃板的一个界面上。(1)画出光路图,(2)证明出射光线与入射光线平行,(3)计算出射光线相对入射光线的侧移量。

作光路图如图,证明从略。

侧移量δ的大小:折射定律有

n i =γsin sin ,由几何关系可得δ=OO′·sin (i-r ) 所以:)sin cos 1(sin )cos sin cos (sin cos 22i

n i i d i i d --=-=γγγδ。 【例8】如图所示,两细束平行的单色光a 、b 射向同一块玻璃砖的上表面,最终都从玻璃砖的下表面射出。已知玻璃对单色光a 的折射率较小,那么下列说法中正确的有 A .进入玻璃砖后两束光仍然是平行的

B .从玻璃砖下表面射出后,两束光不再平行

C .从玻璃砖下表面射出后,两束光之间的距离一定减小了

D .从玻璃砖下表面射出后,两束光之间的距离可能和射入前相同

解:进入时入射角相同,折射率不同,因此折射角不同,两束光在玻璃内不再平行,但从下表面射出时仍是平行的。射出时两束光之间的距离根据玻璃砖的厚度不同而不同,在厚度从小到搭变化时,该距离先减小后增大,有可能和入射前相同(但左右关系一定改变了)。

【例9】如图所示,A B 为一块透明的光学材料左侧的端面。建立直角坐标系如图,设该光学材料的折射率沿y 轴正方向均匀减小。现有一束单色光A 从原点O 以某一入射角θ由空气射入该材料内部,则该光线在该材料内部可能的光路是下图中的哪一个

解:如图所示,由于该材料折射率由下向上均匀减小,可以设想将它分割成折射率不同的薄层。光线射到相邻两层的界面时,如果入射角小于临界角,则射入上一层后折射角大于入射角,光线偏离法线。到达更上层的界面时入射角逐渐增大,当入射角达到临界角时发生全反射,光线开始向下射去直到从该材料中射出。

【例10】如图所示,用透明材料做成一长方体形的光学器材,要求从上表面射入的光线可能从右侧面射出,那么所选的材料的折射率应满足

A .折射率必须大于2

B .折射率必须小于2

C .折射率可取大于1的任意值

D .无论折射率是多大都不可能

解:从图中可以看出,为使上表面射入的光线经两次折射后从右侧面射出,θ1和θ2都必须小于临界角C ,即θ145°,n =1/sin C <2,选B 。

【例11】如图所示,一束平行单色光A 垂直射向横截面为等边三角形的棱镜的左侧面,

棱镜材料的折射率是2。试画出该入射光射向棱镜后所有可能的射出光线。

解:由折射率为2得全反射临界角是45°。光线从左侧面射入后方向不发生改变,射到

右侧面和底面的光线的入射角都是60°,大于临界角,因此发生全反射。反射光线分别垂直

射向底面和右侧面。在底面和右侧面同时还有反射光线。由光路可逆知,它们最终又从左侧

面射出。所有可能射出的光线如图所示。

【例12】(1997年全国高考)在折射率为n 、厚度为d 的玻璃平板上方的空气中有一点光源S ,从S 出发的光线SA 以角度θ入射到玻璃板上表面,经过玻璃板后,从下表面射出,如图所示,若沿此光线传播的光从光源到玻璃板上表面的传播时间A

与在玻璃板中的传播时间相等,点光源S 到玻璃板上表面的垂直距离l 应是多少?

解答:画出光路图,设在玻璃中的折射角为r ,光从光源到玻璃板上表面的时间c SA t =

。 光在玻璃板中的传播时间v SA t =

由几何关系可得θcos l SA =,γcos d AB =;又因为v c n =所以γθcos cos nd l = 又由折射定律γsin sin i n =,解得:22/sin 1cos n

nd l θθ-=。 总结:解几何光学问题,首先要正确画出光路图,讨论由光路图反映出的线段和角的关系,结合概念和规律求解。

3.全反射问题

全反射临界角:(1)光从光密介质射向光疏介质,当折射角变为90°时的入射角叫临界角;(2)光从折射率为n 的介质射向真空时,临界角的计算公式n

C 1sin =。 产生全反射的条件:(1)光必须从光密介质射向光疏介质;(2)入射角必须等于或大于临界角。

【例13】直角三棱镜的顶角α=15°,棱镜材料的折射率n =1.5,一细束单色光如图所示垂直于左侧面射入,试用作图法求出该入射光第一次从棱镜中射出的光线。

解:由n =1.5知临界角大于30°小于45°,边画边算可知该光线在射到A 、B 、C 、D 各点时的入射角依次是75°、60°、45°、30°,因此在A 、B 、C 均发生全反射,到D 点入射角才第一次小于临界角,所以才第一次有光线从棱镜射出。

【例14】某三棱镜的横截面是一直角三角形,如图所示,∠A=90°,∠B=30°,∠C=60°,棱镜材料的折射率为n ,底面BC 涂黑,入射光沿平行于底面BC 面,经AB 面和AC 面折射后出射.求(1)出射光线与入射光线延长线间的夹角δ;(2)为使上述入射光线能从AC 面出射,折射率n 的最大值为多少?

解答:画出光路图如图所示。

(1)因为入射光平行于BC 面,i=60° 由折射定律有n i =αsin sin ,所以n

23sin =α 光折到AC 面上时,

n =βγsin sin 由几何关系可得:A+β=90°

n n 234sin 1cos sin 22-=-==ααβ,234sin sin 2-==n n βγ,οο302

34arcsin 302--=-=n γδ (2)要使有光线从AC 面射出,应有sinr≤1:即12

342≤-n ,得32.1≤n 4.光的色散棱镜

(1)白光通过三棱镜,要发生色散,从红到紫的方向是:

①同一介质对不同色光的折射率逐渐增大。

②在同一介质中不同色光的传播速度逐渐减小。

③光的频率逐渐增大。

④在真空中的波长逐渐减小。

⑤光子的能量逐渐增大。

⑥从同种介质射向真空时发生全反射的临界角C 减小。

⑦以相同入射角在介质间发生折射时的偏折角增大。

以上各种色光的性质比较在定性分析时非常重要,一定要牢记。

(2)棱镜对光的偏折作用

一般所说的棱镜都是用光密介质制作的。入射光线经三棱镜两次折射后,射出方向与入射方向相比,向底边偏折。(若棱镜的折射率比棱镜外介质小则结论相反。)

作图时尽量利用对称性(把棱镜中的光线画成与底边平行)。

由于各种色光的折射率不同,因此一束白光经三棱镜折射后发生色散现象(红光偏折最小,紫光偏折最大。)

【例15】如图所示,一细束红光和一细束蓝光平行射到同一个三棱镜上,经折射后交于光屏上的同一个点M ,若用n 1和n 2分别表示三棱镜对红光和蓝光的折射率,下列说法中正确的是

A .n 1

B .n 1

C .n 1>n 2,a 为红光,b 为蓝光

D .n 1>n 2,a 为蓝光,b 为红光

解:由图可知,b 光线经过三棱镜后的偏折角较小,因此折射率较小,是红光。

(3)全反射棱镜

横截面是等腰直角三角形的棱镜叫全反射棱镜。选择适当的入射点,可以使入射光线

经过全反射棱镜的作用在射出后偏转90o (左图)或180o (右图)。要特别注意两种用法中

光线在哪个表面发生全反射。

【例16】如图所示,自行车尾灯采用了全反射棱镜的原理。它虽然本身不发光,但在夜间骑行时,从后面开来的汽车发出的强光照到尾灯后,会有较强的光被反射回去,使汽车司机注意到前面有自行车。尾灯的原理如图所示,下面说法中正确的是

A .汽车灯光应从左面射过来在尾灯的左表面发生全反射

B .汽车灯光应从左面射过来在尾灯的右表面发生全反射

C .汽车灯光应从右面射过来在尾灯的左表面发生全反射

D .汽车灯光应从右面射过来在尾灯的右表面发生全反射

解:利用全反射棱镜使入射光线偏折180°,光线应该从斜边入射,在两个直角边上连续发生两次全反射。所以选C 。

【例17】已知水对红光的折射率为4/3,红光在水中的波长与绿光在真空中的波长相等,求红光与绿光在真空中的波长比和在水中的频率比。

解答:设光从真空射入水中,在真空中的入射角为i ,在水中的折射角为γ,折射定律γ

sin sin i n =,根据介质折射率的定义n=c/v (c 为光在真空中的速率,v 为光在介质中的速率),和光的波长、频率关系公式v =λf ,由于同一种光的频率不因介质而变化,可得λ

λγ0sin sin ==n i (λ0为光在真空中的波长,λ为光在介质中的波长) 根据题意,

绿真

红真红水红真λλλλ==34,43====红真绿真绿真红真绿真红真绿水红水λλλλc c

f f f f 。 折射定律是对同一种光来说的,要求两种不同频率的光波长比和频率比,就需要对折射定律进行扩展,对之赋予新的含义。

5.光导纤维

全反射的一个重要应用就是用于光导纤维(简称光纤)。光纤有内、外两层材料,其中内层是光密介质,外层是光疏介质。光在光纤中传播时,每次射到内、外两层材料的界面,都要求入射角大于临界角,从而发生全反射。这样使从一个端面入射的光,经过多次全反射能够没有损失地全部从另一个端面射出。

【例18】如图所示,一条长度为L =5.0m 的光导纤维用折射率为n =2的材料制成。一细束激光由其左端的中心点以α=45°的入射角射入光导纤维内,经过一系列全反射后从右端射出。求:(1)该激光在光导纤维中的速度v 是多大?(2)该激光在光导纤维中传输所经历的时间是多少?

解:(1)由n=c/v 可得v =2.1×108m/s

(2)由n=sin α/sin r 可得光线从左端面射入后的折射角为30°,射到侧面时的入射角为60°,大于临界角45°,因此发生全反射,同理光线每次在侧面都将发生全反射,直到光线达到右端面。由三角关系可以求出光线在光纤中通过的总路程为s =2L /3,因此该激光在光导纤维中传输所经历的时间是t =s /v =2.7×10-8s 。

四、光的波动性

1.光的干涉

光的干涉的条件是有两个振动情况总是相同的波源,即相干波源。(相干波源的频率必须相同)。形成相干波源的方法有两种:(1)利用激光(因为激光发出的是单色性极好的光)。(2)设法将同一束光分为两束(这样两束光都来源于同一个光源,因此频率必然相等)。下面4个图分别是利用双缝、利用楔形薄膜、利用空气膜、利用平面镜形成相干光源的示意图。

双缝干涉和薄膜干涉均是利用“分光”的方法而获得的相干波源。

双缝干涉:

单色光:形成明暗相间的条纹。

白光:中央亮条纹的边缘处出现了彩色条纹。这是因为白光是由不同颜色的单色光复合而成的,而不同色光的波长不同,在狭缝间的距离和狭缝与屏的距离不变的条件下,光波的波长越长,各条纹之间的距离越大,条纹间距与光波的波长成正比。各色光在双缝的中垂线上均为亮条纹,故各色光重合为白色。

薄膜干涉:

当光照射到薄膜上时,光从薄膜的前后(或上下)两个表面反射回来,形成两列波,由于它们是从同一光源发出的,这两列波的波长和振动情况相同,为两列相干光波。

薄膜干涉在技术上的应用:

(1)利用光的干涉可以检验光学玻璃表面是否平。

(2)现代光学仪器的镜头往往镀一层透明的氟化镁表面。

氟化镁薄膜的厚度应为光在氟化镁中波长的1/4,两个表面的反射光的路程差为半波长的奇数倍时,两列反射光相互抵消。所以,膜厚为光在氟化镁中波长的1/4,是最薄的膜。

干涉和衍射本质上都是光波的叠加,都证明了光的波动性,但两者有所不同。首先干涉是两列相干光源发出的两列光波的叠加;衍射是许多束光的叠加。稳定的干涉现象必须是两列相干波源,而衍射的发生无须此条件,只是,当障碍物或孔与光的波长差不多或还要小的时候,衍射才明显。干涉和衍射的图样也不同,以双缝干涉和单缝衍射的条纹为例,干涉图样由等间距排列的明暗相间的条纹(或彩色条纹)组成,衍射图样是由不等距的明暗相间(中央亮条纹最宽)的条纹或光环(中央为亮斑)组成。

2.干涉区域内产生的亮、暗纹

(1)亮纹:屏上某点到双缝的光程差等于波长的整数倍,即Δr =nλ(n=0,1,2,……)

(2)暗纹:屏上某点到双缝的光程差等于半波长的奇数倍,即Δr=)12(2-n λ(n=0,1,2,……) 相邻亮纹(暗纹)间的距离λλ∝=?d

l x 。用此公式可以测定单色光的波长。用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹。

【例19】用绿光做双缝干涉实验,在光屏上呈现出绿、暗相间的条纹,相邻两条绿条纹间的距离为Δx 。下列说法中正确的有

A .如果增大单缝到双缝间的距离,Δx 将增大

B .如果增大双缝之间的距离,Δx 将增大

C .如果增大双缝到光屏之间的距离,Δx 将增大

D .如果减小双缝的每条缝的宽度,而不改变双缝间的距离,Δx 将增大 解:公式λd

l x =?中l 表示双缝到屏的距离,d 表示双缝之间的距离。因此Δx 与单缝到双缝间的距离无关,于缝本身的宽度也无关。本题选C 。

【例20】登山运动员在登雪山时要注意防止紫外线的过度照射,尤其是眼睛更不能长时间被紫外线照射,否则将会严重地损坏视力。有人想利用薄膜干涉的原理设计一种能大大减小紫外线对眼睛的伤害的眼镜。他选用的薄膜材料的折射率为n =1.5,所要消除的紫外线的频率为8.1×1014Hz ,那么它设计的这种“增反膜”的厚度至少是多少?

解:为了减少进入眼睛的紫外线,应该使入射光分别从该膜的前后两个表面反射形成的光叠加后加强,因此光程差应该是波长的整数倍,因此膜的厚度至少是紫外线在膜中波长的1/2。紫外线在真空中的波长是λ=c/ν=3.7×10-7m ,在膜中的波长是λ′=λ/n =2.47×10-7m ,因此膜的厚度至少是1.2×10-7m 。

3.衍射

注意关于衍射的表述一定要准确。(区分能否发生衍射和能否发生明显衍射)

(1)各种不同形状的障碍物都能使光发生衍射。

(2)发生明显衍射的条件是:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。(当障碍物或孔的尺寸小于0.5mm 时,有明显衍射现象。)

(3)在发生明显衍射的条件下,当窄缝变窄时,亮斑的范围变大,条纹间距离变大,而亮度变暗。

【例21】平行光通过小孔得到的衍射图样和泊松亮斑比较,下列说法中正确的有

A.在衍射图样的中心都是亮斑

B.泊松亮斑中心亮点周围的暗环较宽

C.小孔衍射的衍射图样的中心是暗斑,泊松亮斑图样的中心是亮斑

D.小孔衍射的衍射图样中亮、暗条纹间的间距是均匀的,泊松亮斑图样中亮、暗条纹间的间距是不均匀的

解:从课本上的图片可以看出:A、B选项是正确的,C、D选项是错误的。

4.光的电磁说

(1)麦克斯韦根据电磁波与光在真空中的传播速度相同,提出光在本质上是一种电磁波——这就是光的电磁说,赫兹用实验证明了光的电磁说的正确性。

(2)电磁波谱。波长从大到小排列顺序为:无线电波、红外线、可见光、紫外线、X射线、γ射线。各种电磁波中,除可见光以外,相邻两个波段间都有重叠。电磁波谱如图。

各种电磁波的产生机理分别是:无线电波是振荡电路中自由电子的周期性运动产生的;红外线、可见光、紫外线是原子的外层电子受到激发后产生的;伦琴射线是原子的内层电子受到激发后产生的;γ射线是原子核受到激发后产生的。

电磁波谱从左至右频率越来越大,波长越来越短,因此就越不容易发生干涉和衍射现象,但穿透本领却越来越强.

(4)实验证明:物体辐射出的电磁波中辐射最强的波长λm和物体温度T之间满足关系λm T=b(b为常数)。可见高温物体辐射出的电磁波频率较高。在宇宙学中,可以根据接收到的恒星发出的光的频率,分析其表面温度。

(5)可见光频率范围是3.9-7.5×1014Hz,波长范围是400-770nm。

(6)光谱:光谱可分为发射光谱和吸收光谱。

发射光谱:由发光物体直接产生的光谱叫做发射光谱。发射光谱包括连续谱和线状谱。

线状谱又叫做原子谱,各种元素都有一定的线状谱,元素不同,线状谱不同。所以,线状谱又叫原子光谱。

特征谱线:每种元素的原子只能发出某些具有特定波长的光谱线,这种谱线叫做那种元素的特征谱线。如果我们对发光物质的光谱进行分析时,发现了某种元素的特征谱线,我们就可以断定发光物质中一定具有这种元素。

吸收光谱是一束具有连续波长的光通过物质时,某些波长的光被吸收后产生的光谱.这种光谱是以连续光谱为背景,其中有暗线、暗带或暗区.不同物质产生的吸收光谱不同。

吸收光谱中的暗线也可以叫做特征谱线,两条明线和两条暗线相对应。

【例22】为了转播火箭发射现场的实况,在发射场建立了发射台,用于发射广播电台和电视台两种信号。其中广播电台用的电磁波波长为550m,电视台用的电磁波波长为0.566m。为了不让发射场附近的小山挡住信号,需要在小山顶上建了一个转发站,用来转发_____信号,这是因为该信号的波长太______,不易发生明显衍射。

解:电磁波的波长越长越容易发生明显衍射,波长越短衍射越不明显,表现出直线传播性。这时就需要在山顶建转发站。因此本题的转发站一定是转发电视信号的,因为其波长太短。

【例23】右图是伦琴射线管的结构示意图。电源E给灯丝K加热,从而发射出热电子,电子在K、A间的强电场作用下高速向对阴极A飞去。电子流打到A极表面,激发出高频电磁波,这就是X射线。下列说法中正确的有A.P、Q间应接高压直流电,且Q接正极

B.P、Q间应接高压交流电

C.K、A间是高速电子流即阴极射线,从A发出的是X射线即一种高频电磁波

D.从A发出的X射线的频率和P、Q间的交流电的频率相同

解:K、A间的电场方向应该始终是向左的,所以P、Q间应接高压直流电,且Q接正极。从A发出的是X射线,其频率由光子能量大小决定。若P、Q间电压为U,则X射线的频率最高可达Ue/h。本题选AC。

5.光的偏振

(1)光的偏振也证明了光是一种波,而且是横波。各种电磁波中电场E的方向、磁场B的方向和电磁波的传播方向之间,两两互相垂直。

(2)光波的感光作用和生理作用主要是由电场强度E引起的,因此将E的振动称为光振动。

(3)自然光。太阳、电灯等普通光源直接发出的光,包含垂直于传播方向上沿一切方向振动的光,而且沿各个方向振动的光波的强度都相同,这种光叫自然光。

(4)偏振光。自然光通过偏振片后,在垂直于传播方向的平面上,只沿一个特定的方向振动,叫偏振光。自然光射到两种介质的界面上,如果光的入射方向合适,使反射和折射光之间的夹角恰好是90°,这时,反射光和折射光就都是偏振光,且它们的偏振方向互相垂直。我们通常看到的绝大多数光都是偏振光。

【例24】有关偏振和偏振光的下列说法中正确的有

A.只有电磁波才能发生偏振,机械波不能发生偏振

B.只有横波能发生偏振,纵波不能发生偏振

C.自然界不存在偏振光,自然光只有通过偏振片才能变为偏振光

D.除了从光源直接发出的光以外,我们通常看到的绝大部分光都是偏振光

解:机械能中的横波能发生偏振。自然光不一定非要通过偏振片才能变为偏振光。本题选BD。

五、光的粒子性

1.光电效应

(1)在光的照射下物体发射电子的现象叫光电效应。(右图装置中,用弧光灯照射锌板,有电子从锌板表面飞出,使原来不带电的验电器带正电。)

(2)光电效应的规律:

①任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率,才能产生光电效应;低于这个频率的光不能产生光电效应。

②光电子的最大初动能与入射光的强度无关,只随入射光的频率的增大而增大。

③入射光照到金属上时,光电子的发射几乎是瞬时的,一般不超过10-9S。

④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。

光的电磁说不能解释前三条实验结论。

第一:按照光的电磁说,光是电磁波,是变化的电场与变化的磁场的传播.入射光照射到金属上时,金属中的自由电子受变化电场的驱动力作用而做受迫振动,增大入射光的强度,光波的振幅增大,当电子做受迫振动的振幅足够大时,总可挣脱金属束缚而逸出,成为光电子,不应存在极限频率。

第二:按照光的电磁说,光的强度由光波的振幅决定,因此光电子的最大初动能应与入射光的强度有关。

第三:按照光的电磁说,光电子的产生需要较长的时间而不是瞬间。

(3)爱因斯坦的光子说。光是不连续的,是一份一份的,每一份叫做一个光子,光子的能量E跟光的频率ν成正比:E=hv。

光子说认为:在空间传播的光也是不连续的,而是一份一份的,每一份叫做一个光子,光子的能量跟它的频率成正比,即E=hv,h是普朗克常数。

光子的能量只与光的频率有关,金属中的电子吸收的光子的频率越大,电子获得的能量也就越多,当能量足以使电子摆脱金属束缚时就能从金属表面逸出,成为光电子.因而存在一个能使电子获得足够能量的频率,即极限频率。

(4)爱因斯坦光电效应方程:E k=hν-W(E k是光电子的最大初动能;W是逸出功,即从金属表面直接飞出的光电子克服正电荷引力所做的功。)

【例25】对爱因斯坦光电效应方程E K=hν-W,下面的理解正确的有

A.只要是用同种频率的光照射同一种金属,那么从金属中逸出的所有光电子都会具有同样的初动能E K

B.式中的W表示每个光电子从金属中飞出过程中克服金属中正电荷引力所做的功

C.逸出功W和极限频率ν0之间应满足关系式W=hν0

D.光电子的最大初动能和入射光的频率成正比

解:爱因斯坦光电效应方程E K=hν-W中的W表示从金属表面直接中逸出的光电子克服金属中正电荷引力做的功,因此是所有逸出的光电子中克服引力做功的最小值。对应的光电子的初动能是所有光电子中最大的。其它光电子的初动能都小于这个值。若入射光的频率恰好是极限频率,即刚好能有光电子逸出,可理解为逸出的光电子的最大初动能是0,因此有W=hν0。由E K=hν-W可知E K和ν之间是一次函数关系,但不是成正比关系。本题应选C。

【例26】如图,当电键K 断开时,用光子能量为2.5e V 的一束光照射阴极P ,发现电流表读数不为零。合上电键,调节滑线变阻器,发现当电压表读数小于0.60V 时,电流表读数仍不为零;当电压表读数大于或等于0.60V 时,电流表读数为零。由此可知阴极材料的逸出功为

A .1.9eV

B .0.6eV

C .2.5eV

D .3.1eV

解:电流表读数刚好为零说明刚好没有光电子能够到达阳极,也就是光电子的最大初动能刚好为0.6eV 。由E K =hν-W 可知W =1.9eV 。选A 。

2.康普顿效应

在研究电子对X 射线的散射时发现:有些散射波的波长比入射波的波长略大。康普顿认为这是因为光子不仅有能量,也具有动量。实验结果证明这个设想是正确的。因此康普顿效应也证明了光具有粒子性。

六、光的波粒二象性

1.光的波粒二象性

干涉、衍射和偏振以无可辩驳的事实表明光是一种波;光电效应和康普顿效应又用无可辩驳的事实表明光是一种粒子;因此现代物理学认为:光具有波粒二象性。

2.正确理解波粒二象性

波粒二象性中所说的波是一种概率波,对大量光子才有意义。波粒二象性中所说的粒子,是指其不连续性,是一份能量。

(1)个别光子的作用效果往往表现为粒子性;大量光子的作用效果往往表现为波动性。

(2)ν高的光子容易表现出粒子性;ν低的光子容易表现出波动性。

(3)光在传播过程中往往表现出波动性;在与物质发生作用时往往表现为粒子性。

(4)由光子的能量E=hν,光子的动量λh

p =表示式也可以看出,光的波动性和粒子性并不矛盾:表示粒子性的粒子能量

和动量的计算式中都含有表示波的特征的物理量——频率ν和波长λ。

由以上两式和波速公式c=λv 还可以得出:pc E =。

【例27】已知由激光器发出的一细束功率为P 0=0.15kW 的激光束,竖直向上照射在一个固态铝球的下部,使其恰好能在空中悬浮。已知铝的密度为ρ=2.7×103kg/m 3,设激光束的光子全部被铝球吸收,求铝球的直径是多大?(计算中可取π=3,g =10m/s 2)

解:设每个激光光子的能量为E ,动量为P ,时间t 内射到铝球上的光子数为n ,激光束对铝球的作用力为F ,铝球的直径为d ,则有:E t n P =0,p t n F =;光子能量和动量间关系是pc E =,铝球的重力和F 平衡,因此36

1d g F πρ?=,由以上各式解得d =0.33mm 。

七、物质波(德布罗意波)

由光的波粒二象性的思想推广到微观粒子和任何运动着的物体上去,得出物质波(德布罗意波)的概念:任何一个运动着的物体都有一种波与它对应,该波的波长p

h =λ。 【例28】试估算一个中学生在跑百米时的德布罗意波的波长。

解:估计一个中学生的质量m ≈50kg ,百米跑时速度v ≈7m/s ,则3634

109.17

501063.6--?=??==p h λm 。 由计算结果看出,宏观物体的物质波波长非常小,所以很难表现出其波动性。

【例29】为了观察到纳米级的微小结构,需要用到分辨率比光学显微镜更高的电子显微镜。下列说法中正确的是

A .电子显微镜所利用电子物质波的波长可以比可见光短,因此不容易发生明显衍射

B .电子显微镜所利用电子物质波的波长可以比可见光长,因此不容易发生明显衍射

C .电子显微镜所利用电子物质波的波长可以比可见光短,因此更容易发生明显衍射

D .电子显微镜所利用电子物质波的波长可以比可见光长,因此更容易发生明显衍射

解:为了观察纳米级的微小结构,用光学显微镜是不可能的。因为可见光的波长数量级是10-7m ,远大于纳米,会发生明显的衍射现象,因此不能精确聚焦。如果用很高的电压使电子加速,使它具有很大的动量,其物质波的波长就会很短,衍射的影响就小多了。因此本题应选A 。

高三物理光学

第十四章 高三物理光学 一、光的直线传播 1.光在同一种均匀介质中是沿直线传播的 前提条件是在同一种介质,而且是均匀介质。否则,可能发生偏折。如光从空气斜射入水中(不是同一种介质);“海市蜃楼”现象(介质不均匀)。 当障碍物或孔的尺寸和波长可以相比或者比波长小时,将发生明显的衍射现象,光线将可能偏离原来的传播方向。 解光的直线传播方面的计算题(包括日食、月食、本影、半影问题)关键是画好示意图,利用数学中的相似形等几何知识计算。 例1. 如图所示,在A 点有一个小球,紧靠小球的左方有一个点光源S 。现将小球从A 点正对着竖直墙平抛出去,打到竖直墙之前,小球在点光 源照射下的影子在墙上的运动是 A.匀速直线运动 B.自由落体运动 C.变加速直线运动 D.匀减速直线运动 解:小球抛出后做平抛运动,时间t 后水平位移是vt ,竖直位移是h = gt 2,根据相似形知识可以由比例求得t t v gl x ∝=2,因此影子在墙上的运动是匀速运动。 2.光速 光在真空中的转播速度为c =3.00×108m/s 。 ⑴光在不同介质中的传播速度是不同的。根据爱因斯坦的相对论光速不可能超过c 。 ⑵近年来(1999-)科学家们在极低的压强(10-9Pa )和极低的温度(10-9K )下,得到一种物质的凝聚态,光在其中的速度降低到17m/s ,甚至停止运动。 ⑶也有报道称在实验中测得的光速达到1011m/s ,引起物理学界的争论。 二、反射 平面镜成像 1.像的特点 平面镜成的像是正立等大的虚像,像与物关于镜面为对称。 2.光路图作法 根据平面镜成像的特点,在作光路图时,可以先画像,后补光路图。 3.充分利用光路可逆 在平面镜的计算和作图中要充分利用光路可逆。(眼睛在某点A 通过平面镜所能看到的范围和在A 点放一个点光源,该电光源发出的光经平面镜反射后照亮的范围是完全相同的。) 4.利用边缘光线作图确定范围 例2 如图所示,画出人眼在S 处通过平面镜可看到障碍物后地面的范围。 解:先根据对称性作出人眼的像点S /,再根据光路可逆,设想S 处有一个点光源,它能通过平面镜照亮的范围就是人眼能通过平面镜看到的范围。图中画出了两条边缘光线。 例3. 如图所示,用作图法确定人在镜前通过平面镜可看到AB 完整像的范围。 解:先根据对称性作出AB 的像A /B /,分别作出A 点、B 点发出的光经平面镜反射后能射到的范围,再找到它们的公共区域(交 集)。就是能看到完整像的范围。 x 1 2

高三物理一轮复习导学案

2014届高三物理一轮复习导学案 第七章、恒定电流(1) 【课题】电流、电阻、电功及电功率 【目标】 1、理解电流、电阻概念,掌握欧姆定律和电阻定律; 2、了解电功及电功率的概念并会进行有关计算。 【导入】 一.电流、电阻、电阻定律 1、电流形成原因:电荷的定向移动形成电流. 2、电流强度:通过导体横截面的跟通过这些电量所用的的比值叫电流强度.I= 。由此可推出电流强度的微观表达式,即I=__________________。 3、电阻:导体对电流的阻碍作用叫电阻.电阻的定义式:__________________。 4、电阻定律:在温度不变的情况下导体的电阻跟它的长度成正比,跟它的横截面积成反比.电阻定律表达式__________________。【导疑】电阻率,由导体的导电性决定,电阻率与温度有关,纯金属的电阻率随温度的升高而增大;当温度降低到绝对零度附近时,某些材料的电阻率突然减小到零,这种现象叫超导现象.导电性能介于导体和绝缘体之间的称为半导体。 二.欧姆定律 1、部分电路欧姆定律:导体中的电流跟它两端的电压成正比,跟

它的电阻成反比.表达式:____________________________ 2、部分欧姆定律适用范围:电阻和电解液(纯电阻电路).非纯电阻电路不适用。 三、电功及电功率 1、电功:电路中电场力对定向移动的电荷所做的功,简称电功;W=qU=IUt。这就是电路中电场力做功即电功的表达式。(适用于任何电路) 2、电功率:单位时间内电流所做的功;表达式:P=W/t=UI(对任何电路都适用) 3、焦耳定律:内容:电流通过导体产生的热量,跟电流强度的平方、导体电阻和通电时间成正比。表达式:Q=I2Rt 【说明】(1)对纯电阻电路(只含白炽灯、电炉等电热器的电路)中电流做功完全用于产生热,电能转化为内能,故电功W等于电热Q;这时W= Q=UIt=I2Rt 4、热功率:单位时间内的发热量。即P=Q/t=I2R ④ 【注意】②和④都是电流的功率的表达式,但物理意义不同。②对所有的电路都适用,而④式只适用于纯电阻电路,对非纯电阻电路(含有电动机、电解槽的电路)不适用。 关于非纯电阻电路中的能量转化,电能除了转化为内能外,还转化为机械能、化学能等。这时W》Q。即W=Q+E其它或P =P热+ P其 它、UI = I2R + P其它 【导研】 [例1]一根粗线均匀的金属导线,两端加上恒定电压U时,通过金属导线的电流强度为I,金属导线中自由电子定向移动的平均速率为v,若将金属导线均匀拉长,使其长度变为原来的2倍,仍给它两端加上恒定电压U,则此时() A、通过金属导线的电流为I/2 B、通过金属导线的电流为I/4 C、自由电子定向移动的平均速率为v/2 D、自由电子定向移动

高中物理光学知识总结及习题

? 光的折射、全反射和色散 1.光密介质不是指密度大的介质,折射率的大小与介质的密度无关. 2.由n = v c 知,当光从真空射向其他透明介质时,频率不变,波速和波长都发生改变. 1.光的折射 (1)折射现象:光从一种介质斜射进入另一种介质时,传播方向发生 的现象. (2)折射定律: ①内容:折射光线与入射光线、法线处在 ,折射光线与入射光线分别位 于 的两侧,入射角的正弦与折射角的正弦成 . ②表达式:2 1sin sin θθ=n 12,式中n 12是比例常数. ③在光的折射现象中,光路是 . (3)折射率: ①定义:光从真空射入某介质时, 的正弦与 的正弦的比值. ②定义式:n =2 1sin sin θθ (折射率由介质本身和光的频率决定). ③计算式:n = v c (c 为光在真空中的传播速度,v 是光在介 质中的传播速度,由此可知,n >1). 2.全反射 (1)发生条件:①光从 介质射入 介质;②入射角 临界角. (2)现象:折射光完全消失,只剩下 光. (3)临界角:折射角等于90°时的入射角,用C 表示,sin C = n 1 . (4)应用: ①全反射棱镜; ②光导纤维,如图所示. 3.光的色散 (1)光的色散现象:含有多种颜色的光被分解为 光的现象. (2)色散规律:由于n 红<n 紫,所以以相同的入射角射到棱镜界面时,红光和紫光的折射角不同,即紫 光偏折得更明显.当它们射到另一个界面时, 光的偏折最大, 光的偏最小. (3)光的色散现象说明: ①白光为复色光; ②同一介质对不同色光的折射率不同,频率越大的色光折射率 ; ③不同色光在同一介质中的传播速度不同,波长越短,波速 .

2020年高三物理高考一模试卷

2020年高三物理高考一模试卷 姓名:________ 班级:________ 成绩:________ 一、单选题 (共14题;共28分) 1. (2分)(2018·崇明模拟) 下列物理量单位关系正确的是() A . 力的单位:kg·m/s B . 功的单位:kg·m2/s2 C . 压强单位: kg/m2 D . 电压单位:J·C 2. (2分)在物理学发展的过程中,某位科学家开创了以实验检验猜想和假设的科学方法,并用这种方法研究了落体运动的规律,这位科学家是() A . 焦耳 B . 牛顿 C . 库仑 D . 伽利略 3. (2分)(2017·丰台模拟) 在商场中,为了节约能源,无人时,自动扶梯以较小的速度运行,当有顾客站到扶梯上时,扶梯先加速,后匀速将顾客从一楼运送到二楼.速度方向如图所示.若顾客与扶梯保持相对静止,下列说法正确的是() A . 在加速阶段,顾客所受支持力大于顾客的重力 B . 在匀速阶段,顾客所受支持力大于顾客的重力

C . 在加速阶段,顾客所受摩擦力与速度方向相同 D . 在匀速阶段,顾客所受摩擦力与速度方向相同 4. (2分)如图所示,用一根长为L的细绳一端固定在O点,另一端悬挂质量为m的小球A,为使细绳与竖直方向夹300角且绷紧,小球处于静止,则需对小球施加的最小力等于() A . B . C . D . 5. (2分) (2019高三上·吕梁月考) 地球同步卫星、赤道上的物体、近地卫星运动的线速度大小分别为 v1、v2、v3;角速度大小分别为、、;向心加速度大小分别为 a1、a2、a3;所受向心力大小分别为 F1、F2、F3。则下列关系一定不正确的是() A . v3 >v1 >v2 B . < = C . a3 >a1 >a2 D . F3 >F1 >F2 6. (2分) (2019高三上·西安期中) 如图所示,总质量为M带有底座的足够宽框架直立在光滑水平面上,质量为m的小球通过细线悬挂于框架顶部O处,细线长为L,已知M>m,重力加速度为g,某时刻m获得一瞬时速度v0 ,当m第一次回到O点正下方时,细线拉力大小为()

高三物理光学、原子物理练习

物理思维与训练 高中(三) 第一讲:光学、原子物理 一、光的本性:光的波粒二象性(在宏观上,大量光子传播往往表现为波动性;在微观上,个别光子在与其它物质作用时,往往表现为粒子性。) ①牛顿:微粒说;②惠更斯:波动说;③麦克斯韦:电磁说;④爱因斯坦:光子说; 1、光学现象: (1)光的直线传播,光的反射现象; (2)光的干涉、衍射现象; (3)光电效应现象; 2、杨氏双缝干涉实验:相干光源(频率相同); 等宽等亮的明暗相间条纹。 薄膜干涉: 3、光的衍射:光绕过障碍物(或孔隙)而偏离直线传播的现象。 要观察到明显.. 的光的衍射现象,障碍物(或孔隙)的尺寸必须比光波的波长小或与它差不多。 (1)单缝衍射:中央亮纹较宽,其两侧亮纹的亮度明显递减。 (2)圆孔衍射:明暗相间的同心圆环。 (3)小圆盘衍射:“泊松亮斑”。 4、电磁波谱: 麦克斯韦提出光的电磁说,后经赫兹实验证实。 各种电磁波按照频率逐渐 的顺序构成电磁波谱:无线电波、红外线、可见光、紫外线、 X 射线、γ射线。 在真空中有相同的传播速度c =3.00×108m/s 。 它们的波长λ,波速v ,频率f 的关系服从共同的规律 v =λf 红外线最显著的是热作用;紫外线最显著的是化学作用;X 射线有非常强的穿透能力;γ射线的穿透能力更强。 5、光电效应: 在光的照射下从物体发射出电子的现象叫做光电效应。 发射出的电子叫做光电子。 光电效应的规律: (1)任何一种金属都有一个极限频率ν0(或极限波长λ0),入射光的频率必须大于这个极限频率,才能产生光电效应; (2)光电子的最大初动能与入射光的强度无关,只随着入射光 频率的增大而增大; (3)光电子的发射几乎是瞬时的; (4)当入射光的频率大于极限频率时,光电流的强度与入射光 的强度成正比。 光电效应规律中的前三条,都无法用经典的波动理论来解释。 爱因斯坦提出光子说: 在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光子,光子的能量跟它的频 率成正比,即E =h ν,式中h 叫做普朗克恒量,h =6.63×10-34焦·秒。 L x d λ?=0逸 则极限频率:ν=W h 212h W mv ν=+逸方程:

上海市长宁区2020届高三物理一模试卷(有答案)(加精)

第一学期高三物理教学质量检测试卷 物理试题 (满分100分答题时间60分钟) 一、选择题(每小题4个选项中只有1个正确选项,每题4分,共40分) 1.静电力恒量k的单位是() (A)N·m2/kg2(B)N·m2/C2 (C)kg2/(N·m2)(D)C2/(N·m2) 2.物理学中,力的合成、力的分解、平均速度这三者所体现的共同的科学思维方法是()(A)比值定义(B)控制变量 (C)等效替代(D)理想模型 3.如图所示,一定质量的气体,从状态I变化到状态II,其p-1/V 图像为过O点的倾斜直线,下述正确的是() (A)密度不变(B)压强不变 (C)体积不变(D)温度不变 4.如图为某质点的振动图像,下列判断正确的是() (A)质点的振幅为10cm (B)质点的周期为4s 1/V

(C)t=4s时质点的速度为0 (D)t=7s时质点的加速度为0 5.关于两个点电荷间相互作用的电场力,下列说法中正确的是() (A)它们是一对作用力与反作用力 (B)电量大的点电荷受力大,电量小的点电荷受力小 (C)当两个点电荷间距离增大而电量保持不变时,这两个电场力的大小可能不变 (D)当第三个点电荷移近它们时,原来两电荷间相互作用的电场力的大小和方向会变化 6.如图,光滑的水平面上固定着一个半径在逐渐减小的螺旋形光滑水平轨 v 道。一个小球以一定速度沿轨道切线方向进入轨道,下列物理量中数值将减小的是() (A)线速度(B)角速度(C)向心加速度(D)周期 7.如图所示,一只贮有空气的密闭烧瓶用玻璃管与水银气压计相连,气压计的两管内液面在同一水平面上。现降低烧瓶内空气的温度,同时上下移动气压计右管,使气压计左管的水银面保持在原来的水平面上,则气压计两管水银面的高度差Δh与烧瓶内气体降低的温度Δt(摄氏温标)之间变化关系的图像为()

高考物理光学知识点之物理光学基础测试题含答案(6)

高考物理光学知识点之物理光学基础测试题含答案(6) 一、选择题 1.下列关于电磁波和机械波的说法中,正确的是 A.机械波和电磁波均有横波和纵波 B.机械波和电磁波均可发生干涉、衍射 C.机械波只能在介质中传播,电磁波只能在真空中传播 D.波源的振动或电磁振荡停止,空间中的波均即刻完全消失 2.如图所示两细束单色光平行射到同一个三棱镜上,经折射后交于光屏上的同一个点M.则下列说法中正确的是() A.如果 a为蓝色光,则b可能为红色光 B.在该三棱镜中a色光的传播速率比b光的传播速率大 C.棱镜射向空气中a色光的临界角比b色光的临界角大 D.a光的折射率小于b光折射率 3.如图所示,一束光经玻璃三棱镜折射后分为两束单色光a、b,波长分别为λa、λb,该玻璃对单色光a、b的折射率分别为n a、n b,.则() A.λa<λb,n a>n b B.λa>λb,n aλb,n a >n b 4.下面事实与光的干涉有关的是() A.用光导纤维传输信号B.水面上的油膜呈现彩色 C.水中的气泡显得格外明亮D.一束白光通过三棱镜形成彩色光带 5.下列说法正确的是() A.任何物体辐射电磁波的情况只与温度有关 B.黑体能完全吸收入射的各种波长的电磁波 C.单个光子通过单缝后,底片上就会出现完整的衍射图样 D.光子通过单缝的运动路线像水波一样起伏 6.下列关于电磁波的说法正确的是 A.电磁波是横波 B.电磁波只能在真空中传播 C.在真空中,电磁波的频率越大,传播速度越大

D.在真空中,电磁波的频率越大,传播速度越小 7.下列说法不正确的是() A.在电磁波谱中,紫外线的热效应好 B.天空是亮的原因是大气对阳光的色散 C.天空呈蓝色的原因是大气对波长短的光更容易散射 D.晚霞呈红色的原因是蓝光和紫光大部分被散射掉了 8.下图为双缝干涉的实验示意图,光源发出的光经滤光片成为单色光,然后通过单缝和双缝,在光屏上出现明暗相间的条纹.若要使干涉条纹的间距变大,在保证其他条件不变的情况下,可以 A.将光屏移近双缝 B.更换滤光片,改用波长更长的单色光 C.增大双缝的间距 D.将光源向双缝移动一小段距离 9.下列说法正确的是() A.不论光源与观察者怎样相对运动,光速都是一样的 B.太阳光通过三棱镜形成彩色光带是光的干涉现象 C.波源与观察者互相靠近和互相远离时,观察者接收到的波的频率相同 D.光的双缝干涉实验中,若仅将入射光从红光改为紫光,则相邻亮条纹间距一定变大10.下列四种现象不属于光的衍射现象的是 A.太阳光照射下,架在空中的电线在地面上不会留下影子 B.不透光的圆片后面的阴影中心出现一个泊松亮斑 C.用点光源照射小圆孔,后面屏上会出现明暗相间的圆环 D.通过游标卡尺两卡脚间的狭缝观察发光的日光灯管,会看到平行的彩色条纹 11.近期美国在韩国部署“萨德”反导系统,引起亚洲周边国家的强烈反应.“萨德”采用X波段雷达,工作的电磁频率范围在8×109?12×l09Hz,而传统雷达多采用S波段雷达,其工作的电磁波频率范围在2×109?4×109Hz.则下列说法正确的有 A.电磁波的传播需要介质 B.X波段电磁波的波长比S波段电进波的波长长 C.当电磁波从一种介质射入另一介质时,频率会发生变化 D.在传播过程中遇到障碍物时,S波段的电磁波比X波段电兹波更容易发生明显衍射12.下列说法正确的是: A.根据麦克斯韦电磁理论可知变化的电场周围存在变化的磁场 B.红外线遥感技术是利用红外线的化学作用 C.在医院里常用紫外线对病房和手术室消毒,是因为紫外线比红外线的热效应显著D.工业上的金属探伤是利用γ射线具有较强的穿透能力

高三物理一轮复习选修3-3全套学案

第1课时 分子动理论 内能 导学目标 1.掌握分子动理论的内容,并能应用分析有关问题.2.理解温度与温标概念,会换算摄氏温度与热力学温度.3.理解内能概念,掌握影响内能的因素. 一、分子动理论

1.请你通过一个日常生活中的扩散现象来说明:温度越高,分子运动越激烈. 2.请描述:当两个分子间的距离由小于r0逐渐增大,直至远大于r0时,分子间的引力如何变化?分子间的斥力如何变化?分子间引力与斥力的合力又如何变化? [知识梳理] 1.物体是由____________组成的 (1)多数分子大小的数量级为________ m. (2)一般分子质量的数量级为________ kg. 2.分子永不停息地做无规则热运动 (1)扩散现象:相互接触的物体彼此进入对方的现象.温度越______,扩散越快. (2)布朗运动:在显微镜下看到的悬浮在液体中的__________的永不停息地无规则运 动.布朗运动反映了________的无规则运动.颗粒越______,运动越明显;温度越______,运动越剧烈. 3.分子间存在着相互作用力 (1)分子间同时存在________和________,实际表现的分子力是它们的________. (2)引力和斥力都随着距离的增大而________,但斥力比引力变化得______. 思考:为什么微粒越小,布朗运动越明显? 二、温度和温标 [基础导引] 天气预报某地某日的最高气温是27°C,它是多少开尔文?进行低温物理的研究时,热力学温度是2.5 K,它是多少摄氏度? [知识梳理] 1.温度 温度在宏观上表示物体的________程度;在微观上是分子热运动的____________的标志. 2.两种温标 (1)比较摄氏温标和热力学温标:两种温标温度的零点不同,同一温度两种温标表示的数 值________,但它们表示的温度间隔是________的,即每一度的大小相同,Δt=ΔT. (2)关系:T=____________. 三、物体的内能 [基础导引] 1.有甲、乙两个分子,甲分子固定不动,乙分子由无穷远处逐渐向甲靠近,直到不再靠近为止,在这整个过程中,分子势能的变化情况是() A.不断增大B.不断减小 C.先增大后减小D.先减小后增大 2.氢气和氧气的质量、温度都相同,在不计分子势能的情况下,下列说法正确的是() A.氧气的内能较大B.氢气的内能较大 C.两者的内能相等D.氢气分子的平均速率较大

高三物理光学.docx

第十四章高三物理光学 一、光的直线传播 1.光在同一种均匀介质中是沿直线传播的 前提条件是在同一种介质,而且是均匀介质。否则,可能发生偏折。如光从空气斜射入水 中(不是同一种介质);“海市蜃楼”现象(介质不均匀)。 当障碍物或孔的尺寸和波长可以相比或者比波长小时,将发生明显的衍射现象,光线将可 能偏离原来的传播方向。 解光的直线传播方面的计算题(包括日食、月食、本影、半影问题)关键是画好示意图, 利用数学中的相似形等几何知识计算。 l 。vt 例 1. 如图所示,在 A 点有一个小球,紧靠小球的左方有一个点光源 S S A h x 现将小球从 A 点正对着竖直墙平抛出去,打到竖直墙之前,小球在点光 源照射下的影子在墙上的运动是 A.匀速直线运动 B.自由落体运动 C.变加速直线运动 D.匀减速直线运动1 gt2,根据相似形知识可解:小球抛出后做平抛运动,时间 t 后水平位移是 vt,竖直位移是 h= gl2 t ,因此影子在墙上的运动是匀速运动。 以由比例求得 x t 2v 2.光速 8 光在真空中的转播速度为 c=3.00×10 m/s。 ⑴光在不同介质中的传播速度是不同的。根据爱因斯坦的相对论光速不可能超过c。 -9-9 ⑵近年来( 1999-)科学家们在极低的压强( 10 Pa)和极低的温度( 10 K )下,得到一种物质的凝聚态,光在其中的速度降低到17m/s,甚至停止运动。 11 ⑶也有报道称在实验中测得的光速达到10 m/s,引起物理学界的争论。 1.像的特点 平面镜成的像是正立等大的虚像,像与物关于镜面为对称。 2.光路图作法 根据平面镜成像的特点,在作光路图时,可以先画像,后补光路图。 3.充分利用光路可逆 在平面镜的计算和作图中要充分利用光路可逆。(眼睛在某点 A 通过平面镜所能看到的范围和在 A 点放一个点光源,该电光源发出的光经平面镜反射后照亮的范围是完全相同的。) 4.利用边缘光线作图确定范围 例2 如图所示,画出人眼在S处通过平面镜可看到障碍物后地面的范围。解:先根据对称性作出人眼的像点S /,再根据光路可逆,设想S 处有一个点光源,它能通过平面镜照亮的范围就是人眼能通过平面镜看到的 范围。图中画出了两条边缘光线。 例 3. 如图所示,用作图法确定人在镜前通过平面镜可看到 AB 完 整像的范围。 解:先根据对称性作出 AB 的像 A/ B/,分别作出 A 点、B 点发出 的光经平面镜反射后能射到的范围,再找到它们的公共区域(交 集)。就是能看到完整像的范围。S / M N S P Q 看到 AB 完整像的范围A B M N A/B/

高三上学期一轮模拟物理试题Word版含答案

物理试题 一.选择题 14. 如图所示,重力为G 的风筝用轻细绳固定于地面上的P 点,风的作用力垂直作用于风筝表面AB ,风筝处于静止状态。若位于P 点处的拉力传感器测得绳子拉力大小为T ,绳与水平地面的夹角为 α。则风筝表面与水平面的夹角φ满足( ) A . cos tan sin T G T α?α= + B . sin tan cos T G T α ?α=+ C . sin tan cos G T T α?α+= D . cos tan sin G T T α ?α += 15. 如图所示,用传送带给煤车装煤,平均每5 s 内有5000kg 的煤粉落于车上,由于传送带的速度很小,可认为煤粉竖直下落。要使车保持以0.5 m/s 的速度匀速前进,则对车应再施以向前的水平力的大小为( ) A. 50N B. 250N C. 500N D.750N 16. 如图所示,两个相同材料制成的水平摩擦轮A 和B ,两轮半径 R A =2R B ,A 为主动轮。当A 匀速转动时,在A 轮边缘处放置的小木块 恰能相对静止在A 轮的边缘上,若将小木块放在B 轮上让其静止,木块离B 轮轴的最大距离为( ) A. 8B R B. 2B R C. R B D. 4 B R 17. 如图所示,一个带正电荷q 、质量为m 的小球,从光滑绝缘斜面轨道的A 点由静止下滑,然后沿切线进入竖直面上半径为R 的光滑绝缘圆形轨道,恰能到达轨道的最高点B 。现在空间加一竖直向下的匀强电场,若仍从A 点由静止释放该小球(假设小球的电量q 在运动过程中保持不变,不计空气阻力),则( ) A .小球一定不能到达B 点 B .小球仍恰好能到达B 点 C .小球一定能到达B 点,且在B 点对轨道有向上的压力 D .小球能否到达B 点与所加的电场强度的大小有关 18. 已知某质点沿x 轴做直线运动的坐标随时间变化的关系为52n x t =+,其中x 的单位为m ,时间t 的单位为s ,则下列说法正确的是( )

高三物理光学部分试题精编

高中物理最新试题精编 板块四 光学部分 一、选择题:在下列每小题给出的四个答案中,至少有一个是正确的,把正确答案全选出来. 1.下列关于波的叙述中正确的是( ) A .光的偏振现象表明光是一种横波 B .超声波可以在真空中传播 C .白光经光密三棱镜折射发生色散时,红光的偏折角最大 D .当日光灯启动时,旁边的收音机会发出“咯咯”声,这是由于电磁波的干扰造成的 答案: AD 2.关于近代物理学的结论中,下面叙述中正确的是( ) A .宏观物体的物质波波长非常小,极易观察到它的波动性 B .光电效应现象中,光电子的最大初动能与照射光的频率成正比 C .光的干涉现象中,干涉亮条纹部分是光子到达几率多的地方 D .氢原子的能级是不连续的,但辐射光子的能量却是连续的 答案:C 3.以下关于光的有关说法中正确的是( ) A .光导纤维是应用了光的全反射现象,无影灯主要是应用了光的衍射 B .天空中出现的彩虹是因为光的折射形成色散现象 C .自然光是光振动沿各个方向均匀分布的光,偏振光是光振动沿着特定方向的光 D .现在我们知道,光就是一份一份的能量 答案:BC 4.在没有月光的夜间,一个池面较大的水池底部中央有一盏灯(可看做光源),小鱼在水中游动,小鸟在水面上方飞翔,设水中无杂质且水面平静,下面的说法中正确的是( ) A .小鱼向上方水面看去,看到水面到处都是亮的,但中部较暗 B .小鱼向上方水面看去,看到的是一个亮点,它的位置与鱼的位置无关 C .小鸟向下方水面看去,看到水面中部有一个圆形区域是亮的,周围是暗的 D .小鸟向下方水面看去,看到的是一个亮点,它的位置与鸟的位置有关 答案:BD 5.如图所示,激光液面控制仪的原理是:固定的一束激光AO 以入射 角i 照射到水平面上,反射光OB 射到水平放置的光屏上,屏上用光电管 将光讯号转换为电讯号,电讯号输入控制系统来控制液面的高度,若发现 光点在屏上向右移动了△s 距离,即射到B '点,则液面的高度变化是( ) A.液面降低i s sin ? B.液面升高i s sin ? C.液面降低i s tan 2? D.液面升高i s tan 2? 答案:D

高三物理一轮复习精品学案:动量守恒定律及“三类模型”问题

第2讲动量守恒定律及“三类模型”问题 一、动量守恒定律 1.内容 如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变. 2.表达式 (1)p=p′,系统相互作用前总动量p等于相互作用后的总动量p′. (2)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和. (3)Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向. (4)Δp=0,系统总动量的增量为零. 3.适用条件 (1)理想守恒:不受外力或所受外力的合力为零. (2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力. (3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在这一方向上动量守恒.

自测 1关于系统动量守恒的条件,下列说法正确的是() A.只要系统内存在摩擦力,系统动量就不可能守恒 B.只要系统中有一个物体具有加速度,系统动量就不守恒 C.只要系统所受的合外力为零,系统动量就守恒 D.系统中所有物体的加速度为零时,系统的总动量不一定守恒 答案 C 二、碰撞、反冲、爆炸 1.碰撞 (1)定义:相对运动的物体相遇时,在极短的时间内它们的运动状态发生显著变化,这个过程就可称为碰撞. (2)特点:作用时间极短,内力(相互碰撞力)远大于外力,总动量守恒. (3)碰撞分类

①弹性碰撞:碰撞后系统的总动能没有损失. ②非弹性碰撞:碰撞后系统的总动能有损失. ③完全非弹性碰撞:碰撞后合为一体,机械能损失最大. 2.反冲 (1)定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,这种现象叫反冲运动. (2)特点:系统内各物体间的相互作用的内力远大于系统受到的外力.实例:发射炮弹、爆竹爆炸、发射火箭等. (3)规律:遵从动量守恒定律. 3.爆炸问题 爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒. 自测

上海市嘉定区2020高三物理一模试题(含解析)

上海市嘉定区2020届高三物理一模试题(含解析) 一、选择题(第1-8小题,每小题3分;第9-12小题,每小题3分,共40分,每小题只有个正确答案) 1.(3分)下列物理概念的提出用到了“等效替代”思想方法的是()A.“瞬时速度”的概念B.“点电荷”的概念 C.“平均速度”的概念D.“电场强度”的概念 2.(3分)下列单位中,属于国际单位制基本单位的是() A.千克B.牛顿C.伏特D.特斯拉 3.(3分)一个物体做匀速圆周运动,会发生变化的物理量是() A.角速度B.线速度C.周期D.转速 4.(3分)一个物体在相互垂直的两个力F1、F2的作用下运动,运动过程中F1对物体做功﹣6J,F2对物体做功8J,则F1和F2的合力做功为() A.2J B.6J C.10J D.14J 5.(3分)用细线将一块玻璃片水平地悬挂在弹簧测力计下端,并使玻璃片贴在水面上,如图所示。缓慢提起弹簧测力计,在玻璃片脱离水面的瞬间,弹簧测力计的示数大于玻璃片的重力,其主要原因是() A.玻璃片分子做无规则热运动 B.玻璃片受到大气压力作用 C.玻璃片和水间存在万有引力作用 D.玻璃片分子与水分子间存在引力作用 6.(3分)如图所示,电源的电动势为1.5V,闭合电键后() A.电源在1s内将1.5J的电能转变为化学能

B.电源在1s内将1.5J的化学能转变为电能 C.电路中每通过1C电荷量,电源把1.5J的电能转变为化学能 D.电路中每通过1C电荷量,电源把1.5J的化学能转变为电能 7.(3分)汽车在水平路面上沿直线匀速行驶,当它保持额定功率加速运动时()A.牵引力增大,加速度增大 B.牵引力减小,加速度减小 C.牵引力不变,加速度不变 D.牵引力减小,加速度不变 8.(3分)如图,A、B为电场中一条电场线上的两点。一电荷量为2.0×10﹣7C的负电荷,从A运动到B,克服电场力做功4.0×10﹣5J.设A、B间的电势差为U AB,则() A.电场方向为A→B;U AB=200V B.电场方向为B→A;U AB=﹣200V C.电场方向为A→B;U AB=200V D.电场方向为B→A;U AB=200V 9.(4分)一质量为2kg的物体,在绳的拉力作用下,以2m/s2的加速度由静止开始匀加速向上运动了1m。设物体重力势能的变化为△E p,绳的拉力对物体做功为W,则()A.△E p=20J,W F=20J B.△E p=20J,W F=24J C.△E p=﹣20J,W F=20J D.△E p=﹣20J,W F=24J 10.(4分)一定质量的理想气体由状态A经过如图所示过程变到状态B此过程中气体的体积() A.一直变小B.一直变大 C.先变小后变大D.先变大后变小 11.(4分)如图所示,一列简谐横波沿x轴负方向传播,实线为t1=0时刻的波形图,虚线为t2=0.25s时刻的波形图,则该波传播速度的大小可能为()

高考物理光学部分知识点完美总结

高考物理光学部分知识点完美总结 光的反射和折射 1.光的直线传播 (1)光在同一种均匀介质中沿直线传播.小孔成像,影的形成,日食和月食都是光直线传播的例证.(2)影是光被不透光的物体挡住所形成的暗区.影可分为本影和半影,在本影区域内完全看不到光源发出的光,在半影区域内只能看到光源的某部分发出的光.点光源只形成本影,非点光源一般会形成本影和半影.本影区域的大小与光源的面积有关,发光面越大,本影区越小.(3)日食和月食: 人位于月球的本影内能看到日全食,位于月球的半影内能看到日偏食,位于月球本影的延伸区域(即“伪本影”)能看到日环食;当月球全部进入地球的本影区域时,人可看到月全食.月球部分进入地球的本影区域时,看到的是月偏食. 2.光的反射现象---:光线入射到两种介质的界面上时,其中一部分光线在原介质中改变传播方向的现象. (1)光的反射定律: ①反射光线、入射光线和法线在同一平面内,反射光线和入射光线分居于法线两侧. ②反射角等于入射角. (2)反射定律表明,对于每一条入射光线,反射光线是唯一的,在反射现象中光路是可逆的. 3. 平面镜成像 (1.)像的特点---------平面镜成的像是正立等大的虚像,像与物关于镜面为对称。 (2.)光路图作法-----------根据平面镜成像的特点,在作光路图时,可以先画像,后补光路图。 (3).充分利用光路可逆-------在平面镜的计算和作图中要充分利用光路可逆。(眼睛在某点A通过平面镜所能看到的范围和在A点放一个点光源,该电光源发出的光经平面镜反射后照亮的范围是完全相同的。) 4.光的折射--光由一种介质射入另一种介质时,在两种介质的界面上将发生光的传播方向改变的现象叫光的折射. (2)光的折射定律---①折射光线,入射光线和法线在同一平面内,折射光线和入射光线分居于法线两侧. ②入射角的正弦跟折射角的正弦成正比,即sini/sinr=常数.(3)在折射现象中,光路是可逆的. 5.折射率---光从真空射入某种介质时,入射角的正弦与折射角的正弦之比,叫做这种介质的折射率,折射率用n表示,即n=sini/sinr.

高三物理一轮复习 动能定理导学案

2012届高三物理一轮复习导学案 六、机械能(3) 动能定理 【导学目标】 1、正确理解动能的概念。 2、理解动能定理的推导与简单应用。 【知识要点】 一、动能 1、物体由于运动而具有的能叫动能,表达式:E k =_____________。 2、动能是______量,且恒为正值,在国际单位制中,能的单位是________。 3、动能是状态量,公式中的v 一般是指________速度。 二、动能定理 1、动能定理:作用在物体上的________________________等于物体____________,即w=_________________,动能定理反映了力对空间的积累效应。 2、注意:①动能定理可以由牛顿运动定律和运动学公式导出。②可以证明,作用在物体上的力无论是什么性质,即无论是变力还是恒力,无论物体作直线运动还是曲线运动,动能定理都适用。 3、动能定理最佳应用范围:动能定理主要用于解决变力做功、曲线运动、多过程动力学问题,对于未知加速度a 和时间t ,或不必求加速度a 和时间t 的动力学问题,一般用动能定理求解为最佳方案。 【典型剖析】 [例1] 在竖直平面内,一根光滑金属杆弯成如图所示形状,相应的曲线方程为y=2.5cos (kx+ 3 2 π)(单位: m),式中k=1 m -1 .将一光滑小环套在该金属杆上,并从x=0处以v 0=5 m/s 的初 速度沿杆向下运动,取重力加速度g=10 m/s 2 .则当小环运动到x= 3 m 时的速度大小v= m/s;该小环在x 轴方向最远能运动到x= m 处. [例2]如图所示,质量为m 的小球用长为L 的轻细线悬挂在天花板上,小球静止在平衡位置.现用一水平恒力F 向右拉小球,已知F=0.75mg ,问: (1)在恒定拉力F 作用下,细线拉过多大角度时小球速度最大?(2)小球的最大速度是多少? [例3]总质量为M 的列车,沿平直轨道作匀速直线运动,其末节质量为m 的车厢中途脱钩,待司机发觉时,机车已行驶了L 的距离,于是立即关闭油门撤去牵引力.设运动过程中阻力始终与质量成正比,机车的牵引力是恒定的.当列车的两部分都停止时,它们之间的距离是多少?

高中物理光学综合试题

高中物理光学综合试题 一、选择题:每题四个选项中有一个或多个选项正确,请将正确选项填在题后括号内(每题 5分)。 1.关于平面镜的虚像,下列叙述中正确的是( ). (A)虚像总是倒立的 (B)虚像是呵以用照相机拍摄的 (C)虚像可以在屏幕上出现 (D)人眼看到的虚像,是因为虚像发出的光射入人眼的视网膜 2.把物体和光屏的位置固定,在两者连线的正中间放一透镜,这时光屏上出现一个清晰的像. 如果沿着连线再移动透镜时,则在光屏上( ). (A)还可以再出现一个缩小的像 (B)还可以再出现一个放大的像 (C)出现放大、缩小的像都有可能,但要知道怎样移动才能判定 (D)以上说法都不对 3.某金属在一束绿光的照射下发生光电效应,则( ). (A)若增加绿光的照射强度,则单位时削内逸出的光电子数目不变 (B)若增加绿光的照射强度,则逸出的光电子最大初动能增加 (C)若改用紫光照射,则逸出的光电子最大初动能增加 (D)若改用紫光照射,则单位时间内逸出的光电子数目增加 4.关于对光的本性的认识,下列说法中正确的是( ). (A)牛顿的微粒说与惠更斯的波动说第一次揭示了光具有波粒二象性 (B)牛顿的微粒说与爱因斯坦的光子说没有本质的区别 (C)麦克斯韦从理论上指出电磁波传播速度跟光速相同,他提出光是一种电磁波 (D)麦克斯韦的电磁说与爱因斯坦的光子说说明光具有波粒二象性 5光源发出的光照射到不透明物体上就会形成影.下列对于光源面积与影大小的判断中正确的是( ). (A)光源的面积为零.半影区不为零(B)光源面积越大.半影区越大 (C)光源面积越大,本影区越大(D)影的大小与光源的面积无关 6.如图1所示,一个折射率为2的三棱镜,顶角是45°.有一束光以图示 方向射到三棱镜上,入射角为i(0

2020年上海市各区高三物理一模 基础知识专题汇编(含答案)(精校Word版)

上海市各区县2020届高三物理一模基础知识专题汇编 一、选择题 1.(2020嘉定一模第1题) 下列物理概念的提出用到了“等效替代”思想方法的是( ) (A )“瞬时速度”的概念 (B )“点电荷”的概念 (C )“平均速度”的概念 (D )“电场强度”的概念 2.(2020嘉定一模第2题)下列单位中,属于国际单位制基本单位的是( ) (A )千克 (B )牛顿 (C )伏特 (D )特斯拉 3.(2020奉贤一模第1题)下列物理量属于矢量的是( ) (A )电流强度 (B )磁通量 (C )电场强度 (D ) 电势差 4.(2020静安一模第1题)下面物理量及其对应的国际单位制单位符号,正确的是 (A )力,kg (B )磁感应强度,B (C )电场强度,C/N (D )功率,W 5.(2020虹口一模第2题)麦克斯韦认为:电荷的周围存在电场,当电荷加速运动时,会产生电磁波。受此启发,爱因斯坦认为:物体的周围存在引力场,当物体加速运动时,会辐射出引力波。爱因斯坦提出引力波的观点,采用了( ) A .类比法 B .观察法 C .外推法 D .控制变量法 6.(2020虹口一模第3题)依据库仑定律F =k 122q q r ,恒量k 在国际单位制中用基本单位可以表示为 ( ) A .N ·m 2/C 2 B . C 2/m 2·N C .N ·m 2/A 2 D .kg ·m 3/(A 2·s 4) 7.(2020闵行一模第2题)通过对比点电荷的电场分布,均匀带电球体外部电场可视作电荷全部集中于球心的点电荷产生的电场,所采用的思想方法是( ) (A )等效 (B )归纳 (C )类比 (D )演绎 8.(2020崇明一模第1题)物理算式3(s)×4(V)×2(A)计算的结果是( ) A .24N B .24W C .24C D .24J 9.(2020浦东一模第1题)下列选项中属于物理模型的是( ) (A )电场 (B )电阻 (C )磁感线 (D )元电荷

高中物理光学部分习题

高中物理光学试题 1.选择题 1.1923年美国物理学家迈克耳逊用旋转棱镜法较准确地测出了光速,其过程大致如下, 选择两个距离已经精确测量过的山峰(距离为L),在第一个山峰上装一个强光源S,由它发出的光经过狭缝射在八面镜的镜面1上,被反射到放在第二个山峰的凹面镜B 上,再由凹面镜B反射回第一个山峰,如果八面镜静止不动,反射回来的光就在八面镜的另外一个面3上再次反射,经过望远镜,进入观测者的眼中.如图所示,如果八面镜在电动机带动下从静止开始由慢到快转动,当八面镜的转速为ω时,就可以在望远镜里重新看到光源的像,那么光速等于() A.4Lω π B. 8Lω π C. 16Lω π D. 32Lω π 答案:B 2.如图所示,在xOy平面内,人的眼睛位于坐标为(3,0)的点,一个平面镜镜面向下, 左右两个端点的坐标分别为(-2,3)和(0,3)一个点光源S从原点出发,沿x轴负方向匀速运动.它运动到哪个区域内时,人眼能从平面镜中看到S的像点,像做什么运动?() A.0~-7区间,沿x轴正方向匀速运动 B.-3~一7区间,沿x轴负方向匀速运动 C.-3~-7区间,沿x轴负方向加速运动 D.-3~-∞区间,沿x轴正方向加速运动 答案:B 3.设大气层为均匀介质,当太阳光照射地球表面时,则有大气层与没有大气层时,太阳 光被盖地球的面积相比() A.前者较小 B.前者较大 C.一样大 D.无法判断 答案:B 4.“不经历风雨怎么见彩虹”,彩虹的产生原因是光的色散,如图所示为太阳光射到空 气中的小水珠发生色散形成彩虹的光路示意图,a、b为两种折射出的单色光.以下说法正确的是() A.a光光子能量大于b光光子能量 B.在水珠中a光的传播速度大于b光的传播速度

高三物理一轮复习抛体运动导学案

高三物理 导学案 班级 姓名 课题 抛体运动 编号 课型 复习课 使用时间 主备人 审核人 审批人 教学目标:1.理解平抛运动的概念和处理方法 2.掌握平抛运动规律,会应用平抛运动规律分析和解决实际问题 重点,难点:理解平抛运动概念和平抛运动规律 【基础知识梳理】 1.物体做平抛运动的条件:只受 ,初速度不为零且沿水平方向。 2.特点:平抛运动是加速度为重力加速度的 运动,轨迹是抛物线。 3.研究方法: 通常把平抛运动看作为两个分运动的合运动:一个是水平方向的匀速直线运动,一个是竖直方向的自由落体直线运动。 从理论上讲,正交分解的两个分运动方向是任意的,处理问题时要灵活掌握。 4.平抛运动的规律 合速度的方向0tan y x v g t v v β== 合位移的方向0 tan 2y g t x v α== 【典型例题】 1、平抛运动的特点及基本规律 【例1】物体在平抛运动的过程中,在相等的时间内,下列物理量相等的是 ( ) A .速度的增量 B .加速度 C .位移 D .平均速度 变式训练1、一架飞机水平匀加速飞行,从飞机上每隔一秒释放一个铁球,先后共释放4个,若不计空气阻力,则人从飞机上看四个球 ( ) A .在空中任何时刻总排成抛物线,它们的落地点是不等间距的 B .在空中任何时刻总是在飞机的正下方排成竖直的线,它们的落地点是不等间距的 C .在空中任何时刻总是在飞机的下方排成倾斜的直线,它们的落地点是不等间距的 D .在空中排成的队列形状随时间的变化而变化 例2如图,实线为某质点平抛运动轨迹的一部分,测得AB 、BC 间的水平距离△s 1=△s 2=0.4m ,高度差△h 1=0.25m ,△h 2=0.35m .求: (1)质点抛出时初速度v 0为多大? 图5-1-3

相关文档
相关文档 最新文档