文档库 最新最全的文档下载
当前位置:文档库 › 简易信号发生与检测电路设计

简易信号发生与检测电路设计

简易信号发生与检测电路设计
简易信号发生与检测电路设计

课程设计报告

课程名称:电子技术基础

报告题目:简易信号发生与检测电路设计学生姓名:

所在学院:

专业班级:

学生学号:

指导教师:

2013年6月28日

电子技术课程设计任务书

一、设计要求

1.设计一个由集成运算放大器和晶体管放大器组成的简易信号发生器,要求能产生方波、三角波、正弦波。

2. 用小规模数字集成电路设计一个计数器,要求能对简易信号发生器产生方波、三角波、正弦波进行计数。

3.每小组应同时完成1、2两部分电路。设计的信号发生器产生方波、三角波、正弦波能用示波器检测验证,设计的计数器对信号发生器产生方波、三角波、正弦波进行计数应与专用仪器检测数据一致。

二、技术要点

1. 信号发生器部分技术要点

系统图如下:

要求:(1)输出波形正弦波、方波、三角波。

(2)频率范围频率范围1HZ~10HZ,10HZ~100HZ。

(3)输出电压方波的输出电压峰峰值为10V, 三角波峰峰值、正弦波峰峰值>1v.

(4)波形特性表征正弦波特性的参数是非线性失真r1,一般要求r1<3%:表征三角波特性的参数是非线性系数是 r2,一般要求r2<2%;表征方波的参数是上升时

摘要

信号发生器是指产生所需参数的电测试信号的仪器。按信号波形可分为正弦信号、函数(波形)信号、脉冲信号和随机信号发生器等四大类。信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。信号发生器用来产生频率为20Hz~200kHz的正弦信号(低频)。除具有电压输出外,有的还有功率输出。所以用途十分广泛,可用于测试或检修各种电子仪器设备中的低频放大器的频率特性、增益、通频带,也可用作高频信号发生器的外调制信号源。另外,在校准电子电压表时,它可提供交流信号电压。低频信号发生器的原理:系统包括主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器(输出变压器)和指示电压表。它用于产生被测电路所需特定参数的电测试信号。在测试、研究或调整电子电路及设备时,为测定电路的一些电参量,如测量频率响应、噪声系数,为电压表定度等,都要求提供符合所定技术条件的电信号,以模拟在实际工作中使用的待测设备的激励信号。当要求进行系统的稳态特性测量时,需使用振幅、频率已知的正弦信号源。当测试系统的瞬态特性时,又需使用前沿时间、脉冲宽度和重复周期已知的矩形脉冲源。

在数字系统中使用最多的时序电路是计数器。狭义的计数器是指一些常用计时器,例如体育比赛中测试时间的计时器等,但本词条所要介绍的并不是这种计时器,要介绍的是应用更为广泛的时序逻辑电路中的计数器。计数是一种最简单基本的运算,计数器就是实现这种运算的逻辑电路,计数器在数字系统中主要是对脉冲的个数进行计数,以实现测量、计数和控制的功能,同时兼有分频功能,计数器是由基本的计数单元和一些控制门所组成,计数单元则由一系列具有存储信息功能的各类触发器构成,这些触发器有RS触发器、T触发器、D触发器及JK触发器等。计数器在数字系统中应用广泛,如在电子计算机的控制器中对指令地址进行计数,以便顺序取出下一条指令,在运算器中作乘法、除法运算时记下加法、减法次数,又如在数字仪器中对脉冲的计数等等。

关键词:方波、三角波、正弦波、计数器

目录

一、概述 (1)

二、方案设计与论证 (1)

1.模拟电子技术 (1)

⑴设计论证 (1)

①方波、三角波、正弦波系统图 (1)

⑵方波 (2)

①方波产生的原理 (2)

②方波仿真电路图 (2)

③方波仿真波形图 (3)

④示波器显示方波图 (3)

⑤示波器显示方波数值图 (4)

⑶三角波 (4)

①三角波产生的原理 (4)

②三角波仿真电路图 (5)

③三角波仿真波形图 (5)

④示波器显示三角波形图 (6)

⑤示波器显示三角波数值图 (6)

⑷正弦波 (7)

①正弦波的原理 (7)

②正弦波仿真电路图 (7)

③正弦波仿真波形图 (7)

④示波器显示正弦波波形图 (8)

⑤示波器显示正弦波数值图 (8)

2.数字电子技术 (9)

⑴设计论证 (9)

①十进制同步计数器系统图 (9)

②状态转换图 (9)

③触发器激励表 (9)

④逻辑电路图 (9)

⑤十进制加法计数器工作波形图 (10)

⑵触发器 (10)

①触发器原理 (10)

②触发器引脚图 (10)

⑶组合逻辑电路-与非门 (11)

①与非门的原理 (11)

②与非门原理图和符号 (11)

③SN74HC00N引脚图 (11)

⑷十进制计数器 (12)

①十进制计数器的原理 (12)

②十进制计数器仿真电路图 (12)

③十进制计数器测试图 (13)

三、总原理图 (14)

1. 模拟电子技术总原理图 (14)

2. 数字电子技术总原理图 (14)

四、故障和问题分析 (15)

五、结论与心得 (15)

参考文献 (16)

一、概述

函数发生器一般是指能自动产生正弦波、方波、三角波的电压波形的电路或者仪器。电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。根据用途不同,有产生三种或多种波形的函数发生器。

计数器不仅能用于对时钟脉冲进行计数还可以用于分频、定时,产生节拍脉冲和脉冲序列以及进行数字运算等。

模拟电子技术是一门研究对仿真信号进行处理的模拟电路的学科。它以半导体二极管、半导体三极管和场效应管为关键电子器件,包括功率放大电路、运算放大电路、反馈放大电路、信号运算与处理电路、信号产生电路、电源稳压电路等研究方向。

数字电子技术主要研究各种逻辑门电路、集成器件的功能及其应用,.逻辑门电路组合和时序电路的分析和设计、集成芯片各脚功能。555定时器等。随着计算机科学与技术突飞猛进地发展,用数字电路进行信号处理的优势也更加突出。为了充分发挥和利用数字电路在信号处理上的强大功能,我们可以先将模拟信号按比例转换成数字信号,然后送到数字电路进行处理,最后再将处理结果根据需要转换为相应的模拟信号输出。

本课题介绍方波、三角波、正弦波函数发生器的方法和利用集成块记录波形发生次数。

二、方案设计与论证

1、模拟电子技术

⑴.设计论证

①.方波、三角波、正弦波系统图如下:

图1.⑴-1 方波、三角波、正弦波系统图

方波产生电路是一种能够直接产生方波的非正弦信号发生电路,基本电路组成是在迟滞比较器的基础上,增加一个积分电路,把输出电压经反馈到比较器的反相端。在比较器的输出端引入限流电阻和两个背靠背的双向稳压管组成了一个

双向限幅方波产生电路。然后再方波产生电路上再加上一个积分器,就产生了三

角波,实现三角波后,最后加上正弦波变换器,就会实现正弦波。

⑵.方波部分

①.方波产生的原理

方波发生器电路是由一个迟滞比较器和一个RC负反馈回路构成。比较器输出电压UO被两个特性相同的稳压管限幅,在比较过程中,输出电压被稳定在正负UZ(UZ为稳压管VDZ的稳定电压、下同)而保持恒定。R1、R2为限流电阻,一般为10~100千欧。

电路的工作过程是:电源接通时刻(T=0),设C两端电压HC=0比较器输出电压UO=+,此时运放同相端电压为

当UO=+UZ时,+UZ通过R向C充电,UC随时间按正指数规律上升,当UC上升到略高于FUZ时,UO从+UZ跳变为UZ。此后,C经R放电UC按负指数规律下降。在C放电期间,U0=-UZ,运放同相端电压为-FUZ。当UC下降到略低于-FUZ时,UO又立刻跳到+UZ,回到初始状态如此周而复始,便有方波输出。

②.设计电路如下:

图1.⑵-1方波仿真电路图

③.仿真的波形如下图

图1.⑵-2方波仿真波形图④.焊接电路后,示波器的波形

图1.⑵-3示波器显示方波图

⑤.示波器显示方波数值图

图1.⑵-4示波器显示方波数值图

⑶.三角波

①.三角波产生的原理

运放的正输入端电压为零,根据虚地原理,运放的负输入端电压也为零。这样,方波电压施加在电阻R5上,方波为高电平时,R5电流为恒定电流(UPk/R5),该电流向电容C2充电,由于充电电流是恒定电流,因此,电容C2两端的电压匀速上升。半个方波周期后,输入变为低电平,电容C2通过R5放电,放电电流恒定为(UPk/R5),由于放电电流是恒定电流,因此,电容C2两端的电压匀速下降。而电容C2两端的电压正好等于第二个运放的输出电压,周而复始,就形成了三角波输出。

②.三角波仿真电路图

图1.⑶-1三角波仿真电路图③. 三角波仿真波形图

图1.⑶-2三角波仿真波形图

④.焊接电路后的,示波器波形

图1.⑶-3示波器显示三角波形图⑤.示波器显示三角波数值图

图1.⑶-4示波器显示三角波数值图

⑷.正弦波

①.正弦波原理

TR1结型场效应管在这里充当压控可变电阻,它与R3、R4一起构成文氏振荡器的负反馈回路,TR1的电阻越大,负反馈越强。D2、D3、R8、R9、R10与IC (2/2)对输出振荡电压进行全波整流,在IC的1脚产生负的整流输出电压,经过D1与R7、C4滤波后获得一个负的直流电压,该电压与振荡输出的幅值差不多相等。这个负电压加在TR1的G极,控制着TR1的D-S极之间的电阻值。振荡输出幅值增大,TR1的G极电压就越负,TR1的D-S极间阻值变大,负反馈增强,使得振荡幅值减小。通过以上的自动调节,使振荡幅度保持稳定,避免放大器进

入非线性区域,从而获得良好的正弦波形。

②.正弦波仿真电路图

图1.⑷-1正弦波的仿真电路图

③.正弦波的仿真波形图

图1.⑷-2正弦波的仿真波形图

④.示波器显示正弦波波形图

图1.⑷-3示波器显示正弦波波形图⑤.示波器显示正弦波数值图

图1.⑷-4示波器显示正弦波数值图

2、数字电子技术

⑴.设计论证

①.十进制同步计数器系统图

图2.⑴-1十进制同步计数器系统图②.状态转换图

Q3Q2Q1Q0

0000 → 0001 → 0010 → 0011

↑↓

1001 0100

↑↓

1000 ← 0111 ← 0110 ← 0101

图2.⑴-2状态转换图

④.逻辑电路图

图2.⑴-4逻辑电路图

LED指示

⑤.十进制加法计数器工作波形图

图2.⑴-5十进制加法计数器工作波形图

⑵.触发器

①.触发器原理

设触发器原状态为Q=0,Q=1。当CP由0变1时,有两个信号通道影响触发器的输出状态,一个是G12和G22打开,直接影响触发器的输出,另一个是G4和G3打开,再经G13和G23影响触发器的状态。前一个通道只经一级与门,而后一个通道则要经一级与非门和一级与门,显然CP的跳变经前者影响输出比经后者要快得多。在CP由0变1时,G22的输出首先由0变1,这时无论G23为何种状态(即无论J、K为何状态),都使Q仍为0。由于Q同时连接G12和G13的输入端,因此它们的输出均为0,使G11的输出Q=1,触发器的状态不变。CP由0变1后,打开G3和G4,为接收输入信号J、K作好准备。

CP由1变0时触发器翻转,设输入信号J=1、K=0,则Q3=0、Q4=1,G13和G23的输出均为0。当CP 下降沿到来时,G22的输出由1变0,则有Q=1,使G13输出为1,Q=0,触发器翻转。虽然CP变0后,G3、G4、G12和G22封锁,Q3=Q4=1,但由于与非门的延迟时间比与门长(在制造工艺上予以保证),因此Q3和Q4这一新状态的稳定是在触发器翻转之后。由此可知,该触发器在CP下降沿触发翻转,CP一旦到0电平,则将触发器封锁,处于(1)所分析的情况。

总之,该触发器在CP下降沿前接受信息,在下降沿触发翻转,在下降沿后触发器被封锁。

②.触发器引脚图

图2.⑵-1触发器引脚图

⑶.组合逻辑电路(与非门)

①.与非门原理

电路结构及工作原理该电压作用于T1管的集电结和T2、T3的发射结,显然不可能使T2和T3导通,所以T2和T3均处于截止状态。由于T2截止,其集电极

,因而使T4和D导通,所以输出端Y的电位为:它实现电位接近于电源电压U

CC

了“输入有低,输出为高”的逻辑关系。它实现了“输入全高,输出为低”的逻辑功能。此时T2的集电极电位为:T4、D必然截止。平均传输延迟时间是衡量与非门开关速度的一个重要参数,此参数值愈小愈好。

TTL与非门是TTL逻辑门的基本形式,典型的TTL与非门电路结构如图8-16所示。该电路由输入级、倒相级、输出级三部分组成。

输入级由多发射极三极管T1和电阻R1构成。可以把T1的集电结看成一个二极管,而把发射结看成与前者背靠背的两个二极管。这样,T1的作用和二极管与门的作用完全相同。

倒相级由三极管T2和电阻R2、R3构成。通过T2的集电极和发射极,提供两个相位相反的信号,以满足输出级互补工作的要求。

输出级是由三极管T3、T4,二极管D和电阻R4构成的“推拉式”电路。当T3导通时,T4和D截止;反之T3截止时,T4和D导通。倒相级和输出级的作用等效于逻辑非的功能。

②.与非门原理图和符号

图2.⑶-1与非门原理图和符号

③.SN74HC00N引脚图

信号发生器毕业设计

信号发生器的设计与制作 系别:机电系专业:应用电子技术届:07届姓名:张海峰 摘要 本系统以AD8951集成块为核心器件,AT89C51集成块为辅助控制器件,制作一种函数信号发生器,制作成本较低。适合学生学习电子技术测量使用。AD9851是AD公司生产的最高时钟为125 MHz、采用先进的CMOS技术的直接频率合成器,主要由可编程DDS系统、高性能模数变换器(DAC)和高速比较器3部分构成,能实现全数字编程控制的频率合成。 关键词AD9851,AT89C51,波形,原理图,常用接法

ABSTRACT 5 The system AD8951 integrated block as the core device, AT89C51 Manifold for auxiliary control devices, production of a function signal generator to produce low cost. Suitable for students to learn the use of electronic technology measurement. AD9851 is a AD produced a maximum clock of 125 MHz, using advanced CMOS technology, the direct frequency synthesizer, mainly by the programmable DDS systems, high-performance module converter (DAC) and high-speed comparator three parts, to achieve full Digital program-controlled frequency synthesizer. Key words AD9851, AT89C51, waveforms, schematics, Common Connection

信号发生器设计(附仿真)

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:□验证□综合□设计□创新实验日期:实验成绩: 信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U p-p =6V,正弦波U p-p>1V。 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时),三角波r△<2%,正弦波r~<5%。 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V 应接近晶体管的截止电压值。 m 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2 调整电路的对称性,并联电阻R E2 用来减小差 分放大器的线性区。C 1、C 2 、C 3 为隔直电容,C 4 为滤波电容,以滤除谐波分量,改善输出 波形。 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n个波段范围。 ③输出电压:一般指输出波形的峰-峰值U p-p。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r~和r△;表征方波特性的参数是上升时间t r。 四、电路仿真与分析

简易信号发生器设计制作

简易信号发生器设计制作 一、训练目的 (1)掌握正弦波、三角波、矩形波和方波发生电路的工作原理; (2)学会正弦波、三角波、矩形波和方波发生电路的设计方法; (3)进一步熟悉电子线路的安装、调试、测试方法。 二、工作原理 正弦波、三角板、矩形波是电子电路中常用的测试信号,如测试放大器的增益、通频带等均要用到正弦信号作为测试信号。下面分别介绍产生这三种信号电路结构和工作原理。 1.正弦信号发生器 正弦信号的产生电路形式比较多,频率较低时常用文氏电桥振荡器,图7-1为实用文氏电桥振荡电路。图中R 1、R 2、R 3、RW 2构成负反馈支路,二极管D 1、D 2构成稳幅电路,C 2、R 11(或R 12或R 13)、C 1、R 21(或R 22或R 23)串并联电路构成正反馈支路,并兼作选频网络。调节电位器RW 2可以改变负反馈的深度,以满足振荡的振幅条件和改善波形。二极管D 1、D 2要求温度稳定性好,特性匹配以确保输出信号正负半周对称,R 4接入用以消除二极管的非线性影响,改善波形失真。如K1接电阻R 11、K2接R 21,并且R 11= R 21=R ,C 1= C 2=C ,则电路的振荡频率为: 1 2f RC π= (7-1) 起振的幅值条件: 1 1f v R A R =+ (7-2) 图7-1 正弦信号发生器 通过调整RW 2可以改变电路放大倍数,能使电路起振并且失真最小。该电路可通过开关K1、K2选择不同的电阻以得到不同频率的信号输出。 2.方波和矩形波发生器

方波发生电路如图7-2,其基本原理是在滞回比较器的基础上增加了由R 4和C 1构成的积分电路,输出电压通过该积分电路送人到比较器的反相输入端。其中R 3 、D Z1和D Z2构成双向限幅电路,这样就构成了方波发生器电路,其工作原理如下: 假设在接通电源瞬间,输出电压o v 为Z V +(稳压二极管D Z1、D Z2额定工作时的稳压值),这时比较器同相端的输入电压为 2 12 Z R v V R R +≈ + (7-3) 同时输出电压o v 会通过电阻R 4给C 1充电,反相端的输入电压v -就会逐步升高,当反向输入端的电压v -略大于同相端输入电压v +时,比较器输出电压立即从Z V +翻转为Z V -,这时输出端电压o v 为Z V -,比较器同相端输入电压v +'为 2 12 Z R v V R R +'≈- + (7-4) 这时输出的电压o v 会通过R 4对C 1进行反向充电,当反相输入端的电压略低于v +'时,输出状态再翻转回来,如此反复形成方波信号。所产生方波信号的频率为 41 1 2f R C = 方波 (7-5) R 4 o 图7-2 方波发生电路

信号发生器的设计实现

电子电路综合设计 总结报告 设计选题 ——信号发生器的设计实现 姓名:*** 学号:*** 班级:*** 指导老师:*** 2012

摘要 本综合实验利用555芯片、CD4518、MF10和LM324等集成电路来产生各种信号的数据,利用555芯片与电阻、电容组成无稳态多谐振荡电路,其产生脉冲信号由CD4518做分频实现方波信号,再经低通滤波成为正弦信号,再有积分电路变为锯齿波。此所形成的信号发生器,信号产生的种类、频率、幅值均为可调,信号的种类、频率可通过按键来改变,幅度可以通过电位器来调节。信号的最高频率应该达到500Hz以上,可用的频率应三个以上,T,2T,3T或T,2T,4T均可。信号的种类应三种以上,必须产生正弦波、方波,幅度可在1~5V之间调节。在此过程中,综合的运用多科学相关知识进行了初步工程设计。

设计选题: 信号发生器的设计实现 设计任务要求: 信号发生器形成的信号产生的种类、频率、幅值均为可调,信号的种类、频率可通过按键来改变,幅度可以通过电位器来调节。信号的最高频率应该达到500Hz以上,可用的频率应三个以上,T,2T,3T 或T,2T,4T均可。信号的种类应三种以上,必须产生正弦波、方波,幅度可在1~5V之间调节。 正文 方案设计与论证 做本设计时考虑了三种设计方案,具体如下: 方案一 实现首先由单片机通过I/O输出波形的数字信号,之后DA变换器接受数字信号后将其变换为模拟信号,再由运算放大器将DA输出的信号进行放大。利用单片机的I/O接收按键信号,实现波形变换、频率转换功能。

基本设计原理框图(图1) 时钟电路 系统的时钟采用内部时钟产生的方式。单片机内部有一个用于构成振荡器的高增益反相放大器,该高增益反相放大器的输入端为芯片引脚XTAL1,输出端为引脚XTAL2。这两个引脚跨接石英晶体振荡器和微调电容,就构成一个稳定的自激振荡器。晶振频率为11.0592MHz,两个配合晶振的电容为33pF。 复位电路 复位电路通常采用上电自动复位的方式。上电自动复位是通过外部复位电路的电容充电来实现的。 程序下载电路 STC89C51系列单片机支持ISP程序下载,为此,需要为系统设计ISP下载电路。系统采用MAX232来实现单片机的I/O口电平与RS232接口电平之间的转换,从而使系统与计算机串行接口直接通信,实现程序下载。 方案一的特点: 方案一实现系统既涉及到单片机及DA、运放的硬件系统设计,

(完整版)数字信号发生器的电路设计_(毕业课程设计)

1 引言 信号发生器又称信号源或者振荡器,它是根据用户对其波形的命令来产生信号的电子仪器,在生产实践和科技领域有着广泛的应用。信号发生器采用数字波形合成技术,通过硬件电路和软件程序相结合,可输出自定义波形,如正弦波、方波、三角波、三角波、梯形波及其他任意波形,波形的频率和幅度在一定范围内可任意改变。信号源主要给被测电路提供所需要的已知信号(各种波形),然后用其他仪表测量感兴趣的参数。信号发生器在通信、广播、电视系统,在工业、农业、生物医学领域内,在实验室和设备检测中具有十分广泛的用途。 信号发生器是一种悠久的测量仪器,早在20年代电子设备刚出现时它就产生了。随着通信和雷达技术的发展,40年代出现了主要用于测试各种接收机的标准信号发生器,使信号发生器从定性分析的测试仪器发展成定量分析的测量仪器。自60年代以来信号发生器有了迅速的发展,出现了函数发生器,这个时期的信号发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,其电路结构复杂,且仅能产生正弦波、方波、锯齿波和三角波等几种简单波形。到70年代处理器出现以后,利用微处理器、模数转换器和数模转换器,硬件和软件使信号发生器的功能扩大,产生比较复杂的波形。这时期的信号发生器多以软件为主,实质是采用微处理器对DAC的程序控制,就可以得到各种简单的波形。随着现代电子、计算机和信号处理等技术的发展,极大地促进了数字化技术在电子测量仪器中的应用,使原有的模拟信号处理逐步被数字信号处理所代替,从而扩充了仪器信号的处理能力,提高了信号测量的准确度、精度和变换速度,克服了模拟信号处理的诸多缺点,数字信号发生器随之发展起来。

信号发生器作为电子领域不可缺少的测量工具,它必然将向更高性能,更高精确度,更高智能化方向发展,就象现在在数字化信号发生器的崛起一样。但作为一种仪器,我们必然要考虑其所用领域,也就是说要因地制宜,综合考虑性价比,用低成本制作的集成芯片信号发生器短期内还不会被完全取代,还会比较广泛的用于理论实验以及精确度要求不是太高的实验。因此完整的函数信号发生器的设计具有非常重要的实践意义和广阔的应用前景。 2 数字信号发生器的系统总述 2.1 系统简介 信号发生器广泛应用于电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域。 本设计以AT89C52[1]单片机为核心设计了一个低频函数信号发生器。信号发生器采用数字波形合成技术,通过硬件电路和软件程序相结合,可输出自定义波形,如正弦波、方波、三角波、三角波、梯形波及其他任意波形,波形的频率和幅度在一定范围内可任意改变。波形和频率的改变通过软件控制,幅度的改变通过硬件实现。介绍了波形的生成原理、硬件电路和软件部分的设计原理。本系统主要包括CPU模块、显示模块、键盘输入模块、数模转换模块、波形输出模块。系统电路原理图见附录A,PCB (印制电路板)图见附录B。其中CPU模块负责控制信号的产生、变化及频率的改变;模数转换模块采用DAC0832实现不同波形的输出;显示模块采用1602液晶显示,实现波型和频率显示;键盘输入模块实

一种新型信号调理电路的设计

一种新型信号调理电路的设计 娄莹1,王雪洁2 (1鞍山科技大学电子信息工程学院,辽宁鞍山114044;2浙江大学城市学院信息与 电子学院,杭州310015) 摘要:介绍一种能对各种不同的标准信号、非标准信号进行采集的通用电路。采用一种很新颖的设计方法,在不改变硬件情况下,使用软件进行简单的设定,通过单片机完成对光继电器的控制及数字电位器的调节从而实现对不同信号的采集。 关键词:单片机;光继电器;数字电位器 中图分类号:TP212文献标识码:B文章编号:1001-1390(2005)08-0043-03 !LOUYing1JWANGXue-jie2 (1.CollegeofElectrical&InformationJAnshanScienceandTechnologyUniversityJ Anshan114044JLiaoningJChinaZ2.SchoolofInformation&ElectricalEngineering,ZhejiangUniversityCityCollegeJHangzhou310015JChina) Abstract_Describesageneralcircuitusedtosampleforallkindofdifferentstandardandnon-standardsignals.AnewtypedesignmethodisusedJitdoesnotchangehardwareandonlycarriesoutsimplesetting-upbysoftwareJcouldfinishcontrollightmicrorelayandadjustdigitalpotentiometerthroughSCMJanddifferentsignalcouldbesampled. Keywords_SCMZlightmicrorelayZdigitalpotentiometer DesignofaSignalAdjustCircuit 0引言 在实际生产中往往需要对多种物理信号进行检测以便实现计量和控制,针对不同的信号往往需要不同的采集电路[1-5],这样一来在设计、安装与调试方面就存在很多不便之处。本文提出一种通用的可对多种信号进行采集的信号调理电路。若将此电路应用于仪器仪表中,则不必开箱,只需通过软件设定即可接收工业现场常见的各种信号,并可同时对八个通道模拟量进行采样记录,各个通道完全隔离。本电路适用于精密物理量测量的场合,如煤气、水、蒸汽、重油等资源流量的测量。 1硬件设计 信号调理电路单路输入的硬件结构如图1所示,包括信号输入、放大、单片机控制等几大部分。 信号输入电路由精密基准电源MAX872、光继电器AQW212E、运放4502及精密仪表开关电容模块LTC1043等组成。其中精密基准电源的使用一方面提升输入信号的电位,避免低电位测量时的干扰误差;另一方面作为一路检测电路,其测量结果可以修正其它回路的检测结果,实现系统的在线自校正。MAX872具有较宽的电压输入范围(2.7~20V),输出精度可达2.500V±0.2%。LTC1043CN是双精密仪表开关电容,电容外接,多用于精密仪表放大电路、压频转换电路和采样保持电路等。当内部开关频率被设定在额定值300Hz时,LTC1043CN的传输精确度最高,此时电容器CS和CH大小均为1μF。LTC1043CN和运放LT1013组成差分单端放大器,采用LTC1043CN为差分输入的电压采样值,电压保持在电容器CS上并送到接地参考电容器CH中,而CH的电压送到LT1013的非反相输入端放大。LTC1043CN是通过电容完成电压的传输,使电压由差分输入变为单端输入,并起到了很好的信号隔离作用,在本设计中双电容的巧妙 43 --

函数信号发生器设计报告

函数信号发生器设计报告 目录 一、设计要求 .......................................................................................... - 2 - 二、设计的作用、目的 .......................................................................... - 2 - 三、性能指标 .......................................................................................... - 2 - 四、设计方案的选择及论证 .................................................................. - 3 - 五、函数发生器的具体方案 .................................................................. - 4 - 1. 总的原理框图及总方案 ................................................................. - 4 - 2.各组成部分的工作原理 ................................................................... - 5 - 2.1 方波发生电路 .......................................................................... - 5 - 2.2三角波发生电路 .................................................................... - 6 - 2.3正弦波发生电路 .................................................................. - 7 - 2.4方波---三角波转换电路的工作原理 ................................ - 10 - 2.5三角波—正弦波转换电路工作原理 .................................. - 13 - 3. 总电路图 ....................................................................................... - 15 - 六、实验结果分析 ................................................................................ - 16 - 七、实验总结 ........................................................................................ - 17 - 八、参考资料 ........................................................................................ - 18 - 九、附录:元器件列表 ........................................................................ - 19 -

信号发生器设计---实验报告

信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U =6V,正弦波U p-p>1V。 p-p 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时)用仪器测量上升时间,三角波r△<2%,正弦波r <5%。(计算参数) ~ 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。(差模传输特性)其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注 应接近晶体意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V m 管的截止电压值。 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2调整电路的对称性,并联电阻R E2用来减小差分放大器的线性区。C 1、C 2、C 3为隔直电容,C 4为滤波电容,以滤除谐波分量,改善输出波形。取Ic2上面的电流(看输出) 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n 个波段范围。(n>3) ③输出电压:一般指输出波形的峰-峰值U p-p 。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r ~和r △;表征方波特性的参数是上升时间t r 。 四、电路仿真与分析 实验仿真电路图如图

信号调理电路概论

摘要 信号调理简单的说就是将待测信号通过放大、滤波等操作转换成采集设备能够识别的标准信号。是指利用内部的电路(如滤波器、转换器、放大器等…)来改变输入的讯号类型并输出之。把模拟信号变换为用于数据采集、控制过程、执行计算显示读出或其他目的的数字信号。但由于传感器信号不能直接转换为数字数据,这是因为传感器输出是相当小的电压、电流或电阻变化,因此,在变换为数字信号之前必须进行调理。调理就是放大,缓冲或定标模拟信号等。信号调理将把数据采集设备转换成一套完整的数据采集系统,这是通过直接连接到广泛的传感器和信号类型来实现的。信号调理简单的说就是将待测信号通过放大、滤波等操作转换成采集设备能够识别的标准信号。若信号很小,则要经过放大将信号调理到采集卡能够识别的范围,若信号干扰较大,就要考虑采集之前作滤波了。 关键词:放大器,传感器,滤波,信号采集

1设计任务描述1.1设计题目:信号调理电路 1.2设计要求 1.2.1设计目的 (1)掌握传感器信号调理电路的构成,原理与设计方法(2)熟悉模拟元件的选择,使用方法 1.2.2基本要求 (1)输出幅度在0-3V,线性反应输入信号的幅值 (2)信号的频率范围在50Hz-10KHz (3)匹配的信号源一般复读在100mv,内阻10KΩ左右(4)匹配的负载在100kΩ左右,信号传输的损失尽量小 1.2.3发挥部分 (1)超出上下限的保护电路及指示 (2)电桥信号采集 (3)其他

2设计思路 这次我们小组课程设计的题目是信号调理电路。 信号调理往往是把来自传感器的模拟信号变换为用于数据采集、控制过程、执行计算显示读出和其他目的的数字信号。 在初始阶段用一个电压跟随器来发出信号,利用一个电桥收集信号并发出差分电压,选择放大器与传感器正确接口,使放大器与传感器特性匹配,测量应变片传感器通常要通过桥网络,用高精度和非常低漂移(随温度)的精密电压基准驱动放大器A1。这可为桥提供非常精确、稳定的激励源。因为共模电压大约为激励电压的一半,所以被测信号仅仅是桥臂之间小的差分电压。放大器A2、A3、A4必须提供高共模抑制比,所以仅测量差分电压。这些放大器也必须具有低值输入失调电压漂移和输入偏置电流,以使得从传感器能精确地读数。 在电路的输出端接入一个小绿灯,来判定电路的电压是否超出题目要求范围,并由示波器显示激励源的波形

(Proteus数电仿真)序列信号发生器电路设计

实验8 序列信号发生器电路设计 一、实验目的: 1.熟悉序列信号发生器的工作原理。 2.学会序列信号发生器的设计方法。 3.熟悉掌握EDA软件工具Proteus 的设计仿真测试应用。 二、实验仪器设备: 仿真计算机及软件Proteus 。 74LS161、74LS194、74LS151 三、实验原理: 1、反馈移位型序列信号发生器 反馈移位型序列信号发生器的结构框图如右图 所示,它由移位寄存器和组合反馈网络组成, 从寄存器的某一输出端可以得到周期性的序列 码。设计按一下步骤进行: (1)确定位移寄存器位数n ,并确定移位 寄存器的M 个独立状态。 CP 将给定的序列码按照移位规律每 n 位一组,划分为M 个状态。 若M 个状态中出现重复现象,则应增加移位寄存器的位数。用n+1位再重复上述过程,直到划分为M 个独立状态为止。 (2)根据M 各不同状态列出寄存器的态序表和反馈函数表,求出反馈函数F 的表达式。 (3)检查自启动性能。 (4)画逻辑图。 2、计数型序列信号发生器 计数型序列信号发生器和组合的结构框图 如图 所示。它由计数器和组合输出网络两部分 组成,序列码从组合输出网络输出。设计 过程分为以下两步: (1)根据序列码的长度M 设计模M (2)按计数器的状态转移关系和序列码的要求组合输出网络。由于计数器的状态设置和输出序列没有直接关系,因此这种结构对于输出序列的更改比较方便,而且还能产生多组序列码。 四、计算机仿真实验内容及步骤、结果: 1、设计一个产生100111序列的反馈移位型序列信号发生器。 1、根据电路图在protuse 中搭建电路图

基于运放的信号发生器设计

北京工业大学课程设计报告 模电课设题目基于运放的信号发生器设计 班级:1302421 学号:13024219 姓名:吕迪 组号:7 2015年 6月

一、设计题目 基于运放的信号发生器设计 二、设计任务及设计要求 (一)设计任务 本课题要求使用集成运算放大器制作正弦波发生器,在没有外加输入信号的情况下,依靠电路自激震荡而产生正弦波输出的电路。经过波形变换可以产生同频三角波、方波信号。(二)设计要求 基本要求:使用LM324,采用经典振荡电路,产生正弦信号,频率范围,360Hz~100kHz。输出信号幅度可调,使用单电源供电以及增加功率。 (三)扩展要求 (1)扩大信号频率的范围; (2)增加输出功率 (3)具有输出频率的显示功能。 三、设计方案 (一)设计框图 (二)设计方案选择思路 我们在模电课上学过几种正弦波振荡器的基本电路,包括RC串并联正弦波振荡器、电容三点式正弦波振荡器以及电感三点式正弦波振荡器。因为题目要求设计基于运放的正弦波发生器,我们就确定将RC串并联网络正弦波振荡器作为我们设计的基础电路,因为此振荡器适用于频率在1MHz一下的低频正弦波振荡器而且频率调节方便,我们打算先通过计算搭建RC 正弦波振荡电路,测试基本电路达到的频率及幅值范围,再在这一基础上进行放大,使频率及幅值与设计要求相符合,因此设计出了二级反向放大这一模块。最后,为了提高电路的输出功率,减小电路的输出阻抗,再设计电压跟随器这一模块来完善整个电路。由此,我们确定出三个模块:RC正弦波振荡电路,二级反向放大电路,电压跟随器,并准备从基础模块入手,分模块实现,并根据实际情况不断调整改进原先的设计方案。 (三)元器件清单 芯片:LM324*2 40106*1 二极管:1N4148*2 电容:10μF*1、10nf *4 电阻:2k*1 、10k*4、51k*1 、82k*1 、91k*1 、100k滑动变阻器*1、220k*1 电位器:50k双联*1、10k*2、50k*1 (四)芯片资料

多功能信号发生器课程设计

《电子技术课程设计》 题目:多功能信号发生器 院系:电子信息工程 专业:xxxxxxxx 班级:xxxxxx 学号:xxxxxxxx 姓名:xxx 指导教师:xxx 时间:xxxx-xx-xx

电子电路设计 ——多功能信号发生器目录 一..课程设计的目的 二课程设计任务书(包括技术指标要求) 三时间进度安排(10周~15周) a.方案选择及电路工作原理; b.单元电路设计计算、电路图及软件仿真; c.安装、调试并解决遇到的问题; d.电路性能指标测试; e.写出课程设计报告书; 四、总体方案 五、电路设计 (1)8038原理, LM318原理, (2)性能\特点及引脚 (3)电路设计,要说明原理 (4)振动频率及参数计算 六电路调试 要详细说明(电源连接情况, 怎样通电\ 先调试后调试,频率调试幅度调试波行不稳调试 七收获和体会

一、课程设计的目的 通过对多功能信号发生器的电路设计,掌握信号发生器的设计方法和测试技术,了解了8038的工作原理和应用,其内部组成原理,设计并制作信号发生器能够提高自己的动手能力,积累一定的操作经验。在对电路焊接的途中,对一些问题的解决能够提高自己操作能力随着集成制造技术的不断发展,多功能信号发射器已经被制作成专用的集成电路。这种集成电路适用方便,调试简单,性能稳定,不仅能产生正弦波,还可以同时产生三角波和方波。它只需要外接很少的几个元件就能实现一个多种波、波形输出的信号发生器。不仅如此,它在工作时产生频率的温度漂移小于50×10-6/℃;正弦波输出失真度小于1%,输出频率范围为0.01Hz~300kHz;方波的输出电压幅度为零到外接电源电压。因此,多功能信号发生器制作的集成电路收到了广泛的应用。 二、课程设计任务书(包括技术指标要求) 任务:设计一个能产生正弦波、方波、三角波以及单脉冲信号发生器。 要求: 1.输出频率为f=20Hz~5kHz的连续可调正弦波、方波和三角波。 2.输出幅度为5V的单脉冲信号。 3.输出正弦波幅度V o= 0~5V可调,波形的非线性失真系数γ≤

热电偶温度传感器信号调理电路设计与仿真

目录 第1章绪论 (1) 1.1 课题背景与意义 (1) 1.2 设计目的与要求 (1) 1.2.1 设计目的 (1) 1.2.2 设计要求 (1) 第2章设计原理与内容 (2) 2.1 热电偶的种类及工作原理 (3) 2.1.1热电偶的种类 (3) 2.1.2工作原理分析 (4) 2.2 设计内容 (4) 2.2.1 总体设计 (4) 2.2.2 原理图设计 (5) 2.2.3 可靠性和抗干扰设计 (7) 第3章器件选型与电路仿真 (8) 3.1 器件选型说明 (8) 3.2 电路仿真 (8) 第4章设计心得与体会 (9) 参考文献 (10) 附录1:电路原理图 (11) 附录2:PCB图 (11) 附录3:PCB效果图 (11)

第1章绪论 1.1 课题背景与意义 温度是一个基本的物理量,在工业生产和实验研究中,如机械、食品、化工、电力、石油、等领域,温度常常是表征对象和过程状态的重要参数,温度传感器是最早开发、应用最广的一类传感器。本设计中正是关于温度的测量,采用热电偶温度测量具有很多的好处,它具有结构简单,制作方便,测量范围广,精度高,惯性小和输出信号便于远传等许多优点。 同时,热电偶作为有源传感器,测量时不需外加电源,使用十分方便,所以常在日常生活中被应用,如测量炉子,管道内的气体或液体温度及固体的表面温度。热电偶作为一种温度传感器,通常和显示仪表,记录仪表和电子调节器配套使用。热电偶可直接测量各种生产中从0℃到1300℃范围的液体蒸汽和气体介质以及固体的表面温度。 1.2 设计目的与要求 1.2.1 设计目的 (1) 了解常用电子元器件基本知识(电阻、电容、电感、二极管、三极管、集成电路); (2) 了解印刷电路板的设计和制作过程; (3) 掌握电子元器件选型的基本原理和方法; (4) 了解电路焊接的基本知识和掌握电路焊接的基本技巧; (5) 掌握热电偶温度传感器信号调理电路的设计,并利用仿真软件进行电路的调试。 1.2.2 设计要求 选用热电偶温度传感器进行温度测量,要求测温范围100-300℃、精度为0.1℃。设计传感器的信号调理电路,实现以下要求: (1)将传感器输出4.096-12.209mV的信号转换为0-5V直流电压信号; (2)对信号调理电路中采用的具体元器件应有器件选型依据; (3)电路的设计应当考虑可靠性和抗干扰设计内容; (4)电路的基本工作原理应有一定说明; (5)电路应当在相应的仿真软件上进行仿真以验证电路可行性

简易信号发生器的设计实现

EDA课程设计简易信号发生器的设计实现 小组成员:XXXXXX XXXXX 专业:XXXXX 学院:机电与信息工程学院指导老师:XXXXXX 完成日期:XX年XX月XX日

目录 引言 (3) 一、课程设计内容及要求 (3) 1、设计内容 (3) 2、设计要求 (3) 二、设计方案及原理 (3) 1、设计原理 (3) 2、设计方案 (4) (1)设计思想 (4) (2)设计方案 (4) 3、系统设计 (5) (1)正弦波产生模块 (5) (2)三角波产生模块 (6) (3)锯齿波产生模块 (6) (4)方波产生模块 (6) (5)波形选择模块 (6) (6)频率控制模块 (6) (7)幅度控制模块 (6) (8)顶层设计模块 (7) 三、仿真结果分析 (7) 波形仿真结果 (7) 1、正弦波仿真结果 (7) 2、三角波仿真结果 (8) 3、锯齿波仿真结果 (8) 4、方波仿真结果 (8) 5、波形选择仿真结果 (9) 6、频率控制仿真结果 (9) 四、总结与体会 (10) 五、参考文献 (10) 六、附录 (11)

简易信号发生器 引言 信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广范的应用。它能够产生多种波形,如正弦波、三角波、方波、锯齿波等,在电路实验和设备检验中有着十分广范的应用。 本次课程设计采用FPGA来设计多功能信号发生器。 一、课程设计内容及要求 1、设计内容 设计一个多功能简易信号发生器 2、设计要求 (1)完成电路板上DAC的匹配电阻选择、焊接与调试,确保其能够正常工作。 (2)根据直接数字频率合成(DDFS)原理设计正弦信号发生器,频率步进1Hz,最高输出频率不限,在波形不产生失真(从输出1KHz正弦转换为输出最高频率正弦时,幅度衰减不得大于10%)的情况下越高越好。频率字可以由串口设定,也可以由按键控制,数码管上显示频率傎。 (3)可以控制改变输出波形类型,在正弦波、三角波、锯齿波、方波之间切换。 (4)输出波形幅度可调,最小幅度步进为100mV。 二、设计方案及原理 1、设计原理 (1)简易信号发生器原理图如下

多功能信号发生器课程设计

课题:多功能信号发生器专业:电子信息工程 班级:1班 学号: 姓名: 指导教师:汪鑫 设计日期: 成绩: 重庆大学城市科技学院电气学院

多功能信号发生器设计报告 一、设计目的作用 1.掌握简易信号发生器的设计、组装与调试方法。 2.能熟练使用multisim10电路仿真软件对电路进行设计仿真调试。 3.加深对模拟电子技术相关知识的理解及应用。 二、设计要求 1.设计任务 设计一个能够输出正弦波、方波、三角波三种波形的信号发生器,性能要求如下: (1)输出频率,f=20Hz-5kHz 连续可调的正弦波、方波、三角波; (2)输出正弦波幅度V=0-5V可调,波形的非线性失真系数<=5%; (3)输出三角波幅度V=0-5V可调。 (4)输出方波幅度可在V=0-12V之间可调。 2.设计要求 (1)设计电路,计算电路元件参数,拟定测试方案和步骤; (2)测量技术指标参数; (3)写出设计报告。 三、设计的具体实现 1、系统概述 1.1正弦波发生电路的工作原理: 产生正弦振荡的条件: 正弦波产生电路的目的就是使电路产生一定频率和幅度的正弦波,我们一般在放大电路中引入正反馈,并创造条件,使其产生稳定可靠的振荡。正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。其中:接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。因此,正弦波产生电路一般包括:放大电路;反馈网络;选频网络;稳幅电路个部分。 正弦波振荡电路的组成判断及分类: (1)放大电路:保证电路能够有从起振到动态平衡的过程,电路获得一定幅值的输出值,实现自由控制。 (2)选频网络:确定电路的振荡频率,是电路产生单一频率的振荡,即保证电路产生正弦波振荡。 (3)正反馈网络:引入正反馈,使放大电路的输入信号等于其反馈信号。(4)稳幅环节:也就是非线性环节,作用是输出信号幅值稳定。 判断电路是否振荡。方法是: (1)是否满足相位条件,即电路是否是正反馈,只有满足相位条件才可能产

基于FPGA的信号发生器设计

目录 一、设计要求 (3) 1. 基本要求 (3) 二、设计方案 (3) 三、系统基本原理 (4) 3.1函数信号发生器的几种实现方式 (4) 3.1.1程序控制输出方式 (4) 3.1.2 DMA输出方式 (5) 3.1.3可变时钟计数器寻址方式 (5) 3.1.4直接数字频率合成方式 (6) 3.2频率合成器简介 (6) 3.2.1频率合成技术概述 (6) 3.2.2频率合成器主要指标 (7) 2.3 DDS原理 (8) 3.3.1相位累加器 (8) 3.3.2波形ROM (10) 3.3.3 DDS频率合成器优缺点 (10) 四、单元模块设计 (11) 4.1系统框图 (11) 4.2相位累加器与相位寄存器的设计 (12) 4.3波形ROM的设计 (13) 4.4频率控制模块的设计 (16) 4.5 D/A转换器 (17) 4.6滤波模块 (19) 五、系统源程序 (19) 5.1 Verilog HDL 源程序: (19) 5.2 STM32 源程序: (23)

摘要 直接数字频率合成DDS(Direct Digital Synthesizer)是基于奈奎斯特抽样定理理论和现代器件生产技术发展的一种新的频率合成技术。与第二代基于锁相环频率合成技术相比,DDS具有频率切换时间短、频率分辨率高、相位可连续变化和输出波形灵活等优点,因此,广泛应用于教学科研、通信、雷达、自动控制和电子测量等领域。该技术的常用方法是利用性能优良的DDS专用器件,“搭积木”式设计电路,这种“搭积木”式设计电路方法虽然直观,但DDS专用器件价格较贵,输出波形单一,使用受到一定限制,特别不适合于输出波形多样化的应用场合。随着高速可编程逻辑器件FPGA的发展,电子工程师可根据实际需求,在单一FPGA上开发出性能优良的具有任意波形的DDS系统,极大限度地简化设计过程并提高效率。本文在讨论DDS的基础上,介绍利用FPGA设计的基于DDS 的信号发生器。 关键字:FPGA;DDS;函数信号发生器;

信号发生器 设计

实用信号源的设计与制作 院(系)名称:传媒工程系 专业名称:电子信息工程 学生姓名:李今鸣 指导教师:张占红 二零一零年九月

摘要 实用信号源,能产生某些特定的周期性时间函数波形(正弦波、方波、三角波、锯齿波和脉冲波等)信号,频率范围可从几个微赫到几十兆赫。 正弦波的产生采用RC桥式正弦波振荡电路。由集成运放,电阻,电容,二极管组成。集成运算放大器构成的RC桥式振荡电路,具有性能稳定,电路简单等优点。 方波的产生采用带正反馈的电压比较器,即滞回比较器,它在滞回比较器的基础上,增加了一条RC充,放电负反馈支路构成。电路中的双向稳压管和电阻R 构成稳压电路,限制输出(正向和负向)的幅度。 3 三角波的产生由运放及电阻组成的同向滞回比较器和运放及电阻电容组成的反向有源积分器构成。提高了线性度,降低了失真度。 三种波形的频率范围可从几个微赫到几十兆赫,因此实用信号源在电路实验和设备检测中具有十分广泛的用途。

一系统方案 1.1 实用信号源的基本原理 设计方案: 1. 先设计振荡电路产生正弦波,然后通过整形电路将正弦波变成方波,再由积分电路将方波变成三角波。 2. 用单片集成芯片IC8038实现,但这种方案要求幅度和频率都可调,可采用数字电位器加程控放大器实现。 3. 用单片机和A/D转换器实现,编写相应的程序即可实现位器加程控放大器实现。 在本论文中采取第一种方式来设计实用信号源,这种方式即可以得到多种不同的波形,而且具有频率宽,功能齐全,外围电路简单,调整方便等优点。 1.1.2 实用信号源的组成框图 图1-1 信号源组成框图 由正弦波发生电路产生正弦波作为输入,经过比较器后,就会输出方波,然后将方波作为输入,在经过积分器后,就会输出三角波。 1.2实用信号源的实现电路 1.2.1电路起振分析 正弦波产生电路框图:

光电脉搏信号检测电路设计

光电脉搏信号检测电路设计 生物医学工程1班-唐维-3004202327 摘要:系统采用硅光电池做为光电效应手指脉搏传感器识取脉搏信号。信号经放大后采用低通放大器克服干扰。 关键词:脉搏测量放大器二阶低通 一、前言 脉诊在我国已具有2600多年临床实践,是我国传统中医的精髓,但祖国传统医学采用“望、闻、问、切”的手段进行病情诊断,受人为的影响因素较大,测量精度不高。随着科学技术的发展,脉搏测试不再局限于传统的人工测试法或听诊器测试法。利用血液是高度不透明的液体,光照在一般组织中的穿透性要比在血液中大几十倍的特点, 可通过传感器对脉搏信号进行检测,这种技术具有先进性、实用性和稳定性,同时也是生物医学工程领域的发展方向。本文将详细介绍一种光传导式的脉搏信号检测电路,并说明所涉及到的问题和方法。 二、系统设计 1 系统目标设计及意义 设计制作一个光电脉搏测试仪,通过光电式脉搏传感器对手指末端透光度的监测,间接检测出脉搏信号,并在显示器上显示所测的脉搏跳动波形,要求测量稳定、准确、性能良好。 2 设计思想 (1)传感器:利用指套式光电传感器,指套式光电传感器的换能元件用硅光电池,由于心脏的跳动,引起手指尖的微血管的体积发生相应的变化(当心脏收缩时,微血管容积增大;当心脏舒张时,微血管容积减少),当光通过手指尖射到硅光电池时,产生光电效应,两极之间产生电压由于指尖的微血管内的血液随着心脏的跳动发生相应于脉搏的容积变化,因而使光透过指尖射到硅光电池时也发生相应的强度变化, 而非血液组织(皮肤、肌肉、骨格等)的光吸收量是恒定不变

的, 这样就把人体的脉搏(非电学量) 转换为相应于脉博的电信号, 方便检测。 (2)按正常人脉搏数为60~80次/min ,老人为100~150次/min ,在运动后最高跳动次数为240次/ min 设计低通放大器。5Hz 以上是病人与正常人脉搏波体现差异的地方,应注意保留。 (3)测量中考虑到并要消除的干扰有:环境光对脉搏传感器测量的影响、电磁干扰对脉搏传感器的影响、测量过程中运动的噪声还有50Hz 干扰。 (4)由于透过指尖射到硅光电池的光强很小,输出短路电流约为0.1uA ~3 uA ,所以总共放大106倍以便于观察。传感器得到的脉搏信号极为微弱,很容易淹没在噪声及干扰信号之中,所以对取得的微弱信号先进行放大后再滤波。设计两极放大,因为三级放大个别电路板的零点漂移大得足以达到满幅,测量不准确。每个单级放大器的放大倍数不大于30,以免自激振荡。 (5)所选的电阻参数要尽量精确, IC 选用偏置电流小、输入失调电压小的运算放大器,考虑到性价比,使用LM324。由于硅光电池的输出短路电流受光照变化较大,使得输出变化大,所以采用12V 双电源供电。 3 整体框图 本系统共分为三个模块: 方框图中各部分的作用是: (1)传感器:将脉搏的跳动转换为电压信号,放大104倍。 (2)一级放大电路:对微弱信号进行放大,放大约20倍 (3)二阶低通滤波电路: 滤除干扰信号并进一步放大,再放大约20倍。 4 单元电路的设计

相关文档
相关文档 最新文档