文档库 最新最全的文档下载
当前位置:文档库 › 石鸡水电站拦污栅清污机升级改造方案探讨

石鸡水电站拦污栅清污机升级改造方案探讨

石鸡水电站拦污栅清污机升级改造方案探讨
石鸡水电站拦污栅清污机升级改造方案探讨

石鸡水电站拦污栅清污机升级改造方案探讨

摘要:受“7.11”暴洪影响,大量漂浮物随水流进入石鸡水电站拦污栅,造成拦污栅淤堵,电站清污不及时造成电量损失。本文主要对石鸡水电站拦污栅清污机升级改造方案选型展开分析,对当前使用的主流拦污栅清污设备进行探讨。

关键词:水电站;拦污栅清污机;升级改造

前言:通过对石鸡水电站同类型机组、同流域、同问题水电站清污机进行实地调研分析,选择适合石鸡水电站的拦污栅清污机类型。

1基本情况

石鸡水电站位于甘肃文县境内白水江干流上,下距文县县城26公里,为径流引水式电站,轴流转桨式水轮发电机组,总装机容量32MW。

受2018年“7.11”暴洪影响,白水江流域河道内聚集大量杂草、秸秆和生活垃圾。由于石鸡水电站为径流式水电站,白水江水流速度较快,垃圾泥沙等杂质随水流进入拦污栅,造成拦污栅淤堵,过水断面减小,虽经多次停机清理,仍造成较大电量损失,主管单位对石鸡水电站拦污栅清污不及时造成电量损失进行挂牌督办,要求制定科学合理的治理方案,彻底解决由于拦污栅清污不及时造成电量损失的问题。

2石鸡水电站清污机现状

石鸡水电站清污机拦污栅共有两个孔口,每孔拦污栅宽为9m,清污机宽度为2.2米,有效清污宽度为1.8m,共10个清污工位,清污深度为9.6m,拦污栅栅叶倾角为80°,栅条间距为150mm,过栅流速约为1.34m/s,局部最大过流速度约为2.01m/s。

石鸡水电站现有清污机运行中主要存在以下问题:

1.清污机抓斗自重不够,清污时容易被污物卡住;动水清污时,抓斗容易在水中翻转绞缠。

2.抓斗两侧边梁为箱型梁,长度与齿耙长度一致,增大了插污阻力。

3.抓斗齿耙未插入拦污栅栅叶中,不能清除缠绕在栅叶上的污物。

4.清污机运行速度缓慢,清污时间长,效率低,造成电量损失。

3调研分析

本次调研主要选择了与石鸡水电站同类型机组、同流域和同问题的水电站,通过实地查勘,调研水电站主要有液压抓斗式、自动回转式、液压耙斗式和全机械二次加力抓斗式等四种清污方式。

调研清污机清污原理、主要优缺点如下:

从设备长久稳定运行方面分析:移动液压抓斗式清污机、移动耙斗式清污机和全机械二次加力式清污机在主汛期发生故障时,只要备品充足,即可快速减消缺,继续进行清污,对电站安全发电影响较小;自动回转式清污机在主汛期发生故障时,需进行水下消缺,处理难度大,时间长,严重影响电站安全度汛。

从设备制安成本方面分析:移动液压抓斗式清污机、移动耙斗式清污机和全机械二次加力式清污机均只需要一套设备便能进行拦污栅清污;自动回转式清污机需要安装多套才能进行拦污栅清污。

从电站拦污栅清污效果方面分析:移动液压抓斗式清污机、移动耙斗式清污机和全机械二次加力式清污机均沿着拦污栅表面上下连续运行,将拦污栅表面垃圾全部抓起,清污效果较好;自动回转式清污机只能清理一般垃圾,像编织袋、

(精选文档)ZSB型转刷网篦式清污机使用说明书

目录 一,用途与性能 .............................................. 21-1、用途: .................................................. 21-2、性能: .................................................. 2二,系列型号与主要技术参数: .................. 22-1、型号说明: .......................................... 22-2、主要技术参数 ...................................... 3三,结构和工作原理: .................................. 43-1、结构: .................................................. 43-2、工作系统简图: .................................. 7四,安装与调试: .......................................... 84-1、安装: .................................................. 84-2、调试: .............................................. 13五,使用与维护: ...................................... 155-1、使用要求: ...................................... 155-2、维护: .............................................. 155-3、清污机润滑部位: .......................... 16

水电站闸门防腐工程施工方案资料

水电站闸门防腐 施 工 方 案

目录 1、工程概况 (2) 2、编制依据 (2) 3、防腐工序 (2) 4、施工前准备 (2) 5、防腐工艺 (2) 6、确保工程质量的技术、组织措施 (8) 7、确保安全、文明施工的技术措施 (11)

1、工程概况 1.1工程名称:水电站闸门防腐项目。 1.2工程实施地点:水电站 1.3质量标准:按国家有关防腐刷漆工程施工质量验收标准. 1.4安全目标:安全无事故,事故率为零。 2、编制依据 2.1 DL/T 5018-94 水利水电工程钢闸门制造、安装及验收规范 2.2 SL36-92 水工建筑物金属结构焊接技术规范 2.3 GB11345-89 钢焊缝手工超声波探伤方法和探伤结果分级 2.4 SL105-95 水工金属结构防腐蚀规范 2.5 GB6484~6487 铸钢丸铸钢砂铸铁丸铸铁砂 2.6 GB8923-88 涂装前钢材表面锈蚀等级和除锈等级 2.7 JIS H9300-77喷涂锌操作标准 2.8 GB/T 13288涂装前钢材表面粗糙度等级的评定(比较样块法) 2.9 GB 1031 表面粗糙度参数及其数值 2.10GB 9286 色漆和清漆的划格试验 3、防腐工序 水电站闸门防腐: 施工准备----喷砂除锈---喷锌(厚度120um)---环氧富锌底漆两道(厚度2*40um )---氯化橡胶面漆两道(厚度2*50um )--竣工验收 4、施工前准备 组织技术人员到现场勘察,按施工组织设计、规范和质量评定标准做好技术交底,编制材料计划,及各部分项目技术措施。配备具有多年防腐施工作业的操作熟练工人,施工期间至少应有一名责任监护人员,周围未施工的设备和地面不得受损害和污染。准备足够的塑料薄膜或彩条布,对未施工设备、原材料、地面等进行覆盖保护。施工前,项目部技术负责人要认真学习领会甲方的防腐工艺流程或施工方案和有关施工技术规范要求,编制作业指导书,特殊设备特殊部位的技术要求,分发给每个施工人员,并对设备挂牌,确保施工工艺的准确、进度的顺利进行。对特殊设备及其部位施工中的重要施工节点应作专门的交底,并对特殊工序进行培训指导,重点做好施工中的质量通病,习惯性操作错误进行预防。防腐工程施工的组织工作要非常严格,这是提高工作效率、施工质量和施工安全

篦冷机弧形阀控制系统改造

姗.No.1枷渗删刚T 篦冷机弧形阀控制系统改造 刘雪花,范会永 (金隅集团鹿泉东方鼎鑫水泥有限公司,河北鹿泉050200) 中图分类号:TM571.6l文献标识码:B文章编号:1002-9877(2009)01-0049--02 1问题的提出 我公司5000t/d生产线篦冷机采用天津仕名生 产的TS一12102第三代篦冷机,灰斗卸料装置拥有16 个弧形阀,灰斗内料位计采用的是C'IS—DFB型射频 电容式物位限位开关,当料位大于设定值时,料位开 关内的继电器动作,输出一个开关量,来达到控制(或 报警)的目的。控制系统采用S7—300PLC和触摸屏, 由于S7—300PLC控制器没有和DCS进行通讯,所以 三段篦床循环间隔时间和下料时间只能通过控制柜 的触摸屏调节,中控无法调节。 在生产过程中,经常出现下面几种故障现象:① 在料位传感器或开关限位故障时弧形阀打不开,有个 别灰斗太满顶住篦床而影响篦板的传动。②在放料时 间调整不合适时会有数个灰斗先放完而导致锁不住 风,造成较大的粉尘污染。③灰斗放料过于集中时,造 成下面的斜拉链斗内溢料,拉链机电流波动较大,甚 至在整个450角输送过程中扬尘。而且由于触摸屏的 损坏,无法进行操作。 曾联系厂家修复程序,但费用较高且程序对我们 仍不透明,不便于后期维护。而且原来的程序本身有 些和实际应用不相适应的地方,如:16个灰斗的大小 略有不同,而且料位计的安装位置也不太相同,但其 放料时间却是固定一样的,每一段篦床的几个阀循环 放料的时间也相同,控制很不灵活。曾一度被迫由工 人进行手动调节弧形阀放料。为改变这一状况,公司 决定重新编写篦冷机弧形阀的控制程序,解决上述问 题。 2解决思路与编程思想 目前的控制方案中大多采用料位控制和三段篦 床循环放料控制,或者这两者相结合的方案。料位控 制是一种比较理想的控制方式,能够根据工况的变化 自动调整放料的时间和频率,但由于料位开关受高温 环境影响故障率较高,一旦丢失料位信号会出现顶篦 床的现象。循环放料是将三段篦床分别独立循环控 制,主要设置每相邻两个弧形阀动作的时间间隔(小 循环)和每组弧形阀完成本周期循环到一下循环的时 间间隔(大循环)。但受编程的影响,往往每组内的小..49—. 循环时间都是相同的,设置不够灵活。再加上时间是 通过现场的触摸屏设置的,DCS没有与PLC的通讯, 所以中控不能够及时调整时间,很容易出现锁不住风 和斜拉链机溢料的现象。若采用Profibus-DP总线使 PLC和DCS进行通讯,需要停窑下装程序,会影响正 常生产。 基于上述分析,我们决定舍弃循环放料,16个弧 形阀分别独立控制。在每一个阀的控制中仍采用以料 位控制为主、时间保护控制为辅相结合的思路。具体 步骤如下:如果在规定的时间内(每个阀的开阀时间 间隔)料位信号到达了,就执行料位控制,自动打开弧 形阀,打开后延时一段时间(放料),然后自动关闭,同 时计时器自动复位,再次检测料位信号,如果仍有信 号,则重复执行上面的动作直到料位信号消失。如果 在规定的时间内没有得到料位信号,则判定为料位信 号故障,继而启用后备保护控制——时间控制方式。程序中没有考虑各个阀之间的互锁关系,这样大大简 化了程序的设计,也减少了故障率。 在整个控制过程中,开关限位和料位的准确性是 控制的关键所在。为此,我们在设计程序时加强了故 障诊断功能和报警功能,并在中控室设计相应的监控 系统,将弧形阀所有的运行状态、参数修改与操作纳 入中控的管理范围之内,便于及时发现和解决问题。 3编程设计与实现 根据实际情况,弧形阀控制柜的硬件设施尚较为 完好,为减少工作量和节约成本,故仍采用原来的 S7—300PLC柜,采用软件STEP7和WINCC来编程。 编程过程中,采用了西门子的全集成自动化平台 (TIA),大大提高了编程效率,利用SETP7的自定义 功能块功能和WINCC的画面模板技术,实现了“面向 对象”的编程目的。 首先,利用STEP7编程软件编写控制程序。其核 心技术是定义弧形阀的状态属性和控制方法,状态属 性包括:备妥状态RD、开运行状态RN_F、关运行状 态RN—R、开限位状态LMF、关限位状态LM—R、料 位开关状态LT、故障状态FALT、时间属性和倒计时 状态OUT_.v等;控制方法包括:开驱动DR—F、关驱

某水电站施工组织设计报告

8 施工组织设计 8.1 施工条件 (1) 8.1.1 工程条件 (1) 8.1.2 自然条件 (3) 8.1.3 市场条件 (4) 8.2 天然建筑材料 (4) 8.2.1 混凝土骨料 (4) 8.2.2 块石料 (1) 8.3 施工导流 (1) 8.3.1 首部枢纽施工导流 (1) 8.3.2 压力管道过河段施工导流....................... 错误!未定义书签。 8.3.3 厂区施工导流................................. 错误!未定义书签。 8.4 主体工程施工 (4) 8.4.1 首部枢纽工程施工 (4) 8.4.2 引水隧洞施工 (5) 8.4.3 调压井施工 (8) 8.4.4 压力管道施工 (9) 8.4.5 厂房工程施工 (10) 8.5 施工交通运输 (10) 8.5.1 对外交通 (10) 8.5.2 场内交通运输 (11) 8.6 施工工厂设施 (12) 8.6.1 砂石加工系统 (12) 8.6.2 砼拌和系统 (12) 8.6.3 风、水、电及通讯 (12) 8.6.4 其它施工工厂 (15) 8.7 施工总布置 (16)

8.7.1 施工布置条件 (16) 8.7.2 施工总布置原则 (16) 8.7.3 施工分区规划 (16) 8.7.4 弃碴规划 (18) 8.7.5 施工占地 (18) 8.8 施工总进度 (19) 8.8.1 设计依据 (19) 8.8.2 施工分期 (19) 8.8.3 工程准备期 (19) 8.8.4 主体工程施工期 (20) 8.8.5 工程完建期 (21) 8.8.7 施工强度及高峰人数 (21) 8.9主要技术供应 (21) 8.9.1 主要施工建筑材料 (21) 8.9.2 主要施工机械设备 (22)

开式水滤网系统说明书

ZLSQ型开式冷却水滤水器技术说明 一、基本性能 滤水器性能优良、结构紧凑、密封性好、耗电低、噪音低、外型美观、经久耐用,并能有效的消除技术供水中的杂质,以保证技术供水系统长期的安全、可靠运行。 二、产品结构设计 滤水器由执行机构和自动控制机构组成,执行机构部分由电动减速装置、反冲洗装置、滤水器壳体、滤网及电动/手动两用排污阀等组成,自动控制机构由可编程控制系统组成。 1、采用立式安装形式 本热电站滤水器采用下进水上出水单排污,使用于含有大量沉淀物和悬浮物条件下水的过滤。 2、在过滤腔内设置多支滤芯,并设置有清污器和反冲洗机构,同时利用主轴内腔输出反冲洗污物。 3、过滤原件 过滤元件固定在中间固定盘上,在圆周上均匀分布,保证了固定壳体容积内具有最大的过滤面积。每个过滤元件(滤芯)呈圆筒状,采用梯形截面不锈钢编织滤网,该滤网为不锈钢骨架上缠绕焊接梯形截面不锈钢丝制成,强度高、耐腐蚀。每相邻两根钢丝之间形成一个过滤层,从而使过滤缝隙和面向水流方向的V 形区,收集大于缝隙的颗粒,形成一个过滤层,从而使过滤精度进一步提高。V 形区还提供了适当的反冲洗释放角度,形成自然射流作用,使压力增大,这样便于在反冲洗时能将杂质顺利排除。该滤芯不仅具有足够的抗变形的刚度和强度,而且可以严格保证过滤精度。

4、减速驱动装置 主要由减速机(采用功率小,发热少,噪音小,使用寿命长,性能优良,具有减速比大的摆线针轮减速机),通过弹性柱销联轴器带动传动轴低速转动,具有扭矩大,可靠性高等特点,减速机超负荷运行设有自动停转并报警,并设有尼龙柱销联轴器等安全措施。 5、反冲洗装置 反冲洗装置由减速机、联轴器、低速旋转空心轴管以及吸污口和上下轴承座,排污管等组成。 6、自动控制机构 自动控制机构能实现差压控制自动排污,定时清污,及电机过负荷、过电流保护,出现故障时,可发出信号,及时停机报警。 a)定时清污:通过设定动作时间,滤水器定时清污、排污; b)差压控制清污:通过设定差压上限值,滤水器进行清污和排污; c)现场手动控制清污:手动操作按钮,手动开启电动排污阀进行清污、排

舟坝水电站大坝工程施工组织设计方案(全套)

舟坝水电站大坝工程项目施工组织设计方案

目录 第一章概述 (1) 第二章施工总进度与网络计划 (6) 第三章施工总平面布置 (9) 第四章砂石骨料生产 (21) 第五章施工期水流控制方法及说明 (27) 第六章土石方开挖工程施工 (39) 第七章锚索和锚杆喷锚工程施工 (56) 第八章砼工程施工 (66) 第九章灌浆工程施工 (102) 第十章浆砌石工程施工 (119) 第十一章原型观测工程施工 (128) 第十二章闸门和启闭机工程 (141) 第十三章投入工程施工主要机械设备 (159) 第十四章质量保证体系文件 (164) 第十五章保证施工安全的技术措施及组织措施 (167) 第十六章环境保护与文明施工措施 (171)

第一章概述 1.1 工程概况 舟坝水电站位于**市沐川县舟坝镇境内的马边河干流上,系马边河干流梯级开发的第5级电站。与沐川县城沙湾、**及下游的黄丹水电站均有公路相通。距沐川县城50km,距沙湾67km,经沙湾至**共105km,至下游在建的黄丹电站13km,已建的大渡河铜街子电站在至沙湾的公路上,距本电站约37km。成昆铁路在沙湾通过,交通较方便。 本电站装机2台,单机容量51MW,总装机容量102MW。电站枢纽由拦河大坝、进水口、引水隧洞、压力管道及地面厂房等建筑物组成。工程等级为Ⅱ等工程,永久性主要水工建筑物为2级,次要建筑物为3级。 拦河大坝位于舟坝大桥上游250m处,为碾压砼重力坝,坝顶高程433.50m,坝顶轴线长172.00m,最大坝高72.5m(不含齿槽深度8.00m),坝身设置5个溢流表孔,溢流堰顶高程413.00m,孔口净宽12.00m。 1.2 水文气象和工程地质 1.2.1 水文和气象条件 马边河流域地处盆地与高山过渡带,属亚热带季风气候。由于域内高差悬殊,气候变化显著,上游河源地区,为高山气候,较为寒冷潮湿,中下游特点是冬暖夏热、湿润多雨。舟坝地区多年平均降雨量为1270.4mm,一日最大降雨量为147.5mm,多年平均降雨天数192天。根据犍为和沐川(与坝址直线距离分别为28km和24km)两个气象站资料统计,年平均气温分别为17.5℃和17.3℃,历年极端最高气温为38.2℃和37.9℃,极端最低气温为-2.6℃和-3.9℃,年平均相对湿度为81%和84%,历年最小相对湿度均为18%,年平均蒸发量为1096.5mm和957.6mm,多年平均风速1.5m/s,瞬时最大风速31.0m/s,相应风向NW,据清溪站统计,多年平均水温15.8℃,最高水温26.9℃,最低水温6.3℃。 马边河径流主要来源降水。洪水由暴雨形成,径流年际变化较小,年内分配不均,主汛期为6~9月,其中7~8月最为集中。舟坝电站多年平均流量125m3/s。马边河属山区性河流,山高坡陡,集流迅速,洪水涨落快,

篦冷机技术升级改造方案资料word版本

篦冷机技术升级改造方案 目前新型干法水泥生产线中,篦冷机主流机型为第三代和第四代篦冷机,还有部分第二代篦冷机。随着设备使用时间的不断增加,磨损的不断加剧,出现了各种各样的问题,如:机械故障率上升,影响窑的年运转率;二、三次风温低,热回收效率低,烧成系统煤耗高;窜风严重,风机电耗高;出篦冷机熟料温度高,影响熟料的正常储存和粉磨。因此,经过长期运转后,篦冷机的提升改造非常必要。本文介绍某装备公司的Sinowalk 第四代篦冷机的研发经验,并根据不同现场篦冷机的实际使用情况,结合市场需求,提出了篦冷机技术升级改造的五种方案。从施工周期、节能降耗和成本分析等几个方面,详细阐述了每种方案的特点,以求在合理的投资下,得到最优的技术升级方案。 1 Sinowalk 第四代篦冷机简介 2008 年,天津水泥工业设计研究院推出国内第一台拥有自主知识产权的Sinowalk 第四代篦冷机。本产品吸收了国外先进的设计理念,结合国内机械加工制造水平和用户使用反馈经验,最终研发成功,并顺利达标达产。 2009年,成功开发出熟料尾置辊式破碎机,代替锤式破碎机。同时,第一台Sinowalk 第四代篦冷机配套尾置辊式破碎机成功投产。 2010年,第一台带有中间辊式破碎机的第四代篦冷机成功投产。中间

辊式破碎机位于两段篦床中间,将冷却机篦床一分为二,熟料经第一段篦床冷却后,进入中间辊式破碎机进行破碎,将大块料、红芯料破碎为粒径25mm 左右熟料,再经过第二段篦床冷却。与尾置辊式破碎机相比,配置中间辊式破碎机的冷却机可以得到更低的出篦冷机熟料温度和更高的余热发电风温。 Sinowalk 冷却机主要技术特点如下: 1)二、三次风温高,热回收效率高,大于75%,从而降低系统热耗;2)出篦冷机熟料温度低,有利于熟料的储存和粉磨; 3)机械运转率高,年运转率100%(定期停窑检修除外); 4)每块篦板下方都有自动风量调节阀,提高冷却风利用率,降低冷却风使用量,从而降低风机电耗,单位熟料冷却风量仅1.7~1.9Nm3/kg (由于不同现场熟料结粒不一致,风量在此范围内波动); 5)篦床上方存在相对固定的死料层,保护篦板免受高温热熟料的侵蚀,篦板寿命长达5 年以上,降低了备品备件费用,也节约了更换备件的人工费;

【水电站施组】水电站施工组织设计方案(DOC 230页)

第1章概述 1.1 编制依据 施工组织设计编制依据如下: (1)本工程招标文件中规定的合同范围、工作内容和工程量、工期要求、施工条件、技术条款及招标图纸; (2)招标文件补充通知; (3)现场踏勘及标前会所掌握的情况; (4)在招标文件中明确要求执行的施工技术规程、规范及技术要求; (5)本承包商在同类工程施工中的成功经验及资源。 1.2 工程概况 XX左江山秀水电站位于左江下游河段、扶绥县城上游14km处,是左江综合利用规划中的第三梯级,以发电为主,兼有航运、电灌、养殖、旅游等综合效益的项目,坝址以上集雨面积29562km2,坝址多年平均流量600m3/s,多年平均径流量为189.3亿m3,正常水位86.5m,死水位85m,水库总库容 6.063亿m3,电站装机容量3×26MW=78MW,年利用小时数4522h,多年平均发电量3.527亿kW.h。船闸通航标准为Ⅴ级船闸—顶2 300t分节驳船队,水库蓄水后可渠化河道130km。 本工程枢纽建筑物由河床式厂房、溢流闸坝、船闸、两岸接头重力坝、右岸接头土坝等主要建筑物组成,与河流流向垂直。从右至左依次布置各个挡水建筑物:0+000~0+76.26为右岸接头土坝、0+76.26~0+110.26为右岸连接重力坝、0+110.28~0+184.32为厂房、0+184.34~0+342.94为闸坝、0+342.96~0+370.96为船闸、0+370.98~0+435.98为左岸接头重力坝。坝顶总长435.98m,坝顶高程99m。 1.3 工程施工条件 (1)水文气象条件 左江是珠江流域西江水系的主要支流之一,流域位于XX西南部,集雨面积32068km2,坝址以上集雨面积为29562 km2。左江干流从龙州自西向东蜿蜒而下,至龙州县上金镇有明江自右岸汇入,至崇左县驮怀村附近有黑水河自左岸汇入,经崇左、扶绥、邕宁等县,在邕宁县宋村附近与右江汇合后称郁江,再流经约30km就到XX的

泵站自动化技术改造的探讨

泵站自动化技术改造的探讨 发表时间:2015-10-08T11:34:08.427Z 来源:《基层建设》2015年5期供稿作者:黎仲佳吴达荣 [导读] 东莞市机电排灌管理站东莞市南畲塱排站管理处广东东莞泵站具有着防洪、排涝、航运和改善城市水环境等综合功能,在水利设施的建设中有着重要地位。 黎仲佳吴达荣 东莞市机电排灌管理站东莞市南畲塱排站管理处广东东莞 523000 摘要:本文主要针对泵站自动化技术的改造展开了探讨,通过结合具体的工程实例,对泵站自动化技术改造中存在的问题作了阐述,并给出了一系列相应的措施,以期能为有关方面的技术需要提供有益的参考和借鉴。 关键词:泵站;自动化改造;PLC技术 泵站具有着防洪、排涝、航运和改善城市水环境等综合功能,在水利设施的建设中有着重要地位。但是由于多年的运行,泵站自动化系统出现了运行速度慢、误动作和控制失灵等问题,这就需要我们对自动化进行改造,以保障系统设备的稳定运行和泵站工作的质量。 1 原系统拓扑结构及存在的问题 原自动化系统中每台机组 LCU单独配置一套施耐德Quantum系列PLC,每台机组闸门 LCU单独配置一套Premium系列PLC,高低压开关柜、清污机、皮带机、渗漏泵、检修泵等公用设备配置一套公用PLC,技术供水泵(含冷却供水泵)配置一套PLC,消防供水泵配置小型 PLC,均通过以太网与监控主计算机通信。机组闸门LCU是电气部分与 PLC 共用一个控制柜。机组LCU与机组闸门LCU之间的通讯是通过PLC内部网络通讯完成的,由于机组闸门电气控制柜放置在室外,长期日晒雨淋,电气元件损坏严重,故障频发,造成机组开停机时闸门不能正常联动。原机组闸门开度传感器也出现各种问题,因厂家停产而不能提供备件,且该厂家提供的改造方案造价高,于是我们选用WDC-31闸门开度仪作为替代产品。主机组的温度采集巡检仪使用的是南瑞公司的温度采集装置,通讯速度慢,还经常死机,造成通讯失败。负责高低压开关柜、清污机、皮带机、渗漏泵、检修泵监控功能的公用 PLC 中通讯模块长期运行,经常死机,造成通讯失败。原系统中的监控软件采用的是WEBACCESS4.5版本。目前泵站已不能实现设备自动化控制操作,这些都成为泵站安全运行的巨大隐患。我们本次主要介绍泵站部分的软硬件改造,针对泵站情况首先考虑将拆除闸门电气柜的PLC 控制部分,将闸门测控信号合并至室内的机组LCU柜内,其次机组温度采集使用PLC的温度RTD 模拟量模块来替代温度采集装置,最后在硬件重新配置的基础上对现地控制单元触摸屏软件、PLC软件以及站控级上位机软件进行升级优化。 2 技术改造方案的提出及实施 2.1 原自动化系统拓扑结构 1-5号机组LCU、公用LCU采用140CPU65150 型 CPU,1-5号机组闸门 LCU、其它辅机LCU 采用TSX573623A 型CPU,监控主从机也是配置较低的研华工控机,上位机监控软件采用WEBACCESS4.5版本见图1。虚线框中是本次改造部分。 2.2 升级改造后系统软硬件配置 图1中虚线框中替换成图2,每台机组LCU在增加了机组闸门部分的信号后,原系统中的开关量输入输出模块、通讯模块、模拟量模块数量都需要扩展,各机组LCU中增加2块16点开关量输入140DDI 84100模块、1块16点开关量输出140DDO84300模块、1块TSXETG100网关模块、3块8路140ACI03000温度模拟量模块。TSX-ETG100用于将泵组闸门输入输出信号接入到泵组LCU中,并通过TSXETG100与闸门开度仪WDC31通讯,温度模拟量模块用于将机组温度采集至相应机组的LCU中。 公用 LCU 中增加 2 块 TSXETG100 网关替代原通讯模块与各类保护装置、仪表通讯。TSXETG100 网关实现了 MODBUS 串口协议与 MODBUS TCP 以及网协议的转换。简单经济的将系统中闸门开度仪、保护、仪表装置的RS485信号集成到泵站的以太网架构中,分别经公用PLC、机组PLC与监控主机通信。监控主从机选用上架式施耐德 HMIRHAPP00H 型产品,主要配置为Pentium Duo2.6G、4G 内存、可抽取式250G* 2双硬盘冗余、双以太网。 上位机监控软件采用 WEBACCESS7.0 版本对系统进行升级改造。改造后的系统控制方式分为三级,按优先级由高至低依次为:(1)现地手动控制:操作员在设备现场通过按钮或者开关直接启动、停止设备; (2)现地控制单元控制:操作员通过设置在现地控制单元内的人机接口(触摸屏)启动、停止设备,监视设备启动或者停止的过程;

某水电站施工组织设计完整版

(此文档为word格式,下载后您可任意编辑修改!) 某水电站施工组织设计 第一章工程概况 1.1 工程概况 1.1.1概况 (1)枢纽布置 某水电站坝址位于修河某峡谷出口下游约500m,坝址距修水县城14.5km。枢纽建筑物主要由混凝土坝、土坝、引水发电系统等组成,本标为引水发电系统。 引水发电系统布置于右岸,由引水明渠、发电厂房和尾水渠组成。引水渠前清库段长718.39m,引水渠长218.95m,渠底宽度35m;厂房布置在冲沟出口,其长度为65.4m、宽度为14m、高度为39.41m,厂房内安装2台单机容量为20MW的贯流式发电机组尾水渠长度590.06m,渠底宽15~56m。 1.1.2 自然条件 (1)水文气象 修河流域位于亚热带季风气候区,暧湿多雨,气候温和,多年平均气温16.50C,多年平均降雨量1618mm(修水县气象站资料),约一半降雨量集中在4 ~6月。坝址以上集雨面积为5343km2,多年平均流量为151m3s,洪水多由暴雨形成。3月份开始涨水,4~7月份为汛期,4个月的水量占全年总水量的65.7%,全年最大洪水多出现在

6月份,5月份和7月份次之,洪峰历时一般3~5d。8月~次年2月份为枯水期,尢以10月~次年1月为最枯时段,。4个月的水量占全年水量的10.2%。 (2)工程地质 线路全长约1625m,由引水明渠,厂房和尾水明渠组成。引水线路在清库段后,由北280西转向北,经Ⅱ级阶地开挖明渠进入发电厂房,再于Ⅰ、Ⅱ级阶地形成尾水明渠,渠向由北折转为北600东入修河。 1)引水明渠。位于渡槽以北Ⅱ级阶地,地面高程一般92.00~96.00m,地形平坦。明渠冲积物厚一般为5~10m,上部主要为粘土、粉质粘土,含少量砾粒、卵粒;下部为砂卵砾石加粘土,厚1.8~3.9m,局部仅0.5m。明渠右侧丘岗地带为残坡积物覆盖,厚一般为2~4m。下伏基岩为泥质粉砂岩或粉砂质泥岩,基岩面高程83.00~86.00m,强风化下限深度一般为10~15m。 2)厂房。位于六都Ⅱ级阶地,主厂房紧邻右侧的红层丘岗。阶面高程93.00~96.00m,地形较平坦。厂址覆盖层厚度一般为10~13m,近轴线附近与其东侧覆盖层较薄,为4~10m,厂房西北角部位最厚,达19.8m。冲积物上部一般为粉质粘土、粘土,含少量卵砾石;下部为砂卵砾石夹粘土,厚度1.5~3.9m,西北角处最厚达7.95m。 下伏基岩为白垩系含砾中粗砂岩、砂砾岩,两种岩性质相间或相夹产生,岩性较不均一,强度变化较大。厂址基岩面高程一般为83.00~84.00m,西北角和东南角一低一高,高程分别为73.52、90.72m。由于岩性软弱,又不均匀,岩体风化较深且变化较大。轴线附近强风化

影响凝汽器真空地因素分析及对策

影响凝汽器真空的因素分析及对策 系统凝汽器换热效率等几个方面进行分析探讨,对其它大功率机组的安全经济运行有定参考价值。 凝汽器是凝汽式汽轮发电机组的个重要组成部分,凝汽器真空是影响机组经济安全运行的个重要指标。国产引进型3,触贾机组普遍存在真空度偏低的问,凝汽器真空度在9194之间,比设计值低3,6个百分点,使机组供电煤耗增加化识4.因此,采取措施提高凝汽器真空度,具有定经济价值。 汉电厂期工程2台300,贾汽轮机组为上海汽轮机厂制造的引进型机组,近几年来,凝汽器真空度偏低。为提高凝汽器真空,从以下几个方面进行了技术改造改进真空泵入口管及冷却管,提高真空泵出力;改造循环水滤网,提高循环水水质及循环水流量;部分更换凝汽器铜管,保持凝汽器管束内外面清洁;改进给水泵密封水幻型槽,提高真空系统严密性。通过以上系列改造措施,凝汽器真空度有所提高,确保了机组安全运行,降低了机组煤耗。 1影响凝汽器真空的因素凝汽器真空的形成是由于在凝汽器内蒸汽和凝结水汽液两相之间存在的个平衡压力。蒸汽凝结时的温度,越低,凝汽器内的绝对压力越低凝汽器的真空度为影响凝汽器真空的因素很多,如凝汽器结构和管材凝汽器冷凝面积冷却水量冷却水温真空系统严密性真空系统抽气能力热力系统疏水量等,其中有些参数已

在设计制造环节中确定,如凝汽器的内部结构管材抽气系统布置和容量等;有些是受气候和环境因素影响,如循环水温度;有些则是受安装运行的影响,如管系结垢漏空气循环水量等。 密性凝汽器抽气系统循环水系统凝汽器换热效率几方面进行初步分析与探讨。 2真空系统真空系统范围较大,所有处于低于大气压力运行的设备管道和阀门等不严密处都可能漏入空气,如果漏入的空气量较大,而抽气设备又无法及时地将其排出,则凝汽器汽侧的空气和其它非凝结气体会在凝汽器管束周围面形成气膜,使热阻增加,传热系数降低,会严重影响凝汽器的传热性能,导致凝汽器传热端差增大,真空降低,从而降低了循环效率。同时,凝汽器中非凝结气休积聚,使凝结水过冷度上升,影响低压加热器回热效率,对机组整体热效率不利。根据实际运行经验,真空系统易泄漏空气的薄弱环节有凝汽器汽侧入孔门及喉部焊缝;在潮湿的地方或地下管道发生锈蚀破损;管道的法兰接口处;凝汽器及低压加热器汽侧的水位计接头;疏水系统阀门容器等;低压缸结合面,低压缸轴封。 近两年来,汉电厂真空系统严密性试验不合格。经过长时间大量的消漏工作,真空度有所提高,但效果不甚理想。经与西安电力热工研宄院研究分析,给水泵密封水回水幻型槽漏空气可能性较大。汉电厂给水泵为上海电力修造总厂生产的0600240型锅炉给水泵,其密封水采用凝结水,回水通过型槽疏水至凝汽器,给水泵自由端密封水回水孔与大气相通。由于型槽原设计采用级结构,在机组动态运行过程

水电站施工组织设计毕业设计

某水电站(毕业设计) 施 工 组 织 设 计 分院 班级 专业 姓名 学号 指导教师 目录 1 施工条件 (8) 1.1 工程条件 (8) 1.1.1 工程地理位置 (8)

1.2.1 施工场地 (12) 1.2.2 水文气象条件 (12) 1.2.3 工程地质条件 (14) 1.2.4 市场条件 (16) 1.3.1 混凝土骨料 (16) 1.3.2 料场概况 (17) 1.3.3 料场选择 (18) 1.3.4 块石料 (18) 2 施工导流 (19) 2.1 导流标准 (19) 2.2 导流明渠的布置 (22) 2.2.1 明渠的线路选择和布置要求 (22) 2.2.2 明渠进、出口的布置 (23) 2.2.3 导流时段及导流设计流量 (23) 2.3 导流方式 (24) 2.4 导流方案 (25) 2.5 导流建筑物设计 (25) 2.5.1 导流明渠 (25) 2.5.2 围堰 (26) 2.5.3 围堰施工设计图 (26) 2.5.4 首部枢纽导流建筑物工程量详见表8 (27)

2.6.1 导流明渠 (28) 2.7 围堰施工 (28) 2.8 计算施工导流机械人员配置 (30) 2.8.1 导流明渠的配置计算 (30) 2.8.2 导流明渠编织袋土石填筑 (34) 2.8.3 围堰的施工配置计算 (36) 2.9 截流 (39) 2.10 基坑排水 (39) 3 主体工程施工 (41) 3.1 首部枢纽工程施工 (41) 3.1.1 工程特性 (41) 3.1.2 主要工程量 (42) 3.1.3 施工程序 (43) 3.1.4 施工方法 (43) 3.1.5 施工机械及人员配置计算 (45) 3.2 引水隧洞工程施工 (64) 3.2.1 工程概况 (64) 3.2.2 主洞洞门施工 (64) 3.2.3 主体工程施工方案 (67) 3.2.4 爆破耗药量设计 (72) 3.2.5 施工支洞布置 (73)

网篦式清污机改造方案

焦作万方焦作东区热电机组工程网篦式清污机改造 施工方案 编制:信阳华电环保工程技术有限公司 2012年12月15日

目录 一、工程概况 二、工程量 三、施工布置 四、编制依据 五、安装工艺流程图 六、支撑件安装示意图 七、机械设备与人力配置 八、文明施工及环境保护

一、工程概况 1. 安装位置 网蓖式清污机安装在循环水流道露天处。 2. 运行条件 夏季过水流量: 5.42m3/s 冬季过水流量: 6.77m3/s 流道顶板标高: 0.00(绝对标高92.30) 流道底板标高: -7.30m 最高水位: -0.3m 最低水位: -2.9m 厂区温度变幅: - 17.8℃~43.3℃ 进水温度变幅: 5℃~45℃ 3. 设备设计规范 a)型号: ZSB-4000 b)形式:转刷网篦式 c)数量: 2台 d)网篦净孔尺寸: 3.5mm×26mm e)流道净宽: 4.0m f)流道净高: 7.3m g)滤网框架受力构件的设计允许绕度:≤1/500 h)滤网前后的设计允许水位差:≤2000 mm i)滤网前后的设计运行水位差: 200 mm(可据现场调整) j)滤网前后的设计冲洗水位差: 300 mm(可据现场调整) k)滤网前后的报警水位差: 500 mm(可据现场调整) l)滤网前后的停运水位差: 20-50 mm之间调整

m)安装倾角: 80度 设备使用寿命不低于20年,泵组连续运行时间为一年;大修周期为5年。清污机网篦网面平整、间隙均匀,过滤水质满足凝汽器胶球清洗的要求。每台清污机配置液位检测装置,运行操作可自动程序操作和手动操作两种方式,均可实现对清污机的运行及停止。 清污机正常运行时,网篦前后允许水位差不大于0.3m,但网篦、钢体骨架能够承载的强度允许的水位差为2米水柱。 电动机采用户外型并悬挂于清污机上。 设置就地控制柜,控制2套清污机。 二、工程量 清污机支撑件安装,清污机吊装。 三、施工布置 a)循环水流道已充满水,施工前应将流道内的水排空。 b)在清污机机架背水面流道壁两侧各设置6个支撑件,与清污机焊牢。 四、编制依据 c)水利水电建筑安装安全技术工作规程 五、安装工艺流程图

光伏电站施工方案(专业)

光伏电站施工方案(专业版) NO TABLE OF CONTENTS ENTRIES FOUND.:检验支架安装合格后,安装光伏板。 1、电池组件倒运布料,准备配件及安装工具 2、先安装最高排光伏版:首先根据图纸位置安装四个已打孔的橡胶垫片,加底部夹片,安装最高排第一个光伏版按设计图纸定位,最高处拉横向、立向基准线,作为光伏版的横向基准;光伏板靠近支架外侧一端穿入顶部盖片,紧固螺栓。内侧盖片在安装第二片光伏板之后安装,并紧固螺栓。依次安装其他光伏板。 3、安装中间一排光伏版,方法同上。 4、安装最下排光伏版,方法同上。 5、复测平整度、边缘高差等,调整至符合质量要求。 6、安装完毕后,安装长、短立柱最后的固定螺栓。 注意事项:轻拿轻放;注意磕碰;光伏版可能已经因日照带电,注意两端线端不要连接,造成触电或者损坏光伏板。 八、接地镀锌扁铁: 九、电器: 1、电池组件安装 1.1安装流程 电池组件安装施工流程框图见图1.1.1。 图1.1.1 电池组件安装施工流程框图 1.2施工方案 (1)电池组件倒运布料及开箱验收

将电池组件倒运至施工子方阵内,并按照事先算好的数量整齐布放在各施工区域内。每个子方阵电池组件安装前要对组件开箱验收。施工队开箱前通知项目部,由项目部通知监理、业主及厂家等进行验收,并做好验收记录。 (2)电池组件安装 电池组件安装前,要对支架进行复查,主要检查横梁的水平等,防止支架水平、高程等变化从而影响组件安装质量。 多晶硅光伏组件的安装宜从下向上安装,具体施工步骤如下: ●根据电池组件安装图纸,用盒尺测量出第一排(最下面一排)电池组件上边缘所在位置,在阵列两端的支架上定点,拉工程线。 ●安装第一块电池组件。以从左向右安装为例,电池板上缘以施工线为基准,左边缘尽量往左侧靠,为右侧所有组件留出一定的调整余量,以防安装右侧最后一块电池组件时因间隔不够导致无法安装。位置调整完毕后,安装四周压块,紧固螺丝。 ●安装第二块及其余电池组件。因压块自身间隙为20mm,所以不需要可以关注电池组件间的间隙大小,只需要紧靠压块安装即可。 ●下方第一排安装完成后,安装第二排。此时可不用施工线,以已安装完成的电池组件上边缘为基准进行安装。安装时注意组件需要对角及边缘平齐。完成后,依次安装剩余两排的电池组件。 每个电池组件背面有一个接线盒及接线盒引出的正负极线,安装时应注意这两条线不要被压在光伏支架与电池组件间。正负极线两端的连接器需要悬空,绝不可以触碰光伏支架或其他金属体。 组件要按照厂家编好的子阵号进行安装,严禁混用。 (3)组件串联及接地 按照设计图纸要求确定串联数量、串联路径。要求光伏组件之间接插件互相连接紧固。接线时应注意勿将正负极接反,保证接线正确。每串电池板连接完毕后,应检查电池板串联开路电压是否正确,连接无误后断开一块电池板的接线,保证后续工序的安全操作。 组件接地通过组件接地孔、导线与接地体良好连接。在需要更多接地孔时候,按照组件生产商要求在相应位置打孔。 (4)电池组件安装验收 组件安装完成,由作业人员自检后,再经各工区施工队技术员复检,最后由项目部质检人员终检。项目部终检合格后报监理验收。

水电站施工方案

第一章编制综合说明 1.1编制依据 1、本施工组织设计根据云南省腾冲县永兴河一、二级水电站首部枢纽、压力前池、厂区枢纽及压力管道土建和安装工程《招标文件》和《招标图纸》; 2、现行水利水电工程建设的技术规范、验收标准和有关规定; 3、国家及当地政府的相关法规、条例和政策; 4、现场调查资料及我单位施工能力及以往类似工程施工经验; 5、我局拟为本工程配备的人员、机械设备、测量检测设备等资源配置情况; 1.2工程概况 永兴河梯级电站位于腾冲县猴桥镇永兴村, 永兴河(又名松山河)属槟榔江左岸一级支流。永兴河梯级水电站工程由新塘河调节水库、一级电站和二级电站组成。新塘河水库为季调节水库,位于永兴河支流新塘河上,坝址河道高程约1915m,坝址以上径流面积16.73km2。新塘河水库由面板堆石坝、溢洪道、竖井、输水隧洞组成。面板堆石坝最大坝高69.65m,坝顶高程1972.65m,校核洪水位1971.81m(P=0.1%),正常蓄水位1970m,有效调节库容量约612.8万m3;溢洪道为有闸控制宽顶堰,堰宽5m,堰顶高程1966.50m;竖井内径5.5m,井内设弧形闸门,竖井前设一道平板检修闸门;输水隧洞长461.00m,进口底板高程为1930.00m,隧洞出口高程1929.54m,库水被输送到邻谷(小干河),于高程约1902m处汇入崩麻河。 永兴河一级水电站首部枢纽位于马房园口,河床高程1898.00m,河道顺直,坡降为7%,河床覆盖层为冲洪积漂石混卵石砾岩堆积,下伏基岩为弱风化花岗闪长岩,岩体致密坚硬,渗漏弱、完整性好、强度高,基本不存在深层抗滑稳定问题,为较好的天然坝基。由闸坝、溢流坝,取水口,无压隧洞,压力前池、压力管道、厂房等建筑物组成。 永兴河二级电站取水口位于一级厂房下游,压力隧洞穿杨梅坡拦门山,沿河道左岸布设,压力管道沿杨梅坡敷设,引水线路总长2138.00m,其中压力隧洞长1138.00m,压力钢管长约1000m厂房位于老寨村大窝子田,利用水头412.30m,机组设计流量6.0m3/S,装机容量2×10MW,安装两台立轴冲击式水轮发电机组永兴河二级水电站由大坝,取水口,有压隧洞,压力管道、厂区等建筑物组成。 云南省腾冲县永兴河一、二级水电站首部枢纽、压力前池、厂区枢纽及压力管道土建和安装工程规定的开工日期为2012年10月1日,本标段完工日期为2013年12月31日,本标段施工总工期为15个月。 1.3水文、气象条件及工程地质 水文气象及工程地质资料详见《参考资料》。 永兴河一级水电站首部枢纽位于马房园口,河床高程1898.00m,河道顺直,坡降为7%,河床覆盖层为冲洪积漂石混卵石砾岩堆积,下伏基岩为弱风化花岗闪长岩,岩体致密坚硬,渗漏弱、完整性好、强度高,基本不存在深层抗滑稳定问题,为较好的天然坝基。 永兴河一级水电站厂区枢纽布置于“矛草坡”脚,永兴河右岸I级阶地,呈狭长条状,顺河向长60~80m,宽10~15m;高程1510.0~1513.2m,阶面比河水面高出1~4m。河流在此的走势为左岸侵蚀、右岸沉积,于厂房所在的阶地稳定有利。 永兴河二级水电站首部枢纽位于永兴河一级水电站的下游100m处的矛草坡脚拦门山,河床高程约1501.80m,河道顺直,坡降为12.7%,河床覆盖层为冲洪积漂石混卵石砾岩堆积,下伏基岩为花岗闪长岩。岩体致密坚硬,渗漏弱、完整性好、强度高,基本不存在深层抗滑稳定问题,为较好的天然坝基。 1.4施工交通条件 1.4.1对外交通条件

水泥篦冷机改造方案20120218

篦冷机改造方案 一、概述 武汉亚鑫2500t/d生产线由湖北省建筑材料工业设计院设计,采用沈阳水泥机械厂SCO-1174篦式冷却机,篦床有效面71m2,设计产量3000t/d,二段传动,有部分固定梁采用空气梁,活动梁无空气梁,2007年9月28日投产,运行直今已四年多,由于受当时技术水平的限制,在篦冷机设计、加工上存在一定的缺陷,亟需利用我院的新技术对冷却系统进行技术改造。经过四年的运行,冷却系统中部分设备部件也需要更换。技术改造后不仅可提高热回收效率和系统可靠性,减少维修、维护费用,而且还能满足水泥厂增产的要求。 二、技术方案 投标提供的冷却机为步进式高效冷却机WHEC-3000规格W7632,采用6个道,有效面积76.5m2,配置3台进口液压泵,单位产量为40.4t/d.m2。原破碎机更换为尾部辊式熟料破碎机。在原地坑周围做混凝土墩子支撑冷却机底部框架,重新安装设备。 三、工作内容 1.拆除原有设备,并将链斗机按图纸要求前移,原破碎机基础要 打掉一部分; 2.在原设备地坑周围按基础图做混凝土墩子,并打地脚螺栓孔; 3.重做风机基础; 4.安装找平底部支撑框架,并浇灌; 5.安装冷却机及辊式破碎机; 6.试车; 7.砌筑; 8.投入运行。 四、实施计划 1.设备加工时间为120天,以预付款到合肥院的日期计算; 2.拆除设备及制作基础由需方完成,需在设备到场前结束;

3.设备安装、试车、砌筑时间约为45天,如安装或试车条件不具 备,安装时间顺延。 五、WHEC-3000型步进高效能冷却机技术性能 规格: WHEC-3000型 型号: W7-632 产量: 3000t/d 产量(最大): 3500t/d 入料温度: 1400℃ 出料温度: 65℃+环境温度 有效面积:76.5m2 设计冲程: 200~420mm 单位风量: <2.0 Nm3/kg-cl 单位载荷: 39.2-45.7t/d.m2 热效率: >74% 数量: 1套 2.1液压传动主电机 功率: 3x75kW 转速: 1480r.p.m 电压: 380V 数量: 3台 2.2循环泵电机 型号: Y132S1-2 功率: 5.5kW 转速: 2900 r.p.m 电压: 380V 数量: 1台 2.3电加热器 型号: SRY4-220/5 功率: 3X5kW

相关文档
相关文档 最新文档