文档库 最新最全的文档下载
当前位置:文档库 › 高考数学等比数列习题及答案

高考数学等比数列习题及答案

高考数学等比数列习题及答案
高考数学等比数列习题及答案

一、等比数列选择题

1.已知公比大于1的等比数列{}n a 满足2420a a +=,38a =.则数列()

{}

1

11n n n a a -+-的

前n 项的和为( )

A .()23

82133n n +--

B .()23

182155n n +---

C .()2382133

n n ++-

D .()23182155

n n +-+-

2.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9=( ) A .4

B .5

C .8

D .15

3.已知各项不为0的等差数列{}n a 满足2

6780a a a -+=,数列{}n b 是等比数列,且

77b a =,则3810b b b =( )

A .1

B .8

C .4

D .2

4.已知等比数列{}n a 中,1354a a a ??=

,公比q =,则456a a a ??=( ) A .32

B .16

C .16-

D .32-

5.已知数列{}n a 满足:11a =,*1()2

n

n n a a n N a +=∈+.则 10a =( ) A .

11021

B .

11022 C .1

1023

D .1

1024

6.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( ) A .-3+(n +1)×2n B .3+(n +1)×2n C .1+(n +1)×2n D .1+(n -1)×2n

7

12

与1

2的等比中项是( )

A .-1

B .1

C

2

D

.2

±

8.已知等比数列{}n a 的前n 项和为n S ,若2

13a a =,且数列{}13n S a -也为等比数列,则

n a 的表达式为( )

A .12n

n a ??= ???

B .1

12n n a +??= ???

C .23n

n a ??= ???

D .1

23n n a +??= ???

9.已知等比数列{}n a 的前n 项和为,n S 且63

9S S =,则42a

a 的值为( )

A

B .2

C

.D .4

10.已知等比数列{}n a 的前n 项和为n S ,且1352

a a +=,245

4a a +=,则n n S =a ( )

A .14n -

B .41n -

C .12n -

D .21n -

11.等比数列{}n a 中各项均为正数,n S 是其前n 项和,且满足312283S a a =+,

416a =,则6S =( )

A .32

B .63

C .123

D .126

12.已知等比数列{}n a 的前5项积为32,112a <<,则35

124

a a a ++的取值范围为( ) A .73,

2??

????

B .()3,+∞

C .73,

2?

? ???

D .[

)3,+∞

13.公差不为0的等差数列{}n a 中,2

3711220a a a -+=,数列{}n b 是等比数列,且

77b a =,则68b b =( )

A .2

B .4

C .8

D .16

14.在流行病学中,基本传染数R 0是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.初始感染者传染R 0个人,为第一轮传染,这R 0个人中每人再传染R 0个人,为第二轮传染,…….R 0一般由疾病的感染周期?感染者与其他人的接触频率?每次接触过程中传染的概率决定.假设新冠肺炎的基本传染数0 3.8R =,平均感染周期为7天,设某一轮新增加的感染人数为M ,则当M >1000时需要的天数至少为( )参考数据:lg38≈1.58 A .34

B .35

C .36

D .37

15.已知{}n a 是各项均为正数的等比数列,121a a +=,344a a +=,则

5678a a a a +++=( )

A .80

B .20

C .32

D .

255

3

16.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积列”.若各项均为正数的等比数列{a n }是一个“2022积数列”,且a 1>1,则当其前n 项的乘积取最大值时,n 的最大值为( ) A .1009

B .1010

C .1011

D .2020

17.已知等比数列{}n a 的通项公式为2*

3()n n a n N +=∈,则该数列的公比是( )

A .

19

B .9

C .

13

D .3

18.已知正项等比数列{}n a 满足11

2

a =,2432a a a =+,又n S 为数列{}n a 的前n 项和,则5S =( )

A .

312

或112

B .

312

C .15

D .6

19.已知等比数列{}n a 的前n 项和为n S ,若123

111

2a a a +

+=,22a =,则3S =( ) A .8

B .7

C .6

D .4

20.已知等比数列{a n }中a 1010=2,若数列{b n }满足b 1=1

4,且a n =1n n

b b +,则b 2020=( )

A .22017

B .22018

C .22019

D .22020

二、多选题

21.已知1a ,2a ,3a ,4a 依次成等比数列,且公比q 不为1.将此数列删去一个数后得到的数列(按原来的顺序)是等差数列,则正数q 的值是( ) A

B

C

D

22.已知数列{}n a 的前n 项和为n S ,且1a p =,122n n S S p --=(2n ≥,p 为非零常数),则下列结论正确的是( ) A .{}n a 是等比数列 B .当1p =时,4158

S =

C .当1

2

p =

时,m n m n a a a +?= D .3856a a a a +=+

23.设{}n a 是无穷数列,1n n n A a a +=+,()1,2,n =,则下面给出的四个判断中,正确

的有( )

A .若{}n a 是等差数列,则{}n A 是等差数列

B .若{}n A 是等差数列,则{}n a 是等差数列

C .若{}n a 是等比数列,则{}n A 是等比数列

D .若{}n A 是等差数列,则{}2n a 都是等差数列

24.记单调递增的等比数列{a n }的前n 项和为S n ,若2410a a +=,23464a a a =,则( )

A .1

12n n n S S ++-= B .12n n a

C .21n

n S =-

D .1

21n n S -=-

25.已知集合{

}*

21,A x x n n N

==-∈,{}*

2,n

B x x n N ==∈将A

B 的所有元素从

小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的可能取值为( ) A .25

B .26

C .27

D .28

26.在《增减算法统宗》中有这样一则故事:三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.则下列说法正确的是( ) A .此人第三天走了二十四里路

B .此人第一天走的路程比后五天走的路程多六里

C .此人第二天走的路程占全程的

14

D .此人走的前三天路程之和是后三天路程之和的8倍

27.数列{}n a 的前n 项和为n S ,若11a =,()

*

12n n a S n N +=∈,则有( ) A .1

3n n S -=

B .{}n S 为等比数列

C .1

23

n n a -=?

D .2

1,

1,23,2n n n a n -=?=??≥?

28.已知数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, n S 是数列1 n a ??

????

的前n 项和,则下列结论中正确的是( ) A .()21121n n

S n a -=-? B .212

n n S S =

C .2311222

n n n S S ≥

-+ D .212

n n S S ≥+

29.在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法正确的是( ) A .此人第二天走了九十六里路

B .此人第三天走的路程站全程的

18

C .此人第一天走的路程比后五天走的路程多六里

D .此人后三天共走了42里路

30.设数列{}n a 满足*12335(21)2(),n a a a n a n n ++++-=∈N 记数列{

}21

n

a n +的前n 项和为,n S 则( ) A .12a =

B .2

21

n a n =

- C .21

n n

S n =

+ D .1n n S na +=

31.已知数列{a n },{b n }均为递增数列,{a n }的前n 项和为S n ,{b n }的前n 项和为T n .且满足a n +a n +1=2n ,b n ?b n +1=2n (n ∈N *),则下列说法正确的有( )

A .0<a 1<1

B .1<b 1

C .S 2n <T 2n

D .S 2n ≥T 2n

32.数列{}n a 为等比数列( ). A .{}1n n a a ++为等比数列 B .{}1n n a a +为等比数列 C .{

}

22

1n n a a ++为等比数列

D .{}n S 不为等比数列(n S 为数列{}n a 的前n 项)

33.设{}n a 是无穷数列,若存在正整数k ,使得对任意n +∈N ,均有n k n a a +>,则称

{}n a 是间隔递增数列,k 是{}n a 的间隔数,下列说法正确的是( )

A .公比大于1的等比数列一定是间隔递增数列

B .已知4

n a n n

=+

,则{}n a 是间隔递增数列 C .已知()21n

n a n =+-,则{}n a 是间隔递增数列且最小间隔数是2

D .已知2

2020n a n tn =-+,若{}n a 是间隔递增数列且最小间隔数是3,则45t ≤<

34.关于等差数列和等比数列,下列四个选项中不正确的有( )

A .若数列{}n a 的前n 项和2(n S an bn c a =++,b ,c 为常数)则数列{}n a 为等差数列

B .若数列{}n a 的前n 项和1

22n n S +=-,则数列{}n a 为等差数列

C .数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,?仍为等差数列

D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,?仍为等比数列;

35.等比数列{}n a 中,公比为q ,其前n 项积为n T ,并且满足11a >.99100·10a a ->,991001

01

a a -<-,下列选项中,正确的结论有( ) A .01q << B .9910110a a -< C .100T 的值是n T 中最大的

D .使1n T >成立的最大自然数n 等于198

【参考答案】***试卷处理标记,请不要删除

一、等比数列选择题 1.D 【分析】

根据条件列出方程组可求出等比数列的公比和首项,即可得到数列的通项公式,代入

()

1

11n n n a a -+-可知数列为等比数列,求和即可.

【详解】

因为公比大于1的等比数列{}n a 满足2420a a +=,38a =,

所以31121208

a q a q a q ?+=?=?,

解得2q

,12a =,

所以1222n n

n a -=?=,

()

()

()

111

1

1

1222111n n n n n n n n a a ++-+--+=??-=∴--,

()

{

}

1

11n n n a a -+∴-是以8为首项,4-为公比的等比数列,

()

23

3

5

7

9

21

11

8[1(4)]8222222

(1)1(4)155

n n n n n n S -++---∴=-+--+

+?==+---, 故选:D 【点睛】

关键点点睛:求出等比数列的通项公式后,代入新数列,可得数列的通项公式,由通项公式可知数列为等比数列,根据等比数列的求和公式计算即可. 2.C 【分析】

由等比中项,根据a 3a 11=4a 7求得a 7,进而求得b 7,再利用等差中项求解. 【详解】 ∵a 3a 11=4a 7, ∴2

7a =4a 7, ∵a 7≠0, ∴a 7=4, ∴b 7=4, ∴b 5+b 9=2b 7=8. 故选:C 3.B 【分析】

根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】

因为各项不为0的等差数列{}n a 满足2

6780a a a -+=,

所以2

7720a a -=,解得72a =或70a =(舍);

又数列{}n b 是等比数列,且772b a ==,

所以3

3810371178b b b b b b b ===.

故选:B. 4.A 【分析】

由等比数列的通项公式可计算得出()6

456135a a a q

a a a ??=??,代入数据可计算得出结果.

【详解】

由6

3

2

6

456135135432a a a a q a q a q a a a q ??=?????=???=?=.

故选:A. 5.C 【分析】

根据数列的递推关系,利用取倒数法进行转化得1121n n

a a +=+ ,构造11n a ??

+????

为等比数列,求解出通项,进而求出10a . 【详解】 因为12n n n a a a +=

+,所以两边取倒数得12121n n n n a a a a ++==+,则

11

1121n n a a +??+=+ ???

, 所以数列11n a ??+????为等比数列,则11111122n n

n a a -??+=+?= ???

所以121n n a =-,故1010

11

211023

a ==-. 故选:C 【点睛】

方法点睛:对于形如()11n n a pa q p +=+≠型,通常可构造等比数列{}n a x +(其中

1

q

x p =

-)来进行求解. 6.D 【分析】

利用已知条件列出方程组求解即可得1,a q ,求出数列{a n }的通项公式,再利用错位相减法求和即可. 【详解】

设等比数列{a n }的公比为q ,易知q ≠1,

所以由题设得()

()

3136

1617

11631a q S q a q S q ?-?==-?

?-?

=

=?-?

, 两式相除得1+q 3=9,解得q =2, 进而可得a 1=1, 所以a n =a 1q n -1=2n -1, 所以na n =n ×2n -1.

设数列{na n }的前n 项和为T n ,

则T n =1×20+2×21+3×22+…+n ×2n -1, 2T n =1×21+2×22+3×23+…+n ×2n ,

两式作差得-T n =1+2+22

+…+2n -1

-n ×2n

=

1212

n

---n ×2n =-1+(1-n )×2n , 故T n =1+(n -1)×2n . 故选:D. 【点睛】

本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题. 7.D 【分析】

利用等比中项定义得解. 【详解】

23111(

)()(2222-==±,12∴

与12的等比中项是2

± 故选:D 8.D 【分析】

设等比数列{}n a 的公比为q ,当1q =时,111133(3)n S a na a n a -=-=-,该式可以为0,不是等比数列,当1q ≠时,11113311n n a a

S a q a q q

-=-

?+---,若是等比数列,则11301a a q -=-,可得2

3

q =,利用213a a =,可以求得1a 的值,进而可得n a 的表达式 【详解】

设等比数列{}n a 的公比为q

当1q =时,1n S na =,所以111133(3)n S a na a n a -=-=-, 当3n =时,上式为0,所以{}13n S a -不是等比数列. 当1q ≠时,(

)1111111n n

n a q a a

q S q

q q

-==-

?+---, 所以11113311n n a a

S a q a q q

-=-

?+---, 要使数列{}13n S a -为等比数列,则需

11301a a q -=-,解得2

3

q =. 21

3a a =,2

123a ??

∴= ???

故2

1

1

11222333n n n n a a q -+-??????=?=?= ? ? ???

??

??

.

【点睛】

关键点点睛:本题的关键点是熟记等比数列的前n 项和公式,等比数列通项公式的一般形式,由此若11113311n n a a S a q a q q -=-?+---是等比数列,则11301a

a q

-=-,即可求得q 的值,通项即可求出. 9.D 【分析】

设等比数列{}n a 的公比为q ,由题得()4561238a a a a a a ++=++,进而得2q

,故

24

2

4a q a ==. 【详解】

解:设等比数列{}n a 的公比为q ,因为

6

3

9S S =,所以639S S =, 所以6338S S S -=,即()4561238a a a a a a ++=++, 由于()3

456123a a a q a a a ++=++,

所以3

8q =,故2q

所以24

2

4a q a ==. 故选:D. 10.D 【分析】

根据题中条件,先求出等比数列的公比,再由等比数列的求和公式与通项公式,即可求出结果. 【详解】

因为等比数列{}n a 的前n 项和为n S ,且1352

a a +=

,2454a a +=,

所以

24135

1452

2

q a a a a =++==, 因此()()11

1

1111112

21112n n

n

n n n n n n

a q S q q a a q q q ---??- ?

--??=

=

==--?? ???

. 故选:D. 11.D

根据等比数列的通项公式建立方程,求得数列的公比和首项,代入等比数列的求和公式可得选项. 【详解】

设等比数列{}n a 的公比为(0)q q >.∵312283S a a =+, ∴123122()83a a a a a ++=+,即321260a a a --=. ∴2

260q q --=,∴2q 或3

2

q =-(舍去),

∵416a =,∴4

13

2a a q =

=, ∴6616(1)2(12)

126112

a q S q --=

==--, 故选:D. 12.C 【分析】

由等比数列性质求得3a ,把35

124

a a a ++表示为1a 的函数,由函数单调性得取值范围. 【详解】

因为等比数列{}n a 的前5项积为32,所以53

32a =,解得32a =,则2

3511

4a a a a =

=,35

124

a a a +

+ 1111a a =++

,易知函数()1

f x x x

=+在()1,2上单调递增,所以35173,242a a a ??+

+∈ ???, 故选:C . 【点睛】

关键点点睛:本题考查等比数列的性质,解题关键是选定一个参数作为变量,把待求值的表示为变量的函数,然后由函数的性质求解.本题蝇利用等比数列性质求得32a =,选1a 为参数. 13.D 【分析】

根据等差数列的性质得到774a b ==,数列{}n b 是等比数列,故2

687b b b ==16.

【详解】

等差数列{}n a 中,31172a a a +=,故原式等价于2

7a -740a =解得70a =或74,a =

各项不为0的等差数列{}n a ,故得到774a b ==,

数列{}n b 是等比数列,故2

687b b b ==16.

14.D 【分析】

假设第n 轮感染人数为n a ,根据条件构造等比数列{}n a 并写出其通项公式,根据题意列出关于n 的不等式,求解出结果,从而可确定出所需要的天数. 【详解】

设第n 轮感染人数为n a ,则数列{}n a 为等比数列,其中1 3.8a =,公比为0 3.8R =,

所以 3.81000n

n a =>,解得 3.8333

log 1000 5.17lg3.8lg3810.58

n >=

=≈≈-, 而每轮感染周期为7天,所以需要的天数至少为5.17736.19?=. 故选:D . 【点睛】

关键点点睛:解答本题的关键点有两个:(1)理解题意构造合适的等比数列;(2)对数的计算. 15.A 【分析】

由条件求出公比q ,再利用前4项和和公比求5678a a a a +++的值. 【详解】

根据题意,由于{}n a 是各项均为正数的等比数列,

121a a +=,()234124a a q a a +==+,∴24q =,0q >,2q

则()()4

56781234161480a a a a q a a a a +++=+++=+=.

故选:A 16.C 【分析】

根据数列的新定义,得到122021...1a a a =,再由等比数列的性质得到2

10111a =,再利用

11,01a q ><<求解即可.

【详解】

根据题意:2022122022...a a a a =, 所以122021...1a a a =,

因为{a n }等比数列,设公比为q ,则0q >,

所以2

12021220201011...1a a a a a ====,

因为11a >,所以01q <<, 所以1010101110121,1,01a a a >=<<,

所以前n 项的乘积取最大值时n 的最大值为1011. 故选:C.

关键点睛:本题主要考查数列的新定义以及等比数列的性质,数列的最值问题,解题的关

键是根据定义和等比数列性质得出2

10111a =以及11,01a q ><<进行判断.

17.D 【分析】

利用等比数列的通项公式求出1a 和2a ,利用2

1

a a 求出公比即可 【详解】

设公比为q ,等比数列{}n a 的通项公式为2*

3()n n a n N +=∈,

则3

1327a ==,4

2381a ==,2

1

3a q a ∴

==, 故选:D 18.B 【分析】

首先利用等比数列的性质求3a 和公比q ,再根据公式求5S . 【详解】

正项等比数列{}n a 中,

2432a a a =+∴,

2332a a =+∴,

解得32a =或31a =-(舍去) 又11

2

a =

, 23

1

4a q a =

=, 解得2q

5

151

(132)

(1)312112

a q S q --∴===--,

故选:B 19.A 【分析】

利用已知条件化简,转化求解即可. 【详解】

已知{}n a 为等比数列,132

2a a a ∴=,且22a =,

满足131233

2

1231322111124

a a a a a S a a a a a a a +++++=+===,则S 3=8.

【点睛】 思路点睛:

(1)先利用等比数列的性质,得132

2a a a ∴=,

(2)通分化简3

12311124

S a a a +

+==. 20.A 【分析】

根据已知条件计算12320182019a a a a a ????的结果为

2020

1

b b ,再根据等比数列下标和性质求解出2020b 的结果. 【详解】 因为1

n n n

b a b +=

,所以3201920202020

24

12320182019123

201820191

b b b b b b a a a a a b b b b b b ????=

????

?=, 因为数列{}n a 为等比数列,且10102a =, 所以()()

()123

201820191201922018100910111010a a a a a a a a a a a a ???=??????

22

22019

201910101010

1010101010102a a a a a =???==

所以

20192020

12b b =,又114

b =,所以201720202b =, 故选:A. 【点睛】

结论点睛:等差、等比数列的下标和性质:若(

)*

2,,,,m n p q t m n p q t N +=+=∈,

(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2

m n p q t a a a a a ?=?=.

二、多选题

21.AB 【分析】

因为公比q 不为1,所以不能删去1a ,4a ,设等差数列的公差为d ,分类讨论,即可得到答案 【详解】

解:因为公比q 不为1,所以不能删去1a ,4a ,设等差数列的公差为d , ①若删去2a ,则有3142a a a =+,得231112a q a a q =+,即2321q q =+, 整理得()()()2

111q

q q q -=-+,

因为1q ≠,所以21q q =+, 因为0q >

,所以解得12

q +=

, ②若删去3a ,则2142a a a =+,得31112a q a a q =+,即3

21q q =+,

整理得(1)(1)1q q q q -+=-,因为1q ≠,所以(1)1q q +=, 因为0q >

,所以解得q =,

综上q =

或q =, 故选:AB 22.ABC 【分析】

由122(2)n n S S p n --=≥和等比数列的定义,判断出A 正确;利用等比数列的求和公式判断B 正确;利用等比数列的通项公式计算得出C 正确,D 不正确. 【详解】

由122(2)n n S S p n --=≥,得22

p

a =

. 3n ≥时,1222n n S S p ---=,相减可得120n n a a --=,

又2112a a =,数列{}n a 为首项为p ,公比为1

2

的等比数列,故A 正确; 由A 可得1p =时,441

11521812

S -

=

=-,故B 正确; 由A 可得m n m n a a a +?=等价为212

1122

m n m n p p ++?=?,可得12p =,故C 正确;

3827

11

33||||22

128a a p p ??+=+=? ???,56451112||||22128a a p p ??+=+=? ???

, 则3856a a a a +>+,即D 不正确; 故选:ABC. 【点睛】 方法点睛:

由数列前n 项和求通项公式时,一般根据11

,2

,1n n n S S n a a n --≥?=?=?求解,考查学生的计算能

力. 23.AD 【分析】

利用等差数列的通项公式以及定义可判断A 、B 、D ;利用等比数列的通项公式可判断B. 【详解】

对于A ,若{}n a 是等差数列,设公差为d ,

则()1111122n n n a n d a nd A a a a nd d +=+=+-++=+-, 则()()111222212n n A A a nd d a n d d d --=+--+--=????, 所以{}n A 是等差数列,故A 正确; 对于B ,若{}n A 是等差数列,设公差为d ,

()11111n n n n n n n n A a a a a a a A d +-+--=-=-+-=+,即数列{}n a 的偶数项成等差数列,

奇数项成等差数列,故B 不正确,D 正确. 对于C ,若{}n a 是等比数列,设公比为q , 当1q ≠-时, 则

11111n n n n n n n n n n

a q a A a a a q

q a A a a --+--+=+++==, 当1q =-时,则10n n n A a a ++==,故{}n A 不是等比数列,故C 不正确; 故选:AD 【点睛】

本题考查了等差数列的通项公式以及定义、等比数列的通项公式以及定义,属于基础题. 24.BC 【分析】

根据数列的增减性由所给等式求出1a d 、,写出数列的通项公式及前n 项和公式,即可进行判断. 【详解】

数列{a n }为单调递增的等比数列,且24100a a +=>,0n a ∴>

23464a a a =,2364a ∴=,解得34a =,

2410a a +=,4

410q q

∴+=即22520q q -+=,解得2q

12

, 又数列{a n }为单调递增的等比数列,取2q

,3124

14

a a q =

==, 1

2

n n

a ,212121

n n n S -==--,()1121212n n n

n n S S ++-=---=.

故选:BC 【点睛】

本题考查等比数列通项公式基本量的求解、等比数列的增减性、等比数列求和公式,属于基础题. 25.CD 【分析】

由题意得到数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9 ,利用列举法,结合等差数列

以及等比数列的求和公式,验证即可求解. 【详解】

由题意,数列{}n a 的前n 项依次为2

3

1,2,3,2,5,7,2,9

利用列举法,可得当25n =时,A

B 的所有元素从小到大依次排列构成一个数列{}n a ,

则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,

37,39,2,4,8,16,32,

可得52520(139)2(12)

40062462212

S ?+-=+=+=-,2641a =,所以2612492a =,

不满足112n n S a +>; 当26n =时,A

B 的所有元素从小到大依次排列构成一个数列{}n a ,

则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,

37,39,41,2,4,8,16,32,

可得52621(141)2(12)

44162503212

S ?+-=+=+=-,2743a =,所以2612526a =,

不满足112n n S a +>; 当27n =时,A

B 的所有元素从小到大依次排列构成一个数列{}n a ,

则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,

37,39,41,43,2,4,8,16,32,

可得52722(143)2(12)

48462546212

S ?+-=+=+=-,2845a =,所以2712540a =,

满足112n n S a +>; 当28n =时,A

B 的所有元素从小到大依次排列构成一个数列{}n a ,

则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,

37,39,41,43,45,2,4,8,16,32,

可得52823(145)2(12)

52962591212

S ?+-=+=+=-,2947a =,所以2812564a =,

满足112n n S a +>,

所以使得112n n S a +>成立的n 的可能取值为27,28. 故选:CD. 【点睛】

本题主要考查了等差数列和等比数列的前n 项和公式,以及“分组求和法”的应用,其中解答中正确理解题意,结合列举法求得数列的前n 项和,结合选项求解是解答的关键,着重考查推理与运算能力. 26.BD 【分析】

根据题意,得到此人每天所走路程构成以

1

2

为公比的等比数列,记该等比数列为{}n a ,

公比为1

2

q =

,前n 项和为n S ,根据题意求出首项,再由等比数列的求和公式和通项公式,逐项判断,即可得出结果. 【详解】

由题意,此人每天所走路程构成以1

2

为公比的等比数列, 记该等比数列为{}n a ,公比为1

2

q =

,前n 项和为n S , 则16611163

237813212

a S a ?

?- ?

??===-,解得1192a =,

所以此人第三天走的路程为23148a a q =?=,故A 错;

此人第一天走的路程比后五天走的路程多()1611623843786a S a a S --=-=-=里,故B 正确;

此人第二天走的路程为21378

9694.54

a a q =?=≠

=,故C 错; 此人前三天走的路程为31231929648336S a a a =++=++=,后三天走的路程为

6337833642S S -=-=,336428=?,即前三天路程之和是后三天路程之和的8倍,D 正

确; 故选:BD. 【点睛】

本题主要考查等比数列的应用,熟记等比数列的通项公式与求和公式即可,属于常考题型. 27.ABD 【分析】

根据,n n a S 的关系,求得n a ,结合等比数列的定义,以及已知条件,即可对每个选项进行逐一分析,即可判断选择. 【详解】

由题意,数列{}n a 的前n 项和满足(

)*

12n n a S n N +=∈,

当2n ≥时,12n n a S -=,

两式相减,可得112()2n n n n n a a S S a +-=-=-,

可得13n n a a +=,即1

3,(2)n n

a a n +=≥, 又由11a =,当1n =时,211222a S a ===,所以

2

1

2a a =, 所以数列的通项公式为2

1,123

2

n n n a n -=?=??≥?;

当2n ≥时,1

1123322

n n n n a S --+?===,

又由1n =时,111S a ==,适合上式,

所以数列的{}n a 的前n 项和为1

3n n S -=;

又由11333

n

n n n S S +-==,所以数列{}n S 为公比为3的等比数列, 综上可得选项,,A B D 是正确的. 故选:ABD. 【点睛】

本题考查利用,n n a S 关系求数列的通项公式,以及等比数列的证明和判断,属综合基础题. 28.CD 【分析】

根据数列{} n a 满足11a =,121++=+n n a a n ,得到1223+++=+n n a a n ,两式相减得:

22n n a a +-=,然后利用等差数列的定义求得数列{} n a 的通项公式,再逐项判断.

【详解】

因为数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, 所以1223+++=+n n a a n , 两式相减得:22n n a a +-=,

所以奇数项为1,3,5,7,….的等差数列; 偶数项为2,4,6,8,10,….的等差数列; 所以数列{} n a 的通项公式是n a n =, A. 令2n =时, 311111236S =++=,而 ()13

22122

?-?=,故错误; B. 令1n =时, 213122

S =+

=,而 111

22S =,故错误;

C. 当1n =时, 213122

S =+=,而 3113

2222-+=,成立,当2n ≥时,

211111...23521n n S S n =++++--,因为221n n >-,所以

11212n n >-,所以111111311...1 (352148222)

n n n ++++>++++=--,故正确; D. 因为21111...1232n n S S n n n n

-=+++++++,令()1111

...1232f n n n n n

=+++++++,因为

()11111

1()021*******f n f n n n n n n +-=

+-=->+++++,所以()f n 得到递增,所以()()1

12

f n f ≥=,故正确; 故选:CD 【点睛】

本题主要考查等差数列的定义,等比数列的前n 项和公式以及数列的单调性和放缩法的应用,还考查了转化求解问题的能力,属于较难题. 29.ACD 【分析】

若设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为1

2

q =

的等比数列,由6378S =求得首项,然后分析4个选项可得答案.

【详解】

解:设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为1

2

q =

的等比数列, 因为6378S =,所以1661(1)

2=

378112

a S -

=-,解得1

192a =,

对于A ,由于21

192962a =?=,所以此人第二天走了九十六里路,所以A 正确; 对于B ,由于 31481

19248,

43788

a =?=>,所以B 不正确; 对于C ,由于378192186,1921866-=-=,所以此人第一天走的路程比后五天走的路程

多六里,所以C 正确; 对于D ,由于45611

11924281632a a a ??++=?++= ???

,所以D 正确, 故选:ACD 【点睛】

此题考查等比数的性质,等比数数的前项n 的和,属于基础题. 30.ABD 【分析】

由已知关系式可求1a 、n a ,进而求得{}21

n

a n +的通项公式以及前n 项和,n S 即可知正确选项. 【详解】

由已知得:12a =,令12335...(21)2n n T a a a n a n =++++-=,

则当2n ≥时,1(21)2n n n T T n a --=-=,即2

21n a n =

-,而122211

a =

=?-也成立, ∴221n a n =-,*n N ∈,故数列{}21

n a n +通项公式为211(21)(21)2121n n n n =-+--+,

∴111111111121 (133557232121212121)

n n

S n n n n n n =-

+-+-++-+-=-=---+++,即有1n n S na +=, 故选:ABD 【点睛】

关键点点睛:由已知12335...(21)2n n T a a a n a n =++++-=求1a 、n a ,注意验证1a 是否符合n a 通项,并由此得到{}21

n

a n +的通项公式,利用裂项法求前n 项和n S . 31.ABC 【分析】

利用代入法求出前几项的关系即可判断出a 1,b 1的取值范围,分组法求出其前2n 项和的表达式,分析,即可得解. 【详解】

∵数列{a n }为递增数列;∴a 1<a 2<a 3; ∵a n +a n +1=2n ,

∴1223

24a a a a +=??+=?;

∴121

23

212244a a a a a a a +??

+=-?>>

∴0<a 1<1;故A 正确.

∴S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n ﹣1+a 2n )=2+6+10+…+2(2n ﹣1)=2n 2; ∵数列{b n }为递增数列; ∴b 1<b 2<b 3; ∵b n ?b n +1=2n ∴1223

2

4b b b b =??

=?;

∴21

32

b b b b ??

?>>;

∴1<b

1B 正确. ∵T 2n =b 1+b 2+…+b 2n

=(b 1+b 3+b 5+…+b 2n ﹣1)+(b 2+b 4+…+b 2n )

高考等比数列专题及答案百度文库

一、等比数列选择题 1.在流行病学中,基本传染数R 0是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.初始感染者传染R 0个人,为第一轮传染,这R 0个人中每人再传染R 0个人,为第二轮传染,…….R 0一般由疾病的感染周期?感染者与其他人的接触频率?每次接触过程中传染的概率决定.假设新冠肺炎的基本传染数0 3.8R =,平均感染周期为7天,设某一轮新增加的感染人数为M ,则当M >1000时需要的天数至少为( )参考数据:lg38≈1.58 A .34 B .35 C .36 D .37 2.已知各项不为0的等差数列{}n a 满足2 6780a a a -+=,数列{}n b 是等比数列,且 77b a =,则3810b b b =( ) A .1 B .8 C .4 D .2 3.中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?此问题中1斗为10升,则牛主人应偿还多少升粟?( ) A . 503 B . 507 C . 100 7 D . 200 7 4.已知{}n a 是正项等比数列且1a ,312a ,22a 成等差数列,则91078 a a a a +=+( ) A 1 B 1 C .3- D .3+5.在等比数列{}n a 中,132a =,44a =.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ) A .有最大项,有最小项 B .有最大项,无最小项 C .无最大项,有最小项 D .无最大项,无最小项 6.已知等比数列{}n a 满足12234,12a a a a +=+=,则5S 等于( ) A .40 B .81 C .121 D .242 7.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件 11a >,66771 1, 01 a a a a -><-,则下列结论正确的是( ) A .681a a > B .01q << C .n S 的最大值为7S D .n T 的最大值为7T 8.在数列{}n a 中,12a =,对任意的,m n N * ∈,m n m n a a a +=?,若 1262n a a a ++???+=,则n =( )

高中数学-等比数列练习题(含答案)

等比数列练习(含答案) 一、选择题 1.(广东卷文)已知等比数列}{n a 的公比为正数,且3a ·9a =22 5a ,2a =1,则1a = A. 2 1 B. 22 C. 2 D.2 【答案】B 【解析】设公比为q ,由已知得( )2 2 8 41112a q a q a q ?=,即2 2q =,又因为等比数列}{n a 的公比为 正数,所以q = 故212a a q = == ,选B 2、如果1,,,,9a b c --成等比数列,那么( ) A 、3,9b ac == B 、3,9b ac =-= C 、3,9b ac ==- D 、3,9b ac =-=- 3、若数列}{ n a 的通项公式是=+++-=1021),23()1(a a a n a n n Λ则 (A )15 (B )12 (C )-12 D )-15 答案:A 4.设{n a }为等差数列,公差d = -2,n S 为其前n 项和.若1011S S =,则1a =( ) A.18 B.20 C.22 D.24 答案:B 解析: 20 ,100,1111111110=∴+==∴=a d a a a S S Θ 5.(四川)已知等比数列()n a 中21a =,则其前3项的和3S 的取值范围是() A.(],1-∞- B.()(),01,-∞+∞U C.[)3,+∞ D.(][),13,-∞-+∞U 答案 D 6.(福建)设{a n }是公比为正数的等比数列,若n 1=7,a 5=16,则数列{a n }前7项的和为( ) A.63 B.64 C.127 D.128 答案 C 7.(重庆)在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( ) A .2 B .3 C .4 D .8 答案 A 8.若等比数列{a n }满足a n a n +1=16n ,则公比为 A .2 B .4 C .8 D .16 答案:B 9.数列{a n }的前n 项和为S n ,若a 1=1,a n +1 =3S n (n ≥1),则a 6= (A )3 × 44 (B )3 × 44+1 (C )44 (D )44+1 答案:A 解析:由a n +1 =3S n ,得a n =3S n -1(n ≥ 2),相减得a n +1-a n =3(S n -S n -1)= 3a n ,则a n +1=4a n (n ≥ 2),a 1=1,a 2=3,则a 6= a 2·44=3×44,选A . 10.(湖南) 在等比数列{}n a (n ∈N*)中,若11a =,41 8 a =,则该数列的前10项和为( ) A .4122- B .2122- C .10122- D .111 22 - 答案 B 11.(湖北)若互不相等的实数 成等差数列, 成等比数列,且 310a b c ++=,则a = A .4 B .2 C .-2 D .-4 答案 D 解析 由互不相等的实数,,a b c 成等差数列可设a =b -d ,c =b +d ,由310a b c ++=可得b =2,所以a =2-d ,c =2+d ,又,,c a b 成等比数列可得d =6,所以a =-4,选D 12.(浙江)已知{}n a 是等比数列,4 1 252= =a a ,,则13221++++n n a a a a a a Λ=( ) A.16(n --41) B.6(n --21) ,,a b c ,,c a b

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

历年高考数学真题精选25 等比数列

历年高考数学真题精选(按考点分类) 专题25 等比数列(学生版) 一.选择题(共6小题) 1.(2014?全国)等比数列4x +,10x +,20x +的公比为( ) A . 1 2 B . 43 C . 32 D .53 2.(2014?大纲版)设等比数列{}n a 的前n 项和为n S .若23S =,415S =,则6(S = ) A .31 B .32 C .63 D .64 3.(2014?重庆)对任意等比数列{}n a ,下列说法一定正确的是( ) A .1a ,3a ,9a 成等比数列 B .2a ,3a ,6a 成等比数列 C .2a ,4a ,8a 成等比数列 D .3a ,6a ,9a 成等比数列 4.(2014?上海)如果数列{}n a 是一个以q 为公比的等比数列,*2()n n b a n N =-∈,那么数列{}n b 是( ) A .以q 为公比的等比数列 B .以q -为公比的等比数列 C .以2q 为公比的等比数列 D .以2q -为公比的等比数列 5.(2013?福建)已知等比数列{}n a 的公比为q ,记(1)1(1)2(1)n m n m n m n m b a a a -+-+-+=++?+,(1)1(1)2(1)n m n m n m n m a a a -+-+-+=?g g g e,*(,)m n N ∈,则以下结论一定正确的是( ) A .数列{}n b 为等差数列,公差为m q B .数列{}n b 为等比数列,公比为2m q C .数列{}n e为等比数列,公比为2 m q D .数列{}n e为等比数列,公比为m m q 6.(2012?北京)已知{}n a 为等比数列,下面结论中正确的是( ) A .1322a a a +… B .222 1322a a a +… C .若13a a =,则12a a = D .若31a a >,则42a a >

等比数列例题解析

等比数列·例题解析 【例1】已知S n是数列{a n}的前n项和,S n=p n(p∈R,n∈N*),那么数列{a n}. [ ] A.是等比数列 B.当p≠0时是等比数列 C.当p≠0,p≠1时是等比数列 D.不是等比数列 分析由S n=p n(n∈N*),有a1=S1=p,并且当n≥2时, a n=S n-S n-1=p n-p n-1=(p-1)p n-1 但满足此条件的实数p是不存在的,故本题应选D. 说明数列{a n}成等比数列的必要条件是a n≠0(n∈N*),还要注 【例2】已知等比数列1,x1,x2,…,x2n,2,求x1·x2·x3·…·x2n.解∵1,x1,x2,…,x2n,2成等比数列,公比q ∴2=1·q2n+1 x1x2x3...x2n=q.q2.q3...q2n=q1+2+3+ (2) 式;(2)已知a3·a4·a5=8,求a2a3a4a5a6的值. ∴a4=2 【例4】已知a>0,b>0且a≠b,在a,b之间插入n个正数x1,x2,…,x n,使得a,x1,x2,…,x n,b成等比数列,求 证明设这n+2个数所成数列的公比为q,则b=aq n+1 【例5】设a、b、c、d成等比数列,求证:(b-c)2+(c-a)2+(d-b)2=(a-d)2. 证法一∵a、b、c、d成等比数列 ∴b2=ac,c2=bd,ad=bc

∴左边=b2-2bc+c2+c2-2ac+a2+d2-2bd+b2 =2(b2-ac)+2(c2-bd)+(a2-2bc+d2) =a2-2ad+d2 =(a-d)2=右边 证毕. 证法二∵a、b、c、d成等比数列,设其公比为q,则: b=aq,c=aq2,d=aq3 ∴左边=(aq-aq2)2+(aq2-a)2+(aq3-aq)2 =a2-2a2q3+a2q6 =(a-aq3)2 =(a-d)2=右边 证毕. 说明这是一个等比数列与代数式的恒等变形相综合的题目.证法一是抓住了求证式中右边没有b、c的特点,走的是利用等比的条件消去左边式中的b、c的路子.证法二则是把a、b、c、d统一化成等比数列的基本元素a、q去解决的.证法二稍微麻烦些,但它所用的统一成基本元素的方法,却较证法一的方法具有普遍性. 【例6】求数列的通项公式: (1){a n}中,a1=2,a n+1=3a n+2 (2){a n}中,a1=2,a2=5,且a n+2-3a n+1+2a n=0 思路:转化为等比数列. ∴{a n+1}是等比数列 ∴a n+1=3·3n-1∴a n=3n-1 ∴{a n+1-a n}是等比数列,即 a n+1-a n=(a2-a1)·2n-1=3·2n-1 再注意到a2-a1=3,a3-a2=3·21,a4-a3=3·22,…,a n-a n-1=3·2n-2,

高中数学-等差等比数列经典例题以及详细答案

等差等比数列综合应用 【典型例题】 [例1] 一个等比数列共有三项,如果把第二项加上4所得三个数成等差数列,如果再把这个等差数列的第3项加上32所得三个数成等比数列,求原来的三个数。 解:等差数列为d a a d a +-,, ∴ ?????=++--=+?-2 2 )32)(()4()()(a d a d a a d a d a ∴ ?????=-+-+-=-) 2()(32)()1(168222222a d a d a a a d a ∴ 2 23232168a d a a =-++- 0432=-+d a 代入(1) 16)24(3 1 82+-?-=-d d 0643232=+-d d 0)8)(83(=--d d ① 8=d 10=a ② 38=d 9 26=a ∴ 此三数为2、16、18或92、910-、9 50 [例2] 等差数列}{n a 中,3931-=a ,76832-=+a a ,}{n b 是等比数列,)1,0(∈q ,21=b ,}{n b 所有项和为20,求: (1)求n n b a , (2)解不等式 2211601 b m a a m m -≤++++Λ 解:(1)∵ 768321-=+d a ∴ 6=d ∴ 3996-=n a n 2011=-q b 10 9 =q ∴ 1 )10 9( 2-?=n n b 不等式10 921601) (21 21??-≤++?+m a a m m m

)1(1816)399123936(2 1 +??-≤-+-? m m m m 0)1(181639692≤+??+-m m m 032122≤+-m m 0)8)(4(≤--m m }8,7,6,5,4{∈m [例3] }{n a 等差,}{n b 等比,011>=b a ,022>=b a ,21a a ≠,求证:)3(≥ ),1(+∞∈q 01>-q 01>-n q ∴ 0*> ∴ N n ∈ 3≥n 时,n n a b > [例4] (1)求n T ;(2)n n T T T S +++=Λ21,求n S 。 解:???=-=????=+++-=+++221 04811598 7654d a a a a a a a a Λ n T 中共12-n 个数,依次成等差数列 11~-n T T 共有数1222112-=+++--n n Λ项 ∴ n T 的第一个为2)12(211 21?-+-=--n n a ∴ 2)12()2(2 1 )232(2 111 ?-?+-?=---n n n n n T 122112222232-----+?-=n n n n 2222323+-?-?=n n

精品高考数列经典大题

精品高考数列经典大题 2020-12-12 【关键字】条件、满足 1.等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =. (1)求数列{}n a 的通项公式; (2)设()()25 2123n n n b a n n += ++,求数列{}n b 的前n 项和n S . 2.已知数列{}n a 满足:11a =,且对任意∈n N *都有 n a ++ += . (Ⅰ)求2a ,3a 的值; (Ⅱ)求数列{}n a 的通项公式; n n a a ++∈n N *). 3.已知数列}{n a 满足且01=a *)(),1(2 1 21N n n n S S n n ∈++=+ (1)求23,,a a :并证明12,(*);n n a a n n N +=+∈ (2)设*),(1N n a a b n n n ∈-=+求证:121+=+n n b b ; (3)求数列*)}({N n a n ∈的通项公式。 4.设b>0,数列}{n a 满足b a =1,)2(1 11 ≥-+= --n n a nba a n n n .(1)求数列}{n a 的通项公 式;(2)证明:对于一切正整数n ,121+≤+n n b a . 5: 已知数列{}n a 是等差数列,() *+∈-=N n a a c n n n 21 2 (1)判断数列{}n c 是否是等差数列,并说明理由;(2)如果 ()为常数k k a a a a a a 13143,130********-=+++=+++ ,试写出数列{}n c 的 通项公式;(3)在(2)的条件下,若数列{}n c 得前n 项和为n S ,问是否存在这样的实数k ,使n S 当且仅当12=n 时取得最大值。若存在,求出k 的取值范围;

各地高考等比数列真题试卷(含详细答案)

等比数列练习题 一、选择题 1.(2009年广东卷文)已知等比数列}{n a 的公比为正数,且3a ·9a =22 5a ,2a =1,则1a = A. 2 1 B. 22 C. 2 D.2 【答案】B 【解析】设公比为q ,由已知得( )2 2 8 41112a q a q a q ?=,即2 2q =,又因为等比数列}{n a 的公比为 正数,所以q = 故212a a q = == ,选B 2、如果1,,,,9a b c --成等比数列,那么( ) A 、3,9b ac == B 、3,9b ac =-= C 、3,9b ac ==- D 、3,9b ac =-=- 3、若数列}{ n a 的通项公式是=+++-=1021),23()1(a a a n a n n 则 (A )15 (B )12 (C )-12 D )-15 答案:A 4.设{n a }为等差数列,公差d = -2,n S 为其前n 项和.若1011S S =,则1a =( ) A.18 B.20 C.22 D.24 答案:B 解析: 20 ,100,1111111110=∴+==∴=a d a a a S S 5.(2008四川)已知等比数列()n a 中21a =,则其前3项的和3S 的取值范围是() A.(],1-∞- B.() (),01,-∞+∞ C.[)3,+∞ D.(][),13,-∞-+∞ 答案 D 6.(2008福建)设{a n }是公比为正数的等比数列,若n 1=7,a 5=16,则数列{a n }前7项的和为( ) A.63 B.64 C.127 D.128 答案 C 7.(2007重庆)在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( ) A .2 B .3 C .4 D .8 答案 A 8.若等比数列{a n }满足a n a n +1=16n ,则公比为 A .2 B .4 C .8 D .16 答案:B 9.数列{a n }的前n 项和为S n ,若a 1=1,a n +1 =3S n (n ≥1),则a 6= (A )3 × 44 (B )3 × 44+1 (C )44 (D )44+1 答案:A 解析:由a n +1 =3S n ,得a n =3S n -1(n ≥ 2),相减得a n +1-a n =3(S n -S n -1)= 3a n ,则a n +1=4a n (n ≥ 2),a 1=1,a 2=3,则a 6= a 2·44=3×44,选A . 10.(2007湖南) 在等比数列{}n a (n ∈N*)中,若11a =,41 8 a =,则该数列的前10项和为( ) A .4122- B .2122- C .101 22 - D .11122- 答案 B 11.(2006湖北)若互不相等的实数 成等差数列, 成等比数列,且310a b c ++=,则a = A .4 B .2 C .-2 D .-4 答案 D 解析 由互不相等的实数,,a b c 成等差数列可设a =b -d ,c =b +d ,由310a b c ++=可得b =2,所以a =2-d ,c =2+d ,又,,c a b 成等比数列可得d =6,所以a =-4,选D 12.(2008浙江)已知{}n a 是等比数列,4 1 252==a a ,,则13221++++n n a a a a a a =( ) A.16(n --4 1) B.6(n --2 1) ,,a b c ,,c a b

数列综合练习题以及答案解析

数列综合练习题 一.选择题(共23小题) 1.已知函数f(x)=,若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是() A.[,4)B.(,4)C.(2,4) D.(1,4) 2.已知{a n}是递增数列,且对任意n∈N*都有a n=n2+λn恒成立,则实数λ的取值范围是()A.(﹣,+∞)B.(0,+∞)C.[﹣2,+∞)D.(﹣3,+∞) 3.已知函数f(x)是R上的单调增函数且为奇函数,数列{a n}是等差数列,a11>0,则f(a9)+f(a11)+f(a13)的值() A.恒为正数B.恒为负数C.恒为0 D.可正可负 4.等比数列{a n}中,a4=2,a7=5,则数列{lga n}的前10项和等于() A.2 B.lg50 C.10 D.5 5.右边所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a所表示的数是() A.2 B.4 C.6 D.8 6.已知正项等比数列{a n}满足:a7=a6+2a5,若存在两项a m,a n,使得=4a1,则+的最小值为() A.B.C.D. 7.已知,把数列{a n}的各项排列成如图的三角形状,记A(m,n)表示第m行的第n个数,则A(10,12)=() A.B.C.D.

8.设等差数列{a n}满足=1,公差d∈(﹣1,0),若当且仅当n=9时,数列{a n}的前n项和S n取得最大值,则首项a1的取值范围是() A.(π,)B.[π,]C.[,]D.(,) 9.定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f (a n)},仍是等比数列,则称f(x)为“等比函数”.现有定义在(﹣∞),0)∪(0,+∞)上的如下函数: ①f(x)=3x,②f(x)=,③f(x)=x3,④f(x)=log2|x|, 则其中是“等比函数”的f(x)的序号为() A.①②③④B.①④C.①②④D.②③ 10.已知数列{a n}(n∈N*)是各项均为正数且公比不等于1的等比数列,对于函数y=f(x),若数列{lnf(a n)}为等差数列,则称函数f(x)为“保比差数列函数”.现有定义在(0,+∞)上的三个函数:①f(x)=;②f(x)=e x;③f(x)=;④f(x)=2x,则为“保比差数列函数”的是() A.③④B.①②④C.①③④D.①③ 11.已知数列{a n}满足a1=1,a n+1=,则a n=() A.B.3n﹣2 C.D.n﹣2 12.已知数列{a n}满足a1=2,a n+1﹣a n=a n+1a n,那么a31等于() A.﹣B.﹣C.﹣D.﹣ 13.如果数列{a n}是等比数列,那么() A.数列{}是等比数列B.数列{2an}是等比数列 C.数列{lga n}是等比数列D.数列{na n}是等比数列 14.在数列{a n}中,a n+1=a n+2,且a1=1,则=()A.B.C.D. 15.等差数列的前n项,前2n项,前3n项的和分别为A,B,C,则() A.A+C=2B B.B2=AC C.3(B﹣A)=C D.A2+B2=A(B+C) 16.已知数列{a n}的通项为a n=(﹣1)n(4n﹣3),则数列{a n}的前50项和T50=()

等比数列知识点总结与典型例题+答案

等比数列知识点总结与典型例题 2、通项公式: 4、等比数列的前n 项和S n 公式: (1)当 q 1 时,S n na i n ⑵当q 1时,5罟 5、等比数列的判定方法: 等比数列 等比中项:a n 2 a n 1a n 1 (a n 1a n 1 0) {a n }为等比数列 通项公式:a n A B n A B 0 {a n }为等比数列 1、等比数列的定义: a n 1 a n 2,且n N * , q 称为公比 n 1 a n ag a i B n a i 0,A B 0,首项:a 1;公比:q 推广:a n a m q a n a m a n m — \ a m 3、等比中项: (1)如果a, A, b 成等比数 那么A 叫做a 与b 的等差中项,即: A 2 ab 或 A ab 注意:同号的两个数才有等比中并且它们的等比中项有两个( (2)数列a n 是等比数列 2 a n a n 1 a q q A'B n A' ( A, B,A',B'为常数) (1) 用定义:对任意的 都有a n 1 qa n 或旦口 q (q 为常数,a n 0) {a n }为 a n

6、等比数列的证明方法: 依据定义:若-a^ q q 0 n 2,且n N*或i qa“ {a“}为等比数列a n 1 7、等比数列的性质: (2) 对任何m,n N*,在等比数列{a n}中,有a. a m q n m。 (3) 若m n s t(m,n,s,t N*),则a. a m a s a t。特别的,当m n 2k 时,得 2 a n a m a k注:3] a n a2 a n 1 a3a n 2 等差和等比数列比较: 经典例题透析 类型一:等比数列的通项公式

高一数学《数列》经典练习题-附答案

强力推荐人教版数学高中必修5习题 第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2 -2x +m )(x 2 -2x +n )=0的四个根组成一个首项为4 1 的等差数列,则 |m -n |等于( ). A .1 B . 4 3 C . 2 1 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若35a a =9 5 ,则59S S =( ). A .1 B .-1 C .2 D . 2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则2 1 2b a a 的值是( ). A . 2 1 B .- 2 1 C .- 21或2 1 D . 4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2 n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38 B .20 C .10 D .9

等差数列与等比数列练习和解析(高考真题)

1.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10 C .S n =2n 2 -8n D .S n =12 n 2 -2n 2.(2019·长郡中学联考)已知数列{a n }满足,a n +1+2a n =0,且a 2 =2,则{a n }前10项的和等于( ) A.1-2103 B .-1-210 3 C .210-1 D .1-210 3.已知等比数列{a n }的首项为1,公比q ≠-1,且a 5+a 4=3(a 3 +a 2),则 9 a 1a 2a 3…a 9等于( ) A .-9 B .9 C .-81 D .81 4.(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A .-12 B .-10 C .10 D .12 5.(2019·山东省实验中学联考)已知等差数列{a n }的公差不为零,S n 为其前n 项和,S 3=9,且a 2-1,a 3-1,a 5-1构成等比数列,则S 5=( ) A .15 B .-15 C .30 D .25 二、填空题 6.(2019·北京卷)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5=________,S n 的最小值为________. 7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:“有一个人走378里路,

(完整版)等比数列经典例题范文

1.(2009安徽卷文)已知为等差数列,,则等 于 A. -1 B. 1 C. 3 D.7 【解析】∵即∴同理可得∴公差∴.选B 。 【答案】B 2.(2009年广东卷文)已知等比数列的公比为正数,且·=2,=1,则= A. B. C. D.2 【答案】B 【解析】设公比为,由已知得,即,又因为等比数列的公 比为正数,所以,故,选B 3.(2009江西卷文)公差不为零的等差数列的前项和为.若是的等比中项, , 则等于 A. 18 B. 24 C. 60 D. 90 【答案】C 【解 析】由得得,再由 得 则,所以,.故选C 4.(2009湖南卷文)设是等差数列的前n 项和,已知,,则等于( ) A .13 B .35 C .49 D . 63 【解析】故选C. 135105a a a ++=33105a =335a =433a =432d a a =-=-204(204)1a a d =+-?=}{n a 3a 9a 2 5a 2a 1a 2 1 222q ( )2 2 8 41112a q a q a q ?=2 2q =}{n a q = 212a a q = == {}n a n n S 4a 37a a 与832S =10S 2 437a a a =2111(3)(2)(6)a d a d a d +=++1230a d +=8156 8322 S a d =+ =1278a d +=12,3d a ==-10190 10602 S a d =+ =n S {}n a 23a =611a =7S 172677()7()7(311) 49.222 a a a a S +++= ===

新课标高考数学题型全归纳:等比数列与等差数列概念及性质对比典型例题

等比数列与等差数列概念及性质对比 1.数列的定义 顾名思义,数列就是数的序列,严格地说,按一定次序排列的一列数叫做数列. 数列的基本特征是:构成数列的这些数是有序的. 数列和数集虽然是两个不同的概念,但它们既有区别,又有联系.数列又是一类特殊的函数.2.等差数列的定义 顾名思义,等差数列就是“差相等”的数列.严格地说,从第2项起,每一项与它的前一项的差等于同一个常数的数列,叫做等差数列. 这个定义的要点有两个:一是“从第2项起”,二是“每一项与它的前一项的差等于同一个常数”.这两个要点,刻画了等差数列的本质. 3.等差数列的通项公式 等差数列的通项公式是:a n= a1+(n-1)d .① 这个通项公式既可看成是含有某些未知数的方程,又可将a n看作关于变量n的函数,这为我们利用函数和方程的思想求解问题提供了工具. 从发展的角度看,将通项公式①进行推广,可获得更加广义的通项公式及等差数列的一个简单性质,并由此揭示等差数列公差的几何意义,同时也可揭示在等差数列中,当某两项的项数和等于另两项的项数和时,这四项之间的关系. 4.等差中项 A称作a与b的等差中项是指三数a,A,b成等差数列.其数学表示是: 2b a A + =,或2 A=a+b. 显然A是a和b的算术平均值. 2 A=a+b(或 2b a A + =)是判断三数a,A,b成等差数列 的一个依据,并且,2 A=a+b(或 2b a A + =)是a,A,b成等差数列的充要条件.由此得,等差数列中从第2项起,每一项(有穷等差数列末项除外)都是它的前一项与后一项的等差中项. 值得指出的是,虽然用2A=a+b(或 2b a A + =)可同时判定A是a与b的等差中项及A是b 与a的等差中项,但两者的意义是不一样的,因为等差数列a,A,b与等差数列b,A,a不是同一个数列. 5.等差数列前n项的和

等比数列的概念与性质练习题

等比数列的概念与性质练习题 1.已知等比数列}{n a 的公比为正数,且3a ·9a =22 5a ,2a =1,则1a = A. 2 1 B. 22 C. 2 D.2 2. 如果1,,,,9a b c --成等比数列,那么( ) A 、3,9b ac == B 、3,9b ac =-= C 、3,9b ac ==- D 、3,9b ac =-=- 3、若数列}{n a 的通项公式是1210(1)(32),n n a n a a a =--+++=L 则 (A )15 (B )12 (C )-12 D )-15 4.在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( ) A .2 B .3 C .4 D .8 5..若等比数列{a n }满足a n a n +1=16n ,则公比为 A .2 B .4 C .8 D .16 6.若互不相等的实数,,a b c 成等差数列,,,c a b 成等比数列,且310a b c ++=,则a = A .4 B .2 C .-2 D .-4 7.公比为32等比数列{}n a 的各项都是正数,且31116a a =,则162log a =( ) A.4 B.5 C.6 D.7 8.在等比数列{}n a 中,5,6144117=+=?a a a a ,则 =10 20 a a ( ) A. 32 B.23 C. 32或23 D. -32或-23 9.等比数列{}n a 中,已知121264a a a =,则46a a 的值为( ) A .16 B .24 C .48 D .128 10.实数12345,,,,a a a a a 依次成等比数列,其中1a =2,5a =8,则3a 的值为( ) A. -4 B.4 C. ±4 D. 5 11.等比数列 {}n a 的各项均为正数,且5647a a a a +=18,则3132310log log log a a a +++L = A .12 B .10 C .8 D .2+3log 5 12. 设函数()()() * 2 ,311N n x n x x f ∈≤≤-+-=的最小值为n a ,最大值为n b ,则2n n n n c b a b =-是( ) A.公差不为零的等差数列 B.公比不为1的等比数列 C.常数列 D.既不是等差数列也不是等比数列 13. 三个数c b a ,,成等比数列,且0,>=++m m c b a ,则b 的取值范围是( ) A. ??????3, 0m B. ??????--3,m m C . ??? ??3,0m D. [)?? ? ???-3,00,m m 14.已知等差数列}{n a 的公差0≠d ,且931,,a a a 成等比数列,则 10 429 31a a a a a a ++++的值为 . 15.已知1, a 1, a 2, 4成等差数列,1, b 1, b 2, b 3, 4成等比数列,则 =+2 2 1b a a ______. 16.已知 n n a ??? ???=312,把数列}{n a 的各项排成三角形状:Λ Λ9 87654321 ,,,,,,a a a a a a a a a

理科数学2010-2019高考真题分类训练等比数列

专题六 数列 第十六讲 等比数列 2019年 1.(2019全国1理14)记S n 为等比数列{a n }的前n 项和.若21461 3 a a a ==,,则S 5=____________. 2.(2019全国3理5)已知各项均为正数的等比数列{a n }的前4项为和为15,且a 5=3a 3+4a 1,则a 3= A . 16 B . 8 C .4 D . 2 3.(2019全国2卷理19)已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+ ,1434n n n b b a +-=-. (1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)求{a n }和{b n }的通项公式. 2010-2018年 一、选择题 1.(2018北京) “十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比 例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比 都等于.若第一个单音的频率为f ,则第八个单音的频率为 A B C . D . 2.(2018浙江)已知1a ,2a ,3a ,4a 成等比数列,且1234123ln()a a a a a a a +++=++.若 11a >,则 A .13a a <,24a a < B .13a a >,24a a < C .13a a <,24a a > D .13a a >,24a a > 3.(2017新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红 光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381

等比数列的前n项和例题详细解法

等比数列的前n项和例题详细解法?例题解析 【例1】设等比数列的首项为a(a>0),公比为q(q>0),前n项和为80,其中 最大的一项为54,又它的前2n项和为6560,求a和q. 解:由S n=80,S2n=6560,故q≠1 ∵a>0,q>1,等比数列为递增数列,故前n项中最大项为an. ∴a n=aq n-1=54 ④ 将③代入①化简得a=q-1 ⑤ 由⑤,⑥联立方程组解得a=2,q=3 证∵Sn=a1+a1q+a1q2+...+a1q n-1 S2n=S n+(a1q n+a1q n+1+...+a1q2n-1)

=S n+q n(a1+a1q+...+a1q n-1)=S n+q n S n=S n(1+q n) 类似地,可得S3n=S n(1+q n+q2n) 说明本题直接运用前n项和公式去解,也很容易.上边的解法,灵活地处理了S2n、S3n与S n的关系.介绍它的用意在于让读者体会利用结合律、提取公因式等方法将某些解析式变形经常是解决数学问题的关键,并且变得好,则解法巧. 【例2】一个有穷的等比数列的首项为1,项数为偶数,其奇数项的和为85,偶数项的和为170,求这个数列的公比和项数. 分析设等比数列为{a n},公比为q,取其奇数项或偶数项所成的数列仍然是等比数列,公比为q2,首项分别为a1,a1q. 解设项数为2n(n∈N*),因为a1=1,由已知可得q≠1. 即公比为2,项数为8. 说明运用等比数列前n项和公式进行运算、推理时,对公比q要分情况讨论.有关等比数列的问题所列出的方程(组)往往有高次与指数方程,可采用两式相除的方法达到降次的目的.

相关文档
相关文档 最新文档