文档库 最新最全的文档下载
当前位置:文档库 › 插入法测光纤的平均损耗系数

插入法测光纤的平均损耗系数

插入法测光纤的平均损耗系数
插入法测光纤的平均损耗系数

实验一 插入法测光纤的平均损耗系数

一.实验目的

1.掌握插入法测量光纤损耗系数的原理 2. 熟悉光纤多用表的使用方法

二.实验原理

最精确的光纤损耗测量方法是剪断法,这种方法首先在光纤输出端(远端)测量光功率,然后在不改变入射条件的情况下,在离光源几米长的光纤处剪断,再测量近端光功率,如图1.1所示。

图1.1 剪断法测量光纤损耗的示意图

但是这种方法是破坏性的。在工程中往往需要非破坏性测量,因此更常用插入法测量光纤的损耗。插入法测量光纤损耗的装置如图1.2所示。

图1.2 插入损耗法测量光纤损耗

光源

(a )参考测量

光源

光纤活动连接器

2(b ) 被测光纤损耗测量

光源

光的发射和探测都通过光纤活动连接器连接。光源发出的光通过光的注入系统输入到短光纤中,并通过光纤活动连接器与光功率计接通。首先,测量短光纤的输出功率

()

mW

P λ1,然后通过光纤连接器接入被测光纤,测量长光纤的输出功率()mW P λ2,

则光纤的总损耗为

()()

()dB P P A λλ21lg

10= (1-1)

A 实际上是被测光纤的损耗与连接器损耗之和。如果忽略连接器损耗,被测光纤的长度为L ,则光纤的损耗系数为

()km dB L

A =α

(1-2)

对于多模光纤,不同的模式分布对损耗有很大影响。不同的发射条件,可产生不同的模式分布,因此有不同的光纤损耗值。解决办法是在光的注入系统加一个扰模器,使多模光纤在短的传播长度内达到稳态模分布。对于单模光纤,光的注入系统是一个剥模器,可以滤除单模光纤的包层模。

三.实验设备

AV2498光纤多用表、 1310nmLD 光源、 待测光纤、 光纤跳线

四.实验步骤

1.将1310nmLD 光源打开预热30分钟。

2. 在激光耦合进光纤的起始端,用一定长度的光纤跳线在扰模器上缠绕,达到稳定 的模式输出后,在光纤跳线的另一端测量或连接待测光纤。

3.将光纤多用表电源开关拨到"单开"位置。

4.光纤多用表调零 。调零是在最小量程下进行,按“平均”键后,在遮光下进行(盖 上光输入保护盖),按“调零”键即可。

5.测量方式的选择。用“波长”键设定波长为1310nm ,使之与被测波长相符。 6.按照图1.2(a)测出参考光功率P 0。将两端都带有标准FC/PC 活动接头的光纤跳线 的一端直接插入光纤多用表的光输入插座,另一端插入光源的光输出插座,测出参考光功率P 0。

7.按照图1.2(b)测出参考光通过待测光纤后的功率P S 。将待测光纤串到跳线的一端 和光纤多用表输入端之间,测出此时的功率P S 。

测试中可根据用户的习惯和测试特点随时按"W/dBm"键得到线性(W)、对数值(dBm)读数。

对数值(dBm)=10log(测量线性值/1mW) 8.算出光纤的损耗和损耗系数。 总损耗为:

()()()

()()

mW

P mW P dBm

P dBm P dB P S S A 00lg

10=-= (1-3)

光纤的损耗系数为

()()

()

km L dB P km dB A =

α (1-4)

注意事项:

1)极限工作条件:最大可测光功率:2mW 。

2)要注意输入光的强度和波长,避免光功率太大而损坏光电管。

3)连接光纤活动连接器时,要先用蘸有酒精的棉花将光输出端面擦干净。 4)仪器应避免机械振动、碰撞、跌落及其他机械损伤。 5)激光输入光纤多用表后,过一会儿等稳定后再读数。

6) 光发射、接收插座应注意保护,防止硬物、脏物触及,不工作时应及时盖好护盖,谨

防灰尘或其他有害气体的侵蚀。

6) 不要挤压,曲折光纤,否则会引起测量结果的偏大。

五.实验报告要求

1.填写实验数据到表1-1。

2.分析实验结果不稳定的原因。

3.分析实验结果是偏大还是偏小,为什么?

光纤损耗测试方法及其注意事项(1)

光纤损耗测试方法及其注意事项1 引言 由于应用和用户对带宽需求的进一步增加和光纤链路对满足高带宽方面的巨大优势,光纤的使用越来越多。无论是布线施工人员,还是网络维护人员,都有必要掌握光纤链路测试的技能。 2004年2月颁布的TIA/ TSB-140测试标准,旨在说明正确的光纤测试步骤。该标准建议了两级测试,分别为: Tier 1(一级),使用光缆损耗测试设备(OLTS)来测试光缆的损耗和长度,并依靠OLTS或者可视故障定位仪(VFL)验证极性; Tier 2(二级),包括一级的测试参数,还包括对已安装的光缆链路的OTDR追踪。? 根据TSB-140标准,对于一条光纤链路来说,一级测试主要包括两个参数:长度和损耗。事实上,早在标准ANSI/TIA/EIA-526-14A 和ANSI/TIA/EIA-526-7中,已经分别对多模和单模光纤链路的损耗测试,定义了三种测试方法(长度的测量,取决于仪表是否支持,如果仪表支持,在测试损耗的同时,长度同时也会测量)。为了方便,我们分别称为:方法A、方法B和方法C。TSB-140就是在这基础上发展而来,与此兼容。 那么这三种方法各有什么特点,怎么操作,应该在什么场合下使用呢?这正是本文要阐述的问题。另外,光纤链路的测试,不同于双绞线链路的测试,又有什么地方需要注意或者有什么原则可以遵循呢?这也是本文想与读者分享的内容。 2 如何测试光纤链路损耗 光纤链路损耗的测试,包含两大步骤:一是设置参考值(此时不接被测链路),二是实际测试(此时接被测链路)。 下面我们具体介绍一下标准中定义的三种测试损耗的方法(以双向测试为例)。 2.1 测试方法A

光纤传输损耗测试-实验报告

光纤传输损耗测试-实验报告

华侨大学工学院 实验报告 课程名称:光通信技术实验 实验项目名称:实验1 光纤传输损耗测试 学院:工学院 专业班级:13光电 姓名:林洋 学号:1395121026 指导教师:王达成

2016 年05 月日 预习报告 一、实验目的 1)了解光纤损耗的定义 2)了解截断法、插入法测量光纤的传输损耗 二、实验仪器 20MHz双踪示波器 万用表 光功率计 电话机 光纤跳线一组 光无源器件一套(连接器,光耦合器,光隔离器,波分复用器,光衰减器) 三、实验原理 αλ,其含义为单位长度光纤引起的光纤在波长λ处的衰减系数为()

光功率衰减,单位是dB/km 。当长度为L 时, 10()()lg (/)(0) P L dB km L P αλ=- (公式1.1) ITU-T G.650、G.651规定截断法为基准测量方法,背向散射法(OTDR 法)和插入法为替代测量方法。本实验采用插入法测量光纤的损耗。 (1)截断法:(破坏性测量方法) 截断法是一个直接利用衰减系数定义的测量方法。在不改变注入条件下,分别测出长光纤的输出功率2()P λ和剪断后约2m 长度短光纤的输出功率1()P λ,按定义计算出()αλ。该方法测试精度最高。 偏置电路 注入系统 光源 滤模器 包层模 剥除器 被测光纤 检测器 放大器电平测量 图1.1 截断法定波长衰减测试系统装置 (2)插入法 插入法原理上类似于截断法,只不过用带活接头的连接软线代替短纤进行参考测量,计算在预先相互连接的注入系统和接受系统之间(参考条件)由于插入被测光纤引起的功率损耗。显然,功率 1 P 、 2 P 的测量 没有截断法直接,而且由于连接的损耗会给测量带来误差,精度比截断法差一些。所以该方法不适用于光纤光缆制造长度衰减的测量。但由于它具有非破坏性不需剪断和操作简便的优点,用该方法做成的便携式仪表,非常适用于中继段长总衰减的测量。图1.2示出了两种参考条件下的测试原理框图。

光纤损耗测试方法及其注意事项

《中国有线电视》2009(10) C H I N A D I G I T A L C A B L ET V·经验点滴·中图分类号:T N943.6 文献标识码:B 文章编号:1007-7022(2009)10-1094-01 光纤损耗测试方法及其注意事项 ◆管 辉(吉林省广播电影电视局三三一台,吉林永吉132200) 由于应用和用户对带宽需求的进一步增加和光纤链路在满足高带宽方面的巨大优势,光纤的使用越来越多,无论是布线施工人员还是网络维护人员都有必要掌握光纤链路测试的技能。 2004年2月颁布的T I A/T S B-140测试标准,旨在说明正确的光纤测试步骤,该标准建议了两级测试,分别为:T i e r1(一级),使用光缆损耗测试设备(O L T S)来测试光缆的损耗和长度,并依靠O L T S或者可视故障定位仪(V F L)来验证极性;T i e r2(二级),包括一级的测试参数,还包括对已经安装的光缆链路的O T D R 追踪。 根据T S B-140标准,对于一条光纤链路来说,一级测试主要包括两个参数:长度和损耗。事实上,早在标准A N S I/T I A/E I A-526-14A和A N S I/T I A/E I A-526-7中,已经分别对多模和单模光纤链路的损耗测试定义了3种测试方法(长度的测量,取决于仪表是否支持,如果仪表支持,在测试损耗的同时,长度同时也会测量)。 1 如何测试光纤链路损耗 光纤链路损耗的测试包含两大步骤:一是设置参考值(此时不接被测链路),二是实际测试(此时接被测链路),下面具体介绍标准中定义的3种测试损耗的方法(以双向测试为例)。 测试方法A:方法A设置参考值时,采用两条光纤跳线和一个连接器(考虑一个方向,见图1上半部分),设置参考值后,将被测链路接进来(见图1 下半部分),进行测试。我们不难发现,每个方向的测试结果中包括光纤和一端的连接器的损耗,因此方法A是用来测试这种光缆链路:光纤链路一端有连接器,另一端没有。 图1 测试方法A 测试方法B:方法B设置参考值时,只使用一条光纤跳线(考虑一个方向,见图2上半部分),设置参考值后,将被测链路接进来(见图2下半部分),进行测试。这种方法的测试结果中,包括光纤链路和两端连接的损耗,因此方法B是用来测试这种光缆链路:链路两端都有连接器,其连接器的损耗是整个损耗的重要部分,这就是室内光缆的常见例子。 从技术角度讲,测试结果还包括额外的光纤跳线(3~4)的损耗,但是其长度较短,损耗可以忽略不计。对室内光缆网络,这种方法提供了精确的光缆链路测试,因为它包括了光 图2 测试方法B 缆本身以及电缆两端的连接器。

光纤传输损耗测试实验报告报告

华侨大学工学院 实验报告 课程名称:光通信技术实验 实验项目名称:实验1 光纤传输损耗测试 学院:工学院 专业班级:13光电 姓名:林洋 学号:1395121026 指导教师:王达成 2016 年05 月日

预 习 报 告 一、 实验目的 1)了解光纤损耗的定义 2)了解截断法、插入法测量光纤的传输损耗 二、 实验仪器 20MHz 双踪示波器 万用表 光功率计 电话机 光纤跳线一组 光无源器件一套(连接器,光耦合器,光隔离器,波分复用器,光衰减器) 三、 实验原理 光纤在波长λ处的衰减系数为()αλ,其含义为单位长度光纤引起的光功率衰减,单位是dB/km 。当长度为L 时, 10()()l g (/)(0) P L dB km L P αλ=- (公式1.1) ITU-T G .650、G .651规定截断法为基准测量方法,背向散射法(OTDR 法)和插入法为替代测量方法。本实验采用插入法测量光纤的损耗。 (1)截断法:(破坏性测量方法) 截断法是一个直接利用衰减系数定义的测量方法。在不改变注入条件下,分别测出长光纤的输出功率2()P λ和剪断后约2m 长度短光纤的输出功率1()P λ,按定义计算出()αλ。该方法测试精度最高。

图1.1 截断法定波长衰减测试系统装置 (2)插入法 插入法原理上类似于截断法,只不过用带活接头的连接软线代替短纤进行参考测量,计算在预先相互连接的注入系统和接受系统之间(参考条 件)由于插入被测光纤引起的功率损耗。显然,功率1P、2P的测量没有 截断法直接,而且由于连接的损耗会给测量带来误差,精度比截断法差一些。所以该方法不适用于光纤光缆制造长度衰减的测量。但由于它具有非破坏性不需剪断和操作简便的优点,用该方法做成的便携式仪表,非常适用于中继段长总衰减的测量。图1.2示出了两种参考条件下的测试原理框图。 (a) (b) 图1.2 典型的插入损耗法测试装置

G652D光纤宏弯损耗测试方法(精)

G652D光纤宏弯损耗测试方法 摘要:实现了一种全集成可变带宽中频宽带低通滤波器,讨论分析了跨导放大器-电容(OTA—C)连续时间型滤波器的结构、设计和具体实现,使用外部可编程电路对所设计滤波器带宽进行控制,并利用ADS软件进行电路设计和仿真验证。仿真结果表明,该滤波器带宽的可调范围为1~26 MHz,阻带抑制率大于35 dB,带内波纹小于0.5 dB,采用1.8 V电源,TSMC 0.18μm CMOS工艺库仿真,功耗小于21 mW,频响曲线接近理想状态。关键词:Butte 光纤宏弯损耗测试,在国家标准GB/T9771.3-2008中描述为:光纤以30mm半径松绕100圈,在1625nm测得的宏弯损耗应不超过0.1dB。 而注2中描述:为了保证弯曲损耗易于测量和测量准确度,可用1圈或几圈小半径环光纤代替100圈光纤进行试验,在此情况下,绕的圈数环的半径和最大允许的弯曲损耗都应该与30mm半径100圈试验的损耗值相适应。 大多光纤厂家都提供Φ60mm*100圈的判断标准,然而,在日常的测试工作中,若要采用方便快捷的实验方法,则倾向于按照注2中的建议去进行一些常规判断。因此,掌握Φ32mm*1圈与Φ60mm*100圈的数据差异就十分有必要。 Φ32mm*1宏弯测试更为简便 两种宏弯损耗测试方法示意图如图1所示。 用上述方法对10盘正常生产条件下的光纤样品进行对比测试。 分别在1310nm、1550nm、1625nm三种波长下,对10盘光纤样品的宏弯平均值、标准偏差进行统计,最后将全部数据汇总,得到图2。 从整体数据汇总图可看出,Φ32mm*1宏弯测试方法所得数据的平均值和标准偏差都比Φ60mm*100的要小,且数据相对稳定,重复性好。当然所抽样品也不是完全都遵循此规律,10个样品中有3个样品在1625nm窗口下Φ32mm*1 所得数据的平均值大于Φ60mm*100所测得的;还有1个样品在1550nm、1625nm窗口下所得数据的标准偏差大于Φ60mm*100的。 10个样品用两种测试方法所得数据的平均值和标准偏差相差不大,处于一个数据等级内。Φ32mm*1的判断标准应考虑的与60mm*100比较接近。

光纤损耗测试方法及其注意事项

光纤损耗测试方法及其注意事项 1 引言 随着应用和用户对带宽需求的进一步增加,光纤链路对满足高带宽方面的巨大优势逐步体现,光纤的使用越来越多。在施工中,无论是布线施工人员,还是网络维护人员,都有必要掌握光纤链路测试的技能。 2004年2月颁布的TIA/ TSB-140测试标准,旨在说明正确的光纤测试步骤。该标准建议了两级测试,分别为: Tier 1(一级),使用光缆损耗测试设备(OLTS)来测试光缆的损耗和长度,并依靠OLTS或者可视故障定位仪(VFL)验证极性; Tier 2(二级),包括一级的测试参数,还包括对已安装的光缆链路的OTDR追踪。 根据TSB-140标准,对于一条光纤链路来说,一级测试主要包括两个参数:长度和损耗。事实上,早在标准ANSI/TIA/EIA-526-14A 和ANSI/TIA/EIA-526-7中,已经分别对多模和单模光纤链路的损耗测试,定义了三种测试方法(长度的测量,取决于仪表是否支持,如果仪表支持,在测试损耗的同时,长度同时也会测量)。为了方便,本文中分别称为:方法A、方法B和方法C。TSB-140就是在这基础上发展而来,与此兼容。 本文主要就这三种方法各自的特点、操作方法、应该使用的场合进行分析和阐述。另外,对光纤链路的测试中需要注意的问题进行分析。 2 如何测试光纤链路损耗 光纤链路损耗的测试,包含两大步骤:一是设置参考值(此时不接被测链路),二是实际测试(此时接被测链路)。 标准中定义了三种测试损耗的方法(以双向测试为例): 2.1 测试方法A 方法A设置参考值时,采用两条光纤跳线和一个连接器(考虑一个方向,如图1)。设置参考值后,将被测链路接进来(如图2),进行测试。 图1 图2 每个方向的测试结果中包括光纤和一端的连接器的损耗。因此,方法 A 是用来测试这种光缆链路:光纤链路一端有连接器,另一端没有。 2.2 测试方法B 方法B设置参考值时,只使用了一条光纤跳线(考虑一个方向,如图3)。设置参考值后,将被测链路接进来(如图4),进行测试。 图3 图4 这种方法的测试结果中,包括光纤链路和两端连接的损耗。因此,方法B是用来测试这种光缆链路:链路两端都有连接器,其连接器的损耗是整个损耗的重要部分。这就是室内光缆的常见例子。 从技术角度讲,测试结果中还包括了额外的光纤跳线(3-4)的损耗,但是其长度较短,损耗可以忽略不计。对室内光缆网络,这种方法提供了精确的光缆链路测试,因为它包括了光缆本身以及电缆两端的连接器。 2.3 测试方法C 方法C设置参考值时,使用三条光纤和两个连接器(单方向,见图5),其中两个连接

光纤损耗测试方法及其注意事项

1引言 由于应用和用户对带宽需求的进一步增加和光纤链路对满足高带宽方面的巨大优势,光纤的使用越来越多。无论是布线施工人员,还是网络维护人员,都有必要掌握光纤链路测试的技能。 2004年2月颁布的TIA/TSB-140测试标准,旨在说明正确的光纤测试步骤。该标准建议了两级测试,分别为: Tier1(一级),使用光缆损耗测试设备(OLTS)来测试光缆的损耗和长度,并依靠OLTS或者可视故障定位仪(VFL)验证极性; Tier2(二级),包括一级的测试参数,还包括对已安装的光缆链路的OTDR追踪。? 根据TSB-140标准,对于一条光纤链路来说,一级测试主要包括两个参数:长度和损耗。事实上,早在标准ANSI/TIA/EIA-526-14A和ANSI/TIA/EIA-526-7中,已经分别对多模和单模光纤链路的损耗测试,定义了三种测试方法(长度的测量,取决于仪表是否支持,如果仪表支持,在测试损耗的同时,长度同时也会测量)。为了方便,我们分别称为:方法A、方法B和方法C。TSB-140就是在这基础上发展而来,与此兼容。 那么这三种方法各有什么特点,怎么操作,应该在什么场合下使用呢?这正是本文要阐述的问题。另外,光纤链路的测试,不同于双绞线链路的测试,又有什么地方需要注意或者有什么原则可以遵循呢?这也是本文想与读者分享的内容。 2如何测试光纤链路损耗 光纤链路损耗的测试,包含两大步骤:一是设置参考值(此时不接被测链路),二是实际测试(此时接被测链路)。 下面我们具体介绍一下标准中定义的三种测试损耗的方法(以双向测试为例)。 2.1测试方法A 方法A设置参考值时,采用两条光纤跳线和一个连接器(考虑一个方向,如下图上半部分)。设置参考值后,将被测链路接进来(如下图下半部分),进行测试。

光缆接续损耗及互联网测试计算方法

工信部颁YDJ44-89《电信网光纤数字传输系统施工及验收暂行规定》简称《暂规》,对光纤接续损耗的测量方法做了规定,但没有规定明确的标准。原信产部郑州设计院在中国电信南九试验段以后的工程中提出了中继段单纤平均接续损耗0.08dB/个的设计标准,以后的干线工程均沿用。 1、光纤衰减:1310nm波长,0.35dB/km;1490nm波长,0.22dB/km。 2、光活动连接器插入衰减:0.5dB/个(尾纤连接)。 3、光纤熔接接头衰减:束状光缆0.1dB/每个接头,带状光缆0.2db/每个接头。 4、冷接子双向平均值为0.15dB/每个接头。 互联网(Dedicated Internet Access)测试计算方法: 在计算机网络、IDC机房中,其宽带速率的单位用bps(或b/s)表示;换算关系为:1Byte=8bit 1B=8b----------1B/s=8b/s(或1Bps=8bps) 1KB=1024B----------1KB/s=1024B/s 1MB=1024KB----------1MB/s=1024KB/s 在实际上网应用中,下载软件时常常看到诸如下载速度显示为128KB(KB/s),103KB/s等等宽带速率大小字样,因为ISP提供的线路带宽使用的单位是比特,而一般下载软件显示的是字节(1字节=8比特),所以要通过换算,才能得实际值。然而我们可以按照换算公式换算一下: 128KB/s=128×8(Kb/s)=1024Kb/s=1Mb/s即:128KB/s=1Mb/s 理论上:2M(即2Mb/s)宽带理论速率是:256KB/s(即2048Kb/s),实际速率大约为80--200kB/s;(其原因是受用户计算机性能、网络设备质量、资源使用情况、网络高峰期、网站服务能力、线路衰耗,信号衰减等多因素的影响而造成的)。

光缆施工现场与验收的检测方法和标准

光缆施工现场及验收的检测方法与标准 光缆施工的现场测试很重要,它是为连接光端机总调测做准备。光缆内光纤的测试项目有传输衰减的测量,对多模光纤,当需要时测试基带响应。 单盘光缆测试的目的在于工厂产品的质量;施工布放后的测试是为检查布放过程有无损伤,并作为接续前的检查;接续中的测试是为了检查接头是否达到低损耗;接续后组成单元光缆段的测试,目的在于检查是否达到设计对传输总衰减和总基带响应要求,作为连接光端机总调测的准备。 单模光纤是以色散系数来表征色散的。单模光纤的色散系数本来很低,对于140Mbit/s 系统的限额为300ps/nm,因此当中继段长小于50km时,该限额有很大余量,施工过程可以不必测量;565Mbit/s五次群的限额为120ps/nm,因此有必要在设计中考虑,施工后进行验证测量。 1、现场传输衰减的测量 1.1 光纤的衰减 光信号沿光纤传输时,光功率的损失即为光纤的衰减,衰减A以分贝(dB)为单位,A=10lgP1/P2(dB) P1和P2分别是注入端和输出端的光功率。 1.2 光缆间增加注入系统

为了测量得到精确的结果,必须保证功率分配是稳态模,因此在光源与被测光缆间增加注入系统。注入系统由扰模器、滤模器和包层模剥除器组成的一种模拟装置;对多模光纤可以用1km以上,以一定曲率半径圈绕的光纤。 1.3 3种测试方法比较 CCITT建议G.651推荐了3种测试方法。即剪断法、和后向散射法。剪断法精度高但有破坏性;介入损耗法是非破坏性,精度不如剪断法;而后向散射法,即用光时域反射仪(OTDR)测量,功能全、精度高和无破坏性,测量数据可直接打印出来。 1.4 用光时域反射仪(OTDR)测量的优点 用光时域反射仪(OTDR)测试只需在光纤的一端进行,如图1、2所示,用这种仪表不仅可以测量光纤的衰减系数,还能提供沿光纤长度衰减特性的详细情况,检测光纤的物理缺陷或断裂点的位置,测定接头的衰减和位置,以及被测光纤的长度,这种仪器带有打印机,可以把测绘的曲线打印出来。

插入法测光纤的平均损耗系数

实验一 插入法测光纤的平均损耗系数 一.实验目的 1.掌握插入法测量光纤损耗系数的原理 2. 熟悉光纤多用表的使用方法 二.实验原理 最精确的光纤损耗测量方法是剪断法,这种方法首先在光纤输出端(远端)测量光功率,然后在不改变入射条件的情况下,在离光源几米长的光纤处剪断,再测量近端光功率,如图1.1所示。 图1.1 剪断法测量光纤损耗的示意图 但是这种方法是破坏性的。在工程中往往需要非破坏性测量,因此更常用插入法测量光纤的损耗。插入法测量光纤损耗的装置如图1.2所示。 图1.2 插入损耗法测量光纤损耗 光源 (a )参考测量 光源 光纤活动连接器 2(b ) 被测光纤损耗测量 光源

光的发射和探测都通过光纤活动连接器连接。光源发出的光通过光的注入系统输入到短光纤中,并通过光纤活动连接器与光功率计接通。首先,测量短光纤的输出功率 () mW P λ1,然后通过光纤连接器接入被测光纤,测量长光纤的输出功率()mW P λ2, 则光纤的总损耗为 ()() ()dB P P A λλ21lg 10= (1-1) A 实际上是被测光纤的损耗与连接器损耗之和。如果忽略连接器损耗,被测光纤的长度为L ,则光纤的损耗系数为 ()km dB L A =α (1-2) 对于多模光纤,不同的模式分布对损耗有很大影响。不同的发射条件,可产生不同的模式分布,因此有不同的光纤损耗值。解决办法是在光的注入系统加一个扰模器,使多模光纤在短的传播长度内达到稳态模分布。对于单模光纤,光的注入系统是一个剥模器,可以滤除单模光纤的包层模。 三.实验设备 AV2498光纤多用表、 1310nmLD 光源、 待测光纤、 光纤跳线 四.实验步骤 1.将1310nmLD 光源打开预热30分钟。 2. 在激光耦合进光纤的起始端,用一定长度的光纤跳线在扰模器上缠绕,达到稳定 的模式输出后,在光纤跳线的另一端测量或连接待测光纤。 3.将光纤多用表电源开关拨到"单开"位置。 4.光纤多用表调零 。调零是在最小量程下进行,按“平均”键后,在遮光下进行(盖 上光输入保护盖),按“调零”键即可。 5.测量方式的选择。用“波长”键设定波长为1310nm ,使之与被测波长相符。 6.按照图1.2(a)测出参考光功率P 0。将两端都带有标准FC/PC 活动接头的光纤跳线 的一端直接插入光纤多用表的光输入插座,另一端插入光源的光输出插座,测出参考光功率P 0。 7.按照图1.2(b)测出参考光通过待测光纤后的功率P S 。将待测光纤串到跳线的一端 和光纤多用表输入端之间,测出此时的功率P S 。 测试中可根据用户的习惯和测试特点随时按"W/dBm"键得到线性(W)、对数值(dBm)读数。 对数值(dBm)=10log(测量线性值/1mW) 8.算出光纤的损耗和损耗系数。 总损耗为:

关于光纤接续损耗测试以及分析

关于光纤接续损耗测试以及分析 作者:舒伟明 光纤接续损耗是光纤通信系统 性能指标中的一项重要参数,损耗值的大小直接影响到光传输系统的整体传输质量,在光缆施工和维护测试中,运用科学的测试分析方法,对提高整个光缆接续施工质量和维护工作极其重要,尤其是进一步研究光通信中长波长的单模光纤的通信性能、传输衰耗、测量精度和检查维修等方面有一定现实意义。 一、 光纤接续损耗分析 1、 光纤接续损耗产生的原因 1.1 本征损耗 本征损耗是光纤材料所固有的一种损耗,预制棒拉丝成纤后就确定了,这种损耗无法避免,引起光纤本征损耗的主要原因是散射和吸收,散射是由于材料密度不均匀而产生的瑞利散射,吸收主要是光纤材料中的杂质粒子对某些波长的光产生强烈的吸收。 1.2光纤的附加损耗 附加损耗是成纤后产生的损耗,主要是由于光纤受到弯曲和微弯所产生的,在成缆和光缆的施工过程中,都不可避免地要发生弯曲,因此就会产生附加损耗,对于单模光纤,对接的两根纤,由于模场直径,纤芯和包层的同心度、纤芯的不圆度参数的差异,会导致光纤接续损耗的产生,在两根光纤完全对准,且忽略端面间隙的情况下,接续损耗主要取决于光纤模场直径的差异,接续损耗的计算为:b=20lg[1/2(d1/d2+ d2/ d1)], d1与d2分别为两对接光纤的模场直径,从计算公式可以看出,两对接光纤的模场直径相等(即d1=d2)时,其接续损耗b=0。 2、 影响光纤接续损耗的原因

影响光纤接续损耗的原因,主要是光纤本身的结构参数和熔接机的熔接质量,同时还有一些人为因素和机械因素,比如光纤收容盘纤产生的弯曲损耗,光纤切割的断面质量,横向失配、纵向分离、轴向倾斜等。 二、光纤接续损耗测试分析 1、熔接机对接续损耗估算原理 熔接机接续是通过对光纤X轴和Y轴方向的错位调整,在轴心错位最小时进行熔接的,这种能调整轴心的方法称为纤芯直视法,这种方法不同于功率检测法,现场是无法知道接续损耗的确切数值的,在整个调整轴心和熔接接续过程中,通过摄像机把探测到所熔接纤芯状态的信息,送到熔接机的分析程序中,然后熔接机计算出接续损耗值,其实准确地说,这只能是说明光纤轴心对准的程度,并不含有光纤本身的固有特性所影响的损耗,而OTDR 的测试方法是后向散射法,它包含有光纤参数的不同形式的反射损耗,所以熔接机所显示的数据配合观察光纤接续断面情况只是粗略地估计了光纤接续点损耗的状况,不能作为光纤接续损耗的真实值。 2、OTDR的工作原理 背向散射法是将大功率的窄脉冲光注入待测光纤,然后在同一端检测沿光纤轴向向后返回的散射光功率,由于光纤材料密度不均匀,其本身的缺陷和掺杂成分不均匀,当脉冲通过光纤传输时,沿光纤长度上的每一点均会引起瑞利散射,其中总有一部分进入光纤的数值孔径角,沿光纤轴反向传输到输入端。瑞利散射光的波长与入射光的波长相同,其光功率与散射点的入射光功率成正比,测量沿光纤轴向返回的背向瑞利散射光功率可采集到沿光纤传输损耗的信息,从而测得光纤的衰减。 光时域反射仪通过光发送脉冲进入输入光纤,同时在输入端接收其中的菲涅尔反射光和瑞利背向散射光,再变成电信号,随时间在示波器上显示。 使用OTDR测试光纤接续损耗时,1550nm的波长对光纤弯曲的损耗较1310nm敏感,所以光纤接续损耗测试应选择1550nm波长,以便观察光缆敷设和光纤接续中是否会因光纤弯曲过度而造成损耗增大,但采用光源光功率计全程传输损耗测试时应对1310nm和1550nm两波长进行分测。

光纤测量实验报告

光纤测量实验报告 光纤损耗测量 一、实验目的 1、掌握光功率计的原理及使用方法 2、利用光功率计测量1310nm及1550nm光纤的损耗 二、实验装置 LD激光器,光功率计,直径不同的圆柱型物体若干,光纤跳线若干。 1、LD激光器 半导体激光器是以一定的半导体材料做工作物质而产生激光的器件。.其工作原理是通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。电注入式半导体激光器,一般是由砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。 2、光功率计 光功率计是指用于测量绝对光功率或通过一段光纤的光功率相对损耗的仪器。 在光纤系统中,测量光功率是最基本的,非常像电子学中的万用表;在光纤测量中,光功率计是重负荷常用表。通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。用光功率计与稳定光源组合使用,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。 3、直径不同的圆柱型物体 分别有笔芯、针管、胶棒等圆柱型物体,如下图所示。 三、实验步骤 如下图所示,连接好实验装置后,首先将光纤拉直,在不进行缠绕的情况下测得初始光功率,再将光纤在不同的圆柱型外缠绕不同的圈数,分别记录下此时的光功率计显示的损耗值,列表分析数据并画出损耗曲线。

四、实验数据及结果分析 1、波长值为1310nm (初始光功率值为5.37dBm ) 2、波长值为1550nm (初始光功率值为2.40dBm ) (1)直径d=5mm

光纤通信测试法

光纤通信测试法(OTDR)的参数设置及常 用方法 光纤通信是以光波作载波以光纤为传输媒介的通信方式。光纤通信由于传输距离远、信息容量大且通信质量高等特点而成为当今信息传输的主要手段,是“信息高速公路”的基石。光纤测试技术是光纤应用领域中最广泛、最基本的一项专门技术。O TDR是光纤测试技术领域中的主要仪表,它被广泛应用于光缆线路的维护、施工之中,可进行光纤长度、光纤的传输衰减、接头衰减和故障定位等的测量。OTDR具有测试时间短、测试速度快、测试精度高等优点。 1 支持OTDR技术的两个基本公式 OTDR(Optical Time Domain Reflectometer,光时域反射仪)是利用光脉冲在光纤中传输时的瑞利散射和菲涅 尔反射所产生的背向散射而制成的高科技、高精密的光电一体化仪表。半导体光源(LED或LD)在驱动电路调制下输出光脉冲,经过定向光耦合器和活动连接器注入被测光缆线路成为入射光脉冲。 入射光脉冲在线路中传输时会在沿途产生瑞利散射光和菲涅尔反射光,大部分瑞利散射光将折射入包层后衰减,其中与光脉冲传播方向相反的背向瑞利散射光将会沿着

光纤传输到线路的进光端口,经定向耦合分路射向光电探测器,转变成电信号,经过低噪声放大和数字平均化处理,最后将处理过的电信号与从光源背面发射提取的触发信号同步扫描在示波器上成为反射光脉冲。 返回的有用信息由OTDR的探测器来测量,它们就作为被测光纤内不同位置上的时间或曲线片断。根据发射信号到返回信号所用的时间,再确定光在石英物质中的速度,就可以计算出距离(光纤长度)L(单位:m),如式(1)所示。 式(1)中,n为平均折射率,△t为传输时延。利用入射光脉冲和反射光脉冲对应的功率电平以及被测光纤的长度就可以计算出衰减a(单位:dB/km),如式(2)所示: 2 保障OTDR精度的五个参数设置 2.1 测试波长选择 由于OTDR是为光纤通信服务的,因此在进行光纤测试前先选择测试波长,单模光纤只选择1 310 nm或 1 550 nm。由于1 550 nm波长对光纤弯曲损耗的影响比1

光缆工程竣工资料模板

◆二、 竣工技术资料 (管道光缆)/(直埋光缆)/(架空光缆) 建设项目: 建设单位: 设计单位: 监理单位: 施工单位(公章): 施工负责人(签章): 编制日期:年月日

光缆线路工程竣工技术资料目录及表格 1、施工单位营业执照复印件(需加盖施工单位公章) 2、施工单位资质等级证书复印件(需加盖施工单位公章) 3、委托施工合同 4、施工组织设计(方案)报审表(见附录2.1) 5、施工组织设计方案 6、工程开工/复工报审表(见附录2.2) 7、开工报告(见附录2.3) 8、分包单位资质报审表(见附录2.4) 9、施工进度计划报审表(见附录2.5) 10、工程变更费用报审表(见附录2.6) 11、费用索赔申请表(见附录2.7) 12、工程款支付/预付申请表(见附录2.8) 13、工程临时/最终延期申请表(见附录2.9) 14、工程材料/构配件/设备报审表(见附录2.10) 15、工程质量事故报告单(见附录2.11) 16、质量事故处理情况报验表(见附录2.12) 17、单位工程竣工预验及报验表(见附录2.13) 18、完成隐蔽作业项目报验单(见附录2.14) 19、监理通知回复单(见附录2.15) 20、工作联系单(见附录2.16) 21、工程说明(见附录2.17) 22、工程设计变更单(见附录2.18) 23、工程量总表(见附录2.19) 24、工程报验单(见附录2.20) 25、工程竣工初验证书(见附录2.21) 26、光缆敷设施工质量记录表(见附录2.22) 27、光缆测试质量记录表(见附录2.23) 28、光缆配盘图 29、光缆纤芯接续色谱图 30、中继段光缆衰减统计表(见附录2.24) 31、中继段光纤接头损耗记录(见附录2.25) 32、中继段光纤后散射信号曲线检测记录 33、工程竣工图(需加盖竣工章)

光纤测试方案.doc

光纤测试方案 OTDR :光纤测试方案(短光纤测试)及OM4光纤介 绍首先来看一下当前数据中心的 情况, 10G 已经不是什么新鲜事物了,而介质这块,铜缆双绞线也开始6A 化,光纤也逐步升级,而数据中心里的大部分光纤链路都小于200 米,这使得基于 VCSEL的 850nm 光收发器可以被大量使用,配合OM3光纤,光纤方案的成本更为降低,也使OM3成为万兆速率数据中心的首选。如表格 1 表格 2 所示, OM3光纤( MM50 um MBW=2000),在同样插入损耗的情况下,与OM2 和 OM1光纤相比, OM3光纤的传输距离可以更远。而通道最大距离与模式带宽和通道最大插入损耗相关。例如,对于一个使用850nm OM3光纤的 300 米10GBase-SR 链路而言,所能被允许的最大插入损耗是2.6 分贝,而在 1000BASE-SX 网络中则为3.56 分贝,可以预见随着速率不断提升,损耗这块的要求也越来越高了。而即使 是在这2.6 分贝的最大允许损耗中,也被分为光纤本身所固有的损耗,以及光纤连接和连 接器损耗。 伴随数据中心 TIA-942 推行的结构化光布线系统的发展,在带来灵活易用的同时,也 对光纤测试带来了新的内容,引入的结构化布线,增加了连接器件,对接头连接器的插入损 耗有了更高的要求。 那么下面先来谈一下数据中心短光纤的测试面临的新的问题: 从目前光纤链路的测试来看,主要分成两个等级,第一等级为OLTS 测试,第二等级为OTDR测试;从实际验收来看更多的采用的是 OLTS 测试,即光源和光表的测试方式,其 原因除了测试设备相对价格低廉有关外,也和其使用简易程度有关,相对来说,使用第 二级别的 OTDR测试仪需要更专业的知识,需要读懂的曲线图,并且判定故障原因,这绝 非简单培训就可以上手的工作。另外,不论部署结构化光布线网络,还是模块化高密度 MPO方案时,多模光纤都被大量运用,此时用光纤元件标准测试通过,而用应用标准测 试则不一定过,两类标准门限值有所不同,测试时选标准不当,也会给后续网络运行埋下 故障隐患。 不仅如此,在选用OTDR( Optical Time Domain Reflectometer,简称OTDR)测试仪时,死区的问题也是不能忽略的一大问题,OTDR的死区分为事件死区和衰减死区,事 件死区代表OTDR所能检测到的光缆的最短长度。死区越短,可检测到的光缆长度就越短。 如果事件死区比被测的光缆长度要短,那么就可以使用OTDR来测试这条链路。而衰减死区一般要大于事件死区,它的定义是可以测得的连续两个事件插入损耗数值的最小距离。 数据中心内网络的光缆链路通常都非常短,同时通道里还会有多个连接器和短的跳线。 在进行光缆测试时,应该使用具有短事件死区和衰减死区的OTDR测试仪。 标为例如,假设正在测试的光缆链路包含一根三米长的跳线,如果你的OTDR事件死区指 5 米,OTDR将会只检测到跳线的起始端,而检测不到终点。如果您使用的 OTDR事件

光纤验收测试方法

前言 在光纤工程项目中必须执行一系列的测试以便确保其完整性,一根光缆从出厂到工程安装完毕,需要 进行机械测试、几何测试、光测以及传输测试。前3个测试一般都是在工厂进行,传输测试则是光缆布线 系统工程验收的必要步骤。 国家标准《GB 50312-2007综合布线工程验收规范(含条文说明)》中明确要求对综合布线工程进行 验收测试:“综合布线工程电气测试包括电缆系统电气性能测试及光纤系统性能测试。电缆系统电气性能测 试项目应根据布线信道或链路的设计等级和布线系统的类别要求制定。各项测试结果应有详细记录,作为 竣工资料的一部分。” 布线系统测试可以从多个万面考虑,设备的连通性是最基本的要求;跳线系统是否有效可以很方便地 测试出来;通信线路的指标数据测试相对比较困难,一般都借助专业工具进行。 但国标中对光纤链路测试方法的描述非常简单,未给出详细的测试方法,对于目前在工程中常用的光 时域反射损耗测试(OTDR),国标中并未阐述。本文从光纤测试标准、测试参数、测试设备、测试方法 等几个方面进行简单的介绍,希望能对工程验收提供帮助。 一、参照标准 在国际标准IEC 61746、TIA/EIA TSB-107等标准中对光纤测试如光功率,OTDR等做了明确的规定,布线系统测试可以参照这些标准进行: 《GB 50312-2007综合布线工程验收规范(含条文说明)》 《IEC 61350功率计校准》 《IEC 61746 OTDR校准》 《G.650.1单模光纤与光缆的线性、确定性属性的定义与测试方法》 《G.650.2单模光纤与光缆的统计与非线性属性的定义与测试方法》 《IEC 60793》 《TIA/EIA TSB-107》 《TIA/EIA FOTP-169》 … 二、测试参数 光缆测试一般应执行以下几个重要参数: 端到端光纤链路损耗 每单位长度的衰减速率

光缆测试方案

光缆测试方案 1. 作业准备 1.1 内业技术准备 在开工前组织技术人员认真学习实施性施工组织设计,阅读、审核施工图纸,澄清有关技术问题,熟悉规范和技术标准。制定施工安全保证措施,提出应急预案。对施工人员进行技术交底,对参加施工人员进行上岗前技术培训。 1.2 外业技术准备 确认中继段光缆接续完成并全部符合接续测试指标。 2. 技术要求 2.1 光缆中继段光纤线路的测试值应小于光缆中继段光纤线路衰减计算值。其计算值为 )(0dB m n L c l αααα++= 式中 α ——光纤衰减标称值(dB/km) α——光缆中继段每根光纤接头平均损耗(dB ) 单模光纤α≤ 0.08dB(1310mm 、1550mm) 多模光纤α≤ 0.2dB c α——光纤活动连接器平均损耗(dB ) 单模光纤α c ≤ 0.7dB 多模光纤α c ≤ 1.0dB L ——光中继段长度(km ) n ——光缆中继段内每根光纤接头数 m ——光缆中继段内每根光纤活动连接器数 2.2 在一个光缆中继段内,每一根光纤接续损耗平均值应符合下列指标: 单模光纤α≤0.08dB(1310mm 、1550mm) 多模光纤α≤0.2dB

2.3 对传输STM-4、STM-16的1310nm、1550 nm波长光纤和传输STM-1的1550nm 波长光纤,应进行最大离散反射系数和S点最小回波损耗的测试,测试值应满足下列要求: 2.3.1 光缆中继段S、R点间的最大离散反射系数: STM-1 1550nm,不大于-25dB STM-4 1310nm,不大于-25dB STM-4 1550nm,不大于-27dB STM-16 1310nm、 1550nm,不大于-27dB 2.3.2 光缆中继段在S点的最小回波损耗(包括连接器): STM-1 1550nm,不小于20dB STM-4 1310nm,不小于20dB STM-4 1550nm,不小于24dB STM-16 1310nm、 1550nm,不小于24dB 2.4对用于高速率密集波分复用(DWDM)系统的光纤需要进行偏振模色散(PMD)的测量: 偏振膜色散(PMD)的值应小于0.2ps/km。 2.5 同一中继段光缆必须采用同一厂家光缆,且光缆的电气指数必须一致 2.6 电性能测试 1.电性能测试应包括下列内容: 1) 直埋光缆线路对地绝缘电阻; 2) 防护接地装置地线电阻。 2.为保证光缆金属外护层免遭腐蚀,埋设接续后的单盘直埋光缆,其金属外护层对地绝缘电阻竣工验收指标应不低于10MΩ·km。目前暂允许10%的单盘光缆不低于2M Ω·km。直埋光缆线路对地绝缘的测试方法应符合原邮电部《光缆线路对地绝缘指标及测试方法》的要求。 3.防护接地装置地线的接地电阻应小于2欧姆。 3. 指标测试 1.光缆具体测试比例与要求如下:

实验八 单模光纤损耗测试实验

实验八单模光纤损耗测试实验 一、实验目的 1、学习单模光纤损耗的定义 2、掌握单模光纤弯曲损耗测试方法 二、实验内容 1、测量单模光纤不同弯曲半径的损耗 三、预备知识 1、了解单模光纤的特点、特性 四、实验仪器 1、ZY12OFCom13BG3型光纤通信原理实验箱1台 2、FC接口光功率计1台 3、万用表1台 4、FC/PC-FC/PC单模光跳线1根 5、扰模器(可选)1台 6、连接导线 20根 五、实验步骤 1、用FC-FC光跳线将1550nm光发端机与光功率计相连,组成简单光功率测试系统。 2、连接导线:PCM编译码模块T661与CPLD下载模块983连接,T980与光发模块输入端T151连接。 3、接上交流电源线,先开交流开关,再开直流开关K01,K02,五个发光二极管全亮。 4、接通PCM编译码模块(K60)、CPLD下载模块(K90),光发模块(K15)的直流电源。 5、用光功率计测量此时的光功率P1,填入表8-1中。 6、将光纤按照图8-2中方法缠绕,测得此时的光功率为P2,填入表8-1中。 波长(nm) 缠绕方法 1310 1550 不绕(光功率uW)158.3 图8-2a(光功率uW)13.3 图8-2b(光功率uW)100.4 损耗图8-2a (dB) 10.75 图8-2b (dB) 1.977 表8-1光纤弯曲损耗比较表 7、依次关闭各直流电源、交流电源。拆除导线,光纤等光纤器件,将实验箱还原。 8、将测得的数据依次代入公式8-1中计算得出各弯曲损耗。 9、根据上述实验步骤,设计并完成1310nm单模光纤损耗测试实验。 六、实验总结 1、传输相同波长信号时,为什么不同弯曲半径下光纤的损耗不同? 答:因为弯曲半径不一样所以全反射角度不一样,全反射次数也不同所以损耗不同。 2、相同弯曲半径时,为什么光纤传输不同波长信号损耗不同?

光纤链路测试详解

光纤链路测试详解 随着光纤通信技术的快速发展,基于FTTH的宽带网络必将成为光纤通信中一个新的热点。光纤是迄今为止最好的传输媒介,光纤接入技术与其他接入技术(如铜双绞线、同轴电缆)相比,最大优势在于可用带宽大。光纤接入网还有传输质量好、传输距离长、抗干扰能力强、网络可靠性高、节约管道资源等特点,是FTTH发展动力之所在。 光纤通信技术的应用越来越广,制造光纤的原料品种越来越多,光纤制作的工艺技术也有突破性的发展。光纤的新品种和新结构不断出现,产品质量也不断提高。但是,一条完整的光纤链路的性能不仅取决于光纤本身的质量,还取决于连接头的质量以及施工工艺和现场的环境,所以对于光纤链路进行现场测试是十分必要的。 光纤链路的现场测试一般可以从这几个万面考虑:设备的连通性、跳线系统是否有效以及通信线路的指标数据等,而通信线路的指标数据一般得借助专业工具进行,目前在工程中常用的是光时域反射损耗测试仪(OTDR)。下面就光时域反射损耗测试仪(OTDR)的功能、参数设置、检测方法以及曲线分析做一简单的介绍。 一、光时域反射损耗测试仪OTDR的功能如下: a、测试光纤的长度; b、测试光纤的衰减系数(波长850nm、1310nm、1550nm、1625nm); c、测试光纤的接头损耗; d、测试光纤的衰减均匀性; e、测试光纤可能有的异常情况(如有台阶,曲线异常等); f、测试光纤的回波损耗(ORL); g、测试光纤的背向散射(BKSCTR COEFF); 二、 OTDR的主要参数设置 a) 测试波长 对于多模光纤,选择850nm或1300nm;而单模则选择1310 nm或1550nm。 b) OTDR的光纤的折射率(IOR) 折射率定义 折射率 =真空中的光速/光脉冲在光纤中的速度; 设置OTDR上光纤的双窗口的折射率因根据各厂家提供的数据,每种光纤其折射率是不同的,光纤的n的典型值在1.45与1.55之间。单模光纤的折射率基本在1.460~1.4800范围内,如G652单模光纤,在实际测试时,若在1310 nm 波长下,折射率一般选择1.468;若在1550 nm波长下,折射率一般选择1.4685。OTDR所测光纤长度跟设置的折射率有关;对同一光纤,所设置的折射率越大所测光纤长度越短,反之所测光纤长度则越长。 OTDR 上显示的距离 此次我们在某工厂所检测的光缆主要是室内型单模零水峰光纤,它的光纤折射率n为: n=1.467@1310nm,n =1.468@1550nm c) OTDR测试量程(DISTANCE) OTDR所设量程必须是所要测试光纤长度1.5~2倍比较好。量程过小,光时

相关文档
相关文档 最新文档