文档库 最新最全的文档下载
当前位置:文档库 › 正弦波振荡器

正弦波振荡器

正弦波振荡器
正弦波振荡器

第四章 正弦波振荡器

4-1 什么是振荡器的起振条件、平衡条件和稳定条件?振荡器输出信号的振幅和频率分别是由什么条件决定? 答4-1

4-2 试从相位条件出发,判断图示交流等效电路中,哪些可能振荡,哪些不可能振荡。能振荡的属于哪种类型振荡器?

题4-2图

答4-2

(a) 可能振荡,电感三点式反馈振荡器, (b) 不能, (c) 不能, (d) 不能,

(e) 可能振荡,振荡的条件是L1C1回路呈容性,L2C2回路呈感性,即要求f01

是一个电感反馈振荡器,

(f) 可能振荡,振荡的条件是LC3支路呈感性,即要求f03

1()1()1()2,0,1,2......()1()1()2,0,1,2 (00)

U U i iA

i L T j T j T n n T j T j T n n T

U =ω=ω?ω>ω>??=π=??ω=ω=??=π=?

??

???

???

4-3图示是一三回路振荡器的等效电路,设有下列四种情况:

(1) L1C1>L2C2>L3C3;

(2)L1C1

(3)L1C1=L2C2>L3C3;

(4)L1C1

试分析上述四种情况是否都能振荡,振荡频率f1与回路谐振频率有何关系?

题4-3图

解4-3

根据给定条件,可知

(1)f o1

(2)f o1>f02>f03,因此,当满足f o1>f02>f>f03,就可能振荡,此时L1C1回路和L2C2回路呈感性,而L3C3回路呈容性,构成一个电感反馈振荡器。

(3)f o1=f02

(4)f o1>f02=f03不能振荡,因为在任何频率下,L3C3回路和L2C2回路都呈相同性质,不可能满足相位条件。

4-4 试检查图示的振荡器线路,有哪些错误?并加以改正。

题4-4图

解4-4 改正过的电路图如下

4-5 将图示的几个互感耦合振荡器交流通路改画为实际线路,并注明互感的同名端。

题4-5图

解4-5, 画出的实际电路如下

?

b

C Ec

12

C C C

E 3

21D

C

B

V

T

T

Ec

v

Ec

T

-Ec

Q?PNP

??

?

?

?

?

4-6 振荡器交流等效电路如图所示,工作频室为10 MHZ ,(1)计算C 1、C 2取值范围。(2)画出实际电路。

题4-6

解4-6 (1)因为

(2)实际电路如下

2

3

4

5

5

43

2Titl e

Size B

Dat e:File:

v

Ec

1

C 2

C 20H

μ10H

μ30H

μ10p F

C

L b

C C C

11

5216255

2511551210210(2)10139.4384101

0,21021023101223102310eb ec B f f f f f f C B fC f f ---------=π?-π?π?-?-==<π?π?π?-=π-π??π??呈感性,所以()1

=,也应呈感性,即2515

9

1252145225522225

22

225214523101

0,231011108.5(231041031012(2)21011221022(2)21010,

211

12.7(2)210410210bc

f C f C pF f f C X f f C f C f C f C C pF f ----------π?-<π??<==≈π?π???ππ??-=π??-

=π?π?π??-<π?<=≈π??π???())应该呈容性,及

4-7 在图示的三端式振荡电路中,已知 L=1.3μH ,C 1=51pF ,C 2=2000pF ,Q 0=100,R L =1k Ω,Re=500Ω试问I EQ 应满足什么要求时振荡器才能振荡? 解4-7

L L m

m

m

22

e e L F m

L F e e

11g 1mS R 1000g g g K R r g g K g g K R r ∑

=

===

=≈

+++++00负载电导放大器增益g g

4-8 在图示的电容三端式电路中,试求电路振荡频率和维持振荡所必须的最小电压增益。 解4-8

题4-8图

1F

12121260C 5151K 0.02487C C 5120002051

C C 102000

C 50pF C C 2051

1C 150

1062S,Q L 100 1.3-====++==

≈+==?≈μ0以回路两端为放大器的输出,则当忽略晶体管的影响后

反馈系数总电容为固有谐振电导g m F

1F

2L F m

2m F L F m 3

m L F F eQ m T g K T()K K 1g K g g K g K g ,1(10.062)10g (g )43.8mS K (1K )0.02487(10.02487)I g V 43.826 1.14mA -ω==>++>+++?>+=≈--=>?=000环路增益时满足起振条件,即g g g 212110612

1F 2

2F F 1C C 30000

C =

==75pF

C +C 4001f f =

21

2.6250107510C K =

C C 1300K 13K C 100

ce LC MHz

u --≈π=

≈π???====回路总电容振荡频率当以作为放大器的输出时,反馈系数要维持振荡,应满足K ,即K=

4-9 图示是一电容反馈振荡器的实际电路,已知C 1=50 pF ,C 2=100 pF ,C 3= 10~260pF ,要求工作在波段范围,即f=10~1OMHz ,试计算回路电感L 和电容C 。设回路无载Q 。=100,负载电阻R=1k Ω,晶体管输入电阻R i =500Ω.若要求起振时环路增益K 。K F =3,问要求的跨g s 。和静态工作电流 I cQ 必须多大?

题4-9图

解4-9

120303

12min 00

max 006

max 0min 6min max 00

C C C C C 33.33C C C C C 33.3310C 43.33C C 33.33260C 293.33C 112010f 2L(43.33C )2LC ,11f 10102LC 2L(293.33C )C 40pF,L 0.=++≈+++=++=+=++=+???==??π+π??

?

???=?=

??ππ+??≈=回路总电容因此得到方程组如下代入数值后得解之得76H μ112m

0i

m m

00i i max m 0i 0

i 126C 501

C C 1503

g K 11g R R g g K 39

1111g 3g R R R R C 11111g 9g 9R R Q L R R 1330.3310111912.88101000.761010009500--===+=

++=≥≥??++++ ???????≥++=++ ? ? ???????

? ?=++?=? ????F 2F F 22F F 22F F 反馈系数K 放大器增益K 因此,K ,即K K K K 3CQ m T I g V 12.8826335A -==?≈μ

4-10 对于图示的各振荡电路;(1)画出交流等效电路,说明振荡器类型;(2)估算振荡频

率和反馈系数。

题4-10图

解4-10

(1)交流等效图如下

(a)是一个西勒振荡器,当忽略15pF 的电容后,是一个电容三点式反馈振荡器;(b )是一个电容三点式反馈振荡器 (2)

对于(b )电路

2345

5

432

Title

Size B Date:

File:

57H

μ 3.3pF

15pF

8.2pF 2.2pF

510Ω5.1k Ω

15k Ω

47H

μ50H

μ1000pF

1000pF 32k Ω

12k Ω

68125pF 1612

2.2

0.2688.28.2 2.2

158.2 2.2C 3.3 4.855pF 8.2 2.2

158.2 2.2

11

f 9.57MHz 2LC 25710 4.85510

--=≈??+=+≈?++==≈ππ???F 对于(a)电路,反馈系数为K 02min -612

f 2.014MHz

2501012510-≈π???1

=

02max -6

12

f 2.731MHz

250106810

-≈π???1

=

答:该电路的振荡频率可在2.285MHz 到2.826MHz 范围内调节。

因此,该电路的的反馈系数随着振荡频率的调节也发生改变,近似值为0.9。

1max 02max 1min 02min f f ,f f >>因此,要电路振荡,振荡频率应该满足61129

91116

1314152

1115230312

131LC 68pF 111501001681010104710

15981053.73210 1.068053.7321053.732104 1.068159810319610(53.73247)-----------ω??---=ω??ω?ω?-ω???ω-?ω?+=?±?-???ω=

?±=当串联支路的电容取时,在回路电抗为0时振荡,即:

整理后得到:16

12121031510(2110)

3196

?≈??或121max 1

121max 02max 11

f 31510 2.826MHz,221f 21100.73MHz f 20.73MHz =ω=??≈ππ

=??≈<π

所以或者,因此在频率下不满足相位条件,不能振荡。6

11299

11161212121LC 125pF 111501001125101010471020610(1510)-----ω??---=ω??ω?ω?-

ω??ω=??当串联支路的电容取时,将上式整理得:或121min 1121min 102min 11f 20610 2.285MHz,

2211f 15100.616MHz f 220.616MHz =ω=?≈ππ=ω=?≈<ππ因此或者,

故在不满足相位条件,也不能振荡。991F

19611

9

161

152152

15211Fmin 32Fmin 32

11011K (10)11047101104710111

11147104710(2f )1853.610f 1K 10.932

1853.610 2.8261K 10.897

1853.610 2.285-----------ω==ω-ω?ωω-?ω=-=-=-?ω?π?=-≈?=-≈?

4-11 克拉泼和西勒振荡线路是怎样改进了电容反馈振荡器性能的? 答4-11

由于克拉波振荡器在回路中串行接入了一个小电容,使的晶体管的接入系数很小,耦合变弱,因此,晶体管本身的参数对回路的影响大幅度减小了,故使频率稳定度提高,但使的频率的调整范围变小,所以,西勒振荡器是在克拉波振荡器的基础上,在回路两端在并联一个可调电容,来增大频率调节范围。由于存在外接负载,当接入系数变小时,会带来增益的下降。

4-12 振荡器的频率稳定度用什么来衡量?什么是长期、短期和瞬时稳定度?引起振荡器频率变化的外界因素有哪些? 答4-12

振荡器的稳定度是用在一定的时间间隔内,振荡频率的相对变化量大小来衡量的。 长期稳定度:一般是指一天以上时间内的稳定度。

短期稳定度:一天或小于一天时间内,如小时、分、或秒 计时间隔的频率稳定度

瞬时稳定度:秒或毫秒时间间隔内的频率的相对变化。

4-13 在题4-8图所示的电容反馈振荡器中,设晶体管极间电容的变化量为ΔCce=ΔCbe=1pF ,试计算因极间电容产生的频率相对变化Δω1/ω1 解4-13

12121

6129C C 30000C 75pF

C C 40011LC 501075101016.33Mrad /S

5075--===+ω==???=≈?1ce 2be 1ce 2be 131(C C )(C C )101302

C C 750.687pF (C C )(C C )1013021C C L C C C L C C C LC C 0.6879.1610C 75-+?+???=-=-=+?++?+?ω?ω?ω????ω=?+?=?=?-=

ω ???????ω?===?ω当考虑晶体管的电容的变化量时

4-14 泛音晶体振荡器和基频晶体振荡器有什么区别?在什么场合下应选用泛音晶体振荡器?为什么? 答4-14

所谓泛音,就是石英晶体振动的机械谐波,位于基频的奇数倍附近,且两者不能同时存在。在振荡器电路中,如果要振荡在某个泛音频率上,那么就必须设法抑制基频和其他泛音频率。而因为石英晶体的带宽很窄,所以在基频振荡时,肯定会抑制泛音频率。 当需要获得较高的工作频率时,如果不想使用倍频电路,则可采用泛音振荡器直接产生较高的频率信号。

4-15 图示是两个实用的晶体振荡器线路,试画出它们的交流等效电路,并指出是哪一种振

荡器,晶体在电路中的作用分别是什么?

题4-15图

解4-15

交流等效电路如下

图(a )电路是一个并联晶体振荡器,晶体在电路中相当于一等效的大电感,使电路构成电容反馈振荡器。

图(B )电路是一个串联晶体振荡器,晶体在电路中在晶体串联频率处等效一个低阻通道,使放大器形成正反馈,满足相位条件,形成振荡。

432(a)(b)

200pF

300pF

4.7H

μ5MHz

20pF

3/10pF

12pF

36pF

10pF

47M Hz

470

0.45~0.55H

μ

4-16 试画出一符合下列各项要求的晶体振荡器实际线路; (1)采用NPN 高频三极管;

(2)采用泛音晶体的皮尔斯振荡电路;

(3)发射极接地,集电极接振荡回路避免基频振荡。 解4-16

所设计的电路如下

4-17将振荡器的输出送到一倍频电路中,则倍频输出信号的频率稳定度会发主怎样的变化?并说明原因。 解4-17

如果将振荡器的频率为f 1的输出信号送入一n 倍频器,则倍频器输出信号频率为n f 1。但由于倍频器是对输入频率倍频,所以如果倍频器本身是稳定的,则它的频率稳定度不会发生改变。因为倍频器输出信号的稳定度为:

但实际上倍频器电路同样也存在着不稳定因素,所以实际上,振荡器信号经倍频后的信号频率稳定度将会降低。

4-18 在高稳定晶体振荡器中,采用了哪些措施来提高频率稳定度? 答4-18

●采用温度系数低的晶体切片。

●保证晶体和电路在恒定温度环境下工作,如采用恒温槽或温度补偿电路。 ●选择高稳定性的电源。

●选择温度特性好的电路器件。

123

3

21

2

R C

E 1

L 3

C 1

R 2

R C

E 11

11

?ω?ω=ωωn n

正弦波振荡器设计multisim(DOC)

摘要 自激式振荡器是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅值的交变能量电路。正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定、反馈系数、输出波形、起振等因素的综合考虑,本次课程设计采用电容三点式振荡器,运用multisim软件进行仿真。根据静态工作点计算出回路的电容电感取值,得出输出频率与输出幅度有效值以达到任务书的要求。 关键词:电容三点式;振荡器;multisim;

目录 1、绪论 (1) 2、方案的确定 (2) 3、工作原理、硬件电路的设计和参数的计算 (3) 3.1 反馈振荡器的原理和分析 (3) 3.2. 电容三点式振荡单元 (4) 3.3 电路连接及其参数计算 (5) 4、总体电路设计和仿真分析 (6) 4.1组建仿真电路 (6) 4.2仿真的振荡频率和幅度 (7) 4.3误差分析 (8) 5、心得体会 (9) 参考文献 (10) 附录 (10) 附录Ⅰ元器件清单 (10) 附录Ⅱ电路总图 (11)

1、绪论 振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。凡是可以完成这一目的的装置都可以作为振荡器。一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持 下去。选频网络则只允许某个特定频率0f能通过,使振荡器产生单一频率的输出。 振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电压 U和输入电压i U要相等,这是振幅平衡条件。二是f U和i U必须相位相同,这是相位f 平衡条件,也就是说必须保证是正反馈。一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。 本次课程设计我设计的是电容反馈三点式振荡器,电容三点式振荡器,也叫考毕兹振荡器,是自激振荡器的一种,这种电路的优点是输出波形好。电容三点式振荡器是由串联电容与电感回路及正反馈放大器组成。因振荡回路两串联电容的三个端点与振荡管三个管脚分别相接而得名。 本课题旨在根据已有的知识及搜集资料设计一个正弦波振荡器,要求根据给定参数设计电路,并利用multisim仿真软件进行仿真验证,达到任务书的指标要求,最后撰写课设报告。报告内容按照课设报告文档模版的要求进行,主要包括有关理论知识介绍,电路设计过程,仿真及结果分析等。 主要技术指标:输出频率9 MHz,输出幅度(有效值)≥5V。

RC正弦波振荡器电路设计及仿真

《电子设计基础》 课程报告 设计题目: RC正弦波振荡器电路设计及仿真学生班级: 学生学号: 学生姓名: 指导教师: 时间: 成绩: 西南xx大学 信息工程学院

一.设计题目及要求 RC正弦波振荡器电路设计及仿真,要求: (1)设计完成RC正弦波振荡器电路; (2)仿真出波形,并通过理论分析计算得出频率。 二.题目分析与方案选择 在通电瞬间电路中瞬间会产生变化的信号且幅值频率都不一样,它们同时进入放大网络被放大,其中必定有我们需要的信号,于是在选频网络的参与下将这个信号谐振出来,进一步送入放大网络被放大,为了防止输出幅值过大所以在电路中还有稳幅网络(如图一中的两个二极管),之后再次通过选频网络送回输入端,经过多次放大稳定的信号就可以不断循环了,由于电路中电容的存在所以高频阻抗很小,即无法实现放大,且高频在放大器中放大倍数较小。 三.主要元器件介绍 10nf电容两个;15kΩ电阻一个;10kΩ电阻三个;滑动变阻器一个;2.2k Ω电阻一个;二极管两个;运算放大器;示波器 四.电路设计及计算 电路震荡频率计算: f=1/2πRC

起振的复制条件:R f/R i>=2 其中R f=R w+R2+R3/R d 由其电路元件特性 R=10KΩ C=10nF 电路产生自激震荡,微弱的信号1/RC 经过放大,通过反馈的选频网络,使输出越来越大,最后经过电路中非线性器件的限制,使震荡幅度稳定了下来,刚开始时A v=1+R f/R i >3。 平衡时A v=3,F v=1/3(w=w0=1/RC) 五.仿真及结果分析 在multisim中进行仿真,先如图一连接好电路,运行电路,双击示波器,产生波形如下图 图2 刚开始运行电路时,输出波形如图2,几乎与X轴平行,没有波形输出。

实验六 RC桥式正弦波振荡器

实验六RC桥式正弦波振荡器 一、实验目的 1.研究RC桥式振荡器中RC串、并联网络的选频特性。 2.研究负反馈网络中稳幅环节的稳幅功能。 3.掌握RC桥式振荡器的工作原理及调测技术。 二、实验原理 RC桥式振荡器的实验电路如图1所示。 图(b)Multisim仿真电路图 图1 RC桥式振荡器 该电路由三部分组成:作为基本放大器的运放;具有选频功能的正反馈网络;具有稳幅功能的负反馈网络。 1.RC串并联正反馈网络的选频特性。 电路结构如图2所示。一般取两电阻值和两电容值分别相等。由分压关系可得正反馈网络的反馈系数表达式: 1

2 RC j R C j R RC j R C j R C j R C j R Z Z Z V V F i F ωωωωωω++ ++=++=+==1111//11// 212 ()()RC j RC j RC j RC RC j RC j RC j RC j RC j RC j R C j RC j RC j R ωωωωωωωωωωωωω++=+-+=++=++++=131 2111112 2 令RC 10= ω,则上式为? ?? ? ??-+=ωωωω0031j F 由上式可得RC 串并联正反馈网络的幅频特性和相频特性的表达式和相应曲线(如图 3和图4所示)。 2 002 31 ? ?? ? ??-+=ωωωωF 3 arctg 0ω ωωωφ--=?F 图4 相频特性曲线 图3 幅频特性曲线

3 I I D1D1图5 由特性曲线图可知,当ω=ω0时,正反馈系数达最大值为1/3,且反馈信号与输入信号同相位,即φF =0,满足振荡条件中的相位平衡条件,此时电路产生谐振ω=ω0=1/RC 为振荡电路的输出正弦波的角频率,即谐振频率f o 为 RC f o π21 = 当输入信号i V 的角频率低于ω0时,反馈信号的相位超前,相位差φF 为正值;而当输入信号的角频率高于ω0时,反馈信号的相位滞后,相位差φF 为负值。 2、带稳幅环节的负反馈支路 由上分析可知,正反馈选频网络在满足相位平衡的条件下,其反馈量为最大,是三分之一。因此为满足幅值平衡条件,这样与负反馈网络组成的负反馈放大器的放大倍数应为三倍。为起振方便应略大于三倍。由于放大器接成同相比例放大器,放大倍数需满足 VF A =1+31 ≥R R f ,故1 R R f ≥2。为此,线路中设置电位器进行调节。 为了输出波形不失真且起振容易,在负反馈支路中接入非线性器件来自动调节负反馈量,是非常必要的。方法可以有很多种。有接热敏电阻的,有接场效应管的(压控器件),本实验是利用二极管的非线性特性来实现稳幅的。其稳幅原理可从二极管的伏安特性曲线得到解答。如图5所示。 在二极管伏安特性曲线的弯曲部分,具有非线性特性。从图中可以看出,在Q 2点,PN 结的等效动态电阻为22Q di dv r D D d =;而在Q 1 点,PN 结的等效动态电阻为1 1Q di dv r D D d =;显然, 1d r >2d r ;也就是说,当振荡器的输出电压幅度增 大时,二极管的等效电阻减少,负反馈量增大,从而抑制输出正弦波幅度的增大,达到稳幅的目的。 通过R p 调节负反馈量,将振荡器输出正弦波控 制在较小幅度,正弦波的失真度很小,振荡频率接近估算值;反之则失真度增大,且振荡

1KHZ桥式正弦波振荡器电路的设计与制作

目录 摘要 (2) 1.系统基本方案 (2) 1.1 正弦波振荡电路的选择与论证 (2) 1.2. 运算放大器的选择 (3) 1.3最终的方案选择 (3) 2.正弦波发生器的工作原理 (3) 2.1正弦波振荡电路的组成 (3) 2.1.1 RC选频网络 (3) 2.1.2放大电路 (6) 2.1.3正反馈网络 (6) 2.2产生正弦波振荡的条件 (6) 2.3.判断电路是否可能产生正弦波的方法和步骤 (7) 3.系统仿真 (7) 4.结论 (8) 参考文献: (11) 附录 (13)

1KHZ 桥式正弦波震荡器电路的设计与制作 摘要 本设计的主要电路采用文氏电桥振荡电路。如图1-1文氏桥振荡电路由放大电路和选频网络两部分组成,施加正反馈就产生振荡,振荡频率由RC 网络的频 率特性决定。它的起振条件为: ,振荡频率为: 。运算放大 器选用LM741CN,采用非线性元件(如温度系数为负的热敏电阻或JFET )来自动调节反馈的强弱以维持输出电压的恒定,进而达到自动稳幅的目的,这样便可以保证输出幅度为2Vp-p ;而频率范围的确定是根据式RC f π21 0= 以及题目给出的频 率范围来确定电阻R 或电容C 的值,进而使其满足题目的要求。 关键词:文氏电桥、振荡频率、LM741CN 1.系统基本方案 1.1 正弦波振荡电路的选择与论证 本设计选用文氏电桥振荡电路。

图1 RC 桥式振荡电路 这种电路的特点是:它由放大器即运算放大器与具有频率选择性的反馈网络构成,施加正反馈就产生振荡。振荡频率由RC 网络的频率特性决定。它的起振条件为: 12R R f > 。它的振荡频率为:RC f π21 0= 。 1.2. 运算放大器的选择 考虑到综合性能和题目要求的关系这里我们选用LM741CN 作为运算放大。 1.3最终的方案选择 文氏电桥振荡电路适用的频率范围为几赫兹到几千赫兹,可调范围宽,电路简单易调整,同时波形失真系数为千分之几。很适合我们题目的要求。故采用文氏电桥振荡电路. RC 文氏电桥振荡电路是以RC 选频网络为负载的振荡器. 这个电路由两部分组成,即放大电路和选频网络。放大电路由集成运放所组成的电压串联负反馈放大电路,取其输入阻抗高和输出阻抗低的特点。而选频网络则由Z1、Z2组成,同时兼做正反馈网络。 2正弦波发生器的工作原理 2.1正弦波振荡电路的组成 放大电路 选频网络 正反馈网络 2.1.1 RC 选频网络

RC正弦波振荡器设计实验

综合设计 正弦波振荡器的设计与测试 一.实验目的 1. 掌握运用Multisim 设计RC 振荡电路的设计方法 2. 掌握RC 正弦波振荡器的电路结构及其工作原理 3. 熟悉RC 正弦波振荡器的调试方法 4. 观察RC 参数对振荡器的影响,学习振荡器频率的测定方法 二.实验原理 在正弦波振荡电路中,一要反馈信号能够取代输入信号,即电路中必须引入正反馈;二要有外加 的选频网络,用以确定振荡频率。正弦波振荡的平衡条件为:.. 1AF = 起振条件为.. ||1A F > 写成模与相角的形式:.. ||1A F = 2A F n πψ+ψ=(n 为整数) 电路如图1所示: 1. 电路分析 RC 桥式振荡电路由RC 串并联选频网络和同相放大电路组成,图中RC 选频网络形成正反馈电路, 决定振荡频率0f 。1R 、f R 形成负反馈回路,决定起振的幅值条件,1D 、2D 是稳幅元件。 该电路的振荡频率 : 0f =RC π21 ① 起振幅值条件:311 ≥+ =R R A f v ② 式中 d f r R R R //32+= ,d r 为二极管的正向动态电阻 2. 电路参数确定 (1) 根据设计所要求的振荡频率0f ,由式①先确定RC 之积,即 RC= 21f π ③ 为了使选频网络的选频特性尽量不受集成运算放大器的输入电阻i R 和输出电阻o R 的影响,应使

R 满足下列关系式:i R >>R>>o R 一般i R 约为几百千欧以上,而o R 仅为几百欧以下,初步选定R 之后,由式③算出电容C 的值,然后再算出R 取值能否满足振荡频率的要求 (2) 确定1R 、f R :电阻1R 、f R 由起振的幅值条件来确定,由式②可知f R ≥21R , 通常 取f R =(2.1~2.5)1R ,这样既能保证起振,也不致产生严重的波形失真。此外,为了减小输入失调电流和漂移的影响,电路还应满足直流平衡条件,即: R=1R //f R (3) 确定稳幅电路:通常的稳幅方法是利用v A 随输出电压振幅上升而下降的自动调节作用实 现稳幅。图1中稳幅电路由两只正反向并联的二极管1D 、2D 和电阻3R 并联组成,利用二极管正向动态电阻的非线性以实现稳幅,为了减小因二极管特性的非线性而引起的波形失真,在二极管两端并联小电阻3R 。实验证明,取3R ≈d r 时,效果最佳。 三.实验任务 1.预习要求 (1) 复习RC 正弦波振荡电路的工作原理。 (2) 掌握RC 桥式振荡电路参数的确定方法 2. 设计任务 设计一个RC 正弦波振荡电路。其正弦波输出要求: (1) 振荡频率:接近500Hz 或1kHz 左右,振幅稳定,波形对称,无明显非线性失真 (2)* 振荡频率:50Hz~1kHz 可调,其余同(1) 四.实验报告要求 1. 简述电路的工作原理和主要元件的作用 2. 电路参数的确定 3. 整理实验数据,并与理论值比较,分析误差产生的原因 4. 调试中所遇到的问题以及解决方法 五.思考题 1. 在RC 桥式振荡电路中,若电路不能起振,应调整哪个参数?若输出波形失真应如何调整? 2. 简述图-1中21D D 和的稳幅过程。 六.仪器与器件 仪器: 同实验2 单管 器件: 集成运算放大器μA741 二极管 1N4001 电阻 瓷片电容 若干

RC正弦波振荡电路

RC正弦波振荡电路 概念: 采用RC选频网络构成的振荡电路称为RC正弦波振荡电路;它试用于低频振荡,产生1MHZ以下的低频信号。 电路原理图: 电路由放大电路和选频网络组成。放大电路是由集成运放所组成的电压串联负反馈放大电路,取其输入阻抗高和输出阻抗低的特点。选频网络由电阻电容串并联组成,同时兼作正反馈网络。 电路元件参数: 电阻4个(10K欧2个、4.95K欧、10K欧各一个)、电容2个10nF、LM358集成块一个、直流电源+12V、-12V。 RC串并联选频网络 RC串并联选频网络如下图(a)所示,它在正弦波振荡电路中既 为选频网络,又为正反馈网络,所以其输入电压为,输出电压为。 当信号频率足够低时,,因而网络的简化电路及其电压

和电流的向量如图(b)所示。超前,当频率趋于零时,相位超 前趋近于+900,且趋近于零。 当信号频率足够高时,,因而网络的简化电路及其电压 和电流的向量如图(c)所示。滞后,当频率趋近于无穷大时, 相位滞后趋近于-900,且趋近于零。 当信号频率从零逐渐变化到无穷大时,的相位将从+900逐渐变化到-900。因此,对于RC串并联选频网络,必定存在一个频率f0, 当f=f0时,=同相。通过计算可求出RC串并联选频网络的频 率特性,如下图所示,其谐振频率。

RC桥式正弦波振荡电路: ,从幅频特性曲线可得, 因为正弦波振荡器的起振条件是 当f=f0时,F=1/3,所以当A>3时,即RC串并联选频网络匹配一个电压放大倍数略大于3的正反馈放大器时,就可构成正弦波振荡器。 从理论上讲,任何满足放大倍数要求的放大电路与RC串并联选频网络都可组成正弦波振荡电路;但是,实际上,所选用的放大电路应具有尽可能大的输入电阻和尽可能小的输出电阻,以减小放大电路对选频特性的影响,使振荡频率几乎仅仅决定于选频网络。因此,通常选用引入电压串联负反馈的放大电路,如同相比例运算电路。 由RC串并联选频网络和同相比例运算电路所构成的RC桥式正弦波振荡电路如图所示。 正反馈网络的反馈电压是同相比例运算电路的输入电压,因而要把同相比例运算电路作为整体看成电压放大电路,它的比例系数是电压放大倍数,根据起振条件和幅值平衡条件

实验14 RC正弦波振荡器

实验十四 RC 正弦波振荡器 一. 实验目的 1.掌握RC 正弦波振荡器的电路结构及其工作原理。 2.熟悉正弦波振荡器的测试方法。 3.观察RC 参数对振荡器的影响,学习振荡器频率的测定方法。 二. 实验仪器 双踪示波器 低频信号发生器 频率计 毫伏表 直流电源 三. 实验原理 正弦振荡电路一般包括两部分,放大电路A 和反馈网络F ,如图5-14-1所示。 由于振荡电路不需要外接输入信号,因此,通过反馈网络输出的反馈信号f X 就是基本放大电路的输入信号id X 。该信号经基本放大电路放大后,输出为0X ,若能使f X 和id X 大小相等,极性相同,构成正反馈电路,那么这个电路就能维持稳定的输出。因而,f X =id X 可引出正弦振荡条件。由方框图5-14-1可知: 0id X AX = 而0f X AX =当f id X X =时,则有 AF=1 上述条件可写成|AF|=1,称幅值平衡条件。 即放大倍数A 与反馈系数F 乘积的模为1,表明振荡电路已经达到稳幅振荡,但若要求电路能够自行振荡,开始时必须要求|AF|>1的起振条件。 由f X 与id X 极性相同,可得:1A B φφ+= 称相位平衡条件 即放大电路的相角和反馈网络的相角之和为2n π,其中n 为整数。 要使振荡电路输出确定频率的正弦波信号,电路还应包含选频网络和稳幅电路两部分。选频电路的作用使单一频率的信号满足振荡条件,稳幅电路能保证电路的输出幅度是稳定不失真的,这两部分电路通常可以是反馈网络,或放大电路的一部分。 RC 正弦振荡电路也称为文氏桥振荡电路。它的主要特点是利用RC 串并联网络作为选频和反馈网络。如图5-14-2所示:

实训报告正弦波振荡器设计multisim

实训报告正弦波振荡器设计multisim

高频电路(实训)报告 项目:正弦波振荡器仿真设计班级:级应电2班 姓名:周杰 学号: 14052 2 摘要

自激式振荡器是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅值的交变能量电路。正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定、反馈系数、输出波形、起振等因素的综合考虑,本次课程设计采用电容三点式振荡器,运用multisim软件进行仿真。根据静态工作点计算出回路的电容电感取值,得出输出频率与输出幅度有效值以达到任务书的要求。 关键词:电容三点式;振荡器;multisim;

目录 1、绪论.................................................................................... 错误!未定义书签。 2、方案的确定 ........................................................................ 错误!未定义书签。 3、工作原理、硬件电路的设计和参数的计算 ..................... 错误!未定义书签。 3.1 反馈振荡器的原理和分析.............................................. 错误!未定义书签。 3.2. 电容三点式振荡单元 .................................................... 错误!未定义书签。 3.3 电路连接及其参数计算 ................................................. 错误!未定义书签。 4、总体电路设计和仿真分析................................................. 错误!未定义书签。 4.1组建仿真电路................................................................. 错误!未定义书签。 4.2仿真的振荡频率和幅度 ................................................. 错误!未定义书签。 5、参数调整对比/结论........................................................... 错误!未定义书签。附录.......................................................................................... 错误!未定义书签。附录Ⅰ元器件清单 .................................................................. 错误!未定义书签。附录Ⅱ电路总图 ...................................................................... 错误!未定义书签。

RC正弦波振荡电路

RC正弦波振荡电路 1. 技术指标 1.1 初始条件 直流可调稳压电源一台、万用表一块、面包板一块、元器件若干、剪刀、镊子等必备工具设计、组装、调试RC正弦波振荡电路电路,使其能产生幅度稳定的低频振荡。 1.2 技术要求 设计、组装、调试RC正弦波振荡电路电路,使其能产生幅度稳定的低频振荡 2. 设计方案及其比较 2.1 方案一 RC文氏电桥振荡器:电路结构:放大电路,选频网络,正反馈网络和稳幅环节四个部分。电路如图A所示: 图A RC文氏电桥振荡器原理图 1

电路中噪声的电磁干扰就是信号来源,不过此频率信号非常微弱。这就要求振荡器在起振时做增幅振荡,既起振条件是|AF|>1。放大电路保证电路能够有从起振到动态平衡的过程,使电路获得一定幅值的输出量,本设计采用通用集成运放电路。 选频网络兼正反馈网络 RC串并联网络使电路产生单一的频率振荡,本设计要求产生500Hz的正弦波,采用RC串并联选频网络,中心频率f0=500 Hz,ω=1/RC,则f0=1/2πRC,故选取C=0.2uF,故R=1.6K另外还增加了R1和RF负反馈网络,合理的选择R1和RF可以保证环路增益大于一。 电压放大倍数A=1+(RF/R1), 因为产生振荡的最小电压放大倍数为3,所以RF>=2R1,通过仿真,我选择R1=5K,RF=20K的滑动电阻。 一开始波形失真很严重,当调到35%,就是大约7K时,出现失真很小的正弦波,测得周期为2.16ms,频率F=1000/2.16=463KH,误差较小,基本符合要求。仿真波形如下图B所示 图B RC文氏电桥振荡器仿真波形图 2

作用是使输出信号的幅值稳定,本实验采用双向并联二极管作为稳幅电路。利用电流增大时二极管动态电阻减小,电流减小时二极管动态电阻增大的特点,加入非线性环节,从而使输出电压稳定。 2.2 方案二 RC移相振荡器 电路结构电:由反向输入比例放大器,电压跟随器,和三节RC相移网络组成。电路如图C所示: 图C RC移相振荡器原理图 电路原理:放大电路的相移为-180度,利用电压跟随器的阻抗变换作用减小放大电路输入电阻R1对RC相移网络的影响。为了满足相位平衡条件,要求反馈网络的相移为-180度,由RC电路的频率响应可知。一节RC电路的最大相移不超过正负90度,两节也不超过正负180度,而RC高通电路的频率也很低,此时输出电压已接近零,也不能满足振荡电路的相移平衡条件。对于三节RC电路,相移接近正负270度,有可能在一特定频率下满足条件,然后选取合理的器件参数,满足起振条件和振幅平衡条件,电路就会产生振荡。 起振条件:由电路的起振条件|AF|>1,经过计算可得|A|=(R2/R1)>=29时,电路产生振荡。本实验取R2=30K,R1=3K。 3

高频电子线路实验正弦波振荡器

. 太原理工大学现代科技学院 高频电子线路课程实验报告 专业班级信息13-1 学号2013101269 姓名 指导教师孙颖

实验名称 正弦波振荡器(LC 振荡器和晶体振荡器) 专业班级 信息13-1 学号 2013100 姓名 0 成绩 实验2 正弦波振荡器(LC 振荡器和晶体振荡器) 2-1 正弦波振荡器的基本工作原理 振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定的波形的交变振荡能量的装置。 正弦波振荡器在电子领域中有着广泛的应用。在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去。在超外差式的各种接收机中,是由振荡器产生的一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。 振荡器的种类很多。从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。我们只讨论反馈式振荡器。根据振荡器所产生的波形,又可以把振荡器氛围正弦波振荡器和非正弦波振荡器。我们只介绍正弦波振荡器。 常用正弦波振荡器主要是由决定振荡频率的选项网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。按照选频网络所采用的元件不同,正弦波振荡器可以分为LC 振荡器、RC 振荡器和晶体振荡器等类型。 一、反馈型正弦波自激振荡器基本工作原理 以互感反馈振荡器为例,分析反馈型正弦自激振荡器的基本原理,其原理电路如图2-1所示; 当开关K 接“1”时,信号源Vb 加到晶体管输入端,这就是一个调谐放大器电路,集电极回路得到 ……………………………………装………………………………………订…………………………………………线………………………………………

实验五RC正弦波振荡器

实验五RC正弦波振荡器 一.实验目的 1.学习文氏桥振荡器的电路结构和工作原理。 2.学习振荡电路的调整与测量振荡频率的方法。 二.电路原理简述 从电路结构上看,正弦波振荡器实质上是一个没有输入信号,但带有选频网络的正反馈放大器。它由选频网络和放大器两部分组成,选频网络由R、C串并联组成,故振荡电路称为RC振荡器,它可产生lHz--1MHz的低频信号。根据RC 电路的不同,可分为RC移项、RC串并联网络、双T选频网络等振荡器。 RC串并联网络(文氏桥)振荡器电路形式如图5—1所示。其原理为:图中的RC选频电路,若把Ui看成输入电压,把Uo看成输出电压,则只有当f=fo=1/2∏RC,Uo和Ui才能同相位。且在有效值上Uo=3Ui,对该振荡器电路而言.当电路满足振荡频率f=fo=1/2∏RC,且放大电路的放大倍数︳Au ︳>3时,就能产生一个稳定的正弦波电压Uo。 图5—1 RC串并联网络振荡器原理图 本实验采用两极共射极带负反馈放大器组成RC正弦波振荡器,实验电路如图5-2。 电路特点:改变RC则可很方便的改变振荡频率,由于采用两级放大及引入负反馈电路,所以能很容易得到较好的正弦波振荡波形。

其中:R F1=1kΩ,R W=150kΩ,增加Rf3=1kΩ,C2=C3=0.47μF,C7=C8=0.01μF,C1=10μF/25V,C E1= C E2=47μF/25V,R E1’=R E2’=10Ω,R F2=51Ω,R C1’=R E1”=120Ω,R C2=R S= R E2”=470 Ω,R B22=1kΩ,R B21=1.5kΩ,R B1=10kΩ,T1=T2=9013,外接电阻R=2kΩ,电容C=0.01μF, 三.实验设备 名称数量型号 1.直流稳压电源 1台 0~30V可调 2.低频信号发生器1台 3.示波器 1台 4.晶体管毫伏表 1只 5.万用表 1只 6.反馈放大电路模块 1块 ST2002 四. 实验内容与步骤 1. RC振荡电路的调整 1)按照图5-2电路原理,选用“ST2002反馈放大电路”模块,熟悉元件安装位置,开始接线,此电路中D和0V两点不要连接,检查连接的实验电路确保无误后,在稳压电源输出为12V的前提下对实验电路供电。 2)在A,B断开(无负反馈)情况下,调整放大器静态工作点,使其Vc1=8V左右,工作点调好后断开电源然后将A,B短接(引入负反馈),按照电路原理图接上R、C电阻和电容(选频网络),连接F,I两点,组成文氏振荡器。 3)用示波器观察输出波形,若无振荡波形可调节R F1,直至输出为稳定不失真的正弦波为止。 文氏振荡器的振荡频率f,满足下式fo =1/2∏RC 2.测量振荡频率及输出电压 ,在在E端用示波器观察输出的正弦波波形。然后用交流毫伏表测出输出电压V O 示波器上读出振荡频率的周期填入表5—1中,并与计算值相比较。 3.测量负反馈放大电路的放大倍数A vf。

实验2正弦波振荡器(LC振

实验2 正弦波振荡器(LC振荡器和晶体振荡器) 一.实验目的 1.掌握电容三点式LC振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能; 2.掌握LC振荡器幅频特性的测量方法; 3.熟悉电源电压变化对振荡器振荡幅度和频率的影响; 4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。二.实验内容 1.用示波器观察LC振荡器和晶体振荡器输出波形,测量振荡器输出电压峰-峰值,并以频率计测量振荡频率; 2.测量LC振荡器的幅频特性; 3.测量电源电压变化对振荡器的影响; 4.观察并测量静态工作点变化对晶体振荡器工作的影响。 三.实验步骤 1.实验准备 插装好LC振荡器和晶体振荡器模块,接通实验箱电源,按下模块上电源开关,此时模块上电源指示灯点亮。 2.LC 振荡实验(为防止晶体振荡器对LC振荡器的影响,应使晶振停振,即将3W03顺时针调到底。) (1)西勒振荡电路幅频特性的测量 3K01拨至LC振荡器,示波器接3TP02,频率计接振荡器输出口3P02。调整电位器3W02,使输出最大。开关3K05拨至“P”,此时振荡电路为西勒电路。四位拨动开关3SW01分别控制3C06(10P)、3C07(50P)、3C08(100P)、3C09(200P)是否接入电路,开关往上拨为接通,往下拨为断开。四个开关接通的不同组合,可以控制电容的变化。例如开关“1”、“2”往上拨,其接入电路的电容为10P+50P=60P。按照表2-1电容的变化测出与电容相对应的振荡频率和输出电压(峰-峰值V P-P),并将测量结果记于表中。 表2-1 根据所测数据,分析振荡频率与电容变化有何关系,输出幅度与振荡频率有何关系,并

高频正弦波振荡器地设计

农林大学学院 课程设计报告 课程名称:数字信号处理课程设计 课程设计题目:高频正弦波振荡器设计与仿真姓名: 系:计算机系 专业:电子信息工程 年级: 学号: 指导教师: 职称: 2015年12月30日

高频正弦波振荡器的设计 目录 目录 (1) 摘要: (2) 一、设计要求 (3) 二、总体方案设计 (3) 三、工作原理说明 (3) 1、振荡器概念 (3) 2、静态工作点的确定 (4) 3、振荡器的起振检查 (4) 4、高频功率放大器 (5) 5、电路设计原理框图如图1所示。 (5) 四、电路设计 (6) 1、正弦波振荡器的设计 (6) 2、高频功率放大器的设计 (9) 五、性能的测试 (11) 1振荡器振荡频率为2MHz (11) 2振荡器振荡频率为4MHz (11) 3高频功率放大器电路 (12) 4输出功率 (13) 六、结论、性价比 (13) 七、课设体会及合理化建议 (14) 八、参考文献 (14)

摘要: 本次课程设计通过对课本知识的运用,简单介绍了高频正弦波振荡器的设计方法,主要应用LC振荡电路产生正弦波,再经高频功率放大器进行功率放大,并用仿真软件进行仿真,以及对其性能进行测试,经过反复的调试最终得到满足课题要求的电路。 关键词:正弦波;振荡器;高频功率放大器。

一、设计要求 设计要求: 1. 选择合适的高频正弦波振荡器形式; 2. 从理论上分析振荡器的各个参数及起振条件; 3. 设计高频振荡器,选取电路各元件参数,使其满足起振条件及振幅条件。 主要技术指标:电源电压12V,工作频率2M-4MHz,输出电压1V,频率稳定度较高。 二、总体方案设计 该课程设计主要涉及了振荡器的相关容还有高频功率放大器的容,正弦波振荡器非常具有实用价值,通过该课题的研究,可以加深对振荡器以及丙类高频功率放大器的了解。 三、工作原理说明 1、振荡器概念 振荡器主要分为RC,LC振荡器和晶体振荡器。其中电容器和电感器组成的LC回路,通过电场能和磁场能的相互转换产程自由振荡。要维持振荡还要有具有正反馈的放大电路,LC振荡器又分为变压器耦合式和三点式振荡器,现在很多应用石英晶体的石英晶体振荡器,还有用集成运放组成的LC振荡器。 振荡器的作用主要是将直流电变交流电.它有很多用途.在无线电广播和通信设备中产生电磁波.在微机中产生时钟信号.在稳压电路中产生高频交流电.。 题目要求产生高频正弦波,所以选用电容三点式电路,进一步考虑从而选用并联改进型电容三点式振荡器(西勒电路),因为它具有输出波形不易失

实验五-三点正弦振荡电路

三点式正弦波振荡器 一、实验目的 1、掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。 2、通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。 3、研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1、熟悉振荡器模块各元件及其作用。 2、进行LC振荡器波段工作研究。 3、研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4、测试LC振荡器的频率稳定度。 三、实验仪器 1、模块3 1块 2、频率计模块1块 3、双踪示波器1台 4、万用表1块 四、基本原理 将开关S1 的1 拨下2 拨上,S2 全部断开,由晶体管N1 和C3、C10、C11、C4、CC1、L1 构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。

振荡器的频率约为4.5MHz(计算振荡频率可调范围) 振荡电路反馈系数 振荡器输出通过耦合电容C5(10P)加到由N2组成的射极跟随器的输入端,因C5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号经N3调谐放大,再经变压器耦合从P1输出。 五、实验步骤 1、根据图5-1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 2、研究振荡器静态工作点对振荡幅度的影响。 1)将开关S1拨为“01”,S2拨为“00”,构成LC振荡器。 2)改变上偏置电位器W1,记下N1发射极电流Ieo(=Ve/R11 ,R11=1K)(将万用表红表笔接TP2,黑表笔接地测量VE),并用示波测量对应点TP4的振荡幅度VP-P,填于表5-1中,分析输出振荡电压和振荡管静态工作点的关系。 表5-1 分析思路:静态电流ICQ会影响晶体管跨导gm,而放大倍数和gm是有关系的。在饱和状态下(ICQ过大),管子电压增益AV会下降,一般取ICQ=(1~5mA)为宜。 3、测量振荡器输出频率范围 将频率计接于P1处,改变CC1,用示波器从TP8观察波形及输出频率的变化情况,记录最高频 六、实验报告

正弦波振荡器实验报告(高频) (2)

高频电子线路实验 随堂实验报告 学院计算机与电子信息学院 专业电子信息工程班级电信11-2 姓名梁景友学号 11034030223 指导教师谢胜 实验报告评分:_______

正弦波振荡器仿真实验 实验目的: 1、进一步熟悉正弦波振荡器的组成原理; 2、观察输出波形,分析影响振荡器起振、稳定的条件; 3、比较改进型正弦波振荡器与克拉泼振荡器的性能,分析电路结构及元件参数的变化对振荡器性能的影响。 实验内容: 实验电路1:西勒振荡器 (1)设置各元件参数,打开仿真开关,从示波器上观察振荡波形,读出振荡频率f0,并作好记录。 (2)改变电容C7的容量,分别为最大或最小(100%或0%)时,观察振荡频率变化,并作好记录。 (3)改变电容C4的容量,分别为0.33μF和0.001μF,从示波器上观察起振情况和振荡波形的好坏(与C4为0.033μF时进行比较),并分析原因。 (4)将C4恢复为0.033μF,分别调节R P为最大和最小时,观察输出波形振幅的变化,并说明原因。 实验分析: 1、电路的直流电路图和交流电路图分别如下: (1):直流通路图 (2)交流通路图

2、改变电容C 7的值时所测得的频率f 的值如下: (1)、当C4=0.033uF 时: C6=270pF 时,f=1/T=1000000/2.0208=494853.5HZ C6=470pF 时,f=1/T=1000000/2.4768=403746.8HZ C6=670pF 时,f=1/T=1000000/2.6880=372023.8HZ (2)、当C4=0.33uF 时: C6=270pF 时,f=1/T=1000000/30.5280=32756.8H C6=470uF 时,f=1/T=1000000/30.5921=32688.2HZ C6=670uF 时,f=1/T=1000000/30.4744=32814.4HZ

RC振荡电路实验报告(特选资料)

广州大学学生实验报告 院(系)名称 物理与信息工程系 班别 姓名 专业名称 学号 实验课程名称 模拟电路实验 实验项目名称 RC 串并联网络(文氏桥)振荡器 实验时间 实验地点 实验成绩 指导老师签名 【实验目的】 1.进一步学习RC 正弦波振荡器的组成及其振荡条件。 2.学会测量、调试振荡器。 【实验原理】 从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。若用R 、C 元件组成选频网络,就称为RC 振荡器, 一般用来产生1Hz ~1MHz 的低频信号。 RC 串并联网络(文氏桥)振荡器 电路型式如图6-1所示。 振荡频率 RC 21 f O π= 起振条件 |A &|>3 电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。 图6-1 RC 串并联网络振荡器原理图 注:本实验采用两级共射极分立元件放大器组成RC 正弦波振荡器。 【实验仪器与材料】 模拟电路实验箱 双踪示波器 函数信号发生器 交流毫伏表 万用电表 连接线若干

【实验内容及步骤】 1.RC 串并联选频网络振荡器 (1)按图6-2组接线路 图6-2 RC 串并联选频网络振荡器 (2)接通RC 串并联网络,调节R f 并使电路起振,用示波器观测输出电压u O 波形,再细调节R f ,使获得满意的正弦信号,记录波形及其参数,即,测量振荡频率,周期并与计算值进行比较。 (3) 断开RC 串并联网络,保持R f 不变,测量放大器静态工作点,电压放大倍数。 (4)断开RC 串并联网络,测量放大器静态工作点及电压放大倍数。(输入小信号:f=1KHz,峰峰值为100mV 正弦波)用毫伏表测量u i 、u 0 就可以计算出电路的放大倍数。 (5)改变R 或C 值,观察振荡频率变化情况。 将RC 串并联网络与放大器断开,用函数信号发生器的正弦信号注入RC 串并联网络,保持输入信号的幅度不变(约3V ),频率由低到高变化,RC 串并联网络输出幅值将随之变化,当信号源达某一频率时,RC 串并联网络的输出将达最大值(约1V 左右)。且输入、输出同相位,此时信号源频率为 2πRC 1 f f ο== 【实验数据整理与归纳】 (1)静态工作点测量 U B (V ) U E (V ) U C (V) 第一级 2.48 2.96 4.66 第二级 0.84 11.51 1.01 (2)电压放大倍数测量: u i (mV) u o (V) Av 788 2.80 3.60

实验六RC正弦波振荡器的设计及调试

实验六 RC 正弦波振荡器的设计及调试 一、实验目的 1、进一步学习RC 正弦波振荡器的组成及其振荡条件; 2、学会测量、调试振荡器。 二、实验原理 从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大电路。若用R 、C 元件组成选频网络,就称为RC 振荡器,一般用来产生1Hz ~1MHz 的低频信号。 1、RC 移相振荡器 电路型式如图8.1所示,选择R >>R i 。 振荡频率:126O f RC 起振条件:放大电路A 的电压放大倍数|A |>29 电路特点:简便,但选频作用差,振幅不稳,频率调节不便,一般用于频率固定且稳定性要求不高的场合。 频率范围:几Hz ~数十kHz 。 2、RC 串并联网络(文氏桥)振荡器 电路型式如图8.2所示。 振荡频率:12O f RC 起振条件:|A |>3 电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。 三、实验条件 1、12V 直流电源 2、函数信号发生器 3、双踪示波器 图8.1 RC 移相振荡器原理图 图8.2 RC 串并联网络振荡器原理图

4、频率计 5、直流电压表 6、3DG12×2或9013×2,电阻、电容、电位器等 四、实验内容 1、RC串并联选频网络振荡器 2、双T选频网络振荡器 3、RC移相式振荡器的组装与调试 五、实验步骤 1、RC串并联选频网络振 荡器 (1)按图8.4组接线路; (2)接通12V电源,调节 电阻,使得Vce1=7-8V, Vce2=4V左右。用示波器观察 图8.4 RC串并联选频网络振荡器有无振荡输出。若无输出或振 荡器输出波形失真,则调节Rf以改变负反馈量至波形不失真。并测量电压放大倍数及电路静态工作点。 (3)观察负反馈强弱对振荡器输出波形的影响。 逐渐改变负反馈量,观察负反馈强弱程度对输出波形的影响,并同时记录观察到的波形变化情况及相应的Rf值。 实验现象Rf值V o波形 停振 起振 幅值增加 波形失真 (4)改变R(10KΩ)值,观察振荡频率变化情况; (5)RC串并联网络幅频特性的观察。 将RC串并联网络与放大电路断开,用函数信号发生器的正弦信号注入RC

rc正弦波振荡器测量数据试验报告

rc正弦波振荡器测量数据试验报告 一、实验目的 1、学习RC正弦波振荡器的组成及其振荡条件; 2、学会测量、调试振荡器。 二、实验原理 从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。若用R、C元件组成选频网络,就称为RC振荡器,一般用来产生1HZ~1MHz的低频信号。 1、RC移相振荡器:电路如右图1所示,选择R>>Ri。 起振条件:放大器A的电压放大倍数|A|>29 电路特点:简便,但选频作用差,振幅不稳,频率调节不便,一般用于频率固定且稳定性要求不高的场合。 频率范围:几赫~数十千赫。 2、RC串并联网络(文氏桥)振荡器: 本实验电路图如下面的图2所示。

电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。 3、双T选频网络振荡器:本实验电路如下图3所示: 电路特点:选频特性好,调频困难,适用于产生单-窄带频率的振荡。 三、实验器材 1、+12V直流电源; 2、函数信号发生器;

3、双踪示波器; 4、频率计; 5、直流电压表; 6、数字万用表; 7、15K电阻2个、103电容4个、10电位器1个。 四、实验内容 1、RC串并联选频网络振荡器: (1)按图2连接线路。 (2)断开RC串并联网络(即电路图A处断开),Rw调到9-10K,测量放大器静态工作点Ie1(0.86毫安)、IE2(1.1毫安)及不失真电压放大倍数Ao(9倍,信号源500-1000HZ范围内)。 (3)关闭信号源,接通RC串并联网络(即电路图A处接通),使电路起振,调小Rw,看停振现象。再调大Rw(顺时针拧)使刚好不失真,用示波器观测输出电压uo波形,并测量此情况下的电压放大倍数 A(3.2倍,要断开RC串并联网络测量)。 (4)用频率表测量振荡频率(893HZ),并与计算值进行比较。 (5)两个电容C分别并联103电容,观察和记录振荡频率变化情况(520HZ)。 2、双T选频网络振荡器: (1)按图3组接线路。其中T2单级放大器由实验台上的“单级/负反馈两级放大器”的末级构成。 (2)断开双T网络(即电路图A处断开),调Rw2使T2静态工作

相关文档
相关文档 最新文档