文档库 最新最全的文档下载
当前位置:文档库 › 锂离子电池原理和常见异常分析

锂离子电池原理和常见异常分析

锂离子电池原理和常见异常分析
锂离子电池原理和常见异常分析

本文由av1470贡献

pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。

一, 原理 1.0 正极构造 LiCoO2( 钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔) 正极 2.0 负极构造 石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔) 负极 3.0 工作原理 3.1 充电过程 如上图一个电源给电池充电,此时正极上的电子 e 从通过外部电路跑到负极上, 正锂离子 Li+ 从正极"跳进"电解液里,"爬过"隔膜上弯弯曲曲的小洞, "游泳"到达负极,与早 就跑过来的电子结合在一起. 正极上发生的反应为 LiCoO2= 充电=Li1-xCoO2+Xli++Xe(电子) 负极上发生的反应为 6C+XLi++Xe=====LixC6 3.2 电池放电过程 放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变 电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过.由此可知,只要负极上的 电子不能从负极跑到正极,电池就不会放电.电子和 Li+都是同时行动的,方向相同但路不 同,放电时,电子从负极经过电子导体跑到正极,锂离子 Li+ 从负极"跳进"电解液里,"爬过" 隔膜上弯弯曲曲的小洞,"游泳"到达正极,与早就跑过来的电子结合在一起. 二, 工艺流程 三, 电池不良项目及成因: 1.容量低 产生原因: a. 附料量偏少; b. 极片两面附料量相差较大; c. 极片断裂; d. 电解液少; e. 电解液电导率低; f. 正极与负极配片未配好; g. 隔膜孔隙率小; h. 胶粘剂老化→附料脱落; i. 卷芯超厚(未烘干或电解液未 渗透) j. 分容时未充满电; k. 正负极材料比容量小. 2.内阻高 产生原因: a. 负极片与极耳虚焊; b. 正极片与极耳虚焊; c. 正极耳与盖帽虚焊; d. 负极耳与壳虚焊; e. 铆钉与压板接触内阻大; f. 正极未加导电剂; g. 电解液没有锂盐; h. 电池曾经发生短路; i. 隔膜纸孔隙率小. 3.电压低 产生原因: a. 副反应(电解液分解;正极有杂质;有水) ; b. 未化成好(SEI 膜未形成安全) ; c. 客户的线路板漏电(指客户加工后送回的电芯) ; d. 客户未按要求点焊(客户加 工后的电芯) ; e. 毛刺; f. 微短路; g. 负极产生枝晶. 4.超厚 产生超厚的原因有以下几点: a. 焊缝漏气; b. 电解液分解; c. 未烘干水分;

d. 盖帽密封性差; e. 壳壁太厚; f. 壳太厚; g. 卷芯太厚(附料太多;极片未压实;隔膜太厚). 5.成因有以下几点 a. 未化成好(SEI 膜不完整,致密) b. 烘烤温度过高→粘合剂老化→脱料; ; c. 负极比容量低;d. 正极附料多而负极附料少;e. 盖帽漏气,焊缝漏气; f. 电解液分解,电导率降低. 6.爆炸 a. 分容柜有故障(造成过充) b. 隔膜闭合效应差; ; c. 内部短路 7.短路 锂离子电池原理及工艺流程 来源:网络 作者:模型淘宝 发布时间:2007-05-04 锂 离子电池原理及工艺流程 一, 原理 1.0 正极构造 LiCoO2( 钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔) 正极 2.0 负极构造 石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔) 负极 3.0 工作原理 3.1 充电过程 如上图一个电源给电池充电,此时正极上的电子 e 从通过外部电路跑到负极上, 正锂离子 Li+ 从正极"跳进"电解液里,"爬过"隔膜上弯弯曲曲的小洞, "游泳"到达负极,与早 就跑过来的电子结合在一起. 正极上发生的反应为 LiCoO2= 充电=Li1-xCoO2+Xli++Xe(电子) 负极上发生的反应为 6C+XLi++Xe=====LixC6 3.2 电池放电过程 放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变 电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过.由此可知,只要负极上的 电子不能从负极跑到正极,电池就不会放电.电子和 Li+都是同时行动的,方向相同但路不 同,放电时,电子从负极经过电子导体跑到正极,锂离子 Li+ 从负极"跳进"电解液里,"爬过" 隔膜上弯弯曲曲的小洞,"游泳"到达正极,与早就跑过来的电子结合在一起. 二, 工艺流程 三, 电池不良项目及成因: 1.容量低 产生原因: a. 附料量偏少; b. 极片两面附料量相差较大; c. 极片断裂; d. 电解液少; e. 电解液电导率低; f. 正极与负极配片未配好; g. 隔膜孔隙率小; h. 胶粘剂老化→附料脱落; i. 卷芯超厚(未烘干或电解液未 渗透) j. 分容时未充满电; k. 正负极材料比容量小. 2.内阻高 产生原因: a. 负极片与极耳虚焊; b. 正极片与极耳虚焊; c. 正极耳与盖帽虚焊;

d. 负极耳与壳虚焊; e. 铆钉与压板接触内阻大; f. 正极未加导电剂; g. 电解液没有锂盐; h. 电池曾经发生短路; i. 隔膜纸孔隙率小. 3.电压低 产生原因: a. 副反应(电解液分解;正极有杂质;有水) ; b. 未化成好(SEI 膜未形成安全) ; c. 客

户的线路板漏电(指客户加工后送回的电芯) ; d. 客户未按要求点焊(客户加 工后的电芯) ; e. 毛刺; f. 微短路; g. 负极产生枝晶. 4.超厚 产生超厚的原因有以下几点: a. 焊缝漏气; b. 电解液分解; c. 未烘干水分; d. 盖帽密封性差; e. 壳壁太厚; f. 壳太厚; g. 卷芯太厚(附料太多;极片未压实;隔膜太厚). 5.成因有以下几点 a. 未化成好(SEI 膜不完整,致密) b. 烘烤温度过高→粘合剂老化→脱料; ; c. 负极比容量低;d. 正极附料多而负极附料少;e. 盖帽漏气,焊缝漏气; f. 电解液分解,电导率降低. 6.爆炸 a. 分容柜有故障(造成过充) b. 隔膜闭合效应差; ; c. 内部短路 7.短路 a. 料尘; d. 卷绕不齐; b. 装壳时装破; c. 尺刮(小隔膜纸太小或未垫好); e. 没包好; f. 隔膜有洞; g. 毛刺

8.断路 a) 极耳与铆钉未焊好,或者有效焊点面积小; b) 连接片断裂(连接片太短或与极片点焊时焊得太靠下) (阅读次数: ) a. 料尘; d. 卷绕不齐; b. 装壳时装破; c. 尺刮(小隔膜纸太小或未垫好); e. 没包好; f. 隔膜有洞; g. 毛刺

8.断路 a) 极耳与铆钉未焊好,或者有效焊点面积小; b) 连接片断裂(连接片太短或与极片点焊时焊得太靠下)

1本文由253116887贡献

pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。

一、 原理 1.0 正极构造 LiCoO2( 钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔) 正极 2.0 负极构造 石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔) 负极 3.0 工作原理 3.1 充电过程 如上图一个电源给电池充电,此时正极上的电子 e 从通过外部电路跑到负极上, 正锂离子 Li+ 从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞, “游泳”到达负极,与早 就跑过来的电子结合在一起。 正极上发生的反应为 LiCoO2= 充电=Li1-xCoO2+Xli++Xe(电子) 负极上发生的反应为 6C+XLi++Xe=====LixC6 3.2 电池放电过程 放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变 电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。由此可知,只要负极上的 电子不能从负极跑到正极,电池就不会放电。电子和 Li+都是同时行动的,方向相同但路不 同,放电时,电子从负极经过电子导体跑到正极,锂离子 Li+ 从负极“跳进”电解液里,“爬过” 隔膜上弯弯曲曲的小洞,“游泳”到达正极,与早就跑过来的电子结合在一起。 二、 工艺流程 三、 电池不良项目及成因: 1.容量低 产生原因: a. 附料量偏少; b. 极片两面附料量相差较大; c. 极片断裂; d. 电解液少; e. 电解液电导率低; f. 正极与负极配片未配好; g. 隔膜孔隙率小; h. 胶粘剂老化→附料脱落; i. 卷芯超厚(未烘干或电解液未 渗透) j. 分容时未充满电; k. 正负极材料比容量小。 2.内阻高 产生原因: a. 负极片与极耳虚焊; b. 正极片与极耳虚焊; c. 正极耳与盖帽虚焊; d. 负极耳与壳虚焊; e. 铆钉与压板接触内阻大; f. 正极未加导电剂; g. 电解液没有锂盐; h. 电池曾经发生短路; i. 隔膜纸孔隙率小。 3.电压低 产生原因: a. 副反应(电解液分解;正极有杂质;有水) ; b. 未化成好(SEI 膜未形成安全) ; c. 客户的线路板漏电(指客户加工后送回的电芯) ; d. 客户未按要求点焊(客户加 工后的电芯) ; e. 毛刺; f. 微短路; g. 负极产生枝晶。 4.超厚 产生超厚的原因有以下几点: a. 焊缝漏气; b. 电解液分解; c. 未烘干水分;

d. 盖帽密封性差; e. 壳壁太厚; f. 壳太厚; g. 卷芯太厚(附料太多;极片未压实;隔膜太厚)。 5.成因有以下几点 a. 未化成好(SEI 膜不完整、致密) b. 烘烤温度过高→粘合剂老化→脱料; ; c. 负极比容量低;d. 正极附料多而负极附料少;e. 盖帽漏气,焊缝漏气; f. 电解液分解,电导率降低。 6.爆炸 a. 分容柜有故障(造成过充) b. 隔膜闭合效应差; ; c. 内部短路 7.短路 锂离子电池原理及工艺流程 来源:网络 作者:模型淘宝 发布时间:2007-05-04 锂 离子电池原理及工艺流程 一、 原理 1.0 正极构造 LiCoO2( 钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔) 正极 2.0 负极构造 石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔) 负极 3.0 工作原理 3.1 充电过程 如上图一个电源给电池充电,此时正极上的电子 e 从通过外部电路跑到负极上, 正锂离子 Li+ 从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞, “游泳”到达负极,与早 就跑过来的电

子结合在一起。 正极上发生的反应为 LiCoO2= 充电=Li1-xCoO2+Xli++Xe(电子) 负极上发生的反应为 6C+XLi++Xe=====LixC6 3.2 电池放电过程 放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变 电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。由此可知,只要负极上的 电子不能从负极跑到正极,电池就不会放电。电子和 Li+都是同时行动的,方向相同但路不 同,放电时,电子从负极经过电子导体跑到正极,锂离子 Li+ 从负极“跳进”电解液里,“爬过” 隔膜上弯弯曲曲的小洞,“游泳”到达正极,与早就跑过来的电子结合在一起。 二、 工艺流程 三、 电池不良项目及成因: 1.容量低 产生原因: a. 附料量偏少; b. 极片两面附料量相差较大; c. 极片断裂; d. 电解液少; e. 电解液电导率低; f. 正极与负极配片未配好; g. 隔膜孔隙率小; h. 胶粘剂老化→附料脱落; i. 卷芯超厚(未烘干或电解液未 渗透) j. 分容时未充满电; k. 正负极材料比容量小。 2.内阻高 产生原因: a. 负极片与极耳虚焊; b. 正极片与极耳虚焊; c. 正极耳与盖帽虚焊;

d. 负极耳与壳虚焊; e. 铆钉与压板接触内阻大; f. 正极未加导电剂; g. 电解液没有锂盐; h. 电池曾经发生短路; i. 隔膜纸孔隙率小。 3.电压低 产生原因: a. 副反应(电解液分解;正极有杂质;有水) ; b. 未化成好(SEI 膜未形成安全) ; c. 客户的线路板漏电(指客户加工后送回的电芯) ; d. 客户未按要求点焊(客户加 工后的电芯) ; e. 毛刺; f. 微短路; g. 负极产生枝晶。 4.超厚 产生超厚的原因有以下几点: a. 焊缝漏气; b. 电解液分解; c. 未烘干水分; d. 盖帽密封性差; e. 壳壁太厚; f. 壳太厚; g. 卷芯太厚(附料太多;极片未压实;隔膜太厚)。 5.成因有以下几点 a. 未化成好(SEI 膜不完整、致密) b. 烘烤温度过高→粘合剂老化→脱料; ; c. 负极比容量低;d. 正极附料多而负极附料少;e. 盖帽漏气,焊缝漏气; f. 电解液分解,电导率降低。 6.爆炸 a. 分容柜有故障(造成过充) b. 隔膜闭合效应差; ; c. 内部短路 7.短路 a. 料尘; d. 卷绕不齐; b. 装壳时装破; c. 尺刮(小隔膜纸太小或未垫好); e. 没包好; f. 隔膜有洞; g. 毛刺

8.断路 a) 极耳与铆钉未焊好,或者有效焊点面积小; b) 连接片断裂(连接片太短或与极片点焊时焊得太靠下) (阅读次数: ) a. 料尘; d. 卷绕不齐; b. 装壳时装破; c. 尺刮(小隔膜纸太小或未垫好); e. 没包好; f. 隔膜有洞; g. 毛刺

8.断路 a) 极耳与铆钉未焊好,或者有效焊点面积小; b) 连接片断裂(连接片太短或与极片点焊时焊得太靠下)

锂离子电池原理(基础篇)

锂离子电池原理及工艺流程 化学电源在实现能量的转换过程中,必须具有两个必要的条件: 一. 组成化学电源的两个电极上进行的氧化还原过程,必须分别在两个分开的区域进行,这一点区别于一般的氧化还原反应。 二. 两电极的活性物质进行氧化还原反应时所需电子必须由外线路传递,这一点区别于金属腐蚀过程的微电池反应。 为了满足以上的条件,任何一种化学电源均由以下四部分组成: 1、电极电池的核心部分,它是由活性物质和导电骨架所组成。活性物质是指正、负极中参加成流反应的物质,是化学电源产生电能的源泉,是决定化学电源基本特性的重要部分。对活性物质的要求是: 1)组成电池的电动势高; 2)电化学活性高,即自发进行反应的能力强; 3)重量比容量和体积比容量大; 4)在电解液中的化学稳定性高; 5)具有高的电子导电性; 6)资源丰富,价格便宜。 2、电解质电池的主要组成之一,在电池内部担负着传递正负极之间电荷的作用,所以势一些具有高离子导电性的物质。对电解质的要求是: 1)稳定性强,因为电解质长期保存在电池内部,所以必须具有稳定的化学性质,使储藏期间电解质与活性物质界面的电化学反应速率小,从而使电池的自放电容量损失减小;2)比电导高,溶液的欧姆压降小,使电池的放电特性得以改善。对于固体电解质,则要求它只具有离子导电性,而不具有电子导电性。 3、隔膜也叫隔离物。置于电池两极之间。隔膜的形状有薄膜、板材、棒材等。其作用是防止正负极活性物质直接接触,造成电池内部短路。对于隔膜的要求是: 1)在电解液中具有良好的化学稳定性和一定的机械强度,并能承受电极活性物质的氧化还原作用; 2)离子通过隔膜的能力要大,也就是说隔膜对电解质离子运动的阻力要小。这样,电池内阻就相应减小,电池在大电流放电时的能量损耗减小; 3)应是电子的良好绝缘体,并能阻挡从电极上脱落活性物质微粒和枝晶的生长; 4)材料来源丰富,价格低廉。常用的隔膜材料有棉纸、微孔橡胶、微孔塑料、玻璃纤维、水化纤维素、接枝膜、尼龙、石棉等。可根据化学电源不同系列的要求而选取。 一、原理 1.0 正极构造 LiCoO2(钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔)正极2.0 负极构造 石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔)负极3.0工作原理 3.1 充电过程 一个电源给电池充电,此时正极上的电子e从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。 正极上发生的反应为 LiCoO2=充电=Li1-xCoO2+XLi++Xe(电子)

锂电池的工作原理

锂离子电池的工作原理 锂离子电池的结构如图2.1和图2.2 所示,一般由正极、负极和高分子隔膜构成。 锂离子电池的正极材料必须有能够接纳锂离子的位置和扩散路径,目前应用性能较好的正极材料是具有高插入电位的层状结构的过渡金属氧化物和锂的化合物,如Li x CoO2,Li x NiO2以及尖晶石结构的LiMn2O4等,这些正极材料的插锂电位都可以达到4V以上。负极材料一般用锂碳层间化合物Li x C6,其电解质一般采用溶解有锂盐LiPF6、LiAsF6的有机溶液。典型的锂离子蓄电池体系由碳负极(焦炭、石墨)、正极氧化钴锂(Li x CoO2)和有机电解液三部分组成。 锂离子电池的电化学表达式: 正极反应: 负极反应: 电池反应: 式中:M=Co、Ni、Fe、W等。 图2.1 锂离子电池结构示意图图2.2 圆柱形锂离子电池结构图锂离子电池实际上是一个锂离子浓差电池,正负电极由两种不同的锂离子嵌入化合物构。充电时,Li+从正极脱嵌经过电解质嵌入负极,此时负极处于富锂态,正极处于贫锂态;放电时则相反,Li+从负极脱嵌,经过电解质嵌入正极,正极处于富锂态,负极处于贫锂态。锂离子电池的工作电压与构成电极的锂离子嵌入化合物本身及锂离子的浓度有关。因此,在充放电循环时,Li+分别在正负极上发生“嵌入-脱嵌”反应,Li+便在正负极之间来回移动,所以,人们又形象地把锂离子电池称为“摇椅电池”或“摇摆电池”。 锂离子蓄电池是在锂蓄电池的基础上发展起来的先进蓄电池,它基本解决了

困扰锂蓄电池发展的两个技术难题,即安全性差和充放电寿命短的问题。锂离子电池与锂电池在原理上的相同之处是:在两种电池中都采用了一种能使锂离子嵌入和脱嵌的金属氧化物或硫化物作为正极,采用一种有机溶剂—无机盐体系作为电解质。不同之处是:在锂离子电池中采用使锂离子嵌入和脱嵌的碳材料代替纯锂作负极。因此,这种电池的工作原理更加简单,在电池工作过程中,仅仅是锂离子从一个电极(脱嵌)后进入另一个电极(嵌入)的过程。具体来说,当电池充电时锂离子是从正极中脱嵌,在碳负极中嵌入,放电时反之。在充放电过程中没有晶形变化,故具有较好的安全性和较长的充放电寿命。 锂离子电池的主要性能 锂离子电池的额定电压为3.6V(少数的是3.7V)。充满电时的终止充电电压与电池阳极材料有关:石墨的4.2V;焦炭的4.1V。充电时要求终止充电电压的精度在±1%之内。锂离子电池的终止放电电压为2.4~2.7V(电池厂家给出工作电压范围或终止放电电压的参数略有不同)。高于终止充电电压及低于终止放电时会对电池有损害。 其使用有一定要求:充电温度:0℃~45℃;保存温度:-20℃~+60℃。锂离子电池不适合大电流充放电。一般充电电流不大于1C,放电电流不大于2C(C 是电池的容量,如C=950mAh,1C的充电率即充电电流为950mA)。充电、放电在20℃左右效果较好,在负温下不能充电,并且放电效果差[4],(在-20℃放电效果最差,不仅放电电压低,放电时间比20℃放电时的一半还少)。 锂离子电池的充放电特性 锂离子电池的标称电压为3.6V,充满电压为4.2V,对过充电和过放电都比较敏感。为了最大限度减少锂离子电池易受到的过充电、深放电以及短路的损害,单体锂离子电池的充电电压必须严格限制。其充放电特性如图2-3 锂离子电池的充电特性 锂电池在充电中具有如下的特性: 1.在充电前半段,电压是逐渐上升的; 2.在电压达到4.2V后,内阻变化,电压维持不变; 3.整个过程中,电量不断增加; 4.在接近充满时,充电电流会达到很小的值。 经过多年的研究,已经找到了较好的充电控制方法: 1.涓流充电达到放电终止电压 2. 7V ; 2.使用恒流进行充电,使电压基本达到4.2V。安全电流为小于0.8C; 3.恒流阶段基本能达到电量的80% ;

电池保护板工作原理

锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,常用的保护IC有8261,DW01+,CS213,GEM5018等,其中精工的8261系列精度更好,当然价钱也更贵。后面几种都是台湾出的,国内次级市场基本都用DW01+和CS213了,下面以DW01+ 配MOS管8205A (8pin)进行讲解: 锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理: 当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新

接上,电芯经充电器直接充电。 3.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的充电回路被切断,电芯将停止充电。保护板处于过充电状态并一直保持。等到保护板的P 与P-间接上放电负载后,因此时虽然过充电控制开关管关闭,但其内部的二极管正方向与放电回路的方向相同,故放电回路可以进行放电,当电芯的电压被放到低于4.3V时,DW01 停止过充电保护状态重新在第3脚输出高电压,使8205A内的过充电控制管导通,即电芯的B-与保护板P-又重新接上,电芯又能进行正常的充放电. 4.保护板短路保护控制原理: 如图所示,在保护板对外放电的过程中,8205A内的两个电子开关并不完全等效于两个机械开关,而是等效于两个电阻很小的电阻,并称为8205A的导通内阻,每个开关的导通内阻约为30m\U 03a9共约为60m\U 03a9,加在G极上的电压实际上是直接控制每个开关管的导通电阻的大小当G极电压大于1V时,开关管的导通内阻很小(几十毫欧),相当于开关闭合,当G极电压小于0.7V以下时,开关管的导通内阻很大(几MΩ),相当于开关断开。电压UA就是8205A的导通内阻与放电电流产生的电压,负载电流增大则UA必然增大,因UA0.006L×

锂电池分类、结构与工作原理

锂电池原理 锂离子电池的正极材料通常有锂的活性化合物组成,负极则是特殊分子结构的碳.常见的正极材料主要成分为LiCoO2 ,充电时,加在电池两极的电势迫使正极的化合物释出锂离子,嵌入负极分子排列呈片层结构的碳中.放电时,锂离子则从片层结构的碳中析出,重新和正极的化合物结合.锂离子的移动产生了电流. 锂电池的种类 1、根据锂电池所用电解质材料不同分类 可以分为液态锂电池(lithium ion battery, 简称为LIB)和聚合物锂电池(polymer lithium ion battery, 简称为LIP)两大类。聚合物锂电池所用的正负极材料与液态锂都是相同的,电池的工作原理也基本一致。它们的主要区别在于电解质的不同, 锂电池使用的是液体电解质, 而聚合物锂电池则以固体聚合物电解质来代替, 这种聚合物可以是“干态”的,也可以是“胶态”的,目前大部分采用聚合物胶体电解质。聚合物锂电池可分为三类: (1)固体聚合物电解质锂电池。电解质为聚合物与盐的混合物,这种电池在常温下的离子电导率低,适于高温使用。 (2)凝胶聚合物电解质锂电池。即在固体聚合物电解质中加入增塑剂等添加剂,从而提高离子电导率,使电池可在常温下使用。 (3)聚合物正极材料的锂电池。采用导电聚合物作为正极材料,其能量是现有锂电池的3倍,是最新一代的锂电池。由于用固体电解质代替了液体电解质,与液态锂电池相比,聚合物锂电池具有可薄形化、任意面积化与任意形状化等优点,也不会产生漏液与燃烧爆炸等安全上的问题,因此可以用铝塑复合薄膜制造电池外壳,从而可以提高整个电池的容量;聚合物锂电池还可以采用高分子作正极材料,其质量比能量将会比目前的液态锂电池提高50%以上。此外,聚合物锂电池在工作电压、充放电循环寿命等方面都比锂电池有所提高。基于以上优点,聚合物锂电池被誉为下一代锂电池。 2、按充电方式分类 按充电方式可分为不可充电的及可充电的两类。不可充电的电池称为一次性电池,它只能将化学能一次性地转化为电能,不能将电能还原回化学能(或者还原性能极差)。而可充电的电池称为二次性电池(也称为蓄电池)。它能将电能转变成化学能储存起来,在使用时,再将化学能转换成电能,它是可逆的。

锂离子电池基础知识

电池基础知识培训资料 、锂离子电池工作原理与性能简介: 1、电池的定义:电池是一种能量转化与储存的装置,它通过反应将化学能或物理能转化为电能,电池 即是一种化学电源,它由两种不同成分的电化学活性电极分别组成正负极,两电极浸泡在能提供媒体传导作用的电解质中,当连接在某一外部载体上时,通过转换其内部的化学能来提供能源。 2、锂离子电池的工作原理:即充放电原理。Li-ion的正极材料是氧化钻锂,负极是碳。当对电池进行 充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放 电过程中,锂离子处于从正极一负极一正极的运动状态。Li-ion就象一把摇椅,摇椅的两端为电池的两 极,而锂离子就象运动员一样在摇椅两端来回奔跑。所以,Li-i on又叫摇椅式电池。 通俗来说电池在放电过程中,负极发生氧化反应,向外提供电子;在正极上进行还原反应,从外电路接收电子,电子从负极流到正极,而电流方向正好与电子流动方向相反,故电流经外电路从正极流向负极。电解质是离子导体,离子在电池内部的正负极之间定向移动而导电,阳离子流向正极,阴离子流向负极。整个电池形成了一个由外电路的电子体系和电解质的离子体系构成的完整放电体系,从而产生电能。 正极反应:LiCoO2==== Li i-x CoO + xLi + + xe 负极反应:6C + xLi + + xe - === Li x C6 电池总反应:LiCoO2 + 6C ==== Li1-xCoO2 + LixC6 3、电池的连接: 根据电池的电压与容量的需求,可以把电池做串联、并联及混连连接 a、串联:电压升高,容量基本不变; b、并联:电压基本不变,容量升高; c、混联:电压与容量都会升高; 4、化学电池的种类: 锂离子电池按电池外形来分类,可分为圆柱形、方形、钮扣形和片状形等。

锂离子电池工作原理

锂离子电池工作原理 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 负极反应:放电时锂离子脱插,充电时锂离子插入。 电池总反应 以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion Batteries又叫摇椅式电池。 一般锂电池充电电流设定在0.2C至1C之间,电流越大,充电越快,同时电池发热也越大。而且,过大的电流充电,容量不够满,因为电池内部的电化学反应需要时间。就跟倒啤酒一样,倒太快的话会产生泡沫,反而不满。 正极 正极材料:可选正极材料很多,目前主流产品多采用锂铁磷酸盐。 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 充电时:LiFePO?→ Li1-xFePO? + xLi + xe

放电时:Li1-xFePO?+ xLi + xe →LiFePO? 负极 负极材料:多采用石墨。新的研究发现钛酸盐可能是更好的材料。 负极反应:放电时锂离子脱插,充电时锂离子插入。 充电时:xLi + xe + 6C →LixC6 放电时:LixC6 → xLi + xe + 6C 锂离子电池是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。电池一般采用含有锂元素的材料作为电极,是现代高性能电池的代表。 组成部分 钢壳/铝壳/圆柱/软包装系列: (1)正极——活性物质一般为锰酸锂或者钴酸锂,镍钴锰酸锂材料,电动自行车则普遍用镍钴锰酸锂(俗称三元)或者三元+少量锰酸锂,纯的锰酸锂和磷酸铁锂则由于体积大、性能不好或成本高而逐渐淡出。导电集流体使用厚度10--20微米的电解铝箔。 (2)隔膜——一种经特殊成型的高分子薄膜,薄膜有微孔结构,可以让锂离子自由通过,而电子不能通过。 (3)负极——活性物质为石墨,或近似石墨结构的碳,导电集流体使用厚度7-15微米的电解铜箔。

锂电池保护板工作原理资料

锂电池保护板工作原理 锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,下面以DW01 配MOS管8205A进行讲解: 锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理:

当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。 4.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关

锂电池结构与原理

锂电池原理和结构 1、锂离子电池的结构与工作原理:所谓锂离子电池是指分别用二个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。人们将这种靠锂离子在正负极之间的转移来完成电池充放电工作的,独特机理的锂离子电池形象地称为“摇椅式电池”,俗称“锂电”。以LiCoO2为例:⑴电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。这就需要一个电极在组装前处于嵌锂状态,一般选择相对锂而言电位大于3V且在空气中稳定的嵌锂过渡金属氧化物做正极,如LiCoO 2、LiNiO2、LiMn2O4、LiFePO4。⑵为负极的材料则选择电位尽可能接近锂电位的可嵌入锂化合物,如各种碳材料包括天然石墨、合成石墨、碳纤维、中间相小球碳素等和金属氧化物,包括SnO、SnO2、锡复合氧化物SnBxPyOz(x=0.4~0.6,y=0.6~0.4,z=(2+3x+5y)/2)等。 2、电池一般包括:正极(positive)、负极(negative)、电解质(electrolyte)、隔膜(separator)、正极引线(positivelead)、负极引线(negativeplate)、中心端子、绝缘材料(insulator)、安全阀(safetyvent)、密封圈(gasket)、PTC(正温度控制端子)、电池壳。一般大家较关心正极、负极、电解质

锂电池的详细介绍 1、锂离子电池 锂离子电池目前由液态锂离子电池(LIB)和聚合物锂离子电池(PLB)两类。其中,液态锂离子电池是指Li +嵌入化合物为正、负极的二次电池。正极采用锂化合物L iC oO2或LiMn2O4,负极采用锂-碳层间化合物。锂离子电池由于工作电压高、体积小、质量轻、能量高、无记忆效应、无污染、自放电小、循环寿命长,是21世纪发展的理想能源。 2、锂离子电池发展简史 锂电池和锂离子电池是20世纪开发成功的新型高能电池。这种电池的负极是金属锂,正极用MnO2,SOCL2,(CFx)n等。70年代进入实用化。因其具有能量高、电池电压高、工作温度范围宽、贮存寿命长等优点,已广泛应用于军事和民用小型电器中,如移动电话、便携式计算机、摄像机、照相机等、部分代替了传统电池。 3、锂离子电池发展前景 锂离子电池以其特有的性能优势已在便携式电器如手提电脑、摄像机、移动通讯中得到普遍应用。目前开发的大容量锂离子电池已在电动汽车中开始试用,预计将成为21世纪电动汽车的主要动力电源之一,并将在人造卫星、航空航天和储能方面得到应用。 4、电池的基本性能 (1)电池的开路电压 (2)电池的内阻 (3)电池的工作电压 (4)充电电压 充电电压是指二次电池在充电时,外电源加在电池两端的电压。充电的基本方法有恒电流充电和恒电压充电。一般采用恒电流充电,其特点时在充电过程中充电电流恒定不变。随着充电的进行,活性物质被恢复,电极反应面积不断缩小,电机的极化逐渐增高。

锂离子电池工作原理

锂离子电池工作原理

正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 负极反应:放电时锂离子脱插,充电时锂离子插入。 电池总反应 以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion Batteries又叫摇椅式电池。 一般锂电池充电电流设定在0.2C至1C之间,电流越大,充电越

快,同时电池发热也越大。而且,过大的电流充电,容量不够满,因为电池内部的电化学反应需要时间。就跟倒啤酒一样,倒太快的话会产生泡沫,反而不满。 正极 正极材料:可选正极材料很多,目前主流产品多采用锂铁磷酸盐。 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 充电时:LiFePO?→ Li1-xFePO? + xLi + xe 放电时:Li1-xFePO?+ xLi + xe →LiFePO? 负极 负极材料:多采用石墨。新的研究发现钛酸盐可能是更好的材料。 负极反应:放电时锂离子脱插,充电时锂离子插入。 充电时:xLi + xe + 6C →LixC6 放电时:LixC6 → xLi + xe + 6C

锂离子电池-化成原理及SEI膜的形成

锂离子电池化成原理及SEI膜的形成 为什么要化成? 电池制造后,通过一定的充放电方式将其内部正负极物质激活,改善电池的充放电性能及自放电、储存等综合性能的过程称为化成。 什么是化成? 锂电芯的化成是电池的初使化,使电芯的活性物质激活,即是一个能量转换的过程。 锂电芯的化成是一个非常复杂的过程,同时也是影响电池性能很重要的一道工序,因为在Li+第一次充电时,Li+第一次插入到石墨中,会在电池内发生电化学反应,在电池首次充电过程中不可避免地要在碳负极与电解液的相界面上、形成覆盖在碳电极表面的钝化薄层,人们称之为固体电解质相界面或称SEI膜(SOLIDELECTROLYTEINTERFACE)。 SEI膜的形成一方面消耗了电池中有限的锂离子,这就需要使用更多的含锂正极极料来补偿初次充电过程中的锂消耗;另一方面也增加了电极/电解液界面的电阻造成一定的电压滞后。 化成原理 SEI膜形成机制

⑴在一定的负极电位下,电极/电解液相界面的锂离子与电解液中的溶剂分子等发生不可逆反应; ⑵不可逆反应主要发生在电池首次充电过程中; ⑶电极表面完全被SEI膜覆盖后,不可逆反应即停止; ⑷一旦形成稳定的SEI膜,充放电过程可多次循环进行 SEI膜组成成分 正极确实也有层膜形成,只是现阶段认为其对电池的影响要远远小于负极表面的SEI膜,因此本文着重讨论负极表面的SEI膜(以下所出现SEI膜未加说明则均指在负极形成的)。 负极材料石墨与电解液界面上通过界面反应能生成SEI膜,多种分析方法也证明SEI膜确实存在,厚度约为100~120nm,其组成主要有各种无机成分如Li2CO3、LiF、Li2O、LiOH等和各种有机成分如ROCO2Li、ROLi、(ROCO2Li)2等。 烷基碳酸锂和Li2CO3均为3.5V前形成SEI膜的主要成分,烷基碳酸锂和烷氧基锂为3.5V后形成SEI膜的主要成分。 化成气体产生与电压关系 化成过程中其产气总量于电压3.0V处最大,而当化成电压大于3.5V后,则产生的气体就迅速减少.化成电压小于2.5V时,产生的气体主要为H2和CO2等;随着化成电压的升高,在3.0V~3.8V的范围内,气体的组成主要是C2H4,超出3.8V以后,C2H4含量显著下降,此时产生的气体成分主要为C2H6和CH4.其中,3.0V~3.5V之间为SEI层的主要形成电压区间.而在这一电压区间,产生的气体组分主要为C2H4.因此可以认为,这时SEI层的形成机理主要是电解液溶剂中EC的还原分解.

手机锂电池保护板相关知识1【最新】

保护板初步知识 1、保护板的由来 锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现 . 2、主要保护能能 过充电保护功能过放电保护功能 过电流保护电流包括过流1 过流2 短路保护 3、保护板的组成和元件: 保护板通常包括控制IC、开关MOS、储存电容、识别电阻及辅助器件NTC/PTC等组成。其中控制IC在一切正常的情况下控制MOS开关导通,使电芯与外电路导通,而当电芯电压或回路电流超过规定值时,它立刻控制MOS开关断开,保护电芯的安全。 PTC是正温度系数热敏电阻,NTC是负温度系数热敏电阻.PTC与NTC在应用上有不同的地方是:PTC在电路中可以做过电流保护,NTC主要是开关浪涌电流的抑制.他们也有共同的作用就是温度感测和侦测试 4、原理图及元件介绍 IC 它由精确的比较器来获得保护可靠的保护参数,主要参数: -过充电压 -过充恢复电压 -过放电压 -过放恢复电压 -过流检测电压 -短路保护电压 -耗电 MOSFET 串在主充放电回路中,担当高速开关,执行保护动作。我司所用的都是串在B- P-间。MOSFET包含三个电极:漏极(D)源极(S)栅极(G);当G极为高电平时,D 极与S极导通,当G极为低电平时,D极与S极断开。主要参数: -内阻 -耐电流 -耐电压 -内部是否连通 -封装 FUSE PTC :二次保护器件。 原理图:

正极:B+ FUSE P+ 负极:B- MOS(2、3)脚 MOS(1)脚接 MOS(8)脚 MOS(5、6)脚夫 P- 5、功能介绍: 通常状态:当电芯电压在2。5V---4。2V之间,IC的充电控制脚(第1脚)和放电管控制脚(第3脚)同时处于高电平,充电MOS、放电MOS同时打开,B-与P-连通,保护板有输出电压,能正常允放电. -过放状态:当电池接上手机等负载后,电芯电压渐渐降低,同时IC同部通过R1电阻实时监测电芯电压,当电芯电压降到IC的过放保护电压时,IC放电控制脚(第1脚)输出电压为0V,即低电平,放电MOS关闭,无输出电压。 - 过充状态:当电池通过充电器充电时,随着充电时间的增加,电芯电压越来越高,当电芯电压升高到过充保护电压时,IC将认为电芯处于过充电电压状态,IC的充电控制脚(第3脚)输出为低电平,即0V;此时充电MOS管关闭,B-与P-处于断开状态,充电回路切断,充电停止。保护板处于过充状态并一直保持。等到P+ P-之间接上负载后,因此时虽然充电管处于关闭状态,但其内部的二极管的正方向与放电回路的方向相同,故放电回路可以放电,当电芯电压被放低至过充电恢复电压以下时,充电管又导通,电芯的B-与保护板的P-又重新接上,电芯又能正常的充放电。 -过流及短路保护:当电池的负载电流超过IC的过流保护值时,IC的放电控制脚(第1脚)输出低电平,MOS管关闭。 3、 常见的问题点: -内阻大:决定电池内阻的器件有 PCB的线阻,MOS管的导通内阻, FUSE的内阻,电芯内阻及镍片的电阻。 解决方法:首先判断电芯内阻(一般要求小于60mΩ)是否超过标准,其次是测试保护板内阻(一般要求小于60mΩ)、FUSE内阻(一般要求小于15mΩ),最后检查镍片及接触电阻(一般要求小于15mΩ) -无电压无内阻(不能充放电等):无电压无内阻通常是充电MOSFET关闭或放电MOSFET关闭或充放电MOS同时关闭,导致MOS管关闭的原因有 IC 不能正常工作或MOS管自身损坏或MOS连锡,虚焊。解决方法:先检查IC第5脚电压电否正常(电压与电芯电压相同),第6脚与B-是否连好,电芯电压是否正常,R1电阻是阻值是否正确,R1是否虚焊。其次检查IC的充电控制脚(3脚)和放电控制脚(5脚)电压是否正确(在通常的状态,IC的1、3脚都是高电平,等于电芯电压)。再次检查MOS是否短路,虚焊。 无ID(热敏):ID电阻一端连接保护板的P-端子,一端连接保接保护板的ID端子,若有此类问题时,可首先确认线路是否导通,其次可确认电阻本身是否不良或是否连锡。 短路保护、过流保护不良:可先检查R2是否虚焊,IC的过流检测端子(IC的第2脚)是否虚焊,若无以上两种不良,那么应是IC本身损坏。

锂离子电池原理及生产工艺流程

锂离子电池原理及工艺流程 一、原理 1.0 正极构造 LiCoO2(钴酸锂)+导电剂+粘合剂(PVDF)+集流体(铝箔)正极2.0 负极构造 石墨+导电剂+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜箔)负极3.0工作原理 3.1 充电过程:一个电源给电池充电,此时正极上的电子e从通过外部电路跑到负极上,正锂离子Li+从正极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达负极,与早就跑过来的电子结合在一起。 正极上发生的反应为 LiCoO2=充电=Li1-xCoO2+Xli++Xe(电子) 负极上发生的反应为 6C+XLi++Xe=====LixC6 3.2 电池放电过程 放电有恒流放电和恒阻放电,恒流放电其实是在外电路加一个可以随电压变化而变化的可变电阻,恒阻放电的实质都是在电池正负极加一个电阻让电子通过。由此可知,只要负极上的电子不能从负极跑到正极,电池就不会放电。电子和Li+都是同时行动的,方向相同但路不同,放电时,电子从负极经过电子导体跑到正极,锂离子Li+从负极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达正极,与早就跑过来的电子结合在一起。 二工艺流程

1.正负极配方 1.1正极配方(LiCoO2(钴酸锂)+导电剂(乙炔黑)+粘合剂(PVDF)+集流体(铝箔) 正极) (10μm):93.5% LiCoO 2 其它:6.5% 如Super-P:4.0% PVDF761:2.5% NMP(增加粘结性):固体物质的重量比约为810:1496 a)正极黏度控制6000cps(温度25转子3); b)NMP重量须适当调节,达到黏度要求为宜; c)特别注意温度湿度对黏度的影响 ●钴酸锂:正极活性物质,锂离子源,为电池提高锂源。 钴酸锂:非极性物质,不规则形状,粒径D50一般为6-8 μm,含水量≤0.2%,通常为碱性,PH值为10-11左右。 锰酸锂:非极性物质,不规则形状,粒径D50一般为5-7 μm,含水量≤0.2%,通常为弱碱性,PH值为8左右。 ●导电剂:提高正极片的导电性,补偿正极活性物质的电子导电性。 提高正极片的电解液的吸液量,增加反应界面,减少极化。 非极性物质,葡萄链状物,含水量3-6%,吸油值~300,粒径一般为2-5 μm;主要有普通碳黑、超导碳黑、石墨乳等,在大批量应用时一般选择超导碳黑和石墨乳复配;通常为中性。 ●PVDF粘合剂:将钴酸锂、导电剂和铝箔或铝网粘合在一起。 非极性物质,链状物,分子量从300,000到3,000,000不等;吸水后分子量下降,粘性变差。 ●NMP:弱极性液体,用来溶解/溶胀PVDF,同时用来稀释浆料。 ●正极引线:由铝箔或铝带制成。 1.2负极配方(石墨+导电剂(乙炔黑)+增稠剂(CMC)+粘结剂(SBR)+ 集流体(铜 箔)负极) 负极材料:94.5% Super-P:1.0% SBR:2.25% CMC:2.25% 水:固体物质的重量比为1600:1417.5

S 和DW A主流锂电池保护板原理图说明

S8261和DW01-8205A主流锂电池保护板原理图说明 锂电池保护板的主要参数 锂电池保护板主要由保护IC和MOS管构成 (1)保护IC主要参数 1)?封装 2)?过充电压 3)?过充释放电压 4)?过放电压 5)?过放释放电压 6)?耐压 (2) MOSFET主要参数 1) N沟、P沟 2)?内阻 3)?封装(TSSOP8 <简称薄片>?、SOP8<简称厚片>、SOT23-6等) 4)?耐电流 5)?耐电压 6)?内部是否连通 锂电池保护板的工作原理 锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,保护板有两个核心部件:一块保护IC,它是由精确的比较器来获得可靠的保护参数;另外是MOSFET串在主充放电回路中担当高速开关,执行保护动作。下面以DW01?配MOS管8205A进行讲解: 激活保护板的方法:当保护板P+、P-没有输出处于保护状态,可以短路B-、P-来激活保护板,这时,Dout、Cout均会处于低电平(保护IC此两端口是高电平保护,低电平常态)状态打开两个MOS开关。 1.锂电池保护板其正常工作过程为: 当电芯电压在至之间时,DW01?的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01?的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01?的电压,故均处于导通状态,即两个

电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理: 当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01?内部将 通过R1电阻实时监测电芯电压,当电芯电压下降到约时DW01?将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P?与P-间接上充电电压后,DW01?经B-检测到充电电压后便立即停止过放电状态,重新在第1 脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。 3.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到时,DW01?将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的充电回路被切断,电芯将停止充电。保护板处于过充电状态并一直保持。等到保护板的P?与P-间接上放电负载后,因此时虽然过充电控制开关管关闭,但其内部的二极管正方向与放电回路的方向相同,故放电回路可以进行放电,当电芯的电压被放到低于时,DW01?停止过充电保护状态重新在第3脚输出高电压,使8205A内的过充电控制管导通,即电芯的B-与保护板P-又重新接上,电芯又能进行正常的充放电. 4.保护板短路保护控制原理: 在保护板对外放电的过程中,8205A内的两个电子开关并不完全等效于两个机械开关,而是等效于两个电阻很小的电阻,并称为8205A的导通内阻,每个开关的导通内阻约为30m\U 03a9共约为60m\U 03a9,加在G极上的电压实际上是直接控制每个开关管的导通电阻的大小当G极电压大于1V时,开关管的导通内阻很小(几十毫欧),相当于开关闭合,当G极电压小于以下时,开关管的导通内阻很大(几MΩ),相当于开关断开。电压UA就是8205A的导通内阻与放电电流产生的电压,负载电流增大则UA必然增大,因UA0.006L×IUA又称为8205A的管压降,UA可以简接表明放电电流的大小。上升到时便认为负载电流到达了极限值,于是停止第1脚的输出电压,使第1脚电压变为0V、

锂电池的工作原理

锂电池的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

锂离子电池的工作原理 锂离子电池的结构如图2.1和图2.2 所示,一般由正极、负极和高分子隔膜构成。 锂离子电池的正极材料必须有能够接纳锂离子的位置和扩散路径,目前应用性能较好的正极材料是具有高插入电位的层状结构的过渡金属氧化物和锂的化合物,如Li x CoO2,Li x NiO2以及尖晶石结构的LiMn2O4等,这些正极材料的插锂电位都可以达到4V以上。负极材料一般用锂碳层间化合物Li x C6,其电解质一般采用溶解有锂盐LiPF6、LiAsF6的有机溶液。典型的锂离子蓄电池体系由碳负极(焦炭、石墨)、正极氧化钴锂(Li x CoO2)和有机电解液三部分组成。 锂离子电池的电化学表达式: 正极反应: 负极反应: 电池反应: 式中:M=Co、Ni、Fe、W等。 图2.1 锂离子电池结构示意图图2.2 圆柱形锂离子电池结构图锂离子电池实际上是一个锂离子浓差电池,正负电极由两种不同的锂离子嵌入化合物构。充电时,Li+从正极脱嵌经过电解质嵌入负极,此时负极处于富

锂态,正极处于贫锂态;放电时则相反,Li+从负极脱嵌,经过电解质嵌入正极,正极处于富锂态,负极处于贫锂态。锂离子电池的工作电压与构成电极的锂离子嵌入化合物本身及锂离子的浓度有关。因此,在充放电循环时,Li+分别在正负极上发生“嵌入-脱嵌”反应,Li+便在正负极之间来回移动,所以,人们又形象地把锂离子电池称为“摇椅电池”或“摇摆电池”。 锂离子蓄电池是在锂蓄电池的基础上发展起来的先进蓄电池,它基本解决了困扰锂蓄电池发展的两个技术难题,即安全性差和充放电寿命短的问题。锂离子电池与锂电池在原理上的相同之处是:在两种电池中都采用了一种能使锂离子嵌入和脱嵌的金属氧化物或硫化物作为正极,采用一种有机溶剂—无机盐体系作为电解质。不同之处是:在锂离子电池中采用使锂离子嵌入和脱嵌的碳材料代替纯锂作负极。因此,这种电池的工作原理更加简单,在电池工作过程中,仅仅是锂离子从一个电极(脱嵌)后进入另一个电极(嵌入)的过程。具体来说,当电池充电时锂离子是从正极中脱嵌,在碳负极中嵌入,放电时反之。在充放电过程中没有晶形变化,故具有较好的安全性和较长的充放电寿命。 锂离子电池的主要性能 锂离子电池的额定电压为3.6V(少数的是3.7V)。充满电时的终止充电电压与电池阳极材料有关:石墨的4.2V;焦炭的4.1V。充电时要求终止充电电压的精度在±1%之内。锂离子电池的终止放电电压为2.4~2.7V(电池厂家给出工作电压范围或终止放电电压的参数略有不同)。高于终止充电电压及低于终止放电时会对电池有损害。

锂电池保护板工作原理及构成

锂离子电池保护板工作原理及其构成 锂离子电池保护板工作原理及其构成 MOS 锂在元素周期表上第3位,外层电子1个,容易失去形成稳定结构,所以是非常活泼的一种金属。而锂离子电池具有放电电流大、内阻低、寿命长、无记忆效应等被人们广泛使用,锂离子电池在使用中严禁过充电、过放电、短路,否则将会使电池起火、爆炸等致命缺点,所以,在使用可充锂电池都会带有一块保护板来保护电芯的安全。

保护板有两个核心部件:一块保护IC,它是由精确的比较器来获得可靠的保护参数;另外是MOSFE T串在主充放电回路中担当高速开关,执行保护动作。电路原理图如下: 1、下面介绍保护IC个引脚功能:VDD是IC电源正极,VSS是电源负极,V-是过流/短路检测端,Do ut是放电保护执行端,Cout是充电保护执行端。 2、保护板端口说明:B+、B-分别是接电芯正极、负极;P+、P-分别是保护板输出的正极、负极;T 为温度电阻(NTC)端口,一般需要与用电器的MCU配合产生保护动作,后面会介绍,这个端口有时也标为ID,意即身份识别端口,这时,图上的R3一般为固定阻值的电阻,让用电器的CPU辨别是否为指定的电池。 保护板工作过程:

1、激活保护板的方法:当保护板P+、P-没有输出处于保护状态,可以短路B-、P-来激活保护板,这时,Dout、Cout均会处于低电平(保护IC此两端口是高电平保护,低电平常态)状态打开两个MOS 开关。 2、充电:P+、P-分别接充电器的正负极,充电电流经过两个MOS对电芯进行充电。这时,IC的VD D、VSS既是电源端,也是电芯电压检测端(经R1)。随着充电的进行,电芯电压逐渐升高,当升高到保护IC门限电压(一般是4.30V,通常称为过充保护电压)时,Cout随即输出高电平将对应那个M OS关断,充电回路也被断开。过充保护后,电芯电压会下降,当下降到IC门限电压(一般为4.10V,通常称为过充保护恢复电压)时,Cout恢复低电平状态打开MOS开关。 3、放电:同样,在电池放电时,IC的VDD、VSS也会对电芯电压检测,当电芯电压下降到IC门限电压(一般是2.40V,通常称为过放保护电压)时,Dout随即输出高电平将对应那个MOS关断,放电

锂电池保护板原理定稿版

锂电池保护板原理精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

锂电池保护板原理 锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现。 锂电池的保护功能通常由保护电路板和PTC等电流器件协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下时刻准确的监视电芯的电压和充放回路的电流,及时控制电流回路的通断;PTC在高温环境下防止电池发生恶劣的损坏。 普通锂电池保护板通常包括控制IC、MOS开关、电阻、电容及辅助器件FUSE、PTC、NTC、ID、存储器等。其中控制IC,在一切正常的情况下控制MOS开关导通,使电芯与外电路导通,而当电芯电压或回路电流超过规定值时,它立刻控制MOS开关关断,保护电芯的安全。 在保护板正常的情况下,Vdd为高电平,Vss,VM为低电平,DO、CO为高电平,当 Vdd,Vss,VM任何一项参数变换时,DO或CO端的电平将发生变化。 1、过充电检出电压:在通常状态下,Vdd逐渐提升至CO端由高电平变为低电平时VDD-VSS间电压。 2、过充电解除电压:在充电状态下,Vdd逐渐降低至CO端由低电平变为高电平时VDD-VSS间电压。 3、过放电检出电压:通常状态下,Vdd逐渐降低至D O端由高电平变为低电平时VDD- VSS间电压。 4、过放电解除电压:在过放电状态下,Vdd逐渐上升到DO端由低电平变为高电平时VDD-VSS间电压。 5、过电流1检出电压:在通常状态下,VM逐渐升至DO由高电平变为低电平时VM-VSS 间电压。

相关文档
相关文档 最新文档