文档库 最新最全的文档下载
当前位置:文档库 › 热处理的各种冷却方式

热处理的各种冷却方式

热处理的各种冷却方式

热处理的各种冷却方式

1,退火:在炉内以足够慢的速度冷却直至过冷奥氏体在高温分解温度范围内完成转变。2,等温退火;在炉内以较快的速度冷却到过冷奥氏体不稳定的温度下等温停留,直至在该温度下等温转变结束之后出炉冷却,所需的工艺时间比较短,而且能获得在同一温度下转变的均一组织。

3,正火:在空气中冷却,其冷却速度比退火快。正火后铁素体量减少,共析体变细,低合金钢正火后常出现混合组织。

4,等温正火:先用较快的速度冷却,然后等温停留直至奥氏体高温分解完成,使低合金钢得到均一的和硬度适中的预备组织,改善切削性能,亦称控冷等温正火。

5,淬火:冷却速度大于临界速度,获得马氏体和部分残余奥氏体。

6,双介质淬火:以大于临界冷却速度冷到过冷奥氏体不稳定的温度区间以下,在马氏体转变区间内转入较缓和的介质中继续冷却。

7,预冷淬火:先以缓慢速度冷却一段时间然后进行淬火冷却。

8,马氏体点以下的分级淬火:淬入温度在MS以下的盐浴或油浴中并停留一段时间,使以转变的马氏体回火,使截面上温度趋向均匀,然后再缓冷条件下继续进行马氏体转变,残留奥氏体量有所增大。

9,马氏体点以下的分级淬火:分解停留的温度稍高于MS点,然后取出空冷。减少马氏体转变时截面上的温度差,残留奥氏体量页有所增加。

10,等温淬火:在下贝氏体转变的温度范围内等温停留,直至贝氏体转变结束。

热处理工艺的分类

热处理工艺的分类 金属热处理工艺大体可分为、表面热处理和化学热处理三大类。根据加热、加热温度和冷却方法的不同,每一大类又可区分为若干不同的热处理工艺。同一种金属采用不同的热处理工艺,可获得不同的组织,从而具有不同的性能。钢铁是工业上应用最广的金属,而且钢铁显微组织也最为复杂,因此钢铁热处理工艺种类繁多。 整体热处理是对工件整体加热,然后以适当的速度冷却,获得需要的金相组织,以改变其整体力学性能的金属热处理工艺。钢铁整体热处理大致有退火、正火、淬火和四种基本工艺。 整体热处理工艺的手段 退火是将工件加热到适当温度,根据材料和工件采用不同的保温时间,然后进行缓慢冷却,目的是使金属内部组织达到或接近平衡状态,获得良好的和使用性能,或者为进一步淬火作组织准备。 正火是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。 淬火是将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却。淬火后钢件变硬,但同时变脆。 为了降低钢件的脆性,将淬火后的钢件在高于室温而低于650℃的某一适当温度进 行长时间的保温,再进行冷却,这种工艺称为回火。 退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。 “四把火”随着加热温度和冷却方式的不同,又演变出不同的热处理工艺。为了获得 一定的强度和韧性,把淬火和结合起来的工艺,称为。某些合金淬火形成后,将其置于室温或稍高的适当温度下保持较长时间,以提高合金的硬度、强度或电性磁性等。这样的热处理工艺称为。 把形变与热处理有效而紧密地结合起来进行,使工件获得很好的强度、韧性配合的方法称为;在负压气氛或真空中进行的热处理称为,它不仅能使工件不氧化,不脱碳,保持处理后工件表面光洁,提高工件的性能,还可以通入渗剂进行化学热处理。 表面热处理是只加热工件表层,以改变其表层力学性能的金属热处理工艺。为了只加热工件表层而不使过多的热量传入工件内部,使用的热源须具有高的,即在单位面积的工件上给予较大的热能,使工件表层或局部能短时或瞬时达到高温。表面热处理的主要方法有火焰淬火和热处理,常用的热源有氧乙炔或氧丙烷等火焰、、激光和电子束等。 化学热处理是通过改变工件表层化学成分、组织和性能的金属热处理工艺。化学热处理与表面热处理不同之处是后者改变了工件表层的化学成分。化学热处理是将工件放在含碳、氮或其它的介质(气体、液体、固体)中加热,保温较长时间,从而使工件表层 渗入碳、氮、硼和铬等元素。渗入元素后,有时还要进行其它热处理工艺如淬火及回火。化学热处理的主要方法有渗碳、渗氮、渗金属。 热处理是和工模具制造过程中的重要工序之一。大体来说,它可以保证和提高工件的各种性能,如耐磨、耐腐蚀等。还可以改善的组织和应力状态,以利于进行各种冷、。

常用热处理工艺【详情】

常用的几种热处理方法 内容来源网络,由深圳机械展收集整理! 更多相关表面处理及精密零件加工展示,就在深圳机械展! 1.常用热处理方式 1.1.退火 把钢加热到一定温度并在此温度下保温,然后缓慢冷却到室温。 退火有完全退火、球化退火、去应力退火等几种。 a.将钢加热到预定温度,保温一段时间,然后随炉缓慢冷却称为完全退火.目的是降 低钢的硬度,消除钢中不均匀组织和内应力. b.把钢加热到750度,保温一段时间,缓慢冷却至500度下,最后在空气中冷却叫球 化退火。目的是降低钢的硬度,改善切削性能,主要用于高碳钢。 c.去应力退火又叫低温退火,把钢加热到500~600度,保温一段时间,随炉缓冷到 300度以下,再室温冷却.退火过程中组织不发生变化,主要消除金属的内应力。 1.2.正火 将钢件加热到临界温度以上30-50℃,保温适当时间后,在静止的空气中冷却的热处理工艺称为正火。 正火的主要目的是细化组织,改善钢的性能,获得接近平衡状态的组织。 正火与退火工艺相比,其主要区别是正火的冷却速度稍快,所以正火热处理的生产周期短。故退火与正火同样能达到零件性能要求时,尽可能选用正火。 1.3.淬火 将钢件加热到临界点以上某一温度(45号钢淬火温度为840-860℃,碳素工具钢的淬火温度为760~780℃),保持一定的时间,然后以适当速度在水(油)中冷却以获得马氏体或贝氏体组织的热处理工艺称为淬火。 淬火与退火、正火处理在工艺上的主要区别是冷却速度快,目的是为了获得马氏体组织。马氏体组织是钢经淬火后获得的不平衡组织,它的硬度高,但塑性、韧性差。马氏体的硬度随钢的含碳量提高而增高。

1.4.回火 钢件淬硬后,再加热到临界温度以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺称为回火。 淬火后的钢件一般不能直接使用,必须进行回火后才能使用。因为淬火钢的硬度高、脆性大,直接使用常发生脆断。通过回火可以消除或减少内应力、降低脆性,提高韧性;另一方面可以调整淬火钢的力学性能,达到钢的使用性能。根据回火温度的不同,回火可分为低温回火、中温回火和高温回火三种。 A 低温回火150~250.降低内应力,脆性,保持淬火后的高硬度和耐磨性。 B 中温回火350~500;提高弹性,强度。 C 高温回火500~650;淬火钢件在高于500℃的回火称为高温回火。淬火钢件经高温淬火后,具有良好综合力学性能(既有一定的强度、硬度,又有一定的塑性、韧性)。所以一般中碳钢和中碳合金钢常采用淬火后的高温回火处理。轴类零件应用最多。 淬火+高温回火称为调质处理。 2.Q235热处理工艺 Q235属于碳素结构钢,含碳量大概0.12%-0.2%之间,相当于普通的10、20钢,淬火后硬度改变不大。具有较高的强度,良好的塑性,韧性和焊接性能,综合性能好,能满足一般钢结构和钢筋混凝土结构用钢的要求。 Q235一般买来就用不热处理,一般它都用在工程上大量需要钢材的地方,数量巨大,一般是热轧后就使用,热轧也就是有正火这个热处理,不热处理的原因有几个: 1)这些场合不需要太高的力学要求。 2)这些钢构件的体积太大了,你想热处理也不现实。 3)这些钢很多情况下要被焊接使用的,你热处理了被焊接后也被焊接过程中将焊缝的 热处理给破坏了。 4)材料价格便宜,质量要求比较低,而且是低碳钢,热处理的效果也不太好。 5)如果非要用Q235淬出硬度那只能渗碳,但是一件很不划算的事情。 Q235在理论上是可以淬火得到马氏体的。但是由于马氏体碳过饱和度很低,淬火后的硬度很低,只有170HBS左右。而这种钢的供应状态硬度大概就有144HBS左右(出

常用热处理分类

常用热处理的分类 1 表面淬火 表面淬火是将钢件的表面层淬透到一定的深度,而心部分仍保持未淬火状态的一种局部淬火的方法。表面淬火时通过快速加热,使刚件表面很快到淬火的温度,在热量来不及穿到工件心部就立即冷却,实现局部淬火。 表面淬火的目的在于获得高硬度,高耐磨性的表面,而心部仍然保持原有的良好韧性,常用于机床主轴,齿轮,发动机的曲轴等。 表面淬火采用的快速加热方法有多种,如电感应,火焰,电接触,激光等,目前应用最广的是电感应加热法。 2 表面淬火和回火 将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理工艺。或将淬火后的合金工件加热到适当温度,保温若干时间,然后缓慢或快速冷却。一般用以减低或消除淬火钢件中的内应力,或降低其硬度和强度,以提高其延性或韧性。 3 物理气相沉积 物理气相沉积(Physical Vapor Deposition,PVD)技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在

基体表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。 4 化学气相沉积 化学气相沉积(Chemical vapor deposition,简称CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。与之相对的是物理气相沉积(PVD)。 整体热处理 1 退火 退火是一种金属热处理工艺,指的是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却。目的是降低硬度,改善切削加工性;消除残余应力,稳定尺寸,减少变形与裂纹倾向;细化晶粒,调整组织,消除组织缺陷。 2 正火 正火,又称常化,是将工件加热至Ac3或Acm以上40~60℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。其目的是在于使晶粒细化和碳化物分布均匀化,去除

有关热处理的翻译

本构方程来预测V150级石油套管钢的高温下的屈服应力 关键词: V150级石油套管钢;热压缩变形;流动应力;本构方程 摘要 从热等温压缩试验测试中,在很宽的温度范围内(1173-1473K)和应变率(0.01-10S-1),被雇用来研究变形行为和发展V150级石油套管的本构方程的真应力- 应变数据钢基于阿列纽斯型方程。流变应力随变形温度的降低和应变率,其可通过衡量温度和应变速率对热变形行为影响的参数中的指数式表示的增加。应变的影响,在开发本构方程注册成立,考虑应变对材料常数的影响. 流动应力本构方程预测显示了良好的一致性 ,实验值在整个实验温度和应变速率范围内,除了有轻微偏差下0.01S-1变形预测在1173K的压力,平均相对误差为4.21%。 1引言 无缝套管是建设和修复的超深井的重要辅助材料,其极端地质条件下进行。无缝套管是建设和修复的超深井的重要辅助材料,其可以在极端地质条件下进行, 为了确保超深井,特高的要求,包括全面的服务性能和寿命,已经提出了套管的安全运行。该V150钢级已被用于制造超高强度和高韧性无缝套管,材料在热变形中的流变行为是复杂的,即在硬化和软化机制显著地受温度和应变速率这一事实的影响。对材料热变形行为进行全面的研究确定非常重要是直接影响材料的组织演变和形成的产品的机械性能热机械工艺的重要参数。然而,一些研究上的认识,评估和预测V150的高温流动行为钢级是可记录的科学文献。 在流程建模领域,有限元(FEM)仿真已成功地用于分析和优化的热变形处理的参数,本构方程是材料的流动行为的数学表示,作为的有限元代码输入在特定负载条件下模拟材料的响应,大部分的本构关系的要么是现象学的或经验的性质。提出了一种现象学的方法由塞拉斯和McTegart[12],其中的流动应力是由双曲线法在阿累尼乌斯型方程表达。还已经尝试改进这种唯象模型通过引入应变的影响。应变相关的参数到双曲正弦本构方程来预测在变形镁合金的流动应力是由Sloof等人介绍[13],后来被用来预测在改良的9Cr-1Mo钢中[10]高温流变应力。一个双曲正弦本构方程应变和应变率补偿

1简述常用的热处理的方法及时效处理

1简述常用的热处理的方法及时效处理。 答:常用热处理方法:退火,正火,淬火,回火,渗碳,渗氮,碳氮共渗,渗硼。时效处理有人工时效处理,自然时效处理。 退火,将工件加热至Ac3以上30~50度,保温一定时间后,随炉缓慢冷却至500度一下在空间中冷却。 正火,将钢件加热至Ac3或Acm以上,保温后从炉中取出在空气中冷却的一种操作。 淬火,将钢件加热至Ac3或Ac1以上,保温后在水或油等冷却液中快速冷却,已获得不稳定的组织。 回火,将淬火后的钢重新加热到Ac1以下的温度,保温后冷却至室温的热处理工艺。 自然时效处理,将工件放置在室温或自然条件下长时间存放而发生的时效现象,称为自然时效处理。 人工时效处理,采用将工件加热到较高温度,并较短时间进行时效处理的时效处理工艺,叫人工时效处理。 2简述钢回火的目的 答:回火又称配火。将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理。或将淬火后的合金工件加热到适当温度,保温若干时间,然后缓慢或快速冷却。目的:一般用以减低或消除淬火钢件中的内应力,或降低其硬度和强度,以提高其延性或韧性。根据不同的要求可采用低温回火、中温回火或高温回火。通常随着回火温度的升高,硬度和强度降低,延性或韧性逐渐增高。 3简述钢的表面淬火的作用及分类。 答:有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。 根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。 4简述感应热处理技术的工作原理及特点。简述超音频感应淬火的工作频率及频率和淬硬层厚度的关系。 答:基本原理将工件放入感应器(线圈)内,当感应器中通入一定频率的交变电流时,周围即产生交变磁场。交变磁场的电磁感应作用使工件内产生封闭的感应电流──涡流。感应电流在工件截面上的分布很不均匀,工件表层电流密度很高,向内逐渐减小, 这种现象称为集肤效应。工件表层高密度电流的电能转变为热能,使表层的温度升高,即实现表面加热。电流频率越高,工件表层与内部的电流密度差则越大,加热层越薄。在加热层温度超

热处理工艺名词解释

正火: 正火,又称常化,是将工件加热至Ac3或Ac m以上40~60℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。其目的是在于使晶粒细化和碳化物分布均匀化,去除材料的内应力,降低材料的硬度。 正火,又称常化,是将工件加热至Ac3(Ac?是指加热时自由铁素体全部转变为奥氏体的终了温度)或Ac m(Ac m是实际加热中过共析钢完全奥氏体化的临界温度线)以上30~50℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。其目的是在于使晶粒细化和碳化物分布均匀化。正火与退火的不同点是正火冷却速度比退火冷却速度稍快,因而正火组织要比退火组织更细一些,其机械性能也有所提高。另外,正火炉外冷却不占用设备,生产率较高,因此生产中尽可能采用正火来代替退火。 正火的主要应用X围有:①用于低碳钢,正火后硬度略高于退火,韧性也较好,可作为切削加工的预处理。②用于中碳钢,可代替调质处理作为最后热处理,也可作为用感应加热方法进行表面淬火前的预备处理。③用于工具钢、轴承钢、渗碳钢等,可以消降或抑制网状碳化物的形成,从而得到球化退火所需的良好组织。④用于铸钢件,可以细化铸态组织,改善切削加工性能。 ⑤用于大型锻件,可作为最后热处理,从而避免淬火时较大的开

裂倾向。⑥用于球墨铸铁,使硬度、强度、耐磨性得到提高,如用于制造汽车、拖拉机、柴油机的曲轴、连杆等重要零件。⑦过共析钢球化退火前进行一次正火,可消除网状二次渗碳体,以保证球化退火时渗碳体全部球粒化。 正火后的组织:亚共析钢为F+S,共析钢为S,过共析钢为S+二次渗碳体,且为不连续。 正火主要用于钢铁工件。一般钢铁正火与退火相似,但冷却速度稍大,组织较细。有些临界冷却速度(见淬火)很小的钢,在空气中冷却就可以使奥氏体转变为马氏体,这种处理不属于正火性质,而称为空冷淬火。与此相反,一些用临界冷却速度较大的钢制作的大截面工件,即使在水中淬火也不能得到马氏体,淬火的效果接近正火。钢正火后的硬度比退火高。正火时不必像退火那样使工件随炉冷却,占用炉子时间短,生产效率高,所以在生产中一般尽可能用正火代替退火。对于含碳量低于0.25%的低碳钢,正火后达到的硬度适中,比退火更便于切削加工,一般均采用正火为切削加工作准备。对含碳量为0.25~0.5%的中碳钢,正火后也可以满足切削加工的要求。对于用这类钢制作的轻载荷零件,正火还可以作为最终热处理。高碳工具钢和轴承钢正火是为了消除组织中的网状碳化物,为球化退火作组织准备。 普通结构零件的最终热处理,由于正火后工件比退火状态具有更好的综合力学性能,对于一些受力不大、性能要求不高的普

常用包装材料计算公式

采购必须要精通的公式 纸箱价格:(长+宽+2)*(宽+高+1)*单价*2 /1000 纸板价格:(长+1)*(宽+1)*单价/1000 保力龙:长*宽*高*单价/648000 胶袋价格:长*宽*厚度*0。262*单价/1000 玻璃价格:长*宽*单价/10000(正规)(长+1)*(宽+1)*单价/10000 汽泡袋价格:长*宽*2*单价/10000 收缩袋价格:长*宽*3。8*厚度*每磅单价 /22000 纸箱材积预算:长*宽*高/1728(英寸)长*宽*高/35。31(立方米) 天地盖计算公式:(高*2+长+1)*(高*2+宽+1)*单价/1000 刀卡计算公式:长*宽*单价/1000+0.01(打刀费) 平卡计算公式:长*宽*单价/1000单价为每千平方英寸材质的价格. PE袋:長(英吋)x寬(英吋)x厚(mm)x2.63x單價(3.15/磅)/1000 印刷費:30cm以下10.00/千個 30cm以上200cm以下15.00/千個 單面汽泡袋: 長x寬x平方單價(0.48㎡)x2 雙面汽泡袋: 長x寬x平方單價(0.68㎡)x2 珍珠棉袋(1mm厚): 長x寬x平方單價(0.6㎡)x2 珍珠棉袋(2mm厚): 長x寬x平方單價(1.2㎡)x2 收縮膜: 厚0.035mmx長x寬x3.75/2.2/1000x單價(13.0㎡) 包材物料計算公式: PE袋單價計算公式: 長(英吋)x寬(英吋)x厚(mm)x2.63(密度)x單價 (3.15HK/磅)/1000﹢印刷費 PE袋重量計算公式: 長(英吋)x寬(英吋)x厚(mm)x2.63/2.2/1000 印刷費: 30cm以下10.00HK/千個 30cm以上200cm以下15.00HK/千個 例如:PE4x30x30W單價計算: 11.81x11.81x0.04x2.63x3.15/1000+0.01=0.056HK/PCS

金属材料热处理方法有几种

金属材料热处理方法有几种?各有什么特点? 金属材料热处理方法有退火、谇火及回火,渗碳、氮化及氰化等。 (1) 退火处理 退火处理按工艺温度条件的不同,可分为完全退火、低温退火和正火处理。 ①完全退火是把钢材加热到Ac3 (此时铁素体开始溶解到奥氏体中,指铁碳合金平衡图中Ac3,即临界温度)以上20?30℃,保温一段时间后,随炉温缓冷到400?500(,然后在空气中冷却。 完全退火适用于含碳量小于0.83%的铸造、锻造和焊接件。目的是为了通过相变发生重结晶,使晶粒细化,减少或消除组织的不均匀性,适当降低硬度,改善切削加工性,提高材料的韧性和塑性,消除内应力。 ②低温退火是一种消除内应力的退火方法。对钢材进行低温退火时.先以缓慢速度加热升温至500?600匸,然后经充分的保温后缓慢降温冷却。 低温退火(消除内应力退火)主要适用于铸件和焊接件,是为了消除零件铸造和焊接过程中产生的内应力,以防止零件在使用工作中变形。采用这种退火方法,钢材的结晶组织不发生变化。 ③正火是退火处理中的一种变态,它与完全退火不同之处在于零件的冷却是在静止的空气中,而不是随炉缓慢降温冷却。正火处理后的晶粒比完全退火更细,增加了材料的强度和韧性,减少内应力,改善低碳钢的切削性能。 正火处理主要适合那些无需调质和淬火处理的一般零件和不能进行淬火和调质处理的大型结构零件。正火时钢的加热温度为753?900°C。 (2) 淬火及回火处理 淬火可分整体淬火和表面淬火,淬火后的钢一般都要进行回火。回火是为了消除或降低淬火钢的残余应力,以使淬火后的钢内纟且织趋于稳定。钢材淬火后为了得到不同的硬度,回火温度可采用几种温度段。 ①淬火后低温回火目的是为了降低钢中残余应力和脆性、而保持钢淬火后的高硬度和耐磨性,硬度在HRC58?64范围内。适合于各种工具、渗碳零件和滚动轴承。回火温度为150?250匸。 ②淬火后中温回火目的是为了保持钢材有一定的韧性、在此基础上提高其弹性和屈服极限。适合于各种弹簧、锻模及耐冲击工具等。回火温度为350?500",淬火后回火得到的钢材硬度为HRC 35?45。 ③淬火后高温回火这种回火温度处理通常称之为调质处理。回火温度为500?650℃,材料的硬度为HRC25?35。 调质处理广泛应用在齿轮与轴的机械加工工艺中,以使零件在塑性、韧性和强度方面有较好的综合性能。 表面淬火是使零件的表面有较髙的硬度和耐磨性,而零件的内部(心部)有足够的塑性和韧性。如承受动载荷及摩擦条件下工作的齿轮、凸轮轴、曲轴颈等,均应进行表面淬火处理。 表面淬火用钢材的含碳量应大于35%,如45、40Cr、40Mn2 等钢材,都比较适合表面淬火。表面谇火的方法可分为表面火焰淬火和表面髙频淬火。 a. 表面火焰淬火是用高温的氧-乙块火焰,把零件表面加热到Ac3线以上温度,

盐浴金属热处理种类特点及技术发展动向

盐浴金属热处理种类特点及技术发展动向 2013-08-30 09:46:00 盐浴热处理已有数十年的历史,其本身已不是新鲜事物。当今提倡高效率生产的环境下,容易实现自动化批量生产的真空热处理等增加,而在作业环境、废水处理、炉体寿命、生产效率、成本等方面存在难点的盐浴热处理正在逐渐减少。但是有些领域仍然要依赖于盐浴热处理。下面介绍盐浴热处理的特征及其最近的技术动向。 广义的盐浴热处理中包含有渗碳氮化、软氮化、浸硫处理等表面处理,本文只对采用中性盐的盐浴热处理进行介绍。 1、盐浴炉及其种类 金属热处理用的盐浴一般分为高温用(约1000-1350℃)、中温用(约570-950℃)、低温用(约140-550℃)3种。整体可能使用的温度范围是140-1350℃。 高温用盐浴主要是高速工具钢、模具钢淬火加热用;中温用盐浴是低温合金工具钢、构造用钢、轴承钢、弹簧钢等淬火加热,高速工具钢预热、中间保持用以及各种高温回火、等温正火等用;低温用盐浴用于间歇淬火、等温淬火、淬火时冷却、低温回火等。使用盐的种类各不相同,高温用基本都用BaCl2,中温用BaCl2、NaCl、CaCl2等氯化物的混合液。与此相对,低温用NaNO3、KNO3、NaNO2等硝酸盐以及亚硝酸盐的混合液。 盐浴加热的方法有直热(电极)式与外热式。高温采用在盐浴中通上直流电加热的电极式。中温以及低温采用外热式。外热式是在钢制的罐中加入盐,之后加热罐体。温度控制稍有些难度,但优点在于除电之外,还可以用汽、油等,使用能源多样化。 2、盐浴炉热处理特点 盐浴热处理的优点是: 1)淬火加热时间短,结晶粒不会粗大化,韧性强,有利于应变。 2)炉温分布良好,应变变少。 3)高温区域冷却快、低温区域冷却比较缓慢,淬火容易,且应变减小。 4)能够对应大范围的热处理条件(间歇淬火、等温淬火、部分热处理、短时间加热、冷却、复杂的温度变化等)。 5)氧化脱碳少。 6)热处理温度、时间调整能够在短时间内完成,能够对应多品种、小批量。 7)设备费用比较便宜。 加热时间能够缩短的原因与盐浴热容量以及热传导度密切相关。图1示出?25mm高速工具钢淬火时的加热、冷却曲线。表面与中心部的温度差用预热(900℃)是3min,而用本加热(1180℃)只有2min,内外温度差消失。通常,用真空炉等加热要求约20-30min,其差明显增大。钢的结晶粒度大小依赖于相变点正上方的奥氏体结晶粒度的大小,所以为了得到细微的奥氏体结晶粒度,增加钢的加热速度与不使其上方升到淬火温度以上非常重要。而盐浴热处理,由于浴液温度的均匀性高,能够在短时间内均匀加热 图1:盐浴热处理中加热、冷却曲线参见原创。 真空炉等加热时,由于容易导致处理件产生不均匀加热,所以要增加时间,或者是提高淬火温度,这就会引起奥氏体结晶粒度的粗大化,导致韧性降低。 由真空炉以及盐浴炉的奥氏体化时间比较结果可知,在1000℃时真空炉的奥氏体化时间是盐浴炉的4-5倍,在1200℃时约为9倍。

链轮计算公式汇总

链轮计算公式汇总

————————————————————————————————作者:————————————————————————————————日期: ?

第6章链传动 本章提示:?链传动由两个链轮和绕在两轮上的中间挠性件-----链条所组成。靠链条与链轮之间的啮合来传递两平行轴之间的运动和动力,属于具有啮合性质的强迫传动。其中,应用最广泛的是滚子链传动。 本章介绍了链传动的工作原理、特点及应用范围;重点分析了链传动的运动不均匀性(即多边形效应)产生的原因和链传动的失效形式;阐明了功率曲线图的来历及使用方法;着重讨论了滚子链传动的设计计算方法及主要参数选择;简要介绍了齿形链的结构特点以及链传动的润滑和张紧的方法。 基本要求 1).了解链传动的工作原理、特点及应用?2).了解滚子链的标准、规格及链轮结构特点。 3).掌握滚子链传动的设计计算方法。 4).对齿形链的结构特点以及链传动的布置、张紧和润滑等方面有一定的了解。 6.1概述 链传动是由装在平行轴上的主、从动链轮和绕在链轮上的环形链条所组成,见图6.1,以链作中间挠性件,靠链与链轮轮齿的啮合来传递运动和动力。

在链传动中,按链条结构的不同主要有滚子链传动和齿形链传动两种类型: 1.滚子链传动 滚子链的结构如图6.2。它由内链板1、外链板2、销轴3、套筒4和滚子5组成。链传动工作时,套筒上的滚子沿链轮齿廓滚动,可以减轻链和链轮轮齿的磨损。 把一根以上的单列链并列、用长销轴联接起来的链称为多排链,图6.3为双排链。链的排数愈多,承载能力愈高,但链的制造与安装精度要求也愈高,且愈难使各排链受力均匀,将大大降低多排链的使用寿命,故排数不宜超过4排。当传动功率较大时,可采用两根或两根以上的双排链或三排链。

常见的热处理方法

常见的热处理方法、目的和工序位置的安排 由于热处理工序安排对车削类工艺影响较大,更重要的是往往由于热处理工序安排颠倒,使工件无法继续加工,而且所产生的废品往往是无法挽回的。为此对热处理工序的安排要加以了解,并引起重视。 下面将常见的热处理方法、目的和工序位置的安排分别介绍如下: 一、预备热处理 预备热处理包括退火、正火、调质和时效等。这类热处理的目的是改善加工性能,消除内应力和为最终热处理做好组织准备。退火、正火、调质工序多数在粗加工前后,时效处理一般安排在粗加工、半精加工以后,精加工之前。 1.退火和正火 目的是改善切削性能,消除毛坯内应力,细化晶粒,均匀组织;为以后热处理作准备。 例如:含碳量大于0.7%的碳钢和合金钢,为降低硬度便于切削加工采用退火处理; 含碳量低于0.3%的低碳钢和低合金钢,为避免硬度过低切削时粘刀,而采用正火适当提高硬度。 一般用于锻件、铸件和焊接件。退火一般安排在毛坯制造之后,粗加工之前进行。2.调质 目的是使材料获得较好的强度、塑性和韧性等方面的综合机械性能,并为以后热处理作准备。 用于各种中碳结构钢和中碳合金钢。调质一般安排在粗加工之后,半精加工之前。 调质是最常用的热处理工艺。大部分的零件都是通过调质处理来提高材料的综合机械性能,即提高拉伸强度、屈服强度、断面收缩率、延伸率、冲击功。调质处理能大大提高材料的拉伸和屈服强度,提高屈强比和冲击功,使材料具有强度和塑韧性的良好配合。由于屈服强度、疲劳强度、冲击强度的提高,在零件设计时就可以采用更小的材料截面,从而减少机械设备的整体重量,节省零件占用空问和能量消耗。因此在某些场合为了减少机械空间和机械重量在设计过程中要有意识地利用调质工艺。 需要强调的是,一般来讲调质钢应该为中碳钢( C = 0.3%~0.6%);碳钢中像30、 35、40、45、50等钢种则既可以调质处理又可以正回火使用;而对高碳钢和低碳钢则 不宜采用调质工艺 调质过程是淬火加高温回火。首先需要将零件加热到材料的Acl点以上30~50℃ (800.950℃),保温一定时间,然后在油中或水中冷却。冷却后立即入炉进行回火(500~650℃),以降低淬火应力、调整组织成份,进而达到机械性能要求。而回火温度的制定是根据硬度或性能高低而定的,硬度和强度越高,回火温度越低。调质工序后的任何高于回火温度的加热,都将降低已达到的强度。 选择调质处理时应特别注意以下几点: (1)图纸中应明确要求 应明确写明“调质”。若只写“热处理…H B”外协厂家可能采用其他热处理工艺,比如正回火达到所要求的硬度。而正回火所达到的同样硬度的材料其屈服强度和冲击功会非常低。实际工作中曾发生过地脚螺栓使用时发生早期断裂的事故就是由此导致的。 (2)调质的硬度和硬度范围 要按材料标准选择调质的硬度和硬度范围。这一方面有利于工厂配炉生产,另一方面过窄的硬度范围要求在实际生产中根本无法满足。

几种常见热处理概念

几种常见热处理概念 1.正火:将钢材或钢件加热到临界点AC3或ACM以上适当温度保持一定时间后空气中冷却,到珠光体类组织热处理工艺。2.退火annealing:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后,随炉缓慢冷却(或埋砂中或石灰中冷却)至500度以下空气中冷却热处理工艺 3.固溶热处理:将合金加热至高温单相区恒温保持,使过剩相充分溶解到固溶体中,然后快速冷却,以到过饱和固溶体热处理工艺 4.时效:合金经固溶热处理或冷塑性形变后,室温放置或稍高于室温保持时,其性能随时间而变化现象。 5.固溶处理:使合金中各种相充分溶解,强化固溶体并提高韧性及抗蚀性能,消除应力与软化,继续加工成型 6.时效处理:强化相析出温度加热并保温,使强化相沉淀析出,以硬化,提高强度 7.淬火:将钢奥氏体化后以适当冷却速度冷却,使工件横截面内全部或一定范围内发生马氏体等不稳定组织结构转变热处理 工艺

8.回火:将淬火工件加热到临界点AC1以下适当温度保持一定时间,随后用符合要求方法冷却,以获所需要组织和性能热处理工艺 9.钢碳氮共渗:碳氮共渗是向钢表层同时渗入碳和氮过程。习惯上碳氮共渗又称为氰化,目前以中温气体碳氮共渗和低温气体碳氮共渗(即气体软氮化)应用较为广泛。中温气体碳氮共渗主要目是提高钢硬度,耐磨性和疲劳强度。低温气体碳氮共渗以渗氮为主,其主要目是提高钢耐磨性和抗咬合性。 10.调质处理quenching and tempering:一般习惯将淬火加高温回火相结合热处理称为调质处理。调质处理广泛应用于各种重要结构零件,特别是那些交变负荷下工作连杆、螺栓、齿轮及轴类等。调质处理后到回火索氏体组织,它机械性能均比相同硬度正火索氏体组织为优。它硬度取决于高温回火温度并与钢回火稳定性和工件截面尺寸有关,一般HB200—350之间。 11.钎焊:用钎料将两种工件粘合一起热处理工艺 回火的种类及应用 根据工件性能要求的不同,按其回火温度的不同,可将回火分为以下几种: (一)低温回火(150-250度) 低温回火所得组织为回火马氏体。其目的是在保持淬火钢的高硬度和高耐磨性的前提下,降低其淬火内应力和脆性,以免使

热处理总共有多少种,按照类别

热处理四把火:正火,退火,回火,淬火。 热处理分类及硬度检测方法 热处理工件的硬度使用硬度计检测。PHR系列便携式表面洛氏硬度计十分适用于检测表面热处理工件的硬度,可以测试有效化深度超过0.1mm的各种表面热处理工件。操作简单、使用方便、价格较低,可直接读取硬度值。 表面热处理分为两大类,一类是表面淬火回火热处理,另一类是化学热处理,其硬度检验方法如下: 化学热处理是使工件表面渗入一种或几种化学元素的原子,从而改变工件表面的化学成分、组织和性能。经淬火和低温回火后,工件表面具有高的硬度、耐磨性和接触疲劳强度,而工件的芯部又具有高的强韧性。 化学热处理工件的主要技术参数是硬化层深度和表面硬度。硬化层深度还是要用维氏硬度计来检测。检测从工件表面到硬度降到50HRC那一点的距离。这就是有效硬化深度 化学热处理工件的表面硬度检测与表面淬火热处理工件的硬度检测相近,都可以用维氏硬度计、表面洛氏硬度计或洛氏硬度计来检测,只是渗氮厚的厚度较薄,一般不大于0.7mm,这时就不能再采用洛氏硬度计了。 零件如果局部硬度要求较高,可用感应加热等方式进行局部淬火热处理,这样的零件通常要在图纸上标出局部淬火热处理的位置和局部硬度值。零件的硬度检测要在指定区域内进行。硬度检测仪器可采用洛氏硬度计,测试HRC硬度值,如热处理硬化层较浅,可采用表面洛氏硬度计,测试HRN硬度值。 表面淬火回火热处理通常用感应加热或火焰加热的方式进行。主要技术参数是表面硬度、局部硬度和有效硬化层深度。硬度检测可采用维氏硬度计,也可采用洛氏或表面洛氏硬度计。试验力(标尺)的选择与有效硬化层深度和工件表面硬度有关。这里涉及到三种硬度计。 维氏硬度计是测试热处理工件表面硬度的重要手段,它可选用0.5~100kg的试验力,测试薄至0.05mm厚的表面硬化层,它的精度是最高的,可分辨出工件表面硬度的微小差别。另外,有效硬化层深度也要由维氏硬度计来检测,所以,对于进行表面热处理加工或大量使用表面热处理工件的单位,配备一台维氏硬度计是有必要的。 表面洛氏硬度计也是十分适于测试表面淬火工件硬度的,表面洛氏硬度计有三种标尺可以选择。可以测试有效硬化深度超过0.1mm的各种表面硬化工件。尽管表面洛氏硬度计的精度没有维氏硬度计高,但是作为热处理工厂质量管理和合格检查的检测手段,已经能够满足要求。况且它还具有操作简单、使用方便、价格较低,测量迅速、可直接读取硬度值等特点,利用表面洛氏硬度计可对成批的表面热处理工件进行快速无损的逐件检测。这一点对于金属加工和机械制造工厂具有重要意义。 当表面热处理硬化层较厚时,也可采用洛氏硬度计。当硬化层厚度在0.4~0.8mm时,可采用HRA标尺,当硬化层厚度超过0.8mm时,可采用HRC标尺。

常见零件的热处理方式

一、齿轮 1.渗碳及碳氮共渗齿轮的工艺流程 毛坯成型→预备热处理→切削加工→渗碳(碳、氮共渗)、淬火及回火→(喷丸)→精加工2.感应加热和火焰加热淬火齿轮用钢及制造工艺流程 配料→锻造→正火→粗加工→精加工→感应或火焰加热淬火→回火→珩磨或直接使用调质 3.高频预热和随后的高频淬火工艺流程 锻坯→正火→粗车→高频预热→精车(内孔、端面、外圆)滚齿、剃齿→高频淬火→回火→珩齿 二、滚动轴承 1.套圈工艺流程 棒料→锻制→正火→球化退火 棒料→钢管退火磨→补加回火→精磨→成品 2.滚动体工艺流程 (1)冷冲及半热冲钢球 钢丝或条钢退火→冷冲或半热冲→低温退火→锉削加工→软磨→淬火→冷处理→低温回火→粗磨→补加回火→精磨→成品 (2)热冲及模锻钢球 棒料→热冲或模锻→球化退火→锉削加工→软磨→淬火→冷处理→低温回火→粗磨→补加回火→精磨→成品 (3)滚子滚针 钢丝或条钢(退火)→冷冲、冷轧或车削→淬火→冷处理→低温回火→粗磨→附加回火→精磨→成品 三、弹簧 1.板簧的工艺流程

切割→弯制主片卷耳→加热→弯曲→余热淬火→回火→喷丸→检查→装配→试验验收 2.热卷螺旋弹簧工艺流程 下料→锻尖→加热→卷簧及校正→淬火→回火→喷丸→磨端面→试验验收 3.冷卷螺旋弹簧工艺流程 下料→锻尖→加热→卷簧及校正→去应力回火→淬火→回火→喷丸→磨端面→试验验收 四、汽车、拖拉机零件的热处理 1.铸铁活塞环的工艺流程 (1)单体铸造→机加工→消除应力退火→半精加工→表面处理→精加工→成品 (2)简体铸造→机加工→热定型→内外圆加工→表面处理→精加工→成品 2.活塞销的工艺流程 棒料→粗车外圆→渗碳→钻内孔→淬火、回火→精加工→成品 棒料→退火→冷挤压→渗碳→淬火、回火→精加工→成品 热轧管→粗车外圆→渗碳→淬火、回火→精加工→成品 冷拔管→下料→渗碳→淬火、回火→精加工→成品 3.连杆的工艺流程 锻造→调质→酸洗→硬度和表面检验→探伤→校正→精压→机加工→成品 4.渗碳钢气门挺杆的工艺流程 棒料→热镦→机加工成型→渗碳→淬火、回火→精加工→磷化→成品 5.合金铸铁气门挺杆的工艺流程 合金铸铁整体铸造(间接端部冷激)→机械加工→淬火、回火→精加工→表面处理→成品合金铸铁整体铸造(端部冷激)→机械加工→消除应力退火→精加工→表面处理→成品钢制杆体→堆焊端部(冷激)→回火→精加工→成品 钢制杆体→对焊→热处理→精加工→表面处理→成品 6.马氏体型耐热钢排气阀的工艺流程 马氏体耐热钢棒料→锻造成型→调质→校直→机加工→尾部淬火→抛光→成品 7.半马氏体半奥氏体型耐热钢(Gr13Ni7Si2)排气阀的工艺流程

热处理常用计算公式

热处理常用计算公式 一、 高斯误差函数(根据菲克第一、第二定律及边界条件导出) )2( 12 120 002 dt x erf cl e c c c c dt x s -=- =--?-λλπ 注:C ——在时刻t 离表面距离为x 处的浓度;0c ——原始的 均一浓度;s c ——恒定值的表面浓度 二、 气体渗碳层深、温度、时间、碳势之相关经验公式 1. F.E 哈里斯(F.E.Harris ) (1) t bboe H T /8287-= (H 为渗碳层深) (2) () T t D 6700106.31= (D 为全渗碳层深) (?? += bo F T 4金兰绝对温度) (3) () t t D 370010 800= (T 为开尔文绝对温度) 2. F.E.Harris 公式简化 (1) t H 457.0= (T =870C ?) (2) t H 533.0= (T =900C ?) (3) t H 635.0= (T =825C ?) 3. 回归方程(仅适用于900~930C ? 20Cr 渗碳) t H 243.04697.0+= (T 为渗碳时间) 4. 真空渗碳经验公式 (1) ?? ? ??+= 4925.16700106.802T t dt

(2) 2 0201??? ? ??--?=c c c c t tc 注:dt 为总渗碳深度(mm );tc 为渗碳期时间(h );t 为渗 碳总时间(h );1c 为技术要求的表面碳浓度;T 为工艺 (渗碳)温度(C ?);0c 为工件原始碳浓度。扩散期时间为 c t t t d -= 5. 渗碳深度数学模型[热加工工艺,1991(4)] [金属热处理,1997 (4)] (1) P ++-=C t S Mo CrMn 5747.05773.06149.0:20 (2) P ++-=C t S CrMnTi 4218.05576.05248.0:20 S :渗碳层深度(mm ) t :渗碳时间(h ) P C :渗碳碳势(%) 6. 几种渗碳钢渗层深度与渗碳时间对照表 (1) 20Cr.20CrMnTi 渗层深度与渗碳时间对照表

常用热处理 之种类及其目的

常用熱處理之種類及其目的 一、正常化(Normalizing) 種類: 1.普通正常化 2.二段正常化 3.二次正常化 4.恆溫正常化 目的: 1.消除加工產生的不良組織,使鋼材常態化,以利往後製程。 2.使粗化晶粒微細化,改善機械性質。 二、退火(Annealing) 種類: 1.擴散退火 2.完全退火 3.恆溫退火 4.低溫退火 5.弛力退火 6.球化退火 目的: 1.使合金成分擴散均質化。 2.調整組織。 3.軟化以改善常溫加工性、被削性。 4.消除應力。 5.碳化物球化,以改善加工性及機械性質。 6.消除氫脆性。 三、淬火(Quenching) 種類: 1.普通淬火 2.時間淬火(中斷淬火) 3.麻回火(美) 4.沃斯回火

目的: ?硬化,即強化鋼材。 四、深冷處理(Subzero Treatment) 殘留沃斯田鐵的害處: 1.淬火硬度不良(不足、不均) 2.耐磨性差 3.淬火變形量大 4.使用中之尺寸安定性變差,甚或破損 目的: ?將淬火後的殘留沃斯田鐵,經過0℃以下的處理,使之變態為麻田散鐵。 五、回火(Tempering) 種類: 1.低溫回火 2.高溫回火 目的: 1.消除淬火麻田散鐵之應力 2.組織安定化 3.調整機械性質(即強韌性) 六、感應硬化(Induction hardening) 種類: 1.高週波感應硬化 2.中週波感應硬化 3.低週波感應硬化 目的: ?利用高頻率電流的感應加熱作用,爾後施予淬火硬化。使鋼材表面硬化,且產生表面壓縮應力,提高工件之耐疲勞性。

七、滲碳處理(Carburizing) 種類: 1.固體滲碳 2.液體滲碳 3.氣體滲碳 目的: 1.提高表面硬度及耐磨性 2.提高工件之耐疲勞性 八、氮化處理(Nitriding) 種類: 1.固體氮化 2.液體氮化 3.氣體氮化

钢的热处理工艺设计经验公式

钢的热处理工艺设计经验公式 1 钢的热处理 1.1 正火加热时间 加热时间t=KD (1)式中t为加热时间(s);D使工件有效厚度(mm);K是加热时间系数(s/mm)。K 值的经验数据见表1。 表1 K值的经验数据 加热设备加热温度/℃(碳素钢)K/(s/mm) (合金钢)K/(s/mm) 箱式炉800-950 50-60 60-70 盐浴炉800-950 12-25 20-30 1.2 正火加热温度 根据钢的相变临界点选择正火加热温度 低碳钢:T=A c3+(100~150℃)(2)中碳钢:T=A c3+(50~100℃)(3)高碳钢:T=A cm+(30~50℃)(4)亚共析钢:T=A c3+(30~80℃)(5)共析钢及过共析钢:T=A cm+(30~50℃)(6)1.3 淬火加热时间 为了估算方便起见,计算淬火加热时间多采用下列经验公式: t=a·K·D (不经预热)(7)t=(a+b)·K·D (经一次预热)(8)t=(a+b+c)·K·D (经二次预热)(9)式中,t—加热时间(min); a—到达淬火温度的加热系数(min/mm); b—到达预热温度的加热系数(min/mm); c—到达二次预热温度的加热系数(min/mm); K—装炉修正系数; D—工件的有效厚度(mm)。 在一般的加热条件下,采用箱式炉进行加热时,碳素钢及合金钢a多采用1~1.5min/mm;b为1.5~2min/mm(高速钢及合金钢一次预热a=0.5~0.3;b=2.5~3.6;二

次预热a=0.5~0.3;b=1.5~2.5;c=0.8~1.1),若在箱式炉中进行快速加100~150℃时,系数a约为1.5~20秒/毫米,系数b不用另加。若用盐浴加热,则所需时间,应较箱式炉中加热时间少五分之一(经预热)至三分之一(不经预热)左右。工件装炉修正系数K的经验值如表2。 表2 工件装炉修正系数K 工件装炉方式t030111.1 t030111.3 t030111.5 t030111.7 修正系数 1.0 2.0 1.3 1.0 1.4 淬火加热温度 按常规工艺, 亚共析钢的淬火加热温度为Ac3+(30~50℃)(10)共析和过共析钢为Ac1+(30~50℃)(11)合金钢的淬火加热温度常选用Ac1(或Ac3)+(50~100℃)(12)1.5 回火加热时间 对于中温或高温回火的工件,回火时间是指均匀透烧所用的时间,可按下列经验公式计算: t=aD+b (13)式中,t—回火保温时间(min); D—工件有效尺寸;(mm); a—加热系数(min/mm); b—附加时间,一般为10~20分钟。 盐浴的加热系数为0.5~0.8min/mm;铅浴的加热系数为0.3~0.5min/mm;井式回火电炉(RJJ系列回火电炉)加热系数为 1.0~1.5min/mm;箱式电炉加热系数为2~2.5mim/mm。 1.6 回火加热温度 钢的回火定量关系式很早就有人研究,其经验公式为: 钢的回火温度的估算: T=200+k(60-x) (14)式中,x—回火后硬度值,HRC; k—待定系数,对于45钢,x>30,k =11;x≤30,k=12。 大量试验表明,当钢的回火参数P一定时,回火所达到的工艺效果——硬度值或力

相关文档