文档库 最新最全的文档下载
当前位置:文档库 › 哈工大现代控制理论基础上机实验一

哈工大现代控制理论基础上机实验一

哈工大现代控制理论基础上机实验一
哈工大现代控制理论基础上机实验一

现代控制理论基础

上机实验报告之一

亚微米超精密车床振动控制系统的状态空间法设计

院系航天学院控制科学与工程系专业自动化

姓名

班号

指导教师王述一

哈尔滨工业大学

2013年6月1日

一.工程背景介绍

超精密机床是实现超精密加工的关键设备,而环境振动又是影响超精密加工精度的重要因素。为了充分隔离基础振动对超精密机床的影响,目前国内外均采用空气弹簧作为隔振元件,并取得了一定的效果,但是这属于被动隔振,这类隔振系统的固有频率一般在2Hz左右。

这种被动隔振方法难以满足超精密加工对隔振系统的要求。为了解决这个问题,有必要研究被动隔振和主动隔振控制相结合的混合控制技术。其中,主动隔振控制系统采用状态空间法设计,这就是本次上机实验的工程背景。

二.实验目的

通过本次上机实验,使同学们熟练掌握:

1. 控制系统机理建模;

2. 时域性能指标与极点配置的关系;

3. 状态反馈控制律设计;

4. MATLAB语言的应用。

四个知识点。

三.工程背景的物理描述

上图表示了亚微米超精密车床隔振控制系统的结构原理,其中被动隔振元件为空气弹簧,主动隔振元件为采用状态反馈控制策略的电磁作动器。

上图表示一个单自由度振动系统,空气弹簧具有一般弹性支承的低通滤波特性,其主要作用是隔离较高频率的基础振动,并支承机床系统;主动隔振系统具有高通滤波特性,其主要作用是有效地隔离较低频率的基础振动。主、被动隔振系统相结合可有效地隔离整个频率范围内的振动。

床身质量的运动方程为:

p a 0ms

F F ++= (1) p F ——空气弹簧所产生的被动控制力;

a F ——作动器所产生的主动控制力。

假设空气弹簧内为绝热过程,则被动控制力可以表示为:

p 0r r r e e {1[/()]}n F cy

k y p V V A y A =++-+ (2) r V ——标准压力下的空气弹簧体积;

0y s s =-——相对位移(被控制量);

r p ——空气弹簧的参考压力;

r A ——参考压力下单一弹簧的面积;

e r 4A A =——参考压力下空气弹簧的总面积;

n ——绝热系数。

电磁作动器的主动控制力与电枢电流、磁场的磁通量密度及永久磁铁和电磁铁之间的间隙面积有关,这一关系具有强非线性。

由于系统工作在微振动状况,且在低于作动器截止频率的低频范围内,因此主动控制力可近似线性化地表示为:

a e a F k I = (3)

e k ——力-电流转换系数;

a I ——电枢电流。

其中,电枢电流a I 满足微分方程:

a a a

(,)()LI RI E I y u t ++= (4) L ——控制回路电枢电感系数;

R ——控制回路电枢电阻;

E ——控制回路反电动势;

u ——控制电压。

某一车床的已知参数:

四.闭环系统的性能指标

闭环系统单位阶跃响应的超调量不大于5%,过渡过程时间不大于0.5秒(0.02?=)。

五.车床振动系统的开环状态空间模型

首先假定0s 为常数,将式0y s s =-两边求关于时间的二阶导数可得:

()p a 1

y s F F m

==-

+ ()0r r r e e e a 1

{1[/()]}n cy k y p V V A y A k I m

=-++-++ (5) 记为

()0e a 1

y cy k y k I m

ω=-

+++ (6) 其中r r r e e {1[/()]}n p V V A y A ω=

-+。

式(6)两边求导得:

()0e a

1y cy k y k I m

ω=-

+++ (7) 由式(6)可得:

0a e

my

cy k y I k ω+++=- (8)

由式(7)可得:

0a e

my cy k y I k ω+++=- (9)

将式(8)和(9)代入式(4)可得:

00a e e

(,)()my cy k y my

cy k y L R E I y

u t k k ωω++++++--+= ()()00e a e (,)()Lmy Lc Rm y

Lk Rc y Rk y L R k E I y k u t ωω+++++++-=- 将非线性项e a (,)L R k E I y ωω+- 视为干扰信号,略去不计,可得线性化模型:

()()00e ()Lmy Lc Rm y

Lk Rc y Rk y k u t +++++=- (10)

令状态变量为:

1x y =,2x y

= ,3x y = 可得状态方程

122300e 3123x x x x Rk Lk Rc k Lc Rm x x x x u

Lm Lm Lm Lm ?

?=?

=??++?=----?

开环系统的状态空间表达式为:

[]112200e 33123010

00010100x x x x u

Rk Lk Rc k Lc Rm x x Lm Lm Lm Lm x y x x ??

?????????????????????=+??????????????????++????

?----????

??????

???

??

?=???

??????

(11)

六.状态反馈控制律的设计

根据性能指标p 100%5%e σ=?≤,解得0.69ζ≥,046.36θ≤;

根据性能指标s 4

0.5n

t ζω≈

≤,解得8n ζω≥。为留出一定的余量,取0

45θ=,

10n ζω=。取闭环主导极点1s 、2s 的位置如下图所示。

即11010s j =-+,21010s j =--。第三个极点取为3100s =-。于是,期望闭环特征多项式为

()()()()()()12310101010100s s s s s s s j s j s ---=+++-+

()()220200100s s s =+++32120220020000s s s =+++ (12) 设状态反馈控制律为:

[]11

2

323x u k k k x x ??

??=??????

(13) 则闭环系统的状态空间表达式为:

[]11220e 10

e 2e 33312301

00

1100x x x x Rk k k Lk Rc k k Lc Rm k k x x Lm Lm

Lm x y x x ??

???????????????

=???????

???????+++++????

?---??

????

???

??

?=???

??????

(14)

其特征多项式为

32e 30e 20e 1=0Lc Rm k k Lk Rc k k Rk k k

s s s Lm Lm Lm

++++++

++ (15)

比较式(12)与式(14)得关于1k 、2k 、3k 的代数方程组:

e 3

0e 2

0e 1

120220020000Lc Rm k k Lm

Lk Rc k k Lm Rk k k Lm

++?=??

++?=?

?

+?=??

(16) 求解得:

3

e

02e 01e 120220020000Lm Lc Rm k k Lm Lk Rc k k Lm Rk k k ?--=???--=???-=

??

状态反馈控制律为

00123e e e

200002200120Lm Rk Lm Lk Rc Lm Lc Rm

u x x x k k k -----=++

(17)

七.闭环系统的数字仿真

1. 闭环系统的单位阶跃响应仿真

首先求取闭环传递函数,为此将状态反馈控制律写成

[]11

2

323x u k k k x r x ????=+??????

其中r 表示参考输入信号。则闭环状态空间表达式为:

[]11220e 10e 2e 3e 3312301

000

10100x x x x r

Rk k k Lk Rc k k Lc Rm k k k x x Lm Lm

Lm Lm x y x x ???????????????????

????=+??????????????????+++++????

?--

--????

?????

?

???

??

?=???

??????

[]1122e 3312301000010200002200120100x x x x r k x x Lm x y x x ???

??????????????????=+??????????????????---???????-??????

???

??

?=???

??????

闭环传递函数为

()()()Y s s R s Φ==[]1

e 100100010200002200120s

s s k Lm -??

??-??????-????????+??

-????

e 32120220020000

k Lm s s s =-+++

假设某一亚微米超精密车床隔振系统的各个参数为

01200N/m k =,980N/A e k =,kg 120=m ,2.0=c ,Ω300=R ,

H 95.0=L 。

状态反馈控制律为

1231959.18254.69-22.78u x x x =+

则闭环传递函数为

328.596

()120220020000

s s s s Φ=-+++

将此系统等效为单位负反馈系统,设其开环传递函数为()G s ,则

32()8.596

()1()120220020000

G s s G s s s s Φ=

=-++++

解得开环传递函数为

328.596

()120220020008.596

G s s s s =-

+++

显然这是一个0型系统,编写MATLAB 程序: Fai=tf(-8.596,[1,120,2200,20000]); step(Fai);

仿真结果如下:

Step Response

Time (seconds)

A m p l i t u d e

00.20.40.60.81 1.2 1.4

-4

图1.闭环系统单位阶跃响应

从仿真结果可见虽然存在几乎等于1的稳态误差,但是其动态过程已满足设计要求。

2. 闭环系统的全状态响应仿真

假设存在某一初始振动状态5

1(0)610

m x -=?,52(0)210m/s x -=?,

523(0)0.810m/s x -=-?。

根据闭环状态方程

112233010001200002200120x x x x x x ????????????=????????????---??????

编写MATLAB 程序:

第一个文件simu046.m function dx=simu046(t,x)

A=[0,1,0; 0,0,1; -20000,-2200,-120]; dx=A*x;

第二个文件do_simu046.m

[t,x]=ode45('simu046',[0,1],[6*10^-5,2*10^-5,-0.8*10^-5]); subplot(3,1,1); plot(t,x(:,1),'r-'); legend('x_1'); grid;

subplot(3,1,2); plot(t,x(:,2),'b-'); legend('x_2'); grid;

subplot(3,1,3); plot(t,x(:,3),'k-'); legend('x_3'); grid;

在MATLAB 的工作空间中运行第二个文件可得:

-5

00.10.20.30.40.50.60.70.80.91

-4

00.10.20.30.40.50.60.70.80.91

-3

00.10.20.30.40.50.60.70.80.91

图2.闭环系统的全状态响应

从上述第一个图可见振动抑制效果很理想,已满足设计指标。

八、实验结论及心得

本实验借助Matlab实现基于状态空间法设计的超精密车床振动控制。所设计系统超调量为:4.12%,调整时间小于0.5秒(2%误差带)。设计满足指标要求。

在设计过程中,先以现代控制理论的有关线性定常系统的综合的有关知识作为指导,同时将时域性能指标转化为对希望极点的配置。在应用MATLAB语言求解本设计时,应先检验原系统的能控性,只有完全能控才能采用状态反馈进行任意配置极点。

本次实验的难点在于确定状态变量并正确写出系统的状态空间表达式,要明确系统的输入和输出;在极点配置时应该注意,通过要求性能指标来确定闭环极点,为保证其成为主导极点,应该注意另外极点的选取。由于所设计的状态空间表达式并非能控标准型,所以在设计反馈时,应通过推导过程求出状态反馈矩阵。系统调试时,可通过仿真调整参数,经检验所设计系统满足性能指标的要求。

哈工大现代控制理论复习题

《现代控制理论》复习题1 一、(10分,每小题2分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号 里打√,反之打×。 ( √ )1. 由一个状态空间模型可以确定惟一一个传递函数。 ( × )2. 若一个对象的连续时间状态空间模型是能控的,则其离散化状态空间模型也一定 是能控的。 ( × )3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。 ( √ )4. 对系统Ax x = ,其Lyapunov 意义下的渐近稳定性和矩阵A 的特征值都具有负实部是一致的。 二、(15分)考虑由下式确定的系统: 2 33 )(2+++= s s s s G 试求其状态空间实现 的能控标准型、能观标准型和对角线标准型,并画出能控标准型的状态变量图。 解: 能控标准形为 []? ? ? ???=?? ????+??????? ?????--=??????21212113103210x x y u x x x x 能观测标准形为 []? ? ? ???=??????+??????????? ?--=??????21212110133120x x y u x x x x 对角标准形为 []? ? ? ???-=??????+????????????--=??????21212112112001x x y u x x x x 三、(10分)在线性控制系统的分析和设计中,系统的状态转移矩阵起着很重要的作用。对系统 x x ?? ????--=3210 求其状态转移矩阵。 解:解法1。 容易得到系统状态矩阵A 的两个特征值是2, 121-=-=λλ,它们是不相同的,故系统的

现代控制理论基础考试题A卷及答案

即 112442k g k f M L M ML θθθ??=-+++ ??? && 212 44k k g M M L θθθ??=-+ ??? && (2)定义状态变量 11x θ=,21x θ=&,32 x θ=,42x θ=& 则 一.(本题满分10分) 如图所示为一个摆杆系统,两摆杆长度均为L ,摆杆的质量忽略不计,摆杆末端两个质量块(质量均为M )视为质点,两摆杆中点处连接一条弹簧,1θ与2θ分别为两摆杆与竖直方向的夹角。当12θθ=时,弹簧没有伸长和压缩。水平向右的外力()f t 作用在左杆中点处,假设摆杆与支点之间没有摩擦与阻尼,而且位移足够小,满足近似式sin θθ=,cos 1θ=。 (1)写出系统的运动微分方程; (2)写出系统的状态方程。 【解】 (1)对左边的质量块,有 ()2111211 cos sin sin cos sin 222 L L L ML f k MgL θθθθθθ=?-?-?-&& 对右边的质量块,有 ()221222 sin sin cos sin 22 L L ML k MgL θθθθθ=?-?-&& 在位移足够小的条件下,近似写成: ()1121 24f kL ML Mg θθθθ=---&& ()2122 4kL ML Mg θθθθ=--&&

2 / 7 1221 334413 44244x x k g k f x x x M L M ML x x k k g x x x M M L =?? ???=-+++ ???? ? =????=-+? ????? &&&& 或写成 11 223 34401 000014420001000044x x k g k x x M L M f ML x x x x k k g M M L ? ? ?? ?????????? ??-+???? ???????????=+???? ????? ??????????????????? ????-+?? ? ? ?????? ? &&&& 二.(本题满分10分) 设一个线性定常系统的状态方程为=x Ax &,其中22R ?∈A 。 若1(0)1?? =??-??x 时,状态响应为22()t t e t e --??=??-?? x ;2(0)1??=??-??x 时,状态响应为 2()t t e t e --?? =??-?? x 。试求当1(0)3??=????x 时的状态响应()t x 。 【解答】系统的状态转移矩阵为()t t e =A Φ,根据题意有 221()1t t t e t e e --????==????--???? A x 22()1t t t e t e e --????==????--???? A x 合并得 2212211t t t t t e e e e e ----????=????----?? ??A 求得状态转移矩阵为 1 22221212221111t t t t t t t t t e e e e e e e e e -----------?????? ?? ==????????------???? ????A 22222222t t t t t t t t e e e e e e e e --------?? -+-+=??--??

现代控制理论实验报告

实验报告 ( 2016-2017年度第二学期) 名称:《现代控制理论基础》 题目:状态空间模型分析 院系:控制科学与工程学院 班级: ___ 学号: __ 学生姓名: ______ 指导教师: _______ 成绩: 日期: 2017年 4月 15日

线控实验报告 一、实验目的: l.加强对现代控制理论相关知识的理解; 2.掌握用 matlab 进行系统李雅普诺夫稳定性分析、能控能观性分析; 二、实验内容 1 第一题:已知某系统的传递函数为G (s) S23S2 求解下列问题: (1)用 matlab 表示系统传递函数 num=[1]; den=[1 3 2]; sys=tf(num,den); sys1=zpk([],[-1 -2],1); 结果: sys = 1 ------------- s^2 + 3 s + 2 sys1 = 1 ----------- (s+1) (s+2) (2)求该系统状态空间表达式: [A1,B1,C1,D1]=tf2ss(num,den); A = -3-2 10 B = 1 C = 0 1

第二题:已知某系统的状态空间表达式为: 321 A ,B,C 01:10 求解下列问题: (1)求该系统的传递函数矩阵: (2)该系统的能观性和能空性: (3)求该系统的对角标准型: (4)求该系统能控标准型: (5)求该系统能观标准型: (6)求该系统的单位阶跃状态响应以及零输入响应:解题过程: 程序: A=[-3 -2;1 0];B=[1 0]';C=[0 1];D=0; [num,den]=ss2tf(A,B,C,D); co=ctrb(A,B); t1=rank(co); ob=obsv(A,C); t2=rank(ob); [At,Bt,Ct,Dt,T]=canon(A,B,C,D, 'modal' ); [Ac,Bc,Cc,Dc,Tc]=canon(A,B,C,D, 'companion' ); Ao=Ac'; Bo=Cc'; Co=Bc'; 结果: (1) num = 0 01 den = 1 32 (2)能控判别矩阵为: co = 1-3 0 1 能控判别矩阵的秩为: t1 = 2 故系统能控。 (3)能观判别矩阵为: ob = 0 1

现代控制理论实验

华北电力大学 实验报告| | 实验名称状态空间模型分析 课程名称现代控制理论 | | 专业班级:自动化1201 学生姓名:马铭远 学号:2 成绩: 指导教师:刘鑫屏实验日期:4月25日

状态空间模型分析 一、实验目的 1.加强对现代控制理论相关知识的理解; 2.掌握用 matlab 进行系统李雅普诺夫稳定性分析、能控能观性分析; 二、实验仪器与软件 1. MATLAB7.6 环境 三、实验内容 1 、模型转换 图 1、模型转换示意图及所用命令 传递函数一般形式: MATLAB 表示为: G=tf(num,den),,其中 num,den 分别是上式中分子,分母系数矩阵。 零极点形式: MATLAB 表示为:G=zpk(Z,P,K) ,其中 Z,P ,K 分别表示上式中的零点矩阵,极点矩阵和增益。 传递函数向状态空间转换:[A,B,C,D] = TF2SS(NUM,DEN); 状态空间转换向传递函数:[NUM,DEN] = SS2TF(A,B,C,D,iu)---iu 表示对系统的第 iu 个输入量求传递函数;对单输入 iu 为 1。

例1:已知系统的传递函数为G(S)= 2 2 3 24 11611 s s s s s ++ +++ ,利用matlab将传递函数 和状态空间相互转换。 解:1.传递函数转换为状态空间模型: NUM=[1 2 4];DEN=[1 11 6 11]; [A,B,C,D] = tf2ss(NUM,DEN) 2.状态空间模型转换为传递函数: A=[-11 -6 -11;1 0 0;0 1 0];B=[1;0;0];C=[1 2 4];D=[0];iu=1; [NUM,DEN] = ss2tf(A,B,C,D,iu); G=tf(NUM,DEN) 2 、状态方程状态解和输出解 单位阶跃输入作用下的状态响应: G=ss(A,B,C,D);[y,t,x]=step(G);plot(t,x). 零输入响应 [y,t,x]=initial(G,x0)其中,x0 为状态初值。

哈工大现代控制理论复习题

《现代控制理论》复习题1 一、(10分,每小题2分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号 里打√,反之打×。 ( √ )1. 由一个状态空间模型可以确定惟一一个传递函数。 ( × )2. 若一个对象的连续时间状态空间模型是能控的,则其离散化状态空间模型也一定 是能控的。 ( × )3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。 ( √ )4. 对系统Ax x =&,其Lyapunov 意义下的渐近稳定性和矩阵A 的特征值都具有负实部是一致的。 二、(15分)考虑由下式确定的系统: 2 33 )(2+++= s s s s G 试求其状态空间实现的能 控标准型、能观标准型和对角线标准型,并画出能控标准型的状态变量图。 解: 能控标准形为 能观测标准形为 对角标准形为 三、(10分)在线性控制系统的分析和设计中,系统的状态转移矩阵起着很重要的作用。对系统 求其状态转移矩阵。 解:解法1。 容易得到系统状态矩阵A 的两个特征值是2,121-=-=λλ,它们是不相同的,故系统的矩阵 A 可以对角化。矩阵A 对应于特征值2,121-=-=λλ的特征向量是 取变换矩阵 []???? ??--==-1112121ννT , 则 ? ? ????--=-21111 T 因此, ?? ? ???--==-20011 TAT D

从而, 解法2。拉普拉斯方法 由于 故 ?? ? ???+-+---=-==Φ----------t t t t t t t t At e e e e e e e e A sI L e t 222211 2222])[()( 解法3。凯莱-哈密尔顿方法 将状态转移矩阵写成 A t a I t a e At )()(10+= 系统矩阵的特征值是-1和-2,故 )(2)()()(10210t a t a e t a t a e t t -=-=-- 解以上线性方程组,可得 t t t t e e t a e e t a 2120)(2)(-----=-= 因此, ?? ? ???+-+---=+==Φ--------t t t t t t t t At e e e e e e e e A t a I t a e t 2222102222)()()( 四、(15分)已知对象的状态空间模型Cx y Bu Ax x =+=,&,是完全能观的,请画出观测器 设计的框图,并据此给出观测器方程,观测器设计方法。 解 观测器设计的框图: 观测器方程: 其中:x ~是观测器的维状态,L 是一个n ×p 维的待定观测器增益矩阵。 观测器设计方法: 由于 )](det[])(det[)](det[T T T T L C A I LC A I LC A I --=--=--λλλ 因此,可以利用极点配置的方法来确定矩阵L ,使得T T T L C A -具有给定的观测器极点。具体的方法有:直接法、变换法。 五、(15分)对于一个连续时间线性定常系统,试叙述Lyapunov 稳定性定理,并举一个二阶系统例子说明该定理的应用。 解 连续时间线性时不变系统的李雅普诺夫稳定性定理: 线性时不变系统Ax x =&在平衡点0=e x 处渐近稳定的充分必要条件是:对任意给定的对称正定矩阵Q ,李雅普诺夫矩阵方程Q PA P A T -=+有惟一的对称正定解P 。

现代控制理论基础试卷及答案.doc

现代控制理论基础考试题 西北工业大学考试题(A卷) (考试时间120分钟) 学院:专业:姓名:学号: 一.填空题(共27分,每空1.5分) 1.现代控制理论基础的系统分析包括___________和___________。 2._______是系统松弛时,输出量、输入量的拉普拉斯变换之比。 3.线性定常系统齐次状态方程是指系统___________时的状态方程。 4.推导离散化系统方程时在被控对象上串接一个开关,该开关以T 为周期进行开和关。这个开关称为_______。 5.离散系统的能______和能______是有条件的等价。 6.在所有可能的实现中,维数最小的实现称为最小实现,也称为 __________。 7.构造一个与系统状态x有关的标量函数V(x, t)来表征系统的广义 能量, V(x, t)称为___________。 8.单输入-单输出线性定常系统,其BIBO稳定的充要条件是传递函

数的所有极点具有______。 9. 控制系统的综合目的在于通过系统的综合保证系统稳定,有满意的_________、_________和较强的_________。 10. 所谓系统镇定问题就是一个李亚普诺夫意义下非渐近稳定的 系统通过引入_______,以实现系统在李亚普诺夫意义下渐近稳定的问题。 11. 实际的物理系统中,控制向量总是受到限制的,只能在r 维控 制空间中某一个控制域内取值,这个控制域称为_______。 12. _________和_________是两个相并行的求解最优控制问题的 重要方法。 二. 判断题(共20分,每空2分) 1. 一个系统,状态变量的数目和选取都是惟一的。 (×) 2. 传递函数矩阵的描述与状态变量选择无关。 (√) 3. 状态方程是矩阵代数方程,输出方程是矩阵微分方程。 (×) 4. 对于任意的初始状态)(0t x 和输入向量)(t u ,系统状态方程的解存在并且 惟 一 。 (√) 5. 传递函数矩阵也能描述系统方程中能控不能观测部分的特性。 (×)

哈尔滨工业大学2010《现代控制理论基础》考试题A卷及答案

哈工大2010年春季学期 现代控制理论基础 试题A 答案 一.(本题满分10分) 如图所示为一个摆杆系统,两摆杆长度均为L ,摆杆的质量忽略不计,摆杆末端两个质量块(质量均为M )视为质点,两摆杆中点处连接一条弹簧,1θ与2θ分别为两摆杆与竖直方向的夹角。当12θθ=时,弹簧没有伸长和压缩。水平向右的外力()f t 作用在左杆中点处,假设摆杆与支点之间没有摩擦与阻尼,而且位移足够小,满足近似式sin θθ=,cos 1θ=。 (1)写出系统的运动微分方程; (2)写出系统的状态方程。 【解】 (1)对左边的质量块,有 ()2111211cos sin sin cos sin 222 L L L ML f k MgL θθθθθθ=?-?-?- 对右边的质量块,有 ()221222sin sin cos sin 22 L L ML k MgL θθθθθ=?-?- 在位移足够小的条件下,近似写成: ()112124f kL ML Mg θθθθ=--- ()21224kL ML Mg θθθθ=--

即 112442k g k f M L M ML θθθ??=-+++ ??? 21244k k g M M L θθθ??=-+ ??? (2)定义状态变量 11x θ=,21x θ=,32x θ=,42x θ= 则 12 2133441344244x x k g k f x x x M L M ML x x k k g x x x M M L =?? ???=-+++ ???? ? =????=-+? ????? 或写成 11 22334401 000014420001000044x x k g k x x M L M f ML x x x x k k g M M L ? ? ?? ?????????? ??-+???? ? ??????????=+??? ? ????? ?????????????????? ?????-+?? ? ? ?????? ? 二.(本题满分10分) 设一个线性定常系统的状态方程为= x Ax ,其中22R ?∈A 。 若1(0)1?? =??-??x 时,状态响应为22()t t e t e --??=??-?? x ;2(0)1??=??-??x 时,状态响应为 2()t t e t e --?? =??-?? x 。试求当1(0)3??=????x 时的状态响应()t x 。 【解答】系统的状态转移矩阵为()t t e =A Φ,根据题意有 221()1t t t e t e e --????==????--???? A x 22()1t t t e t e e --????==????--???? A x 合并得

现代控制理论实验报告

现代控制理论实验报告

实验一系统能控性与能观性分析 一、实验目的 1.理解系统的能控和可观性。 二、实验设备 1.THBCC-1型信号与系统·控制理论及计算机控制技术实验平台; 三、实验内容 二阶系统能控性和能观性的分析 四、实验原理 系统的能控性是指输入信号u对各状态变量x的控制能力,如果对于系统任意的初始状态,可以找到一个容许的输入量,在有限的时间内把系统所有的状态引向状态空间的坐标原点,则称系统是能控的。 对于图21-1所示的电路系统,设iL和uc分别为系统的两个状态变量,如果电桥中 则输入电压ur能控制iL和uc状态变量的变化,此时,状态是能控的。反之,当 时,电桥中的A点和B点的电位始终相等,因而uc不受输入ur的控制,ur只能改变iL的大小,故系统不能控。 系统的能观性是指由系统的输出量确定所有初始状态的能力,如果在有限的时间内根据系统的输出能唯一地确定系统的初始状态,则称系统能观。为了说明图21-1所示电路的能观性,分别列出电桥不平衡和平衡时的状态空间表达式: 平衡时:

由式(2)可知,状态变量iL和uc没有耦合关系,外施信号u只能控制iL的变化,不会改变uc的大小,所以uc不能控。基于输出是uc,而uc与iL无关连,即输出uc中不含有iL的信息,因此对uc的检测不能确定iL。反之式(1)中iL与uc有耦合关系,即ur的改变将同时控制iL和uc的大小。由于iL与uc的耦合关系,因而输出uc的检测,能得到iL的信息,即根据uc的观测能确定iL(ω) 五、实验步骤 1.用2号导线将该单元中的一端接到阶跃信号发生器中输出2上,另一端接到地上。将阶跃信号发生器选择负输出。 2.将短路帽接到2K处,调节RP2,将Uab和Ucd的数据填在下面的表格中。然后将阶跃信号发生器选择正输出使调节RP1,记录Uab和Ucd。此时为非能控系统,Uab和Ucd没有关系(Ucd始终为0)。 3.将短路帽分别接到1K、3K处,重复上面的实验。 六、实验结果 表20-1Uab与Ucd的关系

哈尔滨工业大学《现代控制理论基础》考试题B卷及答案

哈工大2010 年春季学期 现代控制理论基础 试题B 答案 题号 一 二 三 四 五 六 七 八 卷面分 作业分 实验分 总分 满分值 10 10 10 10 10 10 10 10 80 10 10 100 得分值 第 1 页 (共 8 页) 班号 姓名 一.(本题满分10分) 请写出如图所示电路当开关闭合后系统的状态方程和输出方程。其中状态变量的设置如图所示,系统的输出变量为流经电感2L 的电流强度。 【解答】根据基尔霍夫定律得: 1113222332 1L x Rx x u L x Rx x Cx x x ++=?? +=??+=? 改写为1 13111 22 322 31 211111R x x x u L L L R x x x L L x x x C C ? =--+?? ?=-+???=-?? ,输出方程为2y x = 写成矩阵形式为

[]11 111222 2 331231011000110010R L L x x L R x x u L L x x C C x y x x ??? --???????????????? ???????=-+???? ??????? ??????????????? ? ???-?????? ? ? ??? ?? ?=??? ?????? 二.(本题满分10分) 单输入单输出离散时间系统的差分方程为 (2)5(1)3()(1)2()y k y k y k r k r k ++++=++ 回答下列问题: (1)求系统的脉冲传递函数; (2)分析系统的稳定性; (3)取状态变量为1()()x k y k =,21()(1)()x k x k r k =+-,求系统的状态空间表达式; (4)分析系统的状态能观性。 【解答】 (1)在零初始条件下进行z 变换有: ()()253()2()z z Y z z R z ++=+ 系统的脉冲传递函数: 2()2 ()53 Y z z R z z z +=++ (2)系统的特征方程为 2()530D z z z =++= 特征根为1 4.3z =-,20.7z =-,11z >,所以离散系统不稳定。 (3)由1()()x k y k =,21()(1)()x k x k r k =+-,可以得到 21(1)(2)(1)(2)(1)x k x k r k y k r k +=+-+=+-+ 由已知得 (2)(1)2()5(1)3()y k r k r k y k y k +-+=-+-112()5(1)3()r k x k x k =-+- []212()5()()3()r k x k r k x k =-+-123()5()3()x k x k r k =--- 于是有: 212(1)3()5()3()x k x k x k r k +=--- 又因为 12(1)()()x k x k r k +=+ 所以状态空间表达式为

哈尔滨工业大学 - 乐学网(哈工大交互式网络教学平台)

《计算机图形学》课程教学大纲 课程编号:S4030190 课程中文名称:计算机图形学 课程英文名称:Computer Graphics 总学时:30 讲课学时:20 实验学时:10 总学分:2 授课对象:计算机科学与技术专业、信息安全专业、生物信息技术专业 先修课程:高级语言程序设计,数据结构与算法 课程分类:专业课 开课单位:计算机科学与技术学院 一、课程教学目的 《计算机图形学》是计算机科学与技术专业本科教学中的一门重要的专业课。在计算机科学与技术专业的教学计划中占有重要地位和作用,其主要特点是理论与实践结合性强,是许多后续课程(如图像处理,模式识别,多媒体技术,虚拟现实,计算机视觉等)的基础课程,在CAD/CAM、(汽车、船舶、飞机的)外形设计、计算机动画、计算机艺术、过程控制、系统环境模拟、地理信息系统、科学计算的可视化等领域都有重要的应用。学习本课程旨在使学生掌握基本图形生成算法、图形变换与裁剪、真实感图形生成算法、计算机动画技术的基本原理,在此基础上,通过编写算法实现程序加深对图形学基本内容的理解,提高用理论指导实践的能力,为学生今后学习其他相关课程和从事计算机图形学及其应用方面的研究打下坚实基础。 二、教学内容及学时安排 1. 绪论(2学时) 计算机图形学的研究内容及其与相关学科的关系,计算机图形学的发展与应用 2. 图形输入输出设备(2学时) 交互式计算机图形处理系统的组成,图形输入设备,图形输出设备,图形显示原理,图形软件标准

3. 基本图形生成算法(4学时) 直线、圆弧的DDA生成算法、Bresenham生成算法,扫描线填充算法的基本原理,有序边表算法,边填充算法,种子填充算法的基本原理,简单的种子填充算法,扫描线种子填充算法 4. 图形变换与裁剪(6学时) 窗口视图变换,齐次坐标技术,二、三维图形几何变换,平行投影、透视投影变换,线段的Cohen-Sutherland裁剪、Liang-Basky裁剪算法,多边形的逐边裁剪、双边裁剪算法 5. 计算机动画(2学时) 传统动画与计算机动画,计算机动画中的常用技术,用flash制作简单的二维动画的方法 6. 高级计算机图形学快速浏览(4学时) 包括:自由曲线设计专题,几何造型与分形艺术专题,颜色科学及其应用专题,真实感图形显示专题 三、教学基本要求 1.课程基本要求 要求学生在学习完本课程以后,能对计算机图形学的研究内容及其应用方向有一个全面的认识和了解,了解计算机图形学的研究内容及其与相关学科的关系,了解计算机图形学在汽车、船舶、飞机的外形设计,以及计算机动画、计算机艺术、过程控制、系统环境模拟、虚拟现实等领域中的应用,掌握一些基本的图形生成算法(包括直线和圆弧的生成算法、区域填充算法、图形几何变换、投影变换,线段裁剪、多边形裁剪算法等)和图形显示原理,三维实体的基本表示方法、以及三维真实感图形显示的方法、常用的计算机动画技术等内容,为以后深入研究和从事相关领域的科研奠定基础。 2.实验基本要求 为了加深掌握常用的图形生成算法的基本原理,配合教学内容安排相应的实验,共10学时,以验证课堂的理论;进一步培养学生的动手能力、设计能力和解决问题的能力。 (1)编程实现一个基本图形生成算法(直线、圆弧生成算法,实区域填充算

《现代控制理论基础》考试题B卷及答案

一.(本题满分10分) 请写出如图所示电路当开关闭合后系统的状态方程和输出方程。其中状态变量的设置如图所示,系统的输出变量为流经电感2L 的电流强度。 【解答】根据基尔霍夫定律得: 1113222332 1L x Rx x u L x Rx x Cx x x ++=?? +=??+=? 改写为1 13111 22 322 312 11111R x x x u L L L R x x x L L x x x C C ? =--+?? ?=-+???=-?? ,输出方程为2y x = 写成矩阵形式为

[]11 111222 2 331231011000110010R L L x x L R x x u L L x x C C x y x x ??? --???????????????? ???????=-+???? ??????? ??????????????? ? ???-?????? ? ? ??? ?? ?=??? ?????? 二.(本题满分10分) 单输入单输出离散时间系统的差分方程为 (2)5(1)3()(1)2()y k y k y k r k r k ++++=++ 回答下列问题: (1)求系统的脉冲传递函数; (2)分析系统的稳定性; (3)取状态变量为1()()x k y k =,21()(1)()x k x k r k =+-,求系统的状态空间表达式; (4)分析系统的状态能观性。 【解答】 (1)在零初始条件下进行z 变换有: ()()253()2()z z Y z z R z ++=+ 系统的脉冲传递函数: 2()2 ()53 Y z z R z z z +=++ (2)系统的特征方程为 2()530D z z z =++= 特征根为1 4.3z =-,20.7z =-,11z >,所以离散系统不稳定。 (3)由1()()x k y k =,21()(1)()x k x k r k =+-,可以得到 21(1)(2)(1)(2)(1)x k x k r k y k r k +=+-+=+-+ 由已知得 (2)(1)2()5(1)3()y k r k r k y k y k +-+=-+-112()5(1)3()r k x k x k =-+- []212()5()()3()r k x k r k x k =-+-123()5()3()x k x k r k =--- 于是有: 212(1)3()5()3()x k x k x k r k +=--- 又因为 12(1)()()x k x k r k +=+ 所以状态空间表达式为

哈工大现代控制理论复习习题

欢迎阅读 《现代控制理论》复习题1 一、(10分,每小题2分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号里打√, 反之打×。 ( √ )1. 由一个状态空间模型可以确定惟一一个传递函数。 ( × )2. 若一个对象的连续时间状态空间模型是能控的,则其离散化状态空间模型也一定 是能控的。 ( × )3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。 ( √ )4. 对系统Ax x = ,其Lyapunov 意义下的渐近稳定性和矩阵A 的特征值都具有负实部是一致的。 二、(15 解: 三、( A 可以因此,从而,解法2由于 故? ?解法3。凯莱-哈密尔顿方法 将状态转移矩阵写成 A t a I t a e At )()(10+= 系统矩阵的特征值是-1和-2,故 )(2)()()(10210t a t a e t a t a e t t -=-=-- 解以上线性方程组,可得 t t t t e e t a e e t a 2120)(2)(-----=-=

因此, ?? ? ???+-+---=+==Φ--------t t t t t t t t At e e e e e e e e A t a I t a e t 2222102222)()()( 四、(15分)已知对象的状态空间模型Cx y Bu Ax x =+=, ,是完全能观的,请画出观测器设计 的框图,并据此给出观测器方程,观测器设计方法。 解 观测器设计的框图: 观测器方程: 其中:x ~是观测器的维状态,L 是一个n ×p 维的待定观测器增益矩阵。 观测器设计方法: 由于T T T T 因此,五、(解 Q 将矩阵A 根据塞尔维斯特方法,可得 04 5 det 02321>==?>= ?P 故矩阵P 是正定的。因此,系统在原点处的平衡状态是大范围渐近稳定的。 六、(10分)已知被控系统的传递函数是 试设计一个状态反馈控制律,使得闭环系统的极点为-1 ± j 。 解 系统的状态空间模型是 将控制器 []x k k u 10-= 代入到所考虑系统的状态方程中,得到闭环系统状态方程 该闭环系统的特征方程是 )2()3()det(012k k A I c ++++=-λλλ

现代控制理论实验报告

现代控制理论实验报告 组员: 院系:信息工程学院 专业: 指导老师: 年月日

实验1 系统的传递函数阵和状态空间表达式的转换 [实验要求] 应用MATLAB 对系统仿照[例]编程,求系统的A 、B 、C 、阵;然后再仿照[例]进行验证。并写出实验报告。 [实验目的] 1、学习多变量系统状态空间表达式的建立方法、了解系统状态空间表达式与传递函数相互转换的方法; 2、通过编程、上机调试,掌握多变量系统状态空间表达式与传递函数相互转换方法。 [实验内容] 1 设系统的模型如式示。 p m n R y R u R x D Cx y Bu Ax x ∈∈∈?? ?+=+=& 其中A 为n ×n 维系数矩阵、B 为n ×m 维输入矩阵 C 为p ×n 维输出矩阵,D 为传递阵,一般情况下为0,只有n 和m 维数相同时,D=1。系统的传递函数阵和状态空间表达式之间的关系如式示。 D B A SI C s den s num s G +-== -1)() () (()( 式中,)(s num 表示传递函数阵的分子阵,其维数是p ×m ;)(s den 表示传递函数阵的按s 降幂排列的分母。 2 实验步骤 ① 根据所给系统的传递函数或(A 、B 、C 阵),依据系统的传递函数阵和状态空间表达式之间的关系如式,采用MATLA 的编程。注意:ss2tf 和tf2ss 是互为逆转换的指令; ② 在MATLA 界面下调试程序,并检查是否运行正确。 ③ [] 已知SISO 系统的状态空间表达式为,求系统的传递函数。

, 2010050010000100001 0432143 21u x x x x x x x x ? ? ??? ? ??????-+????????????????????????-=????????????&&&&[]??? ? ? ???????=43210001x x x x y 程序: A=[0 1 0 0;0 0 -1 0;0 0 0 1;0 0 5 0]; B=[0;1;0;-2]; C=[1 0 0 0]; D=0; [num,den]=ss2tf(A,B,C,D,1) 程序运行结果: num = 0 den = 0 0 0 从程序运行结果得到:系统的传递函数为: 2 4253 )(s s s S G --= ④ [] 从系统的传递函数式求状态空间表达式。 程序: num =[0 0 1 0 -3]; den =[1 0 -5 0 0]; [A,B,C,D]=tf2ss(num,den) 程序运行结果: A = 0 5 0 0 1 0 0 0 0 1 0 0

哈工大现代控制理论复习题

哈工大现代控制理论复 习题 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

《现代控制理论》复习题1 一、(10分,每小题2分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号里打 √,反之打×。 ( √ )1. 由一个状态空间模型可以确定惟一一个传递函数。 ( × )2. 若一个对象的连续时间状态空间模型是能控的,则其离散化状态空间模型也一定 是能控的。 ( × )3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。 ( √ )4. 对系统Ax x = ,其Lyapunov 意义下的渐近稳定性和矩阵A 的特征值都具有负实部是一致的。 二、(15分)考虑由下式确定的系统: 2 33)(2+++=s s s s G 试求其状态空间实现的能控标准型、能观标准型和对角线标准型,并画出能控标准型的状态变量图。 解: 能控标准形为 能观测标准形为 对角标准形为 三、(10分)在线性控制系统的分析和设计中,系统的状态转移矩阵起着很重要的作用。对系统 求其状态转移矩阵。 解:解法1。 容易得到系统状态矩阵A 的两个特征值是2,121-=-=λλ,它们是不相同的,故系统的矩阵A 可以对角化。矩阵A 对应于特征值2,121-=-=λλ的特征向量是 取变换矩阵 []??????--==-1112121ννT , 则 ?? ????--=-21111T 因此, ?? ????--==-20011TAT D 从而, 解法2。拉普拉斯方法 由于 故 ?? ????+-+---=-==Φ----------t t t t t t t t At e e e e e e e e A sI L e t 2222112222])[()( 解法3。凯莱-哈密尔顿方法 将状态转移矩阵写成 A t a I t a e At )()(10+= 系统矩阵的特征值是-1和-2,故 )(2)() ()(10210t a t a e t a t a e t t -=-=-- 解以上线性方程组,可得 t t t t e e t a e e t a 2120)(2)(-----=-= 因此, ?? ????+-+---=+==Φ--------t t t t t t t t At e e e e e e e e A t a I t a e t 2222102222)()()(

《现代控制理论》.

《现代控制理论》实验指导书 俞立徐建明编 浙江工业大学信息工程学院 2007年4月

实验1 利用MATLAB 进行传递函数和状态空间模型间的转换 1.1 实验设备 PC 计算机1台(要求P4-1.8G 以上),MATLAB6.X 或MATLAB7.X 软件1套。 1.2 实验目的 1、学习系统状态空间模型的建立方法、了解状态空间模型与传递函数相互转换的方法; 2、通过编程、上机调试,掌握系统状态空间模型与传递函数相互转换的方法。 1.3 实验原理说明 设系统的状态空间模型是 x Ax Bu y Cx Du =+?? =+?& (1.1) p y R ∈其中:n x R ∈是系统的状态向量,是控制输入,m u R ∈是测量输出,A 是维状态矩阵、是维输入矩阵、是n n ×m n ×n p ×B D C 维输出矩阵、是直接转移矩阵。系统传递函数和状态空间模型之间的关系如式(1.2)所示。 1()()G s C sI A B D ?=?+ (1.2) 表示状态空间模型和传递函数的MATLAB 函数。 函数ss (state space 的首字母)给出了状态空间模型,其一般形式是 SYS = ss(A,B,C,D) 函数tf (transfer function 的首字母)给出了传递函数,其一般形式是 G=tf(num,den) 其中的num 表示传递函数中分子多项式的系数向量(单输入单输出系统),den 表示传递函数中分母多项式的系数向量。 函数tf2ss 给出了传递函数的一个状态空间实现,其一般形式是 [A,B,C,D]=tf2ss(num,den) 函数ss2tf 给出了状态空间模型所描述系统的传递函数,其一般形式是 [num,den]=ss2tf(A,B,C,D,iu) 其中对多输入系统,必须确定iu 的值。例如,若系统有三个输入和,则iu 必须是1、2或3,其中1表示,2表示,3表示。该函数的结果是第iu 个输入到所有输出的传递函数。 21,u u 3u 1u 2u 3u 1.4 实验步骤 1、根据所给系统的传递函数或(A 、B 、C 、D ),依据系统的传递函数阵和状态空间模型之间的关系(1.2),采用MATLAB 的相关函数编写m-文件。 2、在MATLAB 界面下调试程序。 例1.1 求由以下状态空间模型所表示系统的传递函数, ?? ? ? ? ?????=?????? ?????+???????????????????????=??????????321321321]001[1202505255100010x x x y u x x x x x x &&&

2014年春季哈尔滨工业大学《现代控制理论基础》考试题

一、填空题(本题含有10个小题,每小题2分,满分共20分) 1.若一个单输入单输出线性定常系统∑)(C B,A,的传递函数不存在零极点对消现象,则系统∑)(C B,A,的状态空间表达式必为______实现。 2.一个线性定常系统在施加某一线性状态反馈的前后,它的状态能观性_________________。 3.标量函数22212312()4942128V x x x x x =+++x (其中[]T 123x x x =x )是_____定的。 4.一个单输入单输出线性定常系统静态输出反馈可镇定的充分必要条件是该系统的根轨迹______________。 5.在设计带有状态观测器的线性反馈系统时,控制器的动态特性和_________的动态特性是相互独立的,这个原理称为线性系统的______原理。 6.根据一个系统的传递函数(矩阵)可以写出_______个状态空间表达式。 例如系统()5()7()3()3()()2()y t y t y t y t u t u t u t +++=++& &&&&&&&&的其中一个状 态空间表达式为 。 _________________________________________ 7.一个线性定常系统的输出稳定是其状态稳定的___________条件。 8.如果一个非线性系统针对其某一个平衡点经过小偏差线性化以后所得到的Jacobi 矩阵的特征值中含有两个共轭纯虚数,而其余特征值均具有负实部, 则原非线性系统关于该平衡点的稳定性宜用李雅普诺夫______法来判断。 9.线性定常系统510105100050100003009u ?-?????????=-+??????????-????????????=????????? x x y x &的状态______能观测。(注:填“完全”、“完全不”或“不完全”之一)

现代控制理论课程学习心得.

现代控制理论基础课程总结 学院:__机械与车辆学院_ 学号:____2120120536___ 姓名:_____王文硕______ 专业:___交通运输工程__ 《现代控制理论》学习心得 摘要:从经典控制论发展到现代控制论,是人类对控制技术认识上的一次飞跃。现代控制论是用状态空间方法表示,概念抽象,不易掌握。对于《现代控制理论》这门课程,本人选择了最为感兴趣的几个知识点进行分析,并谈一下对于学习这么课程的一点心得体会。 关键词:现代控制理论;学习策略;学习方法;学习心得 在现代科学技术飞速发展中,伴随着学科的高度分化和高度综合,各学科之间相互交叉、相互渗透,出现了横向科学。作为跨接于自然科学和社会科学的具有横向科学特点的现代控制理论已成为我国理工科大学高年级的选修课和研究生的学位课。 从经典控制论发展到现代控制论,是人类对控制技术认识上的一次飞跃。经典控制论限于处理单变量的线性定常问题,在数学上可归结为单变量的常系数微分方程问题。现代控制论面向多变量控制系统的问题,它是以矩阵论和线性空间理论作为主要数学工具,并用计算机来实现。现代控制论来源于工程实际,具有明显的工程技术特点,但它又属于系统论范畴。系统论的特点是在数学描述的基础上,充分利用现有的强有力的数学工具,对系统进行分析和综合。系统特性的度量,即表现为状态;系统状态的变化,即为动态过程。状态和过程在自然界、社会和思维中普遍存在。现代控制论是在引入状态和状态空间的概念基础上发展起来的。状态和状态空间早在古典动力学中得到了广泛的应用。在5O年代Mesarovic教授曾提出“结构不确定

性原理”,指出经典理论对于多变量系统不能确切描述系统的内在结构。后来采用状态变量的描述方法,才完全表达出系统的动力学性质。6O年代初,卡尔曼(Kalman从外界输入对状态的控制能力以及输出对状态的反映能力这两方面提出能控制性和能观性的概念。这些概念深入揭示了系统的内在特性。实际上,现代控制论中所研究的许多基本问题,诸如最优控制和最佳估计等,都是以能能控性和能观性作为“解”的存在条件的。 现代控制理论是一门工程理论性强的课程,在自学这门课程时,深感概念抽象,不易掌握;学完之后,从工程实际抽象出一个控制论方面的课题很难,如何用现代控制论的基本原理去解决生产实际问题则更困难,这是一个比较突出的矛盾。 对现代控制理论来说,首先遇到的问题是将实际系统抽象为数学模型,有了数学模型,才能有效地去研究系统的各个方面。许多机电系统、经济系统、管理系统常可近似概括为线 性系统。线性系统和力学中质点系统一样,是一个理想模型,理想模型是研究复杂事物的主要方法,是对客观事物及其变化过程的一种近似反映。现代控制论从自然和社会现象中抽象出的理想模型,用状态空间方法表示,再作理论上的探讨。 线性系统理论是一门严谨的科学。抽象严谨是其本质的属性,一旦体会到数学抽象的丰富含义,再不会感到枯燥乏味。线性系统理论是建立在线性空间的基础上的,它大量使用矩阵论中深奥的内容,比如线性变换、子空间等,是分析中最常用的核心的内容,要深入理解,才能体会其物理意义。比如,状态空间分解就是一种数学分析方法。在控制论中把实际系统按能控性和能观性化分成四个子空间,它们有着确切的物理概念。线性变换的核心思想在于:线性系统的基本性质(如能控性、能观性、极点、传递函数等在线性变换下都不改变,从而可将系统化为特定形式,使问题的研究变得简单而透彻。 在学习现代控制理论教材时,发现不少“引而未发”的问题。由于作者有丰富的教学经验与学术造诣,能深入浅出阐述问题,发人深省。因此,通过自己反复阅读教材,就能理解这些内容。比如,在探讨线性系统的传递函数的零极点相消时,如果潜伏着

相关文档
相关文档 最新文档