文档库 最新最全的文档下载
当前位置:文档库 › 三角函数画图方法总结

三角函数画图方法总结

三角函数画图方法总结
三角函数画图方法总结

y=Asin(ωx+φ)+k(A>0,ω>0)

先相位变换,再周期变换

(1)x轴方向平移变换(相位变换):y=sin(x)图象上所有点, 在x轴方向平移|φ|个单位(φ>0向左,φ<0向右),得到y=sin(x+j)图象

(2)x轴方向伸缩变换(周期变换):y=sin(x+φ)图象上所有点的横坐标伸缩到原来的1/ω倍(纵坐标不变)(ω>1缩短,0<ω<1伸长),得到y=sin(ωx+φ)图象(3)y轴方向伸缩变换(振幅变换):y=sin(ωx+φ) 图象上所有点的纵坐标伸缩到原来的A倍(横坐标不变)(A>1伸长,0

(4)y轴方向平移变换:y= Asin(ωx+φ)图象上所有点, 在y轴方向平移k个单位(k>0向上,k<0向下),得到y=Asin(ωx+φ)+k图象

先周期变换,再相位变换

(1)x轴方向伸缩变换(周期变换):y=sin(x)图象上所有点的横坐标,伸缩到原来的1/ω倍(纵坐标不变)(ω>1缩短,0<ω<1伸长),得到y=sin(ωx)图象

(2)x轴方向平移变换(相位变换):y=sin(ωx )图象上所有点, 在x轴方向平移|j|ω个单位(φ>0向左,φ<0向右),得到y=sin(ωx+φ)图象

(3)y轴方向伸缩变换(振幅变换):y=sin(ωx+φ) 图象上所有点的纵坐标伸缩到原来的A倍(横坐标不变)(A>1伸长,0

(4)y轴方向平移变换:y= Asin(ωx+φ)图象上所有点, 在y轴方向平移k个单位(k>0向上,k<0向下),得到y=Asin(ωx+φ)+k图象

高中数学三角函数基础知识点及答案

高中数学三角函数基础知识点及答案 1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称为始边,终止位置称为终边。 2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 3. 终边相同的角的表示: (1)α终边与θ终边相同(α的终边在θ终边所在射线上)?2()k k αθπ=+∈Z , 注意:相等的角的终边一定相同,终边相同的角不一定相等.如与角 1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。 弧度:一周的弧度数为2πr/r=2π,360°角=2π弧度,因此,1弧度约为57.3°,即57°17'44.806'', 1°为π/180弧度,近似值为0.01745弧度,周角为2π弧度,平角(即180°角)为π弧度, 直角为π/2弧度。(答:25-;5 36 π- ) (2)α终边与θ终边共线(α的终边在θ终边所在直线上) ?()k k αθπ=+∈Z . (3)α终边与θ终边关于x 轴对称?2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称?2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称?2()k k απθπ=++∈Z . (6)α终边在x 轴上的角可表示为:,k k Z απ=∈; α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2 k k Z π α=∈. 如α的终边与 6 π 的终边关于直线x y =对称,则α=____________。 (答:Z k k ∈+ ,3 2π π) 4、α与2α的终边关系:由“两等分各象限、一二三四”确定.如若α是第 二象限角,则2 α 是第_____象限角 (答:一、三) 5.弧长公式:||l R α=,扇形面积公式:211||22 S lR R α==,1弧度 (1rad)57.3≈. 如已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。 (答:22cm ) 6、任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是220r x y =+>,那么 s i n ,c o s y x r r αα==,()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec r x α=()0x ≠, ()csc 0r y y α=≠。三角函数值只与角的大小有关,而与终边上点P 的位置无关。

2020年高考数学三角函数专题解题技巧

三角函数专题复习 在三角函数复习过程中,认真研究考纲是必须做的重要工作。三角函数可以当成函数内容中的重要一支,要注意与其它知识的联系。 一、研究考题,探求规律 1. 从表中可以看出:三角函数题在试卷中所处的位置基本上是第一或第二题,本章高考重点考查基础知识,仍将以容易题及中档为主,题目的难度保持稳定,估计这种情况会继续保持下去 2. 特点:由于三角函数中,和差化积与积化和差公式的淡出,考查主体亦发生了变化。偏重化简求值,三角函数的图象和性质。考查运算和图形变换也成为了一个趋势。三角函数试题更加注重立足于课本,注重考查基本知识、基本公式及学生的运算能力和合理变形能力,对三角变换的要求有所降低。三角化简、求值、恒等式证明。图象。最值。 3、对三角函数的考查主要来自于:①课本是试题的基本来源,是高考命题的主要依据,大多数试题的产生是在课本题的基础上组合、加工和发展的结果。②历年高考题成为新高考题的借鉴,有先例可循。 二、典例剖析 例1:函数22()cos 2cos 2x f x x =-的一个单调增区间是 A .2(,)33ππ B .(,)62ππ C .(0,)3π D .(,)66 ππ- 【解析】函数22()cos 2cos 2 x f x x =-=2cos cos 1x x --,从复合函数的角度看,原函数看作2()1g t t t =--,cos t x =,对于2()1g t t t =--,当1[1,]2t ∈-时,()g t 为减函数,当1[,1]2 t ∈时,()g t 为增函数,当2(,)33x ππ∈时,cos t x =减函数,且11(,)22 t ∈-, ∴ 原函数此时是单调增,选A 【温馨提示】求复合函数的单调区间时,需掌握复合函数的性质,以及注意定义域、自变量系数的正负.求复合函数的单调区间一般思路是:①求定义域;②确定复合过程;③根据外层函数f(μ)的单调性,确定φ(x)的单调性;④写出满足φ(x)的单调性的含有x 的式子,并解出x 的范围;⑤得到原函数的单调区间(与定义域求交).求解时切勿盲目判断. 例2、已知tan 2θ=. (Ⅰ)求tan 4πθ??+ ??? 的值; (Ⅱ)求cos2θ的值. 【解析】 (Ⅰ)∵tan 2θ=, tan tan 4tan 41tan tan 4π θπθπθ+??∴+= ???-

三角函数图像与性质知识点总结

三角函数图像与性质知识 点总结 The Standardization Office was revised on the afternoon of December 13, 2020

函数图像与性质知识点总结 一、三角函数图象的性质 1.“五点法”描图 (1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0) ? ?? ?? ?π2,1 (π,0) ? ?? ??? 32π,-1 (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),? ?????π2,0,(π,-1),? ???? ? 3π2,0,(2π,1) 2.三角函数的图象和性质 函数 性质 y =sin x y =cos x y =tan x 定义域 R R {x |x ≠k π+π 2 ,k ∈Z} 图象 值域 [-1,1] [-1,1] R 对称性 对称轴: x =k π+ π2(k ∈Z); 对称轴: x =k π(k ∈Z) 对称中心: 对称中心:? ?? ?? ?k π2,0 (k ∈Z)

3.一般地对于函数(),如果存在一个非零的常数,使得当取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期) 4.求三角函数值域(最值)的方法: (1)利用sin x、cos x的有界性; 关于正、余弦函数的有界性 由于正余弦函数的值域都是[-1,1],因此对于?x∈R,恒有-1≤sin x≤1,-1≤cos x≤1,所以1叫做y=sin x,y=cos x的上确界,-1叫做y=sin x,y=cos x的下确界.

三角函数研究性学习

班级:高二14班小组:

研究性学习 组长:高艳丽 组员:王锦妍、高山、田佳利、刘薇

开题报告 三角学的起源与发展 三角学之英文名称 Trigonometry ,约定名于公元1600年,实际导源于希腊文trigono (三角)和metrein (测量),其原义为三角形测量(解法),以研究平面三角形和球面三角形的边和角的关系为基础,达到测量上的应用为目的的一门学科。早期的三角学是天文学的一部份,后来研究范围逐渐扩大,变成以三角函数为主要对象的学科。现在,三角学的研究范围已不仅限于三角形,且为数理分析之基础,研究实用科学所必需之工具 一、课题提出的背景 运用数学知识解决现实生活中的实际问题是一项很重要的数学能力,也是新课程标准对学生能力的基本要求。九年级下册锐角三角函数内容不仅是初中数学教学的重点,而且是培养学生运用能力的理想材料,锐角三角函数解实际问题渗透了数形结合的数学思想,通过测量,工程技术等问题,转化为解直角三角形的应用题和数学活动,有助于培养学生的空间想象能力和运用数学的能力,更好地培养学生理论和实践相结合的意识。学生在学习本部分内容时,对概念的形成难以理解,更不能把实际问题抽象成数学模型,造成对实际问题的解决无所适从,学生作业练习中更出现严重错误,利用数学知识解决实际问题的能力欠缺,导致学生

对数学学习没有乐趣和积极性,因此,本人把锐角三角函数解决实际问题作为课题进行研究,培养学生数学运用能力。 二、所要解决的主要问题 1、通过实际问题培养学生经历概念的形成能力。 2、研究如何培养学生数形结合的数学思想。 3、研究如何培养学生对实际问题的分析和解决能力。 4、培养学生良好的解决问题的数学思想和方法,使学生对实际问题的探索充满乐趣。 三、课题的理论价值和实践意义 理论价值:本课题的研究有助于学生养成利用数学知识解决现实问题的良好习惯,掌握基本的数学思想和方法,真正体会数学知识的实际意义,培养学生良好的数学意识。 实践意义:本课题的研究体现了数学教学的实际意义和新课程基本要求,提高学生数学学习兴趣,培养数学应用能力。 四、研究内容 1、对学生数学的应用能力进行调查,找出影响应用能力的因素。 2、通过锐角三角函数概念的学习,探索学生经历概念的形成过程。

三角函数解题技巧和公式(已整理)

浅论关于三角函数的几种解题技巧 本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用: 1、由于ααααααααc o s s i n 21c o s s i n 2c o s s i n )c o s (s i n 2 22±=±+=±故知道)c o s (s i n αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,3 3 cos sin -= -求。 分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=- ]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--= 其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。 解:∵θθθθcos sin 21)cos (sin 2-=- 故:3 1cos sin 31)33( cos sin 212=?==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 39 4 3133]313)33[(332=?=?+= 2、关于tg θ+ctg θ与sin θ±cos θ,sin θcos θ的关系应用: 由于tg θ+ctg θ=θ θθθθθθθθθcos sin 1cos sin cos sin sin cos cos sin 22=+=+ 故:tg θ+ctg θ,θθcos sin ±,sin θcos θ三者中知其一可推出其余式子的值。 例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。 A .m 2=n B .m 2= 12+n C .n m 2 2= D .22m n =

高中数学三角函数知识点归纳总结

《三角函数》 【知识网络】 一、任意角的概念与弧度制 1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为 {}()360k k Z ααβ? =+∈g x 轴上角:{}()180k k Z αα=∈o g y 轴上角:{}()90180k k Z αα=+∈o o g 3、第一象限角:{}()036090360k k k Z αα? ?+<<+∈o g g 第二象限角:{}()90 360180360k k k Z αα??+<<+∈o o g g 第三象限角:{}()180360270360k k k Z αα? ?+<<+∈o o g g 第四象限角: {}()270 360360360k k k Z αα??+<<+∈o o g g 4、区分第一象限角、锐角以及小于90o 的角 第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈o g g 锐角: {}090αα<

,2 4 , 0π απ ≤ ≤=k ,2 345, 1παπ≤≤=k 所以 2 α 在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.0180 1≈=?π 815730.571801'?=?≈? = π 9、弧长与面积计算公式 弧长:l R α=?;面积:211 22 S l R R α=?=?,注意:这里的α均为弧度制. 二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan y x α= 其中(),x y 为角α终边上任意点坐标,r = 2、三角函数值对应表: 3、三角函数在各象限中的符号

三角函数中数学思想方法归纳解析

高考三角函数中数学思想方法归纳解析 在三角函数这一章的学习和复习过程中,熟练掌握以下几种数学思想方法,有助于提高同学们灵活处理问题和解决问题的能力。下面通过例题透视三角函数中的数学思想。 一、数形结合思想 由数想形,以形助数的数形结合思想,具有可以使问题直观呈现的优点,有利于加深同学们对知识的识记和理解;在解答数学题时,数形结合,有利于分析题中数量之间的关系,丰富表象,引发联想,启迪思维,拓宽思路,迅速找到解决问题的方法,从而提高分析问题和解决问题的能力。 例1.求不等式x x cos sin >在[]ππ,-上的解集。 解析:设x y sin 1=,x y cos 2=,在同一坐标系中作出在[]π,0上两函数图像(如图1),在[]π,0上解得x x cos sin =的解为4 π= x 或 43π= x ,故由图像得要使得21y y >,即4 34ππ<m f 得10≤≤m ; 2) 当1>m 时,需()01>f ,得1>m ; o x π y 图1 2π 4π 4 3π y 1 y 2

三角函数综合应用解题方法总结(超级经典)

精锐教育学科教师辅导教案

例3:求函数y=f(x)=cos 2 2x-3cos2x+1的最值. 解 ∵f(x)=(cos2x- 23)2-4 5, ∴当cos2x=1,即x= k π,(k ∈Z)时,y=min=-1, 当cos2x=-1,即x= k π+ 2 π ,( k ∈Z)时,y=max=5. 这里将函数f(x)看成关于cos2x 的二次函数,就把问题转化成二次函数在闭区间[-1,1]上的最值值问题了. 4.引入辅助角法 y=asinx+bcosx 型处理方法:引入辅助角?,化为y=22b a +sin (x+?),利用函数()1sin ≤+?x 即可求解。Y=asin 2 x+bsinxcosx+mcos 2 x+n 型亦可以化为此类。 例4:已知函数()R x x x x y ∈+?+= 1cos sin 2 3cos 212当函数y 取得最大值时,求自变量x 的集合。 [分析] 此类问题为x c x x b x a y 2 2 cos cos sin sin +?+=的三角函数求最值问题,它可通过降次化简整理为 x b x a y cos sin +=型求解。 解: ().4 7,6,2262,4562sin 21452sin 23 2cos 2121452sin 432cos 41122sin 2322cos 121max =∈+=∴+=+∴+??? ??+=+???? ??+=++=+?++?=y z k k x k x x x x x x x x y ππππππ 5. 利用数形结合 例5: 求函数y x x = +s in c o s 2的最值。 解:原函数可变形为y x x = ---s i n c o s () .0 2 这可看作点Ax xB (c o s s i n )() ,和,-20的直线的斜率,而A 是单位圆x y 2 2 1+=上的动点。由下图可知,过B ()-20,作圆的切线时,斜率有最值。由几何性质,y y m a x m i n .= =-333 3 , 6、换元法 例6:若0

高考数学三角函数知识点总结及练习

三角函数总结及统练 一. 教学内容: 三角函数总结及统练 (一)基础知识 1. 与角α终边相同的角的集合},2{Z k k S ∈+==απβ 2. 三角函数的定义(六种)——三角函数是x 、y 、r 三个量的比值 3. 三角函数的符号——口诀:一正二弦,三切四余弦。 4. 三角函数线 正弦线MP=αsin 余弦线OM=αcos 正切线AT=αtan 5. 同角三角函数的关系 平方关系:商数关系: 倒数关系:1cot tan =?αα 1c s c s i n =?αα 1s e c c o s =?αα 口诀:凑一拆一;切割化弦;化异为同。 6. 诱导公式——口诀:奇变偶不变,符号看象限。 α απ+k 2 α- απ- απ+ απ-2 α π -2 α π +2

正弦 αsin αsin - αsin αsin - αsin - αcos αcos 余弦 αcos αcos αcos - αcos - αcos αsin αsin - 正切 αtan αtan - αtan - αtan αtan - αcot αcot - 余切 αcot αcot - αcot - αcot αcot - αtan αtan - 7. 两角和与差的三角函数 ?????? ? ?+-=-?-+=+?????????+?=-?-?=+?-?=-?+?=+βαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαt a n t a n 1t a n t a n )t a n (t a n t a n 1t a n t a n )t a n (s i n s i n c o s c o s )c o s (s i n s i n c o s c o s )c o s (s i n c o s c o s s i n )s i n (s i n c o s c o s s i n )s i n ( 8. 二倍角公式——代换:令αβ= ??????? -= -=-=-=?=ααααααααααα22222tan 1tan 22tan sin cos sin 211cos 22cos cos sin 22sin 降幂公式?????? ?+=-=22cos 1cos 22cos 1sin 22αααα 半角公式: 2cos 12 sin αα -± =;2cos 12cos αα+±=; αα αcos 1cos 12tan +-± = αα ααα cos 1sin sin cos 12 tan += -= 9. 三角函数的图象和性质 函数 x y sin = x y cos = x y tan =

知识讲解 三角函数的性质及其应用 提高

三角函数的性质及其编稿:李霞审稿:孙永钊 【考纲要求】 1、了解函数sin()yAx????的物理意义;能画出sin()yAx????的图象,了解参数 A,?,?对函数图象变化的影响. 2、了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 【知识络】 【考点梳理】 考点一、函数sin()yAx????(0A?,0??)的图象的作法 1.五点作图法: 作sin()yAx????的简图时,常常用五点法,五点的取法是设tx????,由t取0、 2?、?、32?、2?来求相应的x值及对应的y值,再描点作图。 2.图象变换法: (1)振幅变换:把sinyx?的图象上各点的纵坐标伸长(A>1)或缩短(00)或向右(?<0)平行移动|?|个单位,得到sin()yAx???的图象; (3)周期变换:把sin()yAx???的图象上各点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的?1倍(纵坐标不变),可得到sin()yAx????的图象. (4)若要作sin()yAxb????,可将sin()yAx???的图象向上(0)b?或向下(0)b? 平移b个单位,可得到sin()yAxb????的图象.记忆方法仍为“左加右减,上正下负,纵伸(A>1)横缩(ω>1)”。 要点诠释: 由sinyx?的图象利用图象变换作函数sin()yAx????的图象时要特别注意:当周期

变换和相位 sin()yAx???? sin 图象的作法三角函的质其 图象的性 变换的先后顺序不同时,原图象沿x轴的伸缩量有区别. 考点二、sin()yAx????的解析式 1.sin()yAx????的解析式 sin()yAx????(0A?, 0??),[0,)x???表示一个振动量时,A叫做振幅,2T??? 叫做周期,12fT????叫做频率,x???叫做相位,0x?时的相位?称为初相. 2.根据图象求sin()yAx????的解析式 求法为待定系数法,突破口是找准五点法中的第一零点(,0)???. 求解步骤是先由图象求出A与T,再由2T???算出?,然后将第一零点代入0x????求出?. 要点诠释:若图象未标明第一零点,就只能找特殊点用待定系数法计算. 考点三、函数 sin()yAx????(0A?,0??)的性质 1. 定义域: xR?,值域:y∈[-A,A]. 2.周期性: 2T??? 3. 奇偶性:2k?????时为偶函数;k???时为奇函数,kZ?. 4.单调性:单调增区间 :[????????????22,22kk] , kZ? 单调减区间:[????????????232,22kk] , kZ? 5. 对称性:对称中心(????k,0),kZ?;对称轴

三角函数的图像的变换口诀解读

三角函数的图像的变换口诀解读 变T 数倒系数议,变A 伸压 y 无疑, 变φ 要把系数提,正φ 左进负右移. 周期变换是通过改变x 的系数来实现的,即周期T 的变化只与ω有关而与φ无关.这是因为ω π 2=T ,故要使周期扩大或缩小m (m >0) 倍,则须用 x m 1去代原式中的x (纵坐标不 变),故有“变T 数倒系数议”之说. 相位φ变换实质上就是将函数的图像向左或向右平移.当先作周期变换后作相位变换时,须提出系数ω,这是因为周期变化时改变了x 的值,此时其初相位(非0初相)同时也改变相应得到改变,且改变的倍数相同.当先作相位变换后作周期变换,由于此时x 的系数为1,系数提不提无影响,为了统一记忆我们也视为提出系数“1”.因而有“变φ要把系数提”之说. 三角函数图像的周期﹑振幅﹑相位等变换的问题是历年高考中常考查的内容.对此类命题的求解,无论三种变换怎样摆设,先要弄清哪是原函数的图像,哪是新函数的图像,再据本歌诀所述,很快就可得到解决. 例1 为了得到 y =) 62sin(π-x 的图像,可以将函数 y = cos2x 的图像 (2004年高考) ( ) (A)向右平移6 π 个单位长度 (B)向右平移3 π 个单位长度 (C)向左平移 6 π 个单位长度 (D) 向左平移 3 π 个单位长度 解法1 ∵ y = cos2x =) 4 (2sin )2 2sin(π π + =+ x x , 而 y =] 3 )4 [(2sin )6 2sin(π π π - + =- x x , 由此可得 只须将函数y = cos2x 的图像向右平移3 π 个单位长度即可.故选(B). 解法2 ∵ y =)62sin(π - x ) 6 22 cos( ππ x + -=,即y ) 3(2cos π - = x , 而已知的函数为y = cos2x , 由此可得,须将函数y = cos2x 的图像向右平3 π 个单位即可.故选(B). 点评 由于当ω ?- =x 时, 相位0 =+?ω x .因而,我们可称此时的相位为零相位.由此可 见,在作相位变换时,其平移的数值与方向是由两个0相位对应的x 值的差来决定的.对于本题而言,由于两个0相位对应的x 的值分别为12 π与4 π - ,故所作的平移就是要将已知函数 的0相位对应的点) 0 ,4(π - 移到点)0 12 ( ,π 处.易知要平移的数值是: 3 )4 (12 π π π = - -,方向是向 右的.显然这一方法就是“五点作图法”中的第一零点判断法. 例2 已知函数 f (x ) =) 5 sin( 2π + x (x ∈R ) 的图像为C, 函数 y = ) 5 2sin(π - x (x ∈R ) 的图 像为C 1, 为了得到C 1,只需把C 上所有的点先向右平移 ,再将 . ( ) (A) 5 2π个单位,横、纵坐标都缩短到原来的2 1 (B) 5 2π个单位,横、纵坐标都伸

三角函数经典解题方法及考点题型

三角函数经典解题方法与考点题型(教师) 1.最小正周期的确定。 例1 求函数y =s in (2co s|x |)的最小正周期。 【解】 首先,T =2π是函数的周期(事实上,因为co s(-x )=co s x ,所以cos |x |=co s x );其次,当且仅当x =k π+ 2 π 时,y =0(因为|2co s x |≤2<π), 所以若最小正周期为T 0,则T 0=m π, m ∈N +,又s in (2co s0)=s in 2≠s in (2co s π),所以T 0=2π。 过手练习 1.下列函数中,周期为 2 π 的是 ( ) A .sin 2x y = B .sin 2y x = C .cos 4 x y = D .cos 4y x = 2.()cos 6f x x πω?? =- ?? ? 的最小正周期为 5 π ,其中0ω>,则ω= 3.(04全国)函数|2 sin |x y =的最小正周期是( ). 4.(1)(04北京)函数x x x f cos sin )(=的最小正周期是 . (2)(04江苏)函数)(1cos 22R x x y ∈+=的最小正周期为( ). 5.(09年广东文)函数1)4 (cos 22 -- =π x y 是 ( ) A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为 2 π 的奇函数 D. 最小正周期为 2 π 的偶函数 6.(浙江卷2)函数的最小正周期是 . 2.三角最值问题。 例2 已知函数y =s inx +x 2 cos 1+,求函数的最大值与最小值。 【解法一】 令s inx =??? ??≤≤=+ππ θθ4304 sin 2cos 1,cos 22 x , 则有y =).4 sin(2sin 2cos 2π θθθ+ =+ 因为 ππ 4304 ≤ ≤,所以ππ θπ≤+≤4 2, 所以)4 sin(0π θ+≤≤1, 所以当πθ43=,即x =2k π-2 π (k ∈Z )时,y m in =0, 当4 π θ= ,即x =2k π+ 2 π (k ∈Z )时,y m ax =2. 2 (sin cos )1y x x =++

初中三角函数知识点总结(中考复习)

初中三角函数知识点总结(中考复习)

锐角三角函数知识点总结 1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。 2、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、任意锐角的正切值等于它的余角的余切值;任意锐角的余 A 90 B 90 ∠ - ? = ∠ ? = ∠ + ∠ 得 由B A C

切值等于它的余角的正切值。 5、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 6、正弦、余弦的增减性: 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 7、正切、余切的增减性: 当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。 1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:2 2 2 c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 2、应用举例:

(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 仰角铅垂线 水平线 视线 视线俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做坡度 (坡比)。用字 母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α==。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。 反比例函数知识点整理 一、 反比例函数的概念 :i h l =h l α

三角函数图像变换顺序详解全面

《图象变换的顺序寻根》 题根研究? 一、图象变换的四种类型 从函数y = f (x)到函数y = A f ()+m,其间经过4种变换: 1.纵向平移——m 变换 2.纵向伸缩——A变换 3.横向平移——变换 4.横向伸缩——变换 一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性”也不一样. 以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题. 【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到? 【解法1】第1步,横向平移: 将y = sin x向右平移,得 第2步,横向伸缩: 将的横坐标缩短倍,得 第3步:纵向伸缩: 将的纵坐标扩大3倍,得 第4步:纵向平移: 将向上平移1,得 【解法2】第1步,横向伸缩:

将y = sin x的横坐标缩短倍,得y = sin 2x 第2步,横向平移: 将y = sin 2x向右平移,得 第3步,纵向平移: 将向上平移,得 第4步,纵向伸缩: 将的纵坐标扩大3倍,得 【说明】解法1的“变换量”(如右移)与参数值()对应,而解法2 中有的变换量(如右移)与参数值()不对应,因此解法1的“可靠性”大,而解法2的“风险性”大. 【质疑】对以上变换,提出如下疑问: (1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变? (2)在横向平移和纵向平移中,为什么它们增减方向相反—— 如当<0时对应右移(增方向),而m < 0时对应下移(减方向)? (3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反—— 如|| > 1时对应着“缩”,而| A | >1时,对应着“扩”? 【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ()+m中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式 (y+) = f (),则x、y在形式上就“地位平等”了.

三角函数专题知识点及练习

三角函数知识总结一、知识框架 二、知识点、概念总结 1.Rt△ABC中 (1)∠A的对边与斜边的比值是∠A的正弦,记作sinA=∠A的对边 斜边 (2)∠A的邻边与斜边的比值是∠A的余弦,记作cosA=∠A的邻边 斜边 (3)∠A的对边与邻边的比值是∠A的正切,记作tanA=∠A的对边∠A的邻边 (4)∠A的邻边与对边的比值是∠A的余切,记作cota=∠A的邻边∠A的对边 2.特殊值的三角函数: a sina cosa tana cota 30°1 2 3 2 3 3 3 45° 2 2 2 2 1 1 60° 3 2 1 2 3 3 3 3.互余角的三角函数间的关系 sin(90°-α)=cosα, cos(90°-α)=sinα, tan(90°-α)=cotα, cot(90°-α)=tanα. 4. 同角三角函数间的关系 平方关系: sin2(α)+cos2(α)=1 tan2(α)+1=sec2(α) cot2(α)+1=csc2(α) 积的关系: sinα=tanα·cosα cosα=cotα·sinα tanα=sinα·secα cotα=cosα·cscα secα=tanα·cscα cscα=secα·cotα 倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 5.三角函数值 (1)特殊角三角函数值 (2)0°~90°的任意角的三角函数值,查三角函数表。

(3)锐角三角函数值的变化情况 (i)锐角三角函数值都是正值 (ii)当角度在0°~90°间变化时, 正弦值随着角度的增大(或减小)而增大(或减小) 余弦值随着角度的增大(或减小)而减小(或增大) 正切值随着角度的增大(或减小)而增大(或减小) 余切值随着角度的增大(或减小)而减小(或增大) (iii)当角度在0°≤∠A≤90°间变化时, 0≤sinα≤1, 1≥cosA≥0, 当角度在0°<∠A<90°间变化时, tanA>0, cotA>0. 6.解直角三角形的基本类型 解直角三角形的基本类型及其解法如下表: 7.仰角、俯角 当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角. 要点一:锐角三角函数的基本概念

高一三角函数知识点梳理总结

高一三角函数知识 §1.1任意角和弧度制 ?? ? ??零角负角:顺时针防线旋转正角:逆时针方向旋转 任意角..1 2.象限角:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 3.. ①与α(0°≤α<360°)终边相同的角的集合:{} Z k k ∈+?=,360|αββ ②终边在x 轴上的角的集合: {} Z k k ∈?=,180| ββ ③终边在y 轴上的角的集合:{} Z k k ∈+?=,90180| ββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90| ββ ⑤终边在y =x 轴上的角的集合:{ } Z k k ∈+?=,45180| ββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180| ββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:Z k k ∈-=,βα 360 ⑧若角α与角β的终边关于y 轴对称,则α与角β的关系:Z k k ∈-+=,βα 180360 ⑨若角α与角β的终边在一条直线上,则α与角β的关系:Z k k ∈+=,βα 180 ⑩角α与角β的终边互相垂直,则α与角β的关系:Z k k ∈++=, 90180βα 4. 弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2π弧度。若圆心角所对 的弧长为l ,则其弧度数的绝对值|r l = α,其中r 是圆的半径。 5. 弧度与角度互换公式: 1rad =(π 180)°≈57.30° 1°=180 π 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 6.. 第一象限的角:? ?? ? ??∈+<

锐角三角函数的解题技巧

锐角三角函数的解题技巧 一、知识点回忆 (一)锐角的三角函数的意义 1、正切 在Rt△ABC中,∠C=90°,我们把锐角A的对边与邻边的比,叫做∠A的正切,记作tanA. 2、正弦和余弦 如图,在Rt△ABC中,∠C=90°,锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即 3、三角函数:在直角三角形中,锐角A的正切(tanA)、正弦(sinA)、余弦(cosA),都叫做∠A的三角函数. (二)同角的三角函数之间的关系 (1)平方关系:sin2α+cos2α=1 (2)商数关系: (三)两角的关系 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值,任意锐角的正切值与它的余角的正切值的积等于1.即若A+B=90°,则sinA=cosB,cosA=sinB,tanA·tanB=1.

(四)特殊锐角的三角函数值 (五)锐角三角函数值解法 1、用计算器 求整数度数的锐角三角函数值. 在计算器的面板上涉及三角函数的键有和键,当我们计算整数度数的某三角函数值时,可先按这三个键之一,然后再从高位向低位按出表示度数的整数,然后按,则屏幕上就会显示出结果. 例如:计算sin44°. 解: 按键,再依次按键. 则屏幕上显示结果为0.69465837. 求非整数度数的锐角三角函数值. 若度数的单位是用度、分、秒表示的,在用计算器计算三角函数值时,同样先按 和三个键之一,然后再依次按度分秒键,然后按键,则屏幕上就会显示出结果. 2、已知三角函数值,用计算器求角度

已知三角函数值求角度,要用到、键的第二功能“sin-1,cos-1,tan-1”和键.具体操作步骤是:先按键,再按键之一,再依次按三角函数值,最后按键,则屏幕上就会显示出结果. 值得注意的是:型号不同的计算器的用法可能不同。 (六)直角三角形的解法 解直角三角形既是初中几何的重要内容,又是今后学习解斜三角形,三角函数等知识的基础,同时,解直角三角形的知识又广泛应用于测量、工程技术和物理之中,解直角三角形的应用题还有利于培养学生空间想象的能力。因此,通过复习应注意领会以下几个方面的问题: 解直角三角形的重点是锐角三角函数的概念和直角三角形的解法。前者又是复习解直角三角形的难点,更是复习本部分内容的关键。 掌握锐角三角函数和解直角三角形是进行三角运算解决应用问题和进一步研究任意角三角函数的重要基础。因此,解直角三角形既是各地中考的必考内容,更是热点内容。题量一般在4%~10%。分值约在8%~12%题型多以中、低档的填空题和选择题为主。个别省市也有小型综合题和创新题。几乎每份试卷都有一道实际应用题出现。 二、重点难点疑点突破 1、(1)sinA和cosA都是一个整体符号,不能看成sin·A或cos·A. (2)是一个比值,没有单位,只与角的大小有关,而与三角形的大小无关. (3)sinA+sinB≠sin(A+B)sinA·sinB≠sin(AB) (4)sin2A表示(sinA)2,cos2A=(cosA)2 (5)0<sinA<1,0<cosA<1 2、同名三角函数值的变化规律 当角α在0°~90°间变化时,它的正切和正弦三角函数值随着角度的增大而增大; 余弦三角函数值随着角度的增大而减少. 三、解题方法技巧点拨 1、求锐角三角函数的值 例1、(1)在Rt△ABC中,∠C=90°,若,求cosB,tanB的值.

三角函数基础知识点整理

三角函数基础知识点 1、两角和公式 sin(A ±B) = sinAcosB ±cosAsinB B A B A B A tan tan 1tan tan )tan(?±=±μ cos(A ±B) = cosAcosB μsinAsinB 2、二倍角公式(含万能公式) tan2A = A tan 12tanA 2- sin2A=2s inA?cosA=A tan 12tanA 2 + cos2A = cos 2A-sin 2A=2cos 2A-1=1-2sin 2A=A tan 1A tan -12 2 + 22cos 1tan 1tan sin 222 A A A A -=+= 2 2cos 1cos 2 A A += 3、特殊角的三角函数值

4、诱导公式 公式一: απαsin )2sin(=+k ;απαcos )2cos(=+k ;απαtan )2tan(=+k .(其中Z ∈k ). 公式二: ααπ-sin sin(=+);ααπ-cos cos(=+);ααπtan tan(=+). 公式三: sin()-sin αα-=;cos()cos αα-= ;tan()tan αα-=-. 公式四: ααπsin sin(=-);ααπ-cos cos(=-);ααπtan tan(-=-) 公式五: sin(2sin παα-=-);cos(2cos παα-=);tan(2tan παα-=-) 公式六: sin( 2π) = cos ; cos(2π ) = sin . 公式七: sin(2π+) = cos ;cos(2π +) = sin . 公式八: sin(32π)=- cos ; cos(32π ) = -sin . 公式九: sin(32π+) = -cos ;cos(32 π +) = sin . 以上九组公式可以推广归结为:要求角2 k π α?±的三角函数值, 只需要直接求角α的三角函数值的问题.这个转化的过程及结果就是十字口诀“奇变偶不变,符号看象限”。即诱导公式的左边为k ·900+α(k ∈Z )的正弦(切)或余弦(切)函数,当k 为奇数时,右边的函数名称正余互变;当k 为偶数时,右边的函数名称不改变,这就是“奇变偶不变”的含义,再就是将α“看成”锐角(可能并不是锐角,也可能是大于锐角也可能小于锐角还有可能是任意角),然后分析k ·900+α(k ∈Z )为第几象限角,再判断公式左边这个三角函数在此象限是正还是负,也就是公式右边的符号。

相关文档
相关文档 最新文档