文档库 最新最全的文档下载
当前位置:文档库 › 环形跑道中的相遇问题

环形跑道中的相遇问题

环形跑道中的相遇问题
环形跑道中的相遇问题

环形跑道中的相遇问题文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

环形跑道中的相遇问题:环形跑道一周的长=速度和×相遇时间

例:一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时同向出发,经过多长时间两人相遇

环形跑道中的追击问题:环形跑道一周的长= 速度差×追及时间

例:小明和小强两人在周长1200米的环形跑道上同时同地同向而行,小强每分钟跑100米,小明的速度是小强的2倍,经过多少分钟小明能追上小强

变式训练:

1.甲和乙在300米环形跑道上跑步,两人从同一地点出发,反向而行,15秒后两人相遇。如果同向而行,30秒后两人相遇,求甲和乙的速度

2.(小升初)甲乙两人骑自行车从一环形公路的同一地点同时出发,背向而行。甲行一圈要60分,在出发45分钟后两人相遇。如果在相遇后甲立即调转方向骑行,那么两人再次相遇(追上)要()分。

3.甲和乙在周长为500米的环形跑道上跑步.甲的速度是200米/分。(1)甲和乙同时从同一地点出发,反向跑步,1分钟后两人第一次相遇,乙的速度是多少米/分(2)甲和乙同时从同一点出发,同一方向跑步,乙跑多少圈后才能第一次追上甲

4.甲与乙绕一周长400米的环形跑道练习跑步。在同一地点若逆向跑,40秒后相遇;若同向跑,200秒后甲首次追上乙。现在甲距乙150米,若甲追乙,几分钟后两人第三次相遇

追击相遇问题分析方法

追击相遇问题分析方法 追击相遇问题是运动学中最难的问题,笔者在教学也深感有种说不清理还乱,教案经过多次修改才感觉将此问题理顺,现整理如下。 一、追击问题理解(如甲追乙) 1、甲是否在追乙? 在此问题讨论的是v甲是否等于0,若v甲0,则甲在追乙;若v甲=0,则甲不追乙。 2、甲是否能追上乙? 在此问题中讨论的是v甲与v乙的大小关系,若v甲v乙,则甲一定能追上乙;若v甲v乙,则甲一定追不上乙。因此从速度方面讨论甲是否能追上乙,应分析分析v甲=v乙时甲乙位置关系,由此确定甲能否追上乙。 3、甲在何阶段追上乙? 甲在追上乙的过程,甲或乙可能会经历不同性质的运动,应分析运动性质转折点时甲乙的位置关系,由此确定甲追上乙时具体在哪一阶段。 在实际教学中经常会有:(1)学生将第1、2两个讨论的问题混为一谈,即在甲减速追乙过程,常错误分析v甲=0时甲乙的位置关系来确定甲是否能追上乙。(2)学生在第3问题不晓得从转折点分析,常因过程多无法直接确定在甲在哪一阶段追上乙而无从下手。

二、追击相遇的实质 两运动物体在同一时刻出现在同一位置,在此强调了两物体运动的末状态,该时刻与初始时刻差即为时间,该位置与初始位置差即为位移。因此在追击相遇问题必不可少的要列 x-t关系式。 三、追击相遇解析方法 1、常列3个关系式(临界速度法) 式1:两物时间关系式;若两物运动不同步进行要列此式。式2:两物速度相等关系式;由此确定速度相等时刻(间)。式3:两物的x-t关系式;由此确定速度相等时两物的位置关系。 2、常画2图(辅助分析问题方法) 图1:两物运动的位置草图,方便建立两物位移之间的联系。图2:两物运动的v-t图,主要用来分析较复杂的追击。3、常讨论1通式(△x-t讨论法) 通式:两物位置差△x-t关系式,式中常会有t的二次方。讨论1:确定相遇,△x = 0。若相遇两次,则差别式△ 0;若只相遇一次,则△= 0;若不相遇,则△ 0。 讨论2:不相遇,由△x/ = 0(△x/表示△x-t关系式对t 的导数)确定两物之间的距离出现最值的时间。 讨论3:不论何式解出,t 0;若有物体减速到静止,则在运动过程中的t ≤ t停。

行程之相遇问题环形跑道相遇问题

六、环形跑道相遇问题 例1.在一个圆形跑道上,甲从A点、乙从B点同时出发反向而行,8分钟后两人相遇,再过6分钟甲到B点,又过10分钟两人再次相遇,则甲环行一周需要多久? 解析:设跑到全长为S,甲乙第一次相遇共同走了AB,第二次相遇走了S+AB,第一次相遇两人走了8分钟,第二次相遇又走了6+10=16分钟,故两人共同走AB时间是走全长S时间的一半,根据速度和不变情况下,时间与路程成正比,故AB=,甲走AB用时6+8=14分钟,故甲环形一周用时28分钟。 (16+6)÷8=2 (全程是AB的2倍) (6+8)×2=28(分钟) 答:甲环行一周需要28分钟。 2.甲、乙二人以匀速绕圆形跑道相向跑步,出发点在圆直径的两端。如果他们同时出发,并在甲跑完60米时第一次相遇,在乙跑一圈还差80米时两人第二次相遇,求跑道的长度? 解析,由上题的方法可知,甲乙二人第二次相遇共跑了一圈半,而此时甲跑了60*3=180米,已跑了全长减去80米,故=S-80+180,解得全长S等于200米。 解:设全长为x米。 =x-80+60×3 X=200 答:跑道的长度为200米。 例3.甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒钟3米,乙的速度是每秒钟2米。如果他们同时分别从直路的两端出发,10分钟内共相遇了几次? 分析:第一次相遇时行一个全程,用时:90÷(2+3)=18S;此后每次相遇都行两个全程,都用时18×2=36秒,(600-18)÷36=16……4,故10分钟内二者相遇了16+1=17次。 90÷(2+3)=18(秒) (10×60-18)÷(18×2)=16 (4) 16+1=17(次) 答:10分钟内共相遇了17次 例4.甲、乙在椭圆形跑道上训练,同时从同一地点出发反向而跑,每人跑完第一圈回到出发点立即回头加速跑第二圈。跑第一圈时,乙的速度是甲的速度的2/3,甲跑第二圈时速度比第一圈提高了1/3,乙跑第二圈时速度比第一圈提高了1/5,已知甲、乙二人第二次相遇点距第一次相遇点190米,这条椭圆形跑道多长? 解析:如下图所示,A点为出发点,因跑第一圈时,乙的速度是甲的速度的2/3,故

追击相遇问题专题总结

追及相遇问题专题总结 一、 解相遇和追及问题的关键 (1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =± (3)速度关系:两者速度相等。它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。 二、追及问题中常用的临界条件: 1、速度小者追速度大者,追上前两个物体速度相等时,有最大距离; 2、速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上: (1)当两者速度相等时,若追者仍没有追上被追者,则永远追不上,此时两者之间有最小距离。 (2)若两者速度相等时恰能追上,这是两者避免碰撞的临界条件。 (3)若追者追上被追者时,追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,即会相遇两次。 二、图像法:画出v t -图象。 1、速度小者追速度大者(一定追上)

追击与相遇问题专项典型例题分析 (一).匀加速运动追匀速运动的情况(开始时v1 v2):v1> v2时,两者距离变小;v1=v2时,①若满足x1<x +Δx,则永远追不上,此时两者距离最近;②若满足x1=x2+Δx,则恰能追上,全程只相遇一次;③若满足2 x1>x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。 【例2】一辆汽车在十字路口等绿灯,当绿灯亮时汽车以3m/s2的加速度开使行驶,恰在这时一辆自行车在汽车后方相距20m的地方以6m/s的速度匀速行驶,则自行车能否追上汽车?若追不上,两车间的最小间距是多少? 例2中若汽车在自行车前方4m的地方,则自行车能否追上汽车?若能,两车经多长时间相遇?

追击和相遇问题典型例题

【学习目标】 1、掌握追及及相遇问题的特点 2、能熟练解决追及及相遇问题 追及问题 1、追及问题中两者速度大小与两者距离变化的关系。 甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离。若甲的速度小于乙的速度,则两者之间的距离。若一段时间内两者速度相等,则两者之间的距离。 2、追及问题的特征及处理方法: “追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种: 初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上,追上前有最大距离的条件:两物体速度相等,即v甲=v乙。 ⑵匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。 判断方法是:假定速度相等,从位置关系判断。 ①若甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。 ②若甲乙速度相等时,甲的位置在乙的前方,则追上,并会有两次相遇 ③若甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。 解决问题时要注意二者是否同时出发,是否从同一地点出发。 ⑶匀减速运动的物体甲追赶同向的匀速运动的物体已时,情形跟⑵类似。 判断方法是:假定速度相等,从位置关系判断。

①若甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。 ②若甲乙速度相等时,甲的位置在乙的前方,则追上,并会有两次相遇 ③若甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。 解决问题时要注意二者是否同时出发,是否从同一地点出发。 3、分析追及问题的注意点: ⑴要抓住一个条件,两个关系: ①一个条件是两物体的速度满足的临界条件,如 两物体距离最大、最小,恰好追上或恰好追不上等。 ②两个关系是时间关系和位移关系, 通过画草图找两物体的位移关系是解题的突破口。 ⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。 ⑶仔细审题,充分挖掘题目中的隐含条件,同时注意v-t图象的应用。 二、相遇 ⑴同向运动的两物体的相遇问题即追及问题,分析同上。 ⑵相向运动的物体,当各自发生的位移绝对值的和等于开始时两物体间的距离时即相遇。 【典型例题】 1.在十字路口,汽车以的加速度从停车线启动做匀加速运动,恰好有一辆自行车以的速度匀速驶过停车线与汽车同方向行驶,求: 什么时候它们相距最远?最远距离是多少?

环形跑道中的相遇追及问题教学内容

第九讲:环形跑道问题 教学目标:理解环形跑道问题即是一个封闭线路上的追及问题 ,通过对环形跑道 问题分析,培养学生的逻辑思维能力 教学重点:环形跑道问题中的数量关系及解题思路的分析 教学难点:理解环形跑道问题,第一次相遇时,速度快的比速度慢的多跑一圈 需要课时:2课时 教学内容: ,正确将环形跑道问题转化成追及问题 解题关键:环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下 次追及的路程差恰好是一圈的长度。 例1:环形跑道的周长是800米,甲、乙两名运动员同时顺时针自起点出发,甲 的速度是每分钟400米,乙的速度是每分钟375米,多少分钟后两人第一次相遇?甲、乙两名运动员各跑了多少米?甲、乙两名运动员各跑了多少圈? 思路点拨: 在环形跑道上,这是一道封闭路线上的追及问题,第一次相遇时,快 的应比慢的多跑一圈,环形跑道的周长就是追及路程,已知了两人的速度,追及 时间即是两人相遇的时间。 400-375=25(米) 800÷25=32(分钟) 甲:400×32=12800(米) 乙:375×32=12000(米) 甲:12800÷800=16(圈) 乙:16-1=15(圈) 例2 :幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑, 冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多 少米,第2次追上晶晶时两人各跑了多少圈? 解:①冬冬第一次追上晶晶所需要的时间:200÷(6-4)=100(秒)②冬 冬第一次追上晶晶时他所跑的路程应为:6×100=600(米)③晶晶第一次被 追上时所跑的路程:4×100=400(米) ④冬冬第二次追上晶晶时所跑的圈数:(600×2)÷200=6(圈)

追击相遇问题专题讲解

追击与相遇专题讲解 1、追及问题中两者速度大小与两者距离变化的关系。 甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离 。若甲的速度小于乙的速度,则两者之间的距离 。若开始甲的速度小于乙的速度过一段时间后两者速度相等,则两者之间的距离 (填最大或最小)。 2、追及问题的特征及处理方法: “追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种: ⑴ 初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上,追 上前有最大距离的条件:两物体速度 ,即v v 乙甲。 ⑵ 匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。 物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2 的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离.

【解析一】物理分析法 A做υA=10 m/s的匀速直线运动,B做初速度为零、加速度a=2 m/s2的匀加速直线运动.根据题意,开始一小段时间内,A的速度大于B的速度,它们间的距离逐渐变大,当B的速度加速到大于A的速度后,它们间的距离又逐渐变小;A、B间距离有最大值的临界条件是υA=υB.①设两物体经历时间t相距最远,则υA=at② 把已知数据代入①②两式联立得t=5 s 在时间t内,A、B两物体前进的距离分别为 s A=υA t=10×5 m=50 m s B=1 2 at2= 1 2×2×5 2 m=25 m A、B再次相遇前两物体间的最大距离为

Δs m=s A-s B=50 m-25 m=25 m 例题2:如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t图象,由图象可以看出()A.这两个物体两次 相遇的时刻分别是1s 末和4s末 B.这两个物体两次 相遇的时刻分别是2s末和6s末 C.两物体相距最远的时刻是2s末D.4s末以后甲在乙的前面

行程问题相遇问题和追及问题的解题技巧

行程问题、相遇问题和追及问题的解题技巧 相遇问题 两个物体从两地出发,相向而行,经过一段时间,必然会在途中相遇,这类题型就把它称为相遇问题。相遇问题是研究速度,时间和路程三者数量之间关系的问题。它和一般的行程问题区别在:不是一个物体的运动,所以,它研究的速度包含两个物体的速度,也就是速度和。 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 相遇路程=甲走的路程+乙走的路程 甲的速度=相遇路程÷相遇时间 -乙的速度 甲的路程=相遇路程-乙走的路程 解答这类问题,要弄清题意,按照题意画出线段图,分析各数量之间的关系,选择解答方法.。相遇问题除了要弄清路程,速度与相遇时间外,在审题时还要注意一些重要的问题:是否是同时出发,如果题目中有谁先出发,就把先行的路程去掉,找到同时行的路程。驶的方向,是相向,同向还是背向.不同的方向解题方法就不一样。是否相遇.有的题目行驶的物体并没有相遇,要把相距的路程去掉;有的题目是两者错过,要把多行的路程加上,得到同时行驶的路程.。 追及问题 两物体在同一直线或封闭图形上运动所涉及的追及、相遇问题,通常归为追及问题。这类常常会在考试考到。一般分为两种:一种是双人追及、双人相遇,此类问题比较简单;一种是多人追及、多人相遇,此类则较困难。 追及距离=速度差×追及时间

追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 一、行程问题、相遇问题和追及问题的核心公式: 行程问题最核心的公式“速度=路程÷时间”。由此可以演变为相遇问题和追及问题。其中: 相遇时间=相遇距离÷速度和, 追及时间=追及距离÷速度差。 速度和=快速+慢速 速度差=快速-慢速 二、相遇距离、追及距离、速度和(差)及相遇(追及)时 间的确定 第一:相遇时间和追及时间是指甲乙在完成相遇(追及)任务时共同走的时间。 第二:在甲乙同时走时,它们之间的距离才是相遇距离(追及距离)分为: 相遇距离——甲与乙在相同时间内走的距离之和; S=S1+S2 甲︳→S1 →∣←S2 ←︳乙

高中物理必修一追及与相遇问题专题练习及答案

追击和相遇问题 一、追击问题的分析方法: A. 根据追逐的两个物体的运动性质,选择同一参照物,列出两个物体的位移方程; ? ?? ;.;.的数量关系找出两个物体在位移上间上的关系找出两个物体在运动时C B 相关量的确定 D.联立议程求解. 说明:追击问题中常用的临界条件: ⑴速度小者追速度大者,追上前两个物体速度相等时,有最大距离; ⑵速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上. 1.一车处于静止状态,车后距车S0=25处有一个人,当车以1的加速度开始起动时,人以6的速度匀速追车,能否追上?若追不上,人车之间最小距离是多少? 答案.S 人-S 车=S 0 ∴ v 人t-at 2 /2=S0 即t 2 -12t+50=0 Δ=b 2 -4ac=122-4×50=-56<0 方程无解.人追不上车 当v 人=v 车at 时,人车距离最小 t=6/1=6s ΔS min =S 0+S 车-S 人 =25+1×62 /2-6×6=7m 2.质点乙由B 点向东以10的速度做匀速运动,同时质点甲从距乙12远处西侧A 点以4的加速度做初速度为零的匀加速直线运动.求: ⑴当甲、乙速度相等时,甲离乙多远? ⑵甲追上乙需要多长时间?此时甲通过的位移是多大? 答案.⑴v 甲=v 乙=at 时, t=2.5s ΔS=S 乙-S 甲+S AB =10×2.5-4×2.52 /2+12=24.5m ⑵S 甲=S 乙+S AB at 2/2=v 2t+S AB t 2 -5t-6=0 t=6s S 甲=at 2/2=4×62 /2=72m 3.在平直公路上,一辆摩托车从静止出发,追赶在正前方100m 处正以v 0=10m/s 的速度匀速前进的卡车.若摩托车的最大速度为v m =20m/s,现要求摩托车在120s 内追上卡车,求摩托车的加速度应满足什么 答案.摩托车 S 1=at 12 /2+v m t 2 v m =at 1=20 卡车 S 2=v o t=10t S 1=S 2+100 T=t 1+t 2 t ≤120s a ≥0.18m/s 2

高一物理相遇和追及问题

相遇和追及问题 【学习目标】 1、掌握追及和相遇问题的特点 2、能熟练解决追及和相遇问题 【要点梳理】 要点一、机动车的行驶安全问题: 要点诠释: 1、反应时间:人从发现情况到采取相应措施经过的时间为反应时间。 2、反应距离:在反应时间内机动车仍然以原来的速度v匀速行驶的距离。 3、刹车距离:从刹车开始,到机动车完全停下来,做匀减速运动所通过的距离。 4、停车距离与安全距离:反应距离和刹车距离之和为停车距离。停车距离的长短由反应距离和刹车距离 共同决定。安全距离大于一定情况下的停车距离。 要点二、追及与相遇问题的概述 要点诠释: 1、追及与相遇问题的成因 当两个物体在同一直线上运动时,由于两物体的运动情况不同,所以两物体之间的距离会不断发生变化,两物体间距越来越大或越来越小,这时就会涉及追及、相遇或避免碰撞等问题. 2、追及问题的两类情况 (1)速度小者追速度大者

(2)速度大者追速度小者 说明:①表中的Δx 是开始追及以后,后面物体因速度大而比前面物体多运动的位移; ②x 0是开始追及以前两物体之间的距离; ③t 2-t 0=t 0-t 1; ④v 1是前面物体的速度,v 2是后面物体的速度. 特点归类: (1)若后者能追上前者,则追上时,两者处于同一位置,后者的速度一定不小于前者的速度. (2)若后者追不上前者,则当后者的速度与前者相等时,两者相距最近. 3、 相遇问题的常见情况 (1) 同向运动的两物体的相遇问题,即追及问题. (2) 相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇. 解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了. 要点三、追及、相遇问题的解题思路 要点诠释: 追及?相遇问题最基本的特征相同,都是在运动过程中两物体处在同一位置. ①根据对两物体运动过程的分析,画出物体运动情况的示意草图. ②根据两物体的运动性质,分别列出两个物体的位移方程,注意要将两个物体运动时间的关系反映在方程中; ③根据运动草图,结合实际运动情况,找出两个物体的位移关系; ④将以上方程联立为方程组求解,必要时,要对结果进行分析讨论. 要点四、分析追及相遇问题应注意的两个问题 要点诠释: 分析这类问题应注意的两个问题: (1)一个条件:即两个物体的速度所满足的临界条件,例如两个物体距离最大或距离最小?后面的物体恰好追上前面的物体或恰好追不上前面的物体等情况下,速度所满足的条件. 常见的情形有三种:一是做初速度为零的匀加速直线运动的物体甲,追赶同方向的做匀速直线运动的物体乙,这种情况一定能追上,在追上之前,两物体的速度相等(即v v 甲乙)时,两者之间的距离最大;二是做匀

初一数学追及问题和相遇问题列方程的技巧

初一数学追及问题和相遇问题列方程的技巧行程问题 在行车、走路等类似运动时,已知其中的两种量,按照速度、路程和时间三者之间的相互关系,求第三种量的问题,叫做“行程问题”。此类问题一般分为四类:一、相遇问题;二、追及问题;三、相离问题;四、过桥问题等。 行程问题中的相遇问题和追及问题主要的变化是在人(或事物)的数量和运动方向上。相遇(相离)问题和追及问题当中参与者必须是两个人(或事物)以上;如果它们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。 相遇问题 两个运动物体作相向运动,或在环形道口作背向运动,随着时间的延续、发展,必然面对面地相遇。这类问题即为相遇问题。 相遇问题的模型为:甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么:A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间 基本公式有: 两地距离=速度和×相遇时间 相遇时间=两地距离÷速度和 速度和=两地距离÷相遇时间 二次相遇问题的模型为:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。则有: 第二次相遇时走的路程是第一次相遇时走的路程的两倍。 相遇问题的核心是“速度和”问题。利用速度和与速度差可以迅速找到问题的突破口,从而保证了迅速解题。 相离问题

两个运动着的动体,从同一地点相背而行。若干时间后,间隔一定的距离,求这段距离的问题,叫做相离问题。它与相遇问题类似,只是运动的方向有所改变。 解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和)。 基本公式有: 两地距离=速度和×相离时间 相离时间=两地距离÷速度和 速度和=两地距离÷相离时间 相遇(相离)问题的基本数量关系: 速度和×相遇(相离)时间=相遇(相离)路程 在相遇(相离)问题和追及问题中,必须很好的理解各数量的含义及其在数学运算中是如何给出的,这样才能够提高解题速度和能力。 追及问题 两个运动着的物体从不同的地点出发,同向运动。慢的在前,快的在后,经过若干时间,快的追上慢的。有时,快的与慢的从同一地点同时出发,同向而行,经过一段时间快的领先一段路程,我们也把它看作追及问题。 解答这类问题要找出两个运动物体之间的距离和速度之差,从而求出追及时间。解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。 基本公式有: 追及(或领先)的路程÷速度差=追及时间 速度差×追及时间=追及(或领先)的路程 追及(或领先)的路程÷追及时间=速度差 要正确解答有关“行程问题”,必须弄清物体运动的具体情况。如:运动的方向(相向、相背、同向),出发的时间(同时、不同时),出发的地点(同地、不同地)、运动的路线(封闭、不封闭),运动的结果(相遇、相距多少、追及)常用公式: 行程问题基本恒等关系式:速度×时间=路程,即S=vt. 行程问题基本比例关系式:路程一定的情况下,速度和时间成反比;

高中专题一追击相遇问题-学生版

追击与相遇专题讲解 1.速度小者追速度大者: 类型 图象 说明 匀加速追匀速 ①t=t 0以前,后面物体与前面物体间距离增大 ②t=t 0时,两物体相距最远为x 0+Δx ③t=t 0以后,后面物体与前面物体间距离减小 ④能追及且只能相遇一次 匀速追匀减速 匀加速追匀减速 2.速度大者追速度小者: 学员姓名 辅导科目 物理 就读年级 高一 辅导教师 唐老师 课 型 新授课 教 学 目 标 1.相遇和追击问题的实质 研究的两物体能否在相同的时刻到达相同的空间位置的问题。 2. 解相遇和追击问题的关键 画出物体运动的情景图,理清三大关系 (1)时间关系 :0 t t t B A ±= (2)位移关系:0A B x x x =± (3)速度关系: 两者速度相等。它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。 重 点 难 点 考 点 重点:对题上的时间进行分析 难点:位移的相差是多少 课时 1课时 教学过程

匀减速追匀速 开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t 0时刻: ①若Δx=x 0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件 ②若Δxx0,则相遇两次,设t 1时刻Δx 1=x 0,两物体第一次相遇,则t 2时刻两物体第二次相遇 匀速追匀加速 匀减速追匀加速 说明: ①表中的Δx 是开始追及以后,后面物体因速度大而比前面物体多运动的位移; ②x 0是开始追及以前两物体之间的距离; ③t 2-t 0=t 0-t 1; ④v 1是前面物体的速度,v 2是后面物体的速度。 【学习目标】 1、掌握追及及相遇问题的特点 2、能熟练解决追及及相遇问题 【自主学习】 1. 相遇和追击问题的实质 研究的两物体能否在相同的时刻到达相同的空间位置的问题。 2. 解相遇和追击问题的关键 画出物体运动的情景图,理清三大关系 (1)时间关系 :0 t t t B A ±= (2)位移关系:0A B x x x =± (3)速度关系: 两者速度相等。它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。

追及与相遇问题(详解)

追及与相遇问题刘玉平 课时安排:3课时 三维目标: 1、掌握匀变速直线运动的速度、位移公式以及速度-位移公式; 2、能灵活选用合适的公式解决实际问题; 3、通过解决实际问题,培养学生运用物理规律对实际生活中进行合理分析、解决问题的能力; 4、通过教学活动使学生获得成功的愉悦,培养学生参与物理学习活动的兴趣,提高学习自信心。教学重点:灵活选用合适的公式解决实际问题; 教学难点:灵活选用合适的公式解决实际问题。 教学方法:启发式、讨论式。 教学过程 两物体在同一直线上追及、相遇或避免碰撞问题中的条件是:两物体能否同时到达空间某位置。因此应分别对两物体进行研究,列出位移方程,然后利用时间关系、速度关系、位移关系求解。 一、追及问题 1、追及问题的特征及处理方法: “追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种: ⑴初速度比较小(包括为零)的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定 能追上。 a、追上前,当两者速度相等时有最大距离; b、当两者位移相等时,即后者追上前者。 ⑵匀减速运动的物体追赶同向的匀速运动的物体时,存在一个能否追上的问题。 判断方法是:假定速度相等,从位置关系判断。 解决问题时要注意二者是否同时出发,是否从同一地点出发。 a、当两者速度相等时,若追者位移仍小于被追者,则永远追不上,此时两者间有最 小距离; b、若两者速度相等时,两者的位移也相等,则恰能追上,也是两者避免碰撞的临界 条件; c、若两者速度相等时,追者位移大于被追者,说明在两者速度相等前就已经追上; 在计算追上的时间时,设其位移相等来计算,计算的结果为两个值,这两个 值都有意义。即两者位移相等时,追者速度仍大于被追者的速度,被追者还 有一次追上追者的机会,其间速度相等时两者间距离有一个较大值。 ⑶匀速运动的物体甲追赶同向匀加速运动的物体乙,情形跟⑵类似。 匀速运动的物体甲追赶同向匀减速运动的物体乙,情形跟⑴类似;被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。 2、分析追及问题的注意点: ⑴要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、 最小,恰好追上或恰好追不上等。两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。 ⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。 ⑶仔细审题,充分挖掘题目中的隐含条件,同时注意v t 图象的应用。

常见的相遇问题及追及问题等计算公式

小学常用公式 和差问题 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数+1)=小数 差倍问题 差÷(倍数-1)=小数 植树问题 1 单条线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 棵数=全长÷间隔长+1=间隔数+1 全长=间隔长×(棵数-1) 间隔长=全长÷(棵数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 棵数=间隔数=全长÷间隔长 全长=间隔长×棵数 间隔长=全长÷棵数 ⑶如果在非封闭线路的两端都不要植树,那么: 棵数=全长÷间隔长-1=间隔数-1 全长=间隔长×(棵数+1) 间隔长=全长÷(棵数+1) 2 双边线路上的植树问题主要也有三种情形: 参考单条线路上的植树问题,注意要除以2。 3 环形或叫封闭线路上的植树问题的数量关系如下 棵数=间隔数=全长÷间隔长 全长=间隔长×棵数 间隔长=全长÷棵数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题

追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%) 【题目】一游泳池道长100米,甲乙两个运动员从泳道的两端同时下水做往返训练15分钟,甲每分钟游81米,乙每分钟游89米。甲运动员一共从乙运动员身边经过了多少次? 【解答】从身边经过,包括迎面和追上两种情况。 能迎面相遇【(81+89)×15+100】÷200,取整是13次。 第一次追上用100÷(89-81)=分钟, 以后每次追上需要×2=25分钟,显然15分钟只能追上一次。 因此经过13+1=14次。 如果甲乙从A,B两点出发,甲乙第n次迎面相遇时,路程和为全长的2n-1倍,而此时甲走的路程也是第一次相遇时甲走的路程的2n-1倍(乙也是如此)。 总结:若两人走的一个全程中甲走1份M米, 两人走3个全程中甲就走3份M米。 (含义是说,第一次相遇时,甲乙实际就是走了一个全程,第二次相遇时,根据上面的公式,甲乙走了 2x2-1=3个全程,如果在第一次相遇时甲走了m米,那么第二次相遇时甲就走了3个m米) 下面我们用这个方法看一道例题。 湖中有A,B两岛,甲、乙二人都要在两岛间游一个来回。两人分别从A,B两岛同时出发,他们第一次相遇时距A岛700米,第二次相遇时距B岛400米。问:

(完整版)追及与相遇问题(含答案)

追及与相遇问题 1、追及与相遇的实质 研究的两物体能否在相同的时刻到达相同的空间位置的问题。 2、理清两大关系: 时间关系、位移关系。 3、巧用一个条件: 两者速度相等;它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。 4、三种典型类型 (1)同地出发,初速度为零的匀加速直线运动A 追赶同方向的匀速直线运动B ①当 B A v v =时,A 、B 距离最大; ②当两者位移相等时, A 追上B ,且有B A v v 2= (2)异地出发,匀速直线运动B 追赶前方同方向的初速度为零的匀加速直线运动A 判断B A v v =的时刻,A 、B 的位置情况 ①若B 在A 后面,则B 永远追不上A ,此时AB 距离最小 ②若AB 在同一处,则B 恰能追上A ③若B 在A 前,则B 能追上A ,并相遇两次 (3)异地出发,匀减速直线运动A 追赶同方向匀速直线运动B ①当B A v v =时,A 恰好追上B ,则A 、B 相遇一次,也是避免相撞刚好追上的临界条件; ②当B A v v =时,A 未追上B ,则A 、B 永不相遇,此时两者间有最小距离; ③当B A v v >时,A 已追上B ,则A 、B 相遇两次,且之后当两者速度相等时,两者间有最大距离。 5、解追及与相遇问题的思路 (1)根据对两物体的运动过程分析,画出物体运动示意图 (2)根据两物体的运动性质,(巧用“速度相等”这一条件)分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中 (3)由运动示意图找出两物体位移间的关联方程 (4)联立方程求解 注意:仔细审题,充分挖掘题目中的隐含条件,同时注意t v -图象的应用 【典型习题】 【例1】在十字路口,汽车以0.5m/s 2的加速度从停车线启动做匀加速运动,恰好有一辆自行车以5m/s 的速度匀速驶过停车线与汽车同方向行驶,求: (1)汽车追上自行车之前,什么时候它们相距最远?最远距离是多少? (2)在什么地方汽车追上自行车?追到时汽车的速度是多大?

奥数行程问题--环形跑道

行程问题——环形跑道 环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下次追及的路程差恰好是一圈的长度。 1、相遇问题: 题型特点:甲、乙两人同时从同地反向出发。 解题规律:两人相遇时一起走一圈(跑道周长)。之后每见面一次,就一起走1圈;见面n次,两人一起走n个周长。 2、追及问题: 题型特点:甲、乙两人同时从同地同向出发。 解题规律:开始出发时由于速度不同两人之间的距离会越来越远,之后快的会追上慢的,此时快的人比慢的人多走1圈(路程差为跑道周长)。之后每追上一次,就多走1圈;追上n次,快的就比慢的多走n个周长。 3、需要处理的问题: a、环形跑道中速度、时间、路程之间的关系处理。 b、多次追及问题的处理。 c、不同地点出发的追及问题。 1、一个圆形荷花池的周长为400米,甲、乙两人绕荷花池顺时针跑步。甲每分钟跑250米,乙每分钟跑200米,现在甲在乙后面50米,甲第二次追上乙需要多少分钟? 2、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑140米,两人同时反向出发,经过几分钟两人相遇?

3、上海小学有一长300米长的环形跑道,小亚和小胖同时从起跑线 起跑,小亚每秒钟跑6米,小胖每秒钟跑4米,小亚第一次追上小胖时,小胖跑了多少米? 4、幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑 线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第2次追上晶晶时,冬冬跑了多少圈? 5、甲、乙二人骑自行车从环形公路上的同一地点出发,背向而行。 现在已知甲走一圈的时间为75分钟,如果在出发后第50分钟甲、乙两人相遇,那么乙走一圈的时间是多少分钟? 6、甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70 分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟? 7、两名运动员在湖的周围环形道上练习长跑.甲每分钟跑250米, 乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙;如果两人同时同地反向出发,经过几分钟两人相遇? 8、在400米的环形跑道上,甲、乙两人同时同地起跑,如果同向而 行3分20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲的速度是多少米/秒? 9、环形跑道的周长是800米,甲乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米。多少分钟后两人第一次相遇?甲乙两名运动员各跑了多少米?甲乙两名运动 员各跑了多少圈?

(完整版)四年级+相遇问题与追及问题

简单的相遇与追及问题 一、学习目标 1. 理解相遇与追及的运动模型,掌握相遇与追及这两种情况下路程、时间、速度这三个基本量之间的关系.会利用这个关系来解决一些简单的行程问题. 2. 体会数形结合的数学思想方法. 二、主要内容 1. 行程问题的基本数量关系式: 路程=时间×速度;速度=路程÷时间;时间=路程÷速度. 2.相遇问题的数量关系式: 相遇路程=相遇时间×速度和; 速度和=相遇路程÷相遇时间; 相遇时间=相遇路程÷速度和. 3.追及问题的数量关系式: 追及距离=追及时间×速度差; 速度差=追及距离÷追及时间; 追及时间=追及距离÷速度差. 4. 能熟练运用路程、时间、速度这三个基本量的关系,结合图形分析,解决一些简单的行程问题. 三、例题选讲 例1两辆汽车同时分别从相距500千米的A,B两地出发,相向而行,速度分别为每小时40千米和每小时60千米.求几小时后两车相遇.

例2甲车在乙车前200千米,同时出发,速度分别为每小时40千米与60千米.问多少小时后,乙车追上甲车. 例3一辆公共汽车和一辆小轿车同时从相距598千米的两地相向而行.公共汽车每小时行40千米,小轿车每小时行52千米,问几小时后两车相距138千米? 例4 甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇.求东、西两地相距多少千米? 例5甲、乙两人同时从相距18千米的两地相向而行,甲每小时行4千米,乙每小时行5千米.甲带着一只狗,每小时走20千米,狗走得比人快,同甲一起出发,碰到乙后,它往甲方向奔走;碰到甲后,它又往乙方向奔走,直到甲、乙两人相遇为止,这只狗一共奔走了多少千米?

环形跑道中的相遇追及问题

环形跑道中的相遇追及 问题 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

第九讲:环形跑道问题 教学目标:理解环形跑道问题即是一个封闭线路上的追及问题,通过对环形跑道问题分析,培养学生的逻辑思维能力 教学重点:环形跑道问题中的数量关系及解题思路的分析 教学难点:理解环形跑道问题,第一次相遇时,速度快的比速度慢的多跑一圈 需要课时:2课时 教学内容:,正确将环形跑道问题转化成追及问题 解题关键:环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下次追及的路程差恰好是一圈的长度。 例1:环形跑道的周长是800米,甲、乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米,多少分钟后两人第一次相遇?甲、乙两名运动员各跑了多少米?甲、乙两名运动员各跑了多少圈? 思路点拨:在环形跑道上,这是一道封闭路线上的追及问题,第一次相遇时,快的应比慢的多跑一圈,环形跑道的周长就是追及路程,已知了两人的速度,追及时间即是两人相遇的时间。 400-375=25(米)800÷25=32(分钟) 甲:400×32=12800(米)乙:375×32=12000(米)甲:12800÷800=16(圈)乙:16-1= 15(圈) 例2:幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?

解:①冬冬第一次追上晶晶所需要的时间:200÷(6-4)=100(秒)②冬冬第一次追上晶晶时他所跑的路程应为:6×100=600(米)③晶晶第一次被追上时所跑的路程:4×100=400(米) ④冬冬第二次追上晶晶时所跑的圈数:(600×2)÷200=6(圈) ⑤晶晶第2次被追上时所跑的圈数:(400×2)÷200=4(圈) 练习: 1、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑210米,两人同时出发,经过多少分钟两人相遇 2、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。如果同向而行,几秒后两人再次相遇 3、林玲在450米长的环形跑道上跑一圈,已知他前一半时间每秒跑5米,后一半时间每秒跑4米,那么他后一半路程跑了多少秒? 作业: 1、两名运动员在湖周围环形跑道上练习长跑,甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙,如果两人同时同地反向出发,经过多少分钟两人相遇? 2、甲乙两人在周长400米的环形跑道上竞走,已知乙的速度是平均每分钟80米,甲的速度是乙的1.25倍,乙在甲前100米,问多少分钟后,甲可以追上乙? 3、一条环形跑道长为400米,小明每分钟跑300米,小红每分钟跑250米,两人同时同地同向出发,,经过多长时间,小明第一次追上小红? 4、甲乙两人绕周长为1000米的环形跑道广场竞走,已知甲每分钟走125米,乙的速度是甲的2倍,现在甲在乙后面250米,乙追上甲需要多少分钟?

高中物理追击和相遇问题专题带答案

专题:直线运动中的追击和相遇问题 一、相遇和追击问题的实质 研究的两物体能否在相同的时刻到达相同的空间位置的问题。 二、 解相遇和追击问题的关键 画出物体运动的情景图,理清三大关系 (1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =± (3)速度关系: 两者速度相等。它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。 三、追击、相遇问题的分析方法: A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程; B. 找出两个物体在运动时间上的关系 C. 找出两个物体在运动位移上的数量关系 D. 联立方程求解. 说明:追击问题中常用的临界条件: ⑴速度小者追速度大者,追上前两个物体速度相等时,有最大距离; ⑵速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上, 否则就不能追上. 四、典型例题分析: (一).匀加速运动追匀速运动的情况(开始时v 1< v 2):v 1< v 2时,两者距离变大;v 1= v 2时, 两者距离最大;v 1>v 2时,两者距离变小,相遇时满足x 1= x 2+Δx ,全程只相遇(即追上)一次。 【例1】一小汽车从静止开始以3m/s 2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求: (1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少? 答案:(1) 2s 6m (2)12m/s (二).匀速运动追匀加速运动的情况(开始时v 1> v 2):v 1> v 2时,两者距离变小;v 1= v 2时,①若满足x 1< x 2+Δx ,则永远追不上,此时两者距离最近;②若满足x 1=x 2+Δx ,则恰能追上,全程只相遇一次;③若满足x 1> x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。 【例2】一个步行者以6m/s 的最大速率跑步去追赶被红灯阻停的公共汽车,当他距离公共汽车25m 时,绿灯亮了,汽车以1m/s 2的加速度匀加速启动前进,问:人能否追上汽车?若能追上,则追车过程中人共跑了多少距离?若不能追上,人和车最近距离为多少? 答案:不能追上 7m (三).匀减速运动追匀速运动的情况(开始时v 1> v 2):v 1> v 2时,两者距离变小;v 1= v 2时,①若满足x 1 x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。 【例3】汽车正以10m/s 的速度在平直公路上前进,突然发现正前方有一辆自行车以4m/s 的速度做同方向的匀速直线运动,汽车立即关闭油门做加速度大小为 6 m/s 2的匀减速运动,汽车恰好不碰上自

相关文档
相关文档 最新文档