文档库 最新最全的文档下载
当前位置:文档库 › Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2)

Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2)

Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2)
Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2)

Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2)

S.D.Bentley*,K.F.Chater?,A.-M.Cerden?o-Ta′rraga*,G.L.Challis??,N.R.Thomson*,K.D.James*,D.E.Harris*,M.A.Quail*,H.Kieser?, D.Harper*,A.Bateman*,S.Brown*,G.Chandra?,C.W.Chen§,M.Collins*,A.Cronin*,A.Fraser*,A.Goble*,J.Hidalgo*,T.Hornsby*, S.Howarth*,C.-H.Huang§,T.Kieser?,https://www.wendangku.net/doc/7a14067912.html,rke*,L.Murphy*,K.Oliver*,S.O’Neil*,E.Rabbinowitsch*,M.-A.Rajandream*,K.Rutherford*, S.Rutter*,K.Seeger*,D.Saunders*,S.Sharp*,R.Squares*,S.Squares*,K.Taylor*,T.Warren*,A.Wietzorrek?,J.Woodward*,B.G.Barrell*, J.Parkhill*&D.A.Hopwood?

*The Wellcome Trust Sanger Institute,Wellcome Trust Genome Campus,Hinxton,Cambridge CB101SA,UK

?John Innes Centre,Norwich Research Park,Colney,Norwich NR47UH,UK

?Department of Chemistry,University of Warwick,Coventry CV47AL,UK

§Institute of Genetics,National Yang-Ming University,Shih-Pai,Taipei112,Taiwan ........................................................................................................................................................................................................................... Streptomyces coelicolor is a representative of the group of soil-dwelling,?lamentous bacteria responsible for producing most natural antibiotics used in human and veterinary medicine.Here we report the8,667,507base pair linear chromosome of this organism,containing the largest number of genes so far discovered in a bacterium.The7,825predicted genes include more than 20clusters coding for known or predicted secondary metabolites.The genome contains an unprecedented proportion of regulatory genes,predominantly those likely to be involved in responses to external stimuli and stresses,and many duplicated gene sets that may represent‘tissue-speci?c’isoforms operating in different phases of colonial development,a unique situation for a bacterium. An ancient synteny was revealed between the central‘core’of the chromosome and the whole chromosome of pathogens Mycobacterium tuberculosis and Corynebacterium diphtheriae.The genome sequence will greatly increase our understanding of microbial life in the soil as well as aiding the generation of new drug candidates by genetic engineering.

Nutritionally,physically and biologically,soil is a particularly complex and variable environment.Streptomycetes are among the most numerous and ubiquitous soil bacteria1.They are crucial in this environment because of their broad range of metabolic pro-cesses and biotransformations.These include degradation of the insoluble remains of other organisms,such as lignocellulose and chitin(among the world’s most abundant biopolymers),making streptomycetes central organisms in carbon recycling.Unusually for bacteria,streptomycetes exhibit complex multicellular develop-ment,with differentiation of the organism into distinct‘tissues’:a branching,?lamentous vegetative growth gives rise to aerial hyphae bearing long chains of reproductive spores.The importance of streptomycetes to medicine results from their production of over two-thirds of naturally derived antibiotics in current use(and many other pharmaceuticals such as anti-tumour agents and immuno-suppressants),by means of complex‘secondary metabolic’path-ways.Furthermore,streptomycetes are members of the same taxonomic order(Actinomycetales)as the causative agents of tuberculosis and leprosy(Mycobacterium tuberculosis and M. leprae),the genomes of which have been sequenced2,3.Much should be learned about these pathogens from genome-level comparisons with harmless saprophytic relatives such as streptomycetes. Streptomyces coelicolor A3(2)is genetically the best known repre-sentative of the genus4.The single chromosome is linear with a centrally located origin of replication(oriC)and terminal inverted repeats(TIRs)carrying covalently bound protein molecules on the free50ends.Replication proceeds bidirectionally from oriC,leaving a terminal single-stranded gap on the discontinuous strand after removal of the last RNA primer.An unusual process of‘end-patching’by DNA synthesis primed from the terminal protein?lls the gap5.Studies of many streptomycetes,including most notably a close relative of the A3(2)strain,Streptomyces lividans66,estab-lished further novelties.More than a million base pairs(bp)of DNA at either end of the chromosomes can undergo extensive deletions and ampli?cations without compromising viability under labora-tory conditions6,and early comparisons of linkage maps established that most streptomycetes show conservation of gene order(synteny) in the core region7.Here,we report the use of an ordered cosmid library8to sequence the S.coelicolor genome.The strain used,M145, is a prototrophic derivative of strain A3(2)lacking its two plasmids (SCP1,linear,365kb,AL590463,AL590464;and SCP2,circular, 31kb,AL645771,which have been sequenced separately). Genome structure

General features of the chromosome sequence are shown in Table1 and Fig.1.At8,667,507bp it is the largest completely sequenced bacterial genome.The oriC and dnaA gene are about61kb left of the centre,at4,269,853–4,272,747bp.Like many other microbial genomes,there is a slight bias(55.5%)towards coding sequences on the leading strand.Although less pronounced than for most other eubacterial chromosomes,there is a discernible decrease in the GC bias around oriC,thought to be related to DNA replication9.In contrast to all other bacterial genomes studied to date,however,the Table1General features of the chromosome

Component of chromosome Property ............................................................................................................................................................................. Total size8,667,507bp Terminal inverted repeat21,653bp

GtC content72.12% Coding sequences7,825 ...of which pseudogenes55 Coding density88.9% Average gene length991bp Ribosomal RNAs6£(16S–23S–5S) Transfer RNAs63

Other stable RNAs3 .............................................................................................................................................................................

S.coelicolor chromosome displays a downward rather than an upward shift,indicating a small bias towards C on the leading strand.

Coding density is largely uniform across the chromosome,with only a slight decrease in the distal regions.The distribution of different types of genes reveals,however,a central core comprising approximately half the chromosome and a pair of chromosome arms(Fig.1).Nearly all genes likely to be unconditionally essen-tial—such as those for cell division,DNA replication,transcription, translation and amino-acid biosynthesis—are located in the core (exceptions tend to be duplicate genes).In contrast,‘contingency’loci coding for probable non-essential functions,such as secondary metabolites,hydrolytic exoenzymes,the conservons(conserved operons)and‘gas vesicle’proteins(see below),lie in the arms. Curiously,this biphasic structure of the chromosome does not align with the position of oriC.The core appears to extend from around 1.5Mb to6.4Mb,giving uneven arm lengths of approximately 1.5Mb(left arm)and2.3Mb(right arm).The difference in arm lengths may re?ect some gross rearrangement or different rates of DNA accumulation in each arm.The fact that oriC is roughly central suggests some selective pressure for such positioning. Streptomyces coelicolor and M.tuberculosis are both

actinomycetes

scale is numbered anticlockwise(to correspond with the previously published map8)in megabases and indicates the core(dark blue)and arm(light blue)regions of the chromosome.Circles1and2(from the outside in),all genes(reverse and forward strand, respectively)colour-coded by function(black,energy metabolism;red,information transfer and secondary metabolism;dark green,surface associated;cyan,degradation of large molecules;magenta,degradation of small molecules;yellow,central or intermediary metabolism;pale blue,regulators;orange,conserved hypothetical;brown,pseudogenes;division,DNA replication,transcription,translation and amino-acid biosynthesis,colour coding as for circles1and2);circle4,selected‘contingency’genes(red,secondary metabolism;pale blue,exoenzymes;dark blue,conservon;green,gas vesicle proteins); circle5,mobile elements(brown,transposases;orange,putative laterally acquired genes);circle6,GtC content;circle7,GC bias((G2C/GtC),khaki indicates values .1,purple,1).The origin of replication(Ori)and terminal protein(blue circles)are also indicated.

but have very different lifestyles.Their genomes reveal much similarity at the level of individual gene sequences,and many similar gene clusters.Global comparison showed perceptible higher-order synteny as well,shown as a dot plot in Fig.2a.A prominent feature is the central broken diagonal cross pattern formed by the regions of synteny.This broken-X pattern is com-monly seen in comparisons of related bacteria and the breaks are attributed to multiple inversions centred on oriC 10.Normally,synteny extends over the whole of the compared chromosomes;however,for the comparison between S.coelicolor and M.tubercu-losis ,the broken-X pattern correlates only with the core of the S.coelicolor chromosome.Therefore this region and the whole M.tuberculosis chromosome must have had a common ancestor,with the chromosome arms of S.coelicolor consisting of subsequently acquired DNA.The syntenic regions mainly comprise genes con-cerned with primary cellular functions.The most strongly con-served is the gene cluster coding for the subunits of respiratory chain NADH dehydrogenase (systematic gene numbers SCO4562–4575).Functions/proteins coded for by other regions of synteny include the origin of replication (SCO3873–3892),urease activity (SCO1231–1236),pyrimidine biosynthesis (SCO1472–1488),argi-nine biosynthesis (SCO1570–1580),pentose phosphate pathway/tricarboxylic acid cycle (SCO1921–1953),histidine and tryptophan biosynthesis (SCO2034–2054),cell division (SCO2077–2092)and ribosomal proteins (SCO4701–4724).

The genome of the pathogenic actinomycete Corynebacterium diphtheriae has been sequenced recently (https://www.wendangku.net/doc/7a14067912.html,/

Projects/C_diphtheriae/).Comparison with the S.coelicolor chromosome gives a similar pattern to that for M.tuberculosis ,with the regions of synteny covering the entire C.diphtheriae chromosome and just the S.coelicolor core region (Fig.2b).The syntenic regions again correspond to genes coding for primary cellular functions and several of these regions are common to all three chromosomes.Mycobacterium tuberculosis and C.diphtheriae have more extensive synteny than either has with S.coelicolor (Fig.2c),re?ecting taxonomic groupings:C.diphtheriae and M.tuber-culosis are in the suborder Corynebacterineae of the actinomycetes,whereas S.coelicolor is in the Streptomycineae.

By investigating regions of unusual DNA content and/or genes with sequence similarity to those from known mobile genetic elements,we designated 14regions as potentially recently laterally acquired insertions (See Supplementary Information).By far the largest insertion contains 148genes and is located at a transfer RNA gene 11:as well as many hypothetical genes,it includes genes for heavy metal resistance (SCO6835–6837)and secondary metabolite production (SCO6827).Six other inserted regions have plasmid function genes in common with the integrative plasmid pSAM2of Streptomyces ambofaciens 12.Four of these pSAM2-like integrants appear to have inserted within a tRNA gene,including two that are adjacent to secondary metabolic clusters (calcium-dependent anti-biotic (CDA),SCO3250–3262;whiE ,SCO5327–5350).Notably,11of the 14insertions lie to the right of oriC ,correlating with the greater variation in DNA composition in the right half of the chromosome (Fig.1).

Putative transposase genes are found throughout the chromo-some in intact,truncated and frame-shifted forms.Many are associated with the multi-gene integrations described above.For the remainder,there is a particular concentration at the sub-TIR regions,35–95kb from the ends (Fig.1).This indicates a tolerance to insertion events in these regions and thus offers a possible route for chromosome expansion.Of the 78predicted transposase coding sequences,?ve are within transposons (one of which codes for a possible antibiotic resistance protein (SCO0107)),31form simple insertion elements and the remainder are not bounded by inverted repeats.Most fall into ?ve families,suggesting a degree of intra-chromosomal transposition.Such events offer a route for gene duplication.Two of the insertion elements mark the inner bound-aries of the TIRs,suggesting a possible role in their maintenance.

A plethora of proteins

With 7,825predicted genes,the S.coelicolor chromosome has an enormous coding potential.This ?gure compares with 4,289genes in the Gram-negative bacterium Escherichia coli ;4,099in the Gram-positive spore-former Bacillus subtilis ;6,203in the lower eukaryote Saccharomyces cerevisiae ;and a predicted 31,780in humans (https://www.wendangku.net/doc/7a14067912.html,/genomes/).The genome contains almost twice as many genes as that of M.tuberculosis .This large number of genes re?ects both a multiplicity of new protein families and an expansion within known families when compared with other bacteria (further information is available at https://www.wendangku.net/doc/7a14067912.html,/Projects/S_coe-licolor/).Many protein families that are signi?cantly expanded in S.coelicolor are involved in regulation,transport and degradation of extracellular nutrients (Table 2).

The genome shows a strong emphasis on regulation,with 965proteins (12.3%)predicted to have regulatory function.Discovery of so many regulators extends the observation that the proportion of regulatory genes increases with bacterial genome size 13.There is a clear preference for certain regulator groups.Sigma factors act by binding to and affecting the promoter speci?city of the RNA polymerase core enzyme,thus directing the selective transcription of gene sets.Streptomyces coelicolor codes for a remarkable 65sigma factors (the next highest number so far found is 23in Mesorhizo-bium loti ,with a genome size of 7.6Mb 14),of which 45are ‘ECF’(extra-cytoplasmic function)sigma factors (41from family

13

Figure 2Comparison of chromosome structure for S.coelicolor versus M.tuberculosis (a ),S.coelicolor versus C.diphtheriae (b )and M.tuberculosis versus C.diphtheriae (c ).Axes represent the proteins coded for in the order in which they occur on the

chromosomes.For each genome,DnaA is centrally located.Dots represent a reciprocal best match (by FASTA comparison 50)between protein sets.The bars above plots a and b indicate the core (solid,SCO1440–5869)and arm (hatched)regions of the S.coelicolor chromosome.

alone;Table2).Previously described ECF sigma factors(in S. coelicolor)respond to external stimuli and activate genes involved in disulphide stress,cell-wall homeostasis and aerial mycelium development15.Most of the other sigma factors fall into a single group(family54,Table2).Within this is a sub-group peculiar to Gram-positive bacteria,most of which have a single member; however,B.subtilis has three,controlling forespore development and the general stress response,and S.coelicolor has at least eight, many of them involved in responses to various stresses16.The numerous potentially stress-responsive sigma factors may account for the independent regulation of diverse stress response regulons in S.coelicolor17.Although widely distributed among bacteria,the atypical,enhancer-dependent sigma-54and its cognate activators18 are absent.

Streptomyces coelicolor also has abundant two-component regu-latory systems where typically,in response to an extracellular stimulus,an integral membrane sensor protein phosphorylates a response regulator,causing it to bind to speci?c promoter regions and thus activate or repress transcription.We identi?ed85sensor kinases and79response regulators,including53sensor–regulator pairs.The genome also codes for many members of previously described regulator families such as LysR,LacI,ROK,GntR,TetR, IclR,AraC,AsnC and MerR.The TetR family regulators in S. coelicolor form several subfamilies,often containing few or no members from the other genomes analysed.Furthermore,there is a group(family86,Table2)of25putative DNA-binding proteins that has no members from outside S.coelicolor and may constitute a new Streptomyces-speci?c family of regulators.Also notable is the presence of44putative serine/threonine protein kinases(family6.1, Table2).Examples of these typically eukaryotic regulators are now known to occur in many bacteria,but in much smaller numbers. Re?ecting its many interactions with the complex soil environ-ment,S.coelicolor has614proteins(7.8%)with predicted transport function.A large proportion of these are of the ABC transporter type,including81typical ABC permeases and141ATP-binding proteins(24of which are fused to membrane-spanning domains).Transporters for which the substrate is predictable include those for sugars,amino acids,peptides,metals and other ions.There are also several possible drug ef?ux proteins.Import of speci?c substrates would in part be facilitated by the75putative surface-anchored substrate-binding proteins of S.coelicolor.

The ability of S.coelicolor to exploit nutrients in the soil is abundantly demonstrated by our prediction of819potentially secreted proteins(10.5%).Secreted hydrolases are particularly numerous(for example,family7(Table2),which is over-rep-resented in S.coelicolor).They include60proteases/peptidases,13 chitinases/chitosanases,eight cellulases/endoglucanases,three amy-lases and two pectate lyases.As well as the complete Sec protein translocation system,S.coelicolor seems to contain the machinery and cognate signal sequences for the recently discovered TAT(twin arginine transport)system for exporting pre-folded proteins19(T. Palmer,personal communication).

A marked example of multiple paralogues in S.coelicolor is a four-gene cluster that we named the conservon(for conserved operon). In the13such clusters(cvnA,B,C,D,1-13)there is unidirectional transcription and often overlap of translational start and stop codons,suggesting an operon structure.The only other known cvn cluster is present in M.tuberculosis.The protein products form distinct and exclusive families(Table2;families178,177,214,180; CvnA,B,C and D,respectively).The?rst gene codes for a probable membrane protein weakly resembling sensor kinases,the fourth codes for a possible ATP/GTP-binding protein,and the other two are of unknown function.In four of the clusters the immediate downstream gene codes for a predicted cytochrome P-450. Paralogous enzymes may sometimes represent isozymes active at different stages in the developmental cycle.One such example is the differential activities of duplicate gene clusters for glycogen syn-thesis in the vegetative and aerial mycelium20.Here we highlight a further?ve examples of paralogues for metabolic enzymes in S. coelicolor.(1)Two gene clusters code for enzymes of the pentose phosphate pathway(SCO1935–1939and SCO6657–6663).(2)Four loci for tryptophan biosynthesis(SCO2036–2043,SCO2117,

Table2Occurrence of a selection of protein families in six related genomes

Majority description*Sco Mtu Cdi Bsu Mlo Eco ................................................................................................................................................................................................................................................................................................................................................................... ECF sigma factor(13)41(0.52)10(0.25)7(0.29)7(0.17)16(0.23)1(0.02) Sigma factor(54)14(0.17)3(0.07)2(0.08)8(0.19)3(0.04)4(0.09) Two-component sensor kinase(1.3)27(0.34)8(0.20)5(0.20)12(0.29)41(0.60)20(0.46) Two-component sensor kinase(1.15)6(0.07)00000 Two-component regulator(1.6)50(0.63)2(0.05)5(0.20)9(0.21)5(0.07)7(0.16) Two-component regulator(1.5)24(0.30)11(0.28)6(0.24)13(0.31)21(0.31)14(0.32) Serine/threonine protein kinase(6.1)44(0.56)13(0.33)5(0.20)8(0.19)14(0.20)8(0.18) Regulator(LacI)(2.4)33(0.42)1(0.02)2(0.08)12(0.29)15(0.22)13(0.30) Regulator(ROK)(36)23(0.29)3(0.07)3(0.12)3(0.07)6(0.08)7(0.16) Regulator(TetR)(112)18(0.22)1(0.02)0000 Regulator(KorSA/GntR)(2.9)10(0.12)00000 Regulator(WhiB-like)8(0.10)4(0.10)3(0.12)000 DNA-binding(86)25(0.31)00000 ABC transport(ATP-binding)(2.1.3)27(0.34)4(0.10)8(0.33)6(0.14)3(0.04)3(0.06) Transport(permease)(2.3)36(0.45)4(0.10)1(0.04)8(0.19)25(0.37)3(0.06) Transport(sugar)(2.2)36(0.45)4(0.10)1(0.04)8(0.19)26(0.38)3(0.06) Transport(substrate-binding)(1.8)35(0.44)4(0.10)1(0.04)6(0.14)24(0.35)3(0.06) Integral membrane(59)14(0.17)14(0.35)3(0.12)2(0.04)00 Membrane ATPase(42)13(0.16)12(0.30)6(0.24)4(0.09)3(0.04)1(0.02) Secreted hydrolase(7)100(1.27)19(0.48)8(0.33)21(0.51)8(0.11)9(0.20) Secreted hydrolase(7.3)17(0.21)0001(0.01)0 Secreted chitinase(7.8)5(0.06)00000 Secreted protease(191)10(0.12)3(0.07)0000 Secreted protease(7.6)8(0.10)00000 Secreted cellulase(7.4)7(0.08)1(0.02)01(0.02)00 Secreted hypothetical(17)25(0.31)11(0.28)8(0.33)13(0.31)8(0.11)9(0.20) Hypothetical(63)25(0.31)006(0.14)00 Conservon(Cvn1–4;178,177,214,180)13(0.16)1(0.02)0000 Hypothetical(204)13(0.16)00000 Hypothetical(19)12(0.15)00000 ................................................................................................................................................................................................................................................................................................................................................................... Numbers indicate absolute number of proteins from each genome in each family and the percentage of the total proteins in that genome in parentheses.Family number is indicated in parentheses in the majority description column.The hierarchical numbering system re?ects use of higher BlastP thresholds to break large complex families into discrete https://www.wendangku.net/doc/7a14067912.html,plete data are available from http:// https://www.wendangku.net/doc/7a14067912.html,/Projects/S_coelicolor/.Sco,S.coelicolor;Mtu,M.tuberculosis;Cdi,C.diphtheriae;Bsu,B.subtilis;Mlo,M.loti;Eco,E.coli.

*Groupings are based on sequence similarity,so individual families do not necessarily include all representatives of each type of protein in each genome(see Methods).

SCO2147,SCO3211–3214)include two trpC,two trpD and three trpE genes.A trpCDGE locus is within the gene cluster for pro-duction of CDA21,a peptide antibiotic that contains tryptophan(in the‘unnatural’D form).The local cluster may ensure adequate tryptophan for CDA biosynthesis at the appropriate stage in the life cycle,independently of the needs of protein synthesis.(3)Five homologues of fabH code for a dedicated ketosynthase for the?rst step in fatty acid biosynthesis(condensation of acetyl-coenzyme A (CoA)with malonyl-CoA to yield acetoacetyl-CoA).One of the?ve (SCO2388)is in the main fatty acid biosynthetic operon and is essential22.Three of the other four fabH homologues(SCO5888, 3246,1271)are in gene clusters for secondary metabolism:the red and cda clusters,and a cluster of unknown product(see below).At least the?rst two clusters determine molecules with fatty acid components,and the presence of fabH paralogues makes it highly probable that some of the steps in their biosynthesis use dedicated enzymes,rather than sharing enzymes functioning in primary metabolism23.(4)Three clusters code for a typical four-subunit respiratory nitrate reductase(SCO0216–0219,SCO4947–4950, SCO6532–6535),indicating the importance of a capacity for micro-aerobic growth in what was classically regarded as an obligate aerobe.(5)Flexibility in respiration is further indicated by a second (partial)copy of the operon coding for subunits of the respiratory chain NADH dehydrogenase(SCO4599–4608). Unexpectedly,there are two gene clusters(SCO0649–0658, SCO6499–6508)similar in sequence and gene order to an operon from Halobacterium sp.that is involved in the production of gas vesicle proteins,including the eight genes essential for this pheno-type24.Many overtly water-living bacteria use gas vesicles as?o-tation devices,but the only previous occurrence of gas vesicle genes (but not so far of the vesicles themselves)in a soil organism is in Bacillus megaterium25.The bene?t of gas vesicles to Streptomyces is unknown,but perhaps such buoyancy devices would allow spores to remain at the oxygen-rich surface during dispersal and germination in waterlogged soil.

Many genes for secondary metabolism

Chromosomal gene clusters specifying the biosynthesis of the aromatic polyketide antibiotic actinorhodin,the so-called RED complex of red oligopyrrole prodiginine antibiotics,and the non-ribosomal peptide CDA had previously been analysed26,27,as had the whiE cluster of genes coding for a type II polyketide synthase for a grey spore pigment28.The genome sequence reveals a further18 clusters that would code for enzymes characteristic of secondary metabolism(Fig.3).These include type I modular and both type I and type II iterative polyketide synthases(PKSs),chalcone synthases,non-ribosomal peptide synthetases(NRPSs),terpene cyclases,and others.The distribution of the clusters on the chromo-some seems non-random,with some preponderance in the arms, but more especially in a region near the right-hand core–arm boundary(Fig.1).Comparison with similar clusters from other organisms and the application of recently developed sequence analysis tools have,in some cases,provided insight into the probable structure of the end products determined by these genes.For example,using predictive models for substrate amino-acid recog-nition29,30,the two NRPSs coded for by SCO0492and

SCO7681–

Figure3Secondary metabolites known or predicted to be made by S.coelicolor A3(2), grouped according to their putative function.These are:antibiotics(a),siderophores(b), pigments(c),lipids(d)and other molecules(e).The chromosomal locations of the gene clusters are:actinorhodin,SCO5071–5092;prodiginines(mixture of butyl-meta-cycloheptylprodiginine(shown)and undecylprodiginine),SCO5877–5898;CDA complex (CDA1,R?OPO3H2,R0?H;CDA2,R?OPO3H2,R0?Me;CDA3b,R?OH,R0?H; CDA4b,R?OH,R0?Me),SCO3210–3249;desferrioxamines(mixture of desferrioxamine G1(shown)and desferrioxamine E),SCO2782–2785;coelichelin, SCO0489–0499;coelibactin(structure is that predicted for a late intermediate attached to the PCP domain in the last module of the coelibactin NRPS;R?H/Me,the complete structure cannot be predicted as the regiospeci?city of several methyltransferases,a cytochrome P-450and an oxidoreductase coded for by genes in the cluster cannot be deduced),SCO7681–7691;TW95a(structure is the product obtained from heterologous expression of the whiE minimal PKS and the whiE-ORFIV genes;the structure of the grey spore pigment has not been elucidated),SCO5314–5320;tetrahydroxynaphthalene (predicted product of the chalcone synthase,which may be further modi?ed by enzymes coded for by other genes in the cluster),SCO1206–1208;isorenieratene,SCO0185–0191;hopanoids(mixture of aminotrihydroxybacteriohopane(shown)and hopene), SCO6759–6771;eicosapentaenoic acid,SCO0124–0129;geosmin,SCO6073; butyrolactones(believed to be assembled by the scbA gene product),SCO6266.The structures of the remaining putative secondary metabolites are unknown.The chromosomal location of these clusters and the type of secondary metabolic enzyme(s) coded for are:SCO6429–6438,NRPS;SCO6273–6288and SCO6826-6827,

type I polyketide synthases;SCO7669–7671and SCO7222,chalcone synthases; SCO5222–5223,sesquiterpene cyclase;SCO5799–5801,siderophore synthetase; SCO1265–1273,type II fatty acid synthase;SCO0381–0401,deoxysugar synthases/ glycosyl transferases.

7683were deduced to catalyse the biosynthesis of novel side-rophores named‘coelichelin’31and‘coelibactin’(G.L.C.,unpub-lished data),respectively.A third cluster,SCO2782–2785,probably directs the biosynthesis of two further siderophores,desferrioxa-mines G1and E32.Two large open reading frames(ORFs)(SCO0126 and0127)code for multi-enzymes with a domain organization very similar to a type I iterative PKS/FAS from a Gram-negative bacterium,Shewanella sp.,that catalyses biosynthesis of eicosapen-taenoic acid33.We therefore predict a role for this cluster in polyunsaturated fatty acid biosynthesis.Similarly,the cluster SCO6759–6771has been implicated in hopanoid biosynthesis34, and SCO1206–1208in tetrahydroxynaphthalene biosynthesis35.The sesquiterpene cyclase coded for by SCO6073is probably involved in geosmin biosynthesis(B.Gust,K.Fowler,T.K.,G.L.C.and K.F.C., personal communication)and SCO0185–0191probably directs biosynthesis of the carotenoid isoreneriatine36.

Although three of the S.coelicolor clusters specify antibiotics, most of the others are probably responsible for products with different functions.For example,hopanoids may protect against water loss through the plasma membrane in the aerial mycelium34, and eicosapentaenoic acid may help to maintain membrane?uidity at low temperature.It is notable that at least three clusters probably code for siderophore biosynthesis,implying that S.coelicolor is under strong selective pressure to scavenge iron in situations of low iron availability.Thus,products of some of these clusters might accurately be labelled‘stress metabolites’,predicted to combat stresses of a physical(desiccation,low temperature),chemical (low iron)or biological(competition)nature.

Cell and developmental biology

Escherichia coli and B.subtilis multiply by binary?ssion,whereas S. coelicolor grows as a non-dividing,many-branched mycelium, mainly by tip growth,with multiple copies of the genome in each hyphal compartment.Unigenomic dispersive exospores are borne as chains on specialized,little-branched aerial hyphae that probably extend by intercalary growth37.The genome sequence provides some new insights into this complex life cycle.

Initiation of DNA replication in S.coelicolor involves an oriC-linked dnaA gene,the product of which interacts with an unusually large number(17)of DnaA boxes at the replication origin38.In addition to its initiator function,DnaA is a transcription factor in a diverse range of bacteria39.It is therefore conspicuous that42(82%) out of the51‘strong’DnaA boxes of S.coelicolor(TT(G/ A)TCCACA38)lie in non-coding DNA upstream of genes.DnaA may conceivably coordinate the replication of multiple genomes in each hyphal compartment with cell-cycle-dependent gene expression.

Our limited understanding of bacterial chromosome partitioning is based largely on studies of low copy number plasmids of Gram-negative bacteria40.The parAB gene pair on many such plasmids codes for ParA,an ATPase of unclear function,and ParB,which binds one or more parS sites near parA and parB.Many bacteria (including S.coelicolor,but not E.coli)contain parAB genes near oriC,and in some cases parS target sites have been identi?ed41.In S. coelicolor,there is a high concentration of putative parS sites surrounding oriC42,with18‘perfect’sites(GTTTCACGTGAAAC) in a515-kb segment(4,174,551–4,689,985).Unlike DnaA boxes, nearly all of the parS sites are immediately downstream of genes, perhaps indicating selection for avoidance of effects on gene expression resulting from ParB–parS binding. Streptomycetes have at least three different kinds of septa43.It is therefore surprising that genes clearly homologous to conserved ‘divisome’(cell division)genes of other bacteria are generally present only once or(in the case of ftsA)not at all.Presumably the different kinds of cell division involve dedicated accessory proteins.This contrasts with genes coding for enzymes for pepti-doglycan synthesis and metabolism:there are eight ftsI/mrdA(class 2/3transpeptidase)and?ve mrcA/mrcB(peptidoglycan synthetase) homologues.

A principal difference between S.coelicolor and unicellular rods concerns septum placement.In rods,division involves a centrally located septum,with alternative division sites close to the cell poles usually being silent.This involves the minC,D and E genes in E.coli, and the minC,D and divIVA genes of B.subtilis44.In hyphae of Streptomyces,there is no centre point,and division events are usually far from hyphal‘poles’.Consistent with this,there are no minC,minE or divIVA-like genes in S.coelicolor.On the other hand, there is a large family of perceptibly minD-like genes(which, notably,reveal distant similarity to parA).These may control the use of potential division sites at various positions(for example, polar,sub-polar,between pre-existing septa,or at branch points). Discussion

The genome sequence of S.coelicolor has revealed much about the many adaptations of this model actinomycete to life in the highly competitive soil environment.Derived from an ancestor common to other actinomycetes,the chromosome has acquired the ability to replicate in a linear form and appears to have expanded by lateral acquisition and internal duplication of DNA.Chromosome expan-sion has provided a wealth of genes,allowing the organism a more complex life cycle,adapting to a wider range of environmental conditions and exploiting a greater variety of nutrient sources.This has coincided with an increase in regulatory systems,with a particular emphasis on detection of,and response to,extracellular stimuli.The preferential incorporation(and subsequent mainten-ance)of occasionally bene?cial sequences outside the ancestral core has created chromosome arms comprised mostly of‘non-essential’functions.The abundance of previously uncharacterized metabolic enzymes,particularly those likely to be involved in the production of natural products,is a resource of enormous potential value. Understanding of such enzymes will facilitate the genetic engineer-ing of pathways to produce new compounds with potential thera-peutic activity,including much needed antimicrobials45.The incomplete genome sequence of an industrial species,S.avermiti-lis46,appears to contain a different set of gene clusters for secondary metabolism from S.coelicolor.It may be that the arm regions of different streptomycete chromosomes have been accumulated separately,and therefore contain a largely different complement of contingency genes representing a huge pool of metabolic diversity.A Methods

Genome sequencing

We sequenced the genome of S.coelicolor A2(3)from325overlapping clones.Of these,305 were cosmids8,one was the terminal plasmid pLUS221and19were selected from a set of 3,456bacterial arti?cial chromosomes mapped to the sequences of?nished cosmid contigs by end sequencing.The methods for clone growth and isolation,sonication to produce 1.4–2-kb fragments,library preparation in either M13or pUC18vectors,and sequencing were as described previously47.Most of the clones were digested with Dra I,and insert puri?ed,before the fragmentation step in order to remove cloning vector.This was not done for those clones known to contain Dra I sites,and in these cases DNA from the cloning vector was greatly over-represented in the subclone libraries.The?nished325 clones formed a contiguous sequence extending from within the left TIR to the right end of the genome.The genome sequence was completed by extending the incomplete left TIR with a7-kb consensus sequence copied from the right TIR.The sequence was assembled,?nished and annotated as described previously2,using Artemis(https://www.wendangku.net/doc/7a14067912.html,/ Software/Artemis)to collate data and facilitate annotation.Protein families were constructed,independently of annotation,by performing an‘all-against-all’Blast(NCBI Blast version2)comparison48of proteins within a database containing all predicted protein products from six genomes(Table2),then single-linkage clustering using a Blast threshold of70bits.We checked composition of families using https://www.wendangku.net/doc/7a14067912.html,plex families were resolved by raising the Blast threshold to100,150or200bits,as re?ected in the hierarchical family numbering system(for example,family2.1.3was created using a Blast threshold of150on family2.1).

Received3December2001;accepted27March2002.

1.Hodgson,D.A.Primary metabolism and its control in streptomycetes:a most unusual group of

bacteria.Adv.Microb.Physiol.42,47–238(2000).

2.Cole,S.T.et al.Deciphering the biology of Mycobacterium tuberculosis from the complete genome

sequence.Nature393,537–544(1998).

3.Cole,S.T.et al.Massive gene decay in the leprosy bacillus.Nature409,1007–1011(2001).

4.Hopwood,D.A.Forty years of genetics with Streptomyces:from in vivo through in vitro to in silico.

Microbiology145,2183–2202(1999).

5.Bao,K.&Cohen,S.N.T erminal proteins essential for the replication of linear plasmids and

chromosomes in Streptomyces.Genes Dev.15,1518–1527(2001).

6.Volff,J.N.&Altenbuchner,J.Genetic instability of the Streptomyces chromosome.Mol.Microbiol.27,

239–246(1998).

7.Friend,E.J.&Hopwood,D.A.The linkage map of Streptomyces rimosus.J.Gen.Microbiol.68,

187–197(1971).

8.Redenbach,M.et al.A set of ordered cosmids and a detailed genetic and physical map for the8Mb

Streptomyces coelicolor A3(2)chromosome.Mol.Microbiol.21,77–96(1996).

9.Lobry,J.R.Asymmetric substitution patterns in the two DNA strands of bacteria.Mol.Biol.Evol.13,

660–665(1996).

10.Eisen,J.A.,Heidelberg,J.F.,White,O.&Salzberg,S.L.Evidence for symmetric chromosomal

inversions around the replication origin in bacteria.Genome Biol.1,(Research)0011(2000).

11.Mazodier,P.,Thompson,C.&Boccard,F.The chromosomal integration site of the Streptomyces

element pSAM2overlaps a putative tRNA gene conserved among actinomycetes.Mol.Gen.Genet.

222,431–434(1990).

12.Sezonov,G.,Duche`ne,A.M.,Friedmann,A.,Gue′rineau,M.&Pernodet,J.L.Replicase,excisionase,

and integrase genes of the Streptomyces element pSAM2constitute an operon positively regulated by the pra gene.J.Bacteriol.180,3056–3061(1998).

13.Stover,C.K.et https://www.wendangku.net/doc/7a14067912.html,plete genome sequence of Pseudomonas aeruginosa PA01,an opportunistic

pathogen.Nature406,959–964(2000).

14.Kaneko,T.et https://www.wendangku.net/doc/7a14067912.html,plete genome structure of the nitrogen-?xing symbiotic bacterium

Mesorhizobium loti.DNA Res.7,331–338(2000).

15.Paget,M.S.B.,Hong,H.-J.,Bibb,M.J.&Buttner,M.J.in Control of Bacterial Gene Expression(eds

Hodgson,D.A.&Thomas,C.M.)105–125(Cambridge Univ.Press,Cambridge,2002).

16.Kelemen,G.H.et al.A connection between stress and development in the multicellular prokaryote

Streptomyces coelicolor A3(2).Mol.Microbiol.40,804–814(2001).

17.Vohradsky,J.et al.Developmental control of stress stimulons in Streptomyces coelicolor revealed by

statistical analyses of global gene expression patterns.J.Bacteriol.182,4979–4986(2000).

18.Buck,M.,Gallegos,M.T.,Studholme,D.J.,Guo,Y.&Gralla,J.D.The bacterial enhancer-dependent

sigma(54)(sigma(N))transcription factor.J.Bacteriol.182,4129–4136(2000).

19.Berks,B.C.,Sargent,F.&Palmer,T.The Tat protein export pathway.Mol.Microbiol.35,260–274

(2000).

20.Schneider,D.,Bruton,C.J.&Chater,K.F.Duplicated gene clusters suggest an interplay of glycogen

and trehalose metabolism during sequential stages of aerial mycelium development in Streptomyces coelicolor A3(2).Mol.Gen.Genet.263,543–553(2000).

21.Huang,J.,Lih,C.J.,Pan,K.H.&Cohen,S.N.Global analysis of growth phase responsive gene

expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarrays.Genes Dev.15,3183–3192(2001).

22.Revill,W.P.,Bibb,M.J.,Scheu,A.K.,Kieser,H.J.&Hopwood,D.A.Beta-ketoacyl acyl carrier protein

synthase III(FabH)is essential for fatty acid biosynthesis in Streptomyces coelicolor A3(2).J.Bacteriol.

183,3526–3530(2001).

23.Hopwood,D.A.Genetic contributions to understanding polyketide synthases.Chem.Rev.97,

2465–2497(1997).

24.Offner,S.,Hofacker,A.,Wanner,G.&Pfeifer,F.Eight of fourteen gvp genes are suf?cient for

formation of gas vesicles in halophilic archaea.J.Bacteriol.182,4328–4336(2000).

25.Li,N.&Cannon,M.C.Gas vesicle genes identi?ed in Bacillus megaterium and functional expression

in Escherichia coli.J.Bacteriol.180,2450–2458(1998).

26.Hopwood,D.A.,Chater,K.F.&Bibb,M.J.in Genetics and Biochemistry of Antibiotic Production(eds

Vining,L.C.&Stuttard,C.)65–102(Butterworth-Heinemann,Newton,Massachusetts,1995). 27.Chong,P.P.et al.Physical identi?cation of a chromosomal locus encoding biosynthetic genes for the

lipopeptide calcium-dependent antibiotic(CDA)of Streptomyces coelicolor A3(2).Microbiology144, 193–199(1998).

28.Davis,N.K.&Chater,K.F.Spore colour in Streptomyces coelicolor A3(2)involves the developmentally

regulated synthesis of a compound biosynthetically related to polyketide antibiotics.Mol.Microbiol.4, 1679–1691(1990).

29.Challis,G.L.,Ravel,J.&Townsend,C.A.Predictive,structure-based model of amino acid recognition

by nonribosomal peptide synthetase adenylation domains.Chem.Biol.7,211–224(2000).

30.Stachelhaus,T.,Mootz,H.D.&Marahiel,M.A.The speci?city-conferring code of adenylation

domains in nonribosomal peptide synthetases.Chem.Biol.6,493–505(1999).

31.Challis,G.L.&Ravel,J.Coelichelin,a new peptide siderophore encoded by the Streptomyces coelicolor

genome:structure prediction from the sequence of its non-ribosomal peptide synthetase.FEMS Microbiol.Lett.187,111–114(2000).

32.Imbert,M.,Bechet,M.&Blondeau,https://www.wendangku.net/doc/7a14067912.html,parison of the main siderophores produced by some

species of Streptomyces.Curr.Microbiol.31,129–133(1995).

33.Takeyama,H.,Takeda,D.,Yazawa,K.,Yamada,A.&Matsunaga,T.Expression of the eicosapentaenoic

acid synthesis gene cluster from Shewanella sp.in a transgenic marine cyanobacterium,Synechococcus sp.Microbiology143,2725–2731(1997).

34.Poralla,K.,Muth,G.&Hartner,T.Hopanoids are formed during transition from substrate to aerial

hyphae in Streptomyces coelicolor A3(2).FEMS Microbiol.Lett.189,93–95(2000).

35.Funa,N.et al.A new pathway for polyketide synthesis in microorganisms.Nature400,897–899

(1999).

36.Kru¨gel,H.,Krubasik,P.,Weber,K.,Saluz,H.P.&Sandmann,G.Functional analysis of genes from

Streptomyces griseus involved in the synthesis of isorenieratene,a carotenoid with aromatic end groups,revealed a novel type of carotenoid desaturase.Biochim.Biophys.Acta1439,57–64(1999).

37.Chater,K.F.&Losick,R.in Bacteria as Multicellular Organisms(eds Shapiro,J.A.&Dworkin,M.)

149–182(Oxford Univ.Press,New York,1997).

38.Zakrzewska-Czerwinska,J.,Jakimowicz,D.,Majka,J.,Messer,W.&Schrempf,H.Initiation of the

Streptomyces chromosome replication.Antonie Van Leeuwenhoek78,211–221(2000).

39.Messer,W.&Weigel,C.DnaA initiator—also a transcription factor.Mol.Microbiol.24,1–6(1997).

40.Bignell,C.&Thomas,C.M.The bacterial ParA-ParB partitioning proteins.J.Biotechnol.91,1–34

(2001).

41.Lin,D.C.&Grossman,A.D.Identi?cation and characterization of a bacterial chromosome

partitioning site.Cell92,675–685(1998).

42.Kim,H.J.,Calcutt,M.J.,Schmidt,F.J.&Chater,K.F.Partitioning of the linear chromosome during

sporulation of Streptomyces coelicolor A3(2)involves an oriC-linked parAB locus.J.Bacteriol.182, 1313–1320(2000).

43.Kwak,J.,Dharmatilake,A.J.,Jiang,H.&Kendrick,K.E.Differential regulation of ftsZ transcription

during septation of Streptomyces griseus.J.Bacteriol.183,5092–5101(2001).

44.Jacobs,C.&Shapiro,L.Bacterial cell division:a moveable feast.Proc.Natl https://www.wendangku.net/doc/7a14067912.html,A96,

5891–5893(1999).

45.Rodriguez,E.&McDaniel,https://www.wendangku.net/doc/7a14067912.html,binatorial biosynthesis of antimicrobials and other natural

products.Curr.Opin.Microbiol.4,526–534(2001).

46.Oˉmura,S.et al.Genome sequence of an industrial microorganism Streptomyces avermitilis:deducing

the ability of producing secondary metabolites.Proc.Natl https://www.wendangku.net/doc/7a14067912.html,A98,12215–12220(2001).

47.Harris,D.&Murphy,L.in Methods in Molecular Biology(eds Starkey,M.P.&Elaswarapu,R.)Vol.175,

217–234(Humana,T otowa,New Jersey,2001).

48.Altschul,S.F.,Gish,W.,Miller,W.,Myers,E.W.&Lipman,D.J.Basic local alignment search tool.

J.Mol.Biol.215,403–410(1990).

49.Thompson,J.D.,Higgins,D.G.&Gibson,T.J.CLUSTAL W:improving the sensitivity of progressive

multiple sequence alignment through sequence weighting,position-speci?c gap penalties and weight matrix choice.Nucleic Acids Res.22,4673–4680(1994).

50.Pearson,W.R.&Lipman,D.J.Improved tools for biological sequence comparison.Proc.Natl Acad.

https://www.wendangku.net/doc/7a14067912.html,A85,2444–2448(1988).

Supplementary Information accompanies the paper on Nature’s website

(https://www.wendangku.net/doc/7a14067912.html,).

Acknowledgements

We would like to acknowledge the support of the Wellcome Trust Sanger Institute core sequencing and informatics groups.This work was funded by the Biotechnology and Biological Sciences Research Council and by the Wellcome Trust through its Beowulf Genomics Initiative.C.W.C.and C.-H.H.were supported by the R.O.C.National Science Council and Ministry of Education.

Competing interests statement

The authors declare that they have no competing?nancial interests.

Correspondence and requests for materials should be addressed to S.D.B.

(e-mail:sdb@https://www.wendangku.net/doc/7a14067912.html,)or D.A.H.(e-mail:david.hopwood@https://www.wendangku.net/doc/7a14067912.html,).The complete sequence is deposited in GenBank/EMBL under accession number AL645882.

建筑工程模板工程施工技术

建筑工程模板工程施工技术 摘要:模板技术在建筑施工得到了广泛的推广和应用。在进行模板建筑时,要 依据建筑施工的实际情况,选择适当的模板体系,才能保证工程的质量和施工的 安全,使建筑工程的经济效益和社会效益最大化。本文首先介绍建筑工程模板工 程施工的要求,再对模板工程的施工技术要点进行简要的探究。 关键词:建筑工程;模板工程;施工技术 前言 模板施工是混凝土成型施工必不可少的环节之一,其施工目的是保证工程结 构及构件的形状及尺寸,并确保相对位置的准确性,因此要求模板首先必须具有 足够的强度及刚度,同时还要有足够的稳定性且便于安装和拆除。建筑工程模板 施工要求较多,而且比较复杂,因此要对模板施工工作引起高度的重视。 1.工程概况 某高层建筑,总建筑面积为14344M2,场地类型为三类土,建筑物框架抗震 等级为二级,剪力墙抗震等级为一级,建筑结构安全为二级。地上共七层,建筑 总高为35.00m,场地平整开阔。工程七层屋面梁(标高为28.80 米)处,①、 ⑧轴线外各有一超大雨棚,具体为:轴外雨棚大小尺寸为3200×30400mm。雨棚 由悬臂板和悬臂梁组成。悬臂梁尺寸为350×700,檐口梁为200×700,板厚100, C30 砼。 2.建筑工程模板工程施工技术要点 2.1模式工程施工基本技术要求 在建筑工程施工中,必须保证混凝土结构的工程质量以及施工安全,为了降 低工程的成本,以及缩短施工进度,在模板工程施工中,必须满足四点技术要求(1)模板施工中必须充分保障混凝土的结构以及其他构件的尺寸和位置, 也就是说模板的位置尺寸必须满足图纸设计要求; (2)模板必须具备一定强度和稳定度,能够承受混凝土的重量以及侧向的 压力,而且在施工过程中,避免模板所承受的压力处于极限状态之下; (3)模板的构造尽可能简单,便于装拆,并符合混凝土浇筑和养护等要求; (4)模板的连接必须紧密,在接缝处必须采取加密措施,如果出现接缝不 严密,必须及时采取措施,保证接缝处不出现漏浆等现象。 2.2模板配置技术 模板的配置必须根据图纸的尺寸,对于结构形体相对简单的构件,其模板配 可直接根据施工图纸来配置。对于模板、横档及楞木的断面以及它们之间的间距、支撑系统的配置,可查表或者按规范进行选择。而对于结构比较复杂的构件,比 如楼梯等,配置模板通常采取放大洋的方法。所谓放大样,指的是根据结构图纸,在地面上画出结构构件的实体形状,然后测量出各个部分模板的准确尺寸,然后 制定模板。 2.3模板施工技术 一般而言,建筑工程模板施工工序为:垫层模板→基础梁模板→构造柱模板 →柱模板一墙板模板→圈梁模板→梁模板→楼板模板→楼梯模板。 2.3.1垫层模板 对于垫层模板而言,其基础的高度不高,但是体积很大,安装模板前必须准 确核实基础的中心线以及标高,事先弹出轴线和四周边线,根据边线尺寸将侧面 模板对准,并且在校正模板垂直度以及标高之后,用支撑将模板固定,用以维持

建筑工程模板安装专项施工方案2016版

目录 一、编制依据............................................................. 错误!未定义书签。 二、工程概况............................................................. 错误!未定义书签。 三、施工部署............................................................. 错误!未定义书签。 四、施工准备............................................................. 错误!未定义书签。 五、进度计划............................................................. 错误!未定义书签。 六、施工工艺............................................................. 错误!未定义书签。 七、质量标准............................................................. 错误!未定义书签。 八、成品保护............................................................. 错误!未定义书签。 九、应注意的质量问题 ............................................ 错误!未定义书签。 十、安全注意事项 .................................................... 错误!未定义书签。十一、附图 ............................................................... 错误!未定义书签。

建筑安装工程承包合同(2)模板

建筑安装工程承包合同(2) 合同编号 发包方: 承包方: 根据《中华人民共和国经济合同法》和《建筑安装工程承包合同条例》及有关规定,结合本工程的具体情况,经双方协商一致,签订本合同,以资共同遵守。 第一条工程概况 1?工程名称: .工程地点: ?工程计划批准单位及文号: .工程范围和内容:全部工程建筑面积平方米。(各单项工程详见工程项目一览表) 第二条工程期限

2.本工程开工日期 日。 3 ?如遇下列情况,经发包方现场监理工程师或工程师代表签证后,工期作相 应顺延,并用书面形式确定顺延期限。 道路、施工用水,或电源未按规定接通,影响承包方进场施工者。 (2) 明确由发包方负责供应的材料、设备、成品或半成品等未能按双方认定 的时间进场,或进场的材料、设备、成品或半成品等向承包方交验时发现有缺陷, 需要修配、改、代、换而耽误施工进度者。 (3) 不属包干系数范围内的重大设计变更;提供的工程地质资料不准,使基 础超深;施工方法与设计规定不符而增加工程量影响进度者。 (4) 在施工中因停水、停电连续影响8小时以上者。 (5) 发包方现场监理工程师或工程师代表无故拖延办理签证手续而影响下一 工序施工者。 1.本工程合同总工期为 天(日历天从开工之日算起)。 日,竣工日期 (1) 发包方在合同规定开工日期前 天,不能交承包方施工场地、进场

(6)未按合同规定拨付预付款、工程进度款、代购材料价差款而影响施工进度者。 (7)因遇人力不可抗拒的自然灾害(如台风、水灾、自然原因发生的火灾、地震等)而影响工程进度者。 第三条工程合同总价 1 .本工程合同总价为人民币丿元0 2 .如遇下列情况,合同总价作相应调整: (1)合同总价内经双方确认的暂估价变化; (2)在合同工期内政策性调整所发生的材料差价、工资、费率及其它费用的变化; (3)重大设计发生变更; (4)基础超过设计深度; (5)在施工中新增加了工程项目; (6)其它。

建筑工程施工模板工程

建筑工程施工模板工程 承包合同 甲方: 乙方: 遵照《中华人民共和国建筑法》、《中华人民共和国合同法》和《中华人民共和国建筑安装工程承包合同条例》有关规定,结合本工程项目实际情况,明确甲、乙双方责任与权力、义务,确保工程安全、质量进度、文明施工等达到现行规范标准要求,经双方友好协商,拟定以下合同条款,在完全自愿和理解本合同条款的情况下,双方签订本合同及《安全生产责任书》,并共同遵守履约。 一、工程名称: 二、工程地点: 三、承包方式:模板包工含辅料及工具,不包料 四、承包内容 1、施工图纸上及《会议纪要》上木模板施工项目,设计院所有图纸修改项目。 2、柱、梁拉结筋、木模钻孔,装修时窗压顶、构造柱、飘窗板、门窗过梁、卫生间、厨房的反梁等零星模板项目。 3、负责建筑物放样、框承台柱位、钉龙门架、弹线工作。 4、模板安装、守护、拆除。

5、拆除模时掉落的碎木、渣料等杂物的清理。 6、模板的清理,刷脱模剂,施工现场内材料转运及多次转运。 7、施工须用的钉子、铁丝、板接缝处用的粘胶带及双面胶。 8、楼层放样施工员负责两条主轴线(十字线),余下的细样放线由包工班组负责。 9、与相关班组的协调配合工作。 10、不同标号砼分段浇筑的隔离处理,包括后浇带钢丝网架支护。 11、楼层模板组工作产生的建渣清理。 12、电焊定位桩,布料机承重加固。 13、成型后砼模板接缝高差、接缝漏浆的清理打磨,超出规范要求的成品砼凿打以及拉杆套管凸出墙面部份清除。 14、地下室内外墙螺栓切割、后浇带砼渣清理及二次安装后浇带模板。 15、地下室模板拆模后要运到地面,主体结构模板封顶后材料退回地面。 五、人员管理 1、乙方人员由乙方负责管理教育,并配备专人管理(治安消防管理人员名单上报项目部质安办公室),甲方有权监督检查所有进场施工人员,乙方不得擅自抽调人员离开工作岗位。乙方服从项目部的统一指挥、安排,做到安全文明施工,严格遵守项目部的各项规章制度,如因人为及工程质量、安全等方面因素受到有关部门处罚、媒体报道,对公司形象造成负面影响的,乙方将负责挽回影响及赔偿经济损失。 2、本工程在施工阶段乙方人员必须保证能满足工程进度需要,在30 人以上,管理人员在 2 以上,必须设一人专门负责安全生产、文明施工管

建筑工程模板安装合同范例

建筑工程模板安装合同范例 各省、自治区住房城乡建设厅、工商行政管理局,直辖市建委(建交委)、工商行政管理局,新疆生产建设兵团建设局,国务院有关部门建设司,有关中央企业:为规范建筑市场秩序,维护建设工程施工合同当事人的合法权益,住房城乡建设部、工商总局对《建设工程施工合同(示范文本)》。 热门城市:汉中律师佛山律师开封律师丹东律师信阳律师亳州律师广安律师聊城律师巴彦淖尔律师 模板安装工程施工合同中包含了工程概况、承包方式、承包单价及承包内容、施工工期,工程质量等级及评定等信息,规范了双方的权利和义务促进工程安全生产,文明施工。是施工中的必要合同,下面是小编整理的一份建筑工程模板安装合同范例。 建筑工程模板安装合同范例 合同编号:春城项第号

发包方:(以下简称甲方) 承包方:(以下简称乙方) 甲方承建的“ ”工程的施工项目,今由乙方承包负责该项目的所有模板安装工程施工。为了明确甲、乙双方的职责与义务,确保工程按期按质完成施工,经双方友好协商,达成如下协议,望共同遵守。 第一条:工程概况 1、工程名称: 工程地点: 第二条:承包方式 本工程模板制作安装工程的承包方式为:包工包机械包料。即由乙方提供安装一切材料,包括模板、骨料、支撑及辅助材料等;提供一切施工机具,并负责模板工程的制作、安装、拆除、清理全过程的工作。负责钢筋预留孔洞(含拉结筋植筋,植筋经有资质单位检测合格)的钻洞。 第三条:承包单价及承包内容 一、承包单价

1、乙方所承包的施工内容,按模板与混凝土的接触面积计算,模板安装及钢管支撑包工包料的单价为元/m2;工程量以施工图纸(包括设计变更、增减项目)作为计算基准;该单价为质量达到优良的价格。 2、该单价为一次性包干价,乙方不得以任何理由或借口,要求增加其它费用。 二、承包内容 1、乙方的承包范围:的所有模板施工项目。还包括线条、栏板、压顶、过梁、构造柱、水箱、化粪池、室外围墙、花池、踏步台阶及设计变更增加的构件等零星构件的模板安装工程。 2、乙方承包单价内容包括:负责模板工程的加工制作安装等全过程施工工作;所有材料垂直和水平人工搬运费、垂直和水平运输的机械、模板制作的施工机械及辅助材料由乙方自行提供,费用自理。 3、乙方承包单价内容包括:负责钢筋预留孔洞(含拉结筋)的钻洞,若乙方不预留孔洞,由此增加的植筋人工费、植筋所用的胶水费、植筋的拉拨试验费等三项费用的一半由乙方负责,该费用在工程结算时一次性扣除。 4、乙方承包单价内容包括:模板制作安装所用的辅助材料,包括螺栓、螺帽、垫片、PVC套管及塑料垫片、铁钉、蝴蝶卡、

建筑工程模板施工方案及其计算

建筑工程模板施工方案及其计算 山东省烟台市牟平区房产管理处,于红雁,264100 【摘要】:模板工程是建筑工程的重要环节,对于保证建筑工程结构的稳定性具有重要的意义,因此,分析和研究建筑工程模板施工及其力学计算具有非常实际的作用。本文主要从三个方面对课题展开了分析,首先分析了建筑工程各类模板工程施工,对梁模板、柱模板、楼板模板以及强模板四种类型施工及其要求分别进行了探讨,随后对混凝土浇筑及模板拆除两个环节进行了细致的讨论,最后对模板工程的三个参量进行了力学计算。整体内容结构性较强,对于实际模板工程具有一定的参考。 【关键词】:建筑工程,模板工程,力学计算,施工方案 中图分类号:TU97文献标识码:A文章编号: 1引言 随着社会发展的要求,建筑工程建设的速度和规模越来越大,如何通过有效的施工保证工程质量,对于社会发展具有重要的意义。无论建筑规模多小的工程,在建设过程中都是一个复杂的系统,包含了多个环节和步骤,而模板施工就是其中非常重要的组成部分。在建筑工程,特别是高层楼房式建筑工程中,模板对于保证结构的稳定性意义重大。当前建筑工程一般都是混凝土浇筑工程,建筑结构的成型就是依赖于模板完成的。在实际的工程建设中,模板工程本身就包含很多类型,例如梁模板工程、柱模板工程等,不同的模板工程类型无论是施工的步骤还是施工的要求也都不同。本文将对建筑工程中各种模板工程的施工步骤以及施工要求进行分析,同时对模板的受力计算问题展开讨论,通过文章的分析对实际的建筑模板工程带来参考。 2建筑工程各类模板工程施工 在实际的建筑工程中,模板工程根据施工的部位可以进行详细分类,在大型建筑工程中,模板工程包含梁模板、柱模板、楼板模板以及强模板四种,其施工流程以及施工要求如下分析。 2.1梁模板工程施工 梁结构是整体楼房结构的框架基础,其模板工程施工重要性很强。其施工流程一般较为固定,包括以下过程:抄平、弹线(轴线、水平线)→支撑架搭设→支柱头模板→铺设底模板→拉线找平→封侧模→预检。在施工过程中其轴线及标高的控制线非常严格,一般都是按照主控制线为标准进行施工。梁模板的支撑结构非常重要,一般采用扣件式满堂钢管脚手架进行支撑,立杆的纵横向间距按照施工要求进行控制,立杆须设置纵横双向扫地杆,扫地杆与楼地面根据两高进行控制。立杆全高范围内设置纵横双向水平杆,水平杆的步距(上下水平杆间距)一般不大于1500mm,立杆顶端必须设置纵横双向水平杆。在梁底小横杆和立杆交接处立杆加设保险扣。 2.2柱模板施工 相比其他结构模板,柱模板工程施工较为简单,其施工流程为:安装前检查模板安装→

建筑工程模板施工方案

x x房产x x住宅项目 二区工程 模 板 施 工 编制人: 审核人: 审批人: xx建筑工程有限公司 二O一三年四月

模板支撑施工方案 一、概述 本工程北1、2、3、4主楼为框架剪力墙结构;1# 2#4#主楼均为9层,地下一层;3#楼为6层。建筑总面积40568.68平米,其中地上27296.68平米,地下一层13212平米;建筑结构使用年限为50年,建筑耐火等级按一级设计,抗震设防烈度6度,地下室防水等级按底板2级,顶板1级设计,设计抗渗等级为P6;该项目设计±0.000标高为黄海高程145. 700。 二、结构施工分析 (一)承载受力体系 1、梁板荷传力线路:上部荷载→模板→木楞、钢楞→钢管排架→结构。 2、墙柱荷载传力线路混凝土侧压力→模板→钢管对拉螺栓 (二)支撑结构构件连接 1、九夹板与木楞采用铁钉固定 2、钢管之间、钢管与木楞之间采用模板工程中的各连接件连接。 (三)支撑满堂架搭设:架体搭设步距为1.6m,横距为1.00m,纵为1.5m,底下设扫地杆,扫地杆设置为隔一步设一道,梁底沿梁方向满设。斜撑沿房子短边方向3m~~5m设置一道。 (四)需要材料 1、楼板模板、梁、柱均采用九夹板; 2、支撑材料采用Ф48×3.5mm钢管,钢管无锈蚀、弯曲、压扁或裂纹等现象。钢管应有产品质量合格证及钢管材质检验报告。各杆件的联接采用扣件,扣件的种类有直角、对接和回旋三种。使用的扣件应有出厂合格证及材质检验报告,不得使用脆裂、变形或滑丝的扣件。扣件规格型号与钢筋相匹配。脚手架的各种杆件、扣件、与螺栓均需经过筛选、除锈、上油、保养。脚手管及扣件必须有出厂合格证及检验报告。铜管、扣件必须按批次、数量送检,经检验不合格的

建筑工程模板工程施工技术

建筑工程模板工程施工技术 发表时间:2015-12-21T11:21:53.353Z 来源:《基层建设》2015年13期供稿作者:陈新文 [导读] 新疆新伟建筑工程有限公司应根据建筑施工的实际情况,选择相对应的模板体系,以提高工作效率,保证模板工程的施工质量、安全。 陈新文 新疆新伟建筑工程有限公司 832000 摘要:模板技术在建筑施工得到了广泛的推广和应用。在进行模板建筑时,要依据建筑施工的实际情况,选择适当的模板体系,才能保证工程的质量和施工的安全,使建筑工程的经济效益和社会效益最大化。本文首先介绍建筑工程模板工程施工的要求,再对模板工程的施工技术要点进行简要的探究。 关键词:建筑工程;模板工程;施工技术 前言 模板施工是混凝土成型施工必不可少的环节之一,其施工目的是保证工程结构及构件的形状及尺寸,并确保相对位置的准确性,因此要求模板首先必须具有足够的强度及刚度,同时还要有足够的稳定性且便于安装和拆除。建筑工程模板施工要求较多,而且比较复杂,因此要对模板施工工作引起高度的重视。 1.工程概况 某高层建筑,总建筑面积为14344M2,场地类型为三类土,建筑物框架抗震等级为二级,剪力墙抗震等级为一级,建筑结构安全为二级。地上共七层,建筑总高为35.00m,场地平整开阔。工程七层屋面梁(标高为28.80 米)处,①、⑧轴线外各有一超大雨棚,具体为:轴外雨棚大小尺寸为3200×30400mm。雨棚由悬臂板和悬臂梁组成。悬臂梁尺寸为350×700,檐口梁为200×700,板厚100,C30 砼。 2.建筑工程模板工程施工技术要点 2.1模式工程施工基本技术要求 在建筑工程施工中,必须保证混凝土结构的工程质量以及施工安全,为了降低工程的成本,以及缩短施工进度,在模板工程施工中,必须满足四点技术要求 (1)模板施工中必须充分保障混凝土的结构以及其他构件的尺寸和位置,也就是说模板的位置尺寸必须满足图纸设计要求; (2)模板必须具备一定强度和稳定度,能够承受混凝土的重量以及侧向的压力,而且在施工过程中,避免模板所承受的压力处于极限状态之下; (3)模板的构造尽可能简单,便于装拆,并符合混凝土浇筑和养护等要求; (4)模板的连接必须紧密,在接缝处必须采取加密措施,如果出现接缝不严密,必须及时采取措施,保证接缝处不出现漏浆等现象。 2.2模板配置技术 模板的配置必须根据图纸的尺寸,对于结构形体相对简单的构件,其模板配可直接根据施工图纸来配置。对于模板、横档及楞木的断面以及它们之间的间距、支撑系统的配置,可查表或者按规范进行选择。而对于结构比较复杂的构件,比如楼梯等,配置模板通常采取放大洋的方法。所谓放大样,指的是根据结构图纸,在地面上画出结构构件的实体形状,然后测量出各个部分模板的准确尺寸,然后制定模板。 2.3模板施工技术 一般而言,建筑工程模板施工工序为:垫层模板→基础梁模板→构造柱模板→柱模板一墙板模板→圈梁模板→梁模板→楼板模板→楼梯模板。 2.3.1垫层模板 对于垫层模板而言,其基础的高度不高,但是体积很大,安装模板前必须准确核实基础的中心线以及标高,事先弹出轴线和四周边线,根据边线尺寸将侧面模板对准,并且在校正模板垂直度以及标高之后,用支撑将模板固定,用以维持模板的稳定度。 2.3.2基础梁模板 对于基础梁模板而言,基础梁底的土方经过压实后,采用砖砌胎模,并配置1:3 水泥砂浆,以利砼浇捣。一般而言,基础梁的跨度较大并且梁宽较小时,其外侧模板只需要拼装即可,但是必须要在垫层上弹出梁两侧边线,确保标高尺寸正确后,利用支撑稳固。 2.3.3构造柱模板 (1)外墙构造柱。根据图纸中构造柱尺寸加上砖马牙槎每边60mm制作好模板,按垂直高度每隔400~500间距在墙上穿φ12螺栓,将配好的模板安装在构造柱部位,其中一边下部留150~200cm清垃圾孔。模板帖墙处用海绵粘贴,以防漏浆。在螺栓上安放夹木与构造柱联接,用铅垂校直,拧紧螺栓。 (2)内墙构造柱。内墙构造柱支模方法与外墙基本相同,区别是螺栓改为楞木作箍,在构造柱两边砌砖时留的孔洞中穿过楞木,用楞木组成柱箍。其它按外墙构造柱施工方法进行施工。 2.3.4柱模板 在柱模板施工中,由于柱的尺寸较小,但是高度较高,所以在安装模板前,必须弹出交叉纵横线以及边线,由两边与柱断面长边一样的板,加两块柱断面短边尺寸的板,拼装成组合定型模板。钉柱模时两块板相互接触处应加海绵条,以防漏浆。柱模底部应开有清理模板内杂物的清除口,模板外面加设柱箍箍牢,柱箍间距45cm。柱模板安装时,先搭设好井字形钢管架,井字形钢管架横管与柱模外边必须预留空间,距离以50mm为宜。 2.3.5墙体模板 对墙体模板而言,一般采用两侧模板进行拼装。具体施工步骤如下:首先由基层中心线找出两侧墙体边线,然后将侧模对准找出的边线,并校正侧模板垂直度和标高无误后,用斜撑和支撑钉牢稳固,根据长、高尺寸确定间距加固穿心螺杆,搭设钢管夹板架,沿墙体两侧模板外留50mm 左右空隙。用锤球校正墙体模板垂直,用木楔上下塞紧,再用斜撑钉牢固固定,上口加设水平拉子固定.用钢管桁架夹紧

建设工程安装合同模板

合同编号: 建设工程安装合同 签订地点: 签订时间:年月日 发包人(以下简称甲方): 法定代表人(负责人): 住所: 承包人(以下简称乙方):

法定代表人(负责人): 住所: 资质等级: 依照《中华人民国合同法》、《中华人民国建筑法》及其他有关法律、法规,经双方协商一致,订立本合同。 1 定义 1.1 发包人:指具有工程发包主体资格和支付工程价款能力的当事人以及取得该当事人资格的合法继承人。 1.2 承包人:指被发包人接受的具有工程施工承包主体资格的当事人以及取得该当事人资格的合法继承人。 1.3 设计单位:指发包人委托的负责本工程设计并取得相应工程设计资质等级证书的单位。 1.4 工程师:指本工程监理单位委派的总监理工程师或发包人指定的履行本合同的代表。 1.5 项目经理:指承包人在指定的负责施工管理和合同履行的代表。 1.6 工程:指发包人承包人在合同中约定的承包围的工程。 1.7 合同价款:指发包人承包人在合同中约定,发包人用以支付承包人按照约定完成承包围全部工程并承担质量保修责任的款项。

1.8 工程期限:指发包人承包人按总日历天数(包括法定节假日)计算的承包天数。 1.9 开工日期:指在合同中约定的,承包人开始施工的绝对或相对的日期。 1.10 竣工日期:指在合同中约定,承包人完成承包围工程的绝对或相对的日期。 1.11 图纸:指由发包人提供或由承包人提供并经发包人批准,满足承包人施工需要的所有图纸(包括配套说明和有关资料)。 1.12 施工场地:指由发包人提供的用于工程施工的场所以及发包人在图纸中具体指定的供施工使用的任何其他场所。 1.13 书面形式:指合同书、信件和数据电文(包括电报、电传、传真、电子数据交换和电子)等可以有形地表现所载容的形式。 1.14 违约责任:指合同一方不履行合同义务或履行合同义务不符合约定所应承担的责任。 1.15 小时或天:本合同中规定按小时计算时间的,从事件有效开始时计算(不扣除休息时间);规定按天计算时间的,开始当天不计入,从次日开始计算。时限的最后一天是法定节假日或者其他公休假日的,以节假日次日为时限的最后一天,但竣工日期除外。时限的最后一天的截止时间为该日24时。

工程合同模板:建筑安装工程承包合同模板电子版

工程合同模板:建筑安装工程承包合同模板电子版 ——文章均为WORD文档,下载后可直接编辑使用亦可打印—— ★以下是为大家整理的建筑安装工程承包合同模板文章,供大家参考![小编提示]更多合同范本请点击以下链接: 租房合同|劳动合同|租赁合同|劳务合同|用工合同|购销合同|装修合同 建设单位(甲方):________________________________ 地址:____________ 邮码____________ 电话____________ 法定代表人:____________ 职务____________ 安装承包单位(乙方):____________________________ 地址:____________ 邮码____________ 电话____________ 法定代表人:____________ 职务____________

为明确甲乙双方在施工过程中的权利义务,促使双方互相创造条件,搞好配合协作,按时保质保量地完成工程任务,经甲乙双方充分协商,特签订本合同,以便共同遵守。 第一条总则 一、工程名称: 二、国家有关单位对工程的批准投资计划、工程项目表、申请建筑许可执照、计划任务书,初步设计、总概算等文件号。 三、工程编号: 四、工程地点: 五、工程范围:本合同全部工程建筑安装面积共计________平方米(各单项工程建筑安装面积详见工程项目一览表)。 六、工程造价:本合同全部工程施工图预算造价为人民币________元(各单项工程造价详见工程项目一览表)。

第二条在组织施工过程中,如遇下列情况,得顺延工期,双方应及时进行协商,并通过书面形式确定顺延期限: 一、因天灾或人力不能抗拒的原因被迫停工者; 二、因甲方提出变更计划或变更施工图而不能继续施工者; 三、因甲方不能按期供图、供料、供设备或其所供材料以及设备不合规格要求,被迫停工或不能顺利施工者。 第三条施工准备 一、甲方在开工前应办妥征地拆迁;申请领取建筑执照;清除施工场地范围内影响施工的原有管线、树木等障碍物;解决施工用地(包括材料、构件的堆放和中转场地,搭建大型临时设施用地);解决施工用水源、电源和运输道路的畅通;应于____年____月____日向乙方提供所有工程设计图纸____ 份;组织设计、施工单位进行工程设计交底。 二、乙方在开工前应组织有关人员研究和熟悉图纸,参与设计交底;编好施工图预算;负责编制施工组织设计或施工方案;进行施工场地的平整,施工界区内的用水、用电、道路以及搭建施工临时设施,安

建筑工程模板安装专项施工方案(2016版)

目录 一、编制依据 (1) 二、工程概况 (1) 三、基础部分模板 (8) 四、各构件的支模方案 (12) 五、施工计划 (21) 六、模板拆除 (23) 七、成品保护 (23) 八、质量标准 (24) 九、质量保证措施 (26) 十、环境、职业健康安全管理措施 (27) 十一、模板支撑体系计算书 (28)

模板工程施工方案 一、编制依据 1、《建筑施工模板安全技术规范》JGJ162-2008 2、《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 3、《建筑施工安全检查标准》JGJ59-2011 4、《混凝土结构工程施工质量验收规范〉GB50204-2002(2011版) 5、《建筑施工高处作业安全技术规范》JGJ80-91 6、《建筑施工安全技术统一规范》GB50870-2013 7、《建筑施工手册》(第五版)(中国建筑工业出版社) 8、广东建筑艺术设计院有限公司《神州·南都二期工程》施工图纸 9、PKPM施工计算软件 二、工程概况 神州·南都二期工程,位于绵阳市经济技术开发区,距市中心2公里,东依三江,西临绵州大道,整个地块较为平坦,地势高差变化不大;区域交通便利,周围配套设施完善,是宜人、宜居的极佳位置。本工程由3栋高层纯住宅,3栋高层商住楼以及一层地下室组成,无人防,总建筑面积约17.8万m2。本工程等级为一级,场地类别Ⅱ类,建筑抗震设防类别为丙类,建筑结构的安全等级为二级,抗震等级为二级,建筑物耐火等级为一级,防水等级为一级,防雷级别为二类,屋面防水等级Ⅰ级。 地下室部分:框架结构,纯地下室部分采用独立基础和条形基础加地下室底板,建筑面积27358.35m2,层高3.9m/5.4m,防水混凝土抗渗等级为P6。 10号楼:两个单元高层纯住宅(C户型),剪力墙结构,筏板基础,建筑总高度90.25m,地下1层地上30层,层高为地上3m地下5.4m,建筑面积24443.83m2。 11号楼:两个单元高层纯住宅(B户型),剪力墙结构,筏板基础,建筑总高度90.25m,

建筑模板工程的施工及验收

建筑模板工程的施工及验收 建筑模板工程的施工及验收 1.施工前的准备工作 (1)安装前,要做好建筑模板的定位基准工作,其工作步骤是: 1)进行中心线和位置的放线:首先引测建筑的边柱或墙轴线,并以该轴线为起点,引出每条轴线。 建筑模板放线时,根据施工图用墨线弹出建筑模板的内边线和中心线,墙建筑模板要弹出建筑模板的边线和外侧控制,以便于建筑模板安装和校正。 2)做好标高量测工作:用水准仪把建筑物水平标高根据实际标高的要求,直接引测到建筑模板安装位置。 3)进行找平工作:建筑模板承垫底部应预先找平,以保证建筑模板位置正确,防止建筑模板底部漏浆。常用的找平方法是沿建筑模板边线(构件边线外侧)用1:3水泥砂浆抹找平层(图8-9a)。另外,在外墙、外柱部位,继续安装建筑模板前,要设置建筑模板承垫条带(图8-96),并校正其平直。 (a)砂浆找平层;(b)外柱外建筑模板设承垫条带 4)设置建筑模板定位基准:传统作法是,按照构件的断面尺寸先用同强度等级的细石混凝土浇筑50~00mm的导墙,作为建筑模板定位基准。 另一种作法是采用钢筋定位:墙体建筑模板可根据构件断面尺寸切割一定长度的钢筋焊成定位梯子支撑筋(钢筋端头刷防锈漆),绑(焊)在墙体两根竖筋上(图8-10a),起到支撑作用,间距1200mm左右;柱建筑模板,可在基础和柱模上口用钢筋焊成井字形套箍撑位建筑模板并固定竖向钢筋,也可在竖向钢筋靠建筑模板一侧焊一短截钢筋,以保持钢筋与建筑模板的位置(图8-10b)。 (a)墙体梯子支撑筋;(b)柱井字套箍支撑筋 1-建筑模板;2-梯形筋;3-箍筋;4-井字支撑筋 5)合模前要检查构件竖向接岔处面层混凝土是否已经凿毛。 (2)按施工需用的建筑模板及配件对其规格、数量逐项清点检查,未经修复的部件不得使用。

福建省房屋建筑工程常用模板及支撑安装推荐图集

房屋建筑工程常用模板及支撑安装推荐图集 目 录 一、地下室、基坑模板 地下室、基坑模板说明 ...................................................1 坑中坑砖胎膜示意图 (2) 承台及地梁砖胎膜砌筑示意图 (3) 集水井及电梯井模板支撑示意图 (4) 地下室外墙挂模安装大样 ................................................5 高低差模板定位预埋钢筋示意图 (6) 二、散支散拆胶合板模板 散支散拆胶合板模板施工工艺说明 ....................................7 柱模板构造示意图 .........................................................10 剪力墙模板构造示意图 ...................................................11 柱墙模板节点示意图 (12) 梁模板断面构造示意图 ...................................................13 梁模板安装效果图 .........................................................14 板模板龙骨安装示意图 ...................................................15 卫生间与楼面高低差位置挂模示意图 .................................17 楼层反梁支模示意图 (19) 三、斜屋面模板安装 斜屋面模板支撑示意图 (20) 斜屋面模板节点大样示意图 (22) 四、普通模板扣件式钢管支撑与碗口式钢管支撑 普通模板支撑施工工艺说明 (23) 普通扣件式钢管模板支撑平面图 (25) 普通扣件式钢管模板支撑立面图 .......................................26 普通扣件式钢管模板支撑剖面图 .......................................27 碗扣式钢管模板支撑示意图 .............................................28 五、高大模板扣件式钢管支撑 高大模板支撑施工工艺说明 (29)

建筑工程施工模板工程施工方案

xxx(xx)食品有限公司新建工场模板工程施工方案 编制人: 审核人: xx—xx建筑有限责任公司 2005-01-18

一、编制依据 1.由中国xx科技工程有限公司提交给xxx(xx)食品有限公司的设 计图纸; 2.工程建设标准强制性条文; 3.江苏省质量、安全规定; 4.江苏省施工技术资料管理规定; 5.本企业的管理、技术素质和机械装备情况; 6.本工程地理位置情况。 二、工程概况 1、工程名称:xxx(xx)食品有限公司新建工场 2、建设单位:xxx(xx)食品有限公司 3、设计单位:中国xx工程科技股份有限公司 4、监理单位:xx建筑工程咨询监理有限公司 5、施工单位:xx-xx建筑有限责任公司 6、建设地点:xx沿江经济开发区 7、模板工程概况:ms厂房为一、二层局部三层,层高 6.5m,Z1500*500,Z2500*600,Z3500*500,Z4300*250,KL为 400*650,办公楼为二层,层高 3.87m,柱子为500*500, KL300*770,门卫及消防水池、污水处理站底板厚度为500mm, 板墙厚度为400mm,净高分别为 4.65m、5.7m。外管架柱子为 350*350,高度4.88m,5.0m,6.5m。

三、施工准备 3.1技术准备模板施工前工程技术人员应熟悉图纸,对工人交底透彻。通过理论计算,确定模板的支撑方案。 3.2物质资源准备模板施工前必须保证材料的及时供应,本工程外管线以及厂房中部分梁柱为清水砼,故对模板的要求比较高,应选用平整度高、表面光滑、厚度一致的模板,对机械设备及时检修及购买。 3.3安全技术准备安全交底清楚,进入现场必须佩带安全帽扣好扣带,现场严禁抽烟、大小便,高空作业时必须系好扣好安全带,安全员应检查机械设备、临时用电有无安全隐患,必须作好各项安全防护措施。四、施工方法 根据设计图纸放好大样,校对尺寸,然后做好标准样板,根据标准样板划线下料,划好后拉通对角线,检查对角线长度,以保证四角方正。本工程采用厚度为2cm厚的胶合九夹板,每块模板均在标准样板上下料,加工完毕后,都必须按照设计图纸要求以及质量验收标准进行严格检查,质量不合格者应返修。 4.1柱模安装:根据楼地面弹出的柱头方盘线,四周焊接短钢筋,柱边线以内剔毛,沿线外粘好后海棉,先粘后支模,严禁边粘边支模,矩形柱子采用九夹板和二四方料木条组合模板(图一),用Φ12螺栓对拉固定模板,用短钢管制作柱箍筋,柱箍筋从混凝土面上200mm起每隔400mm 开始设置(图二)。在柱模的中间弹出中线,以检查柱的垂直度。定型模板的启口处要直、光、平,定装时要粘好海棉条后方可安装。柱模上部开设与梁模板连接的梁缺口,底部开设有清理孔,以便清除杂物,当柱子

建筑工程模板安装施工

建筑工程模板安装施工 发表时间:2018-09-11T09:22:48.440Z 来源:《建筑模拟》2018年第16期作者:秦百灵[导读] 随着中国建筑业的快速发展,建筑模板技术应运而生,并得到越来越广泛的应用。建筑模板技术不仅可以有效提高施工效率,还可以提高施工项目的质量。 身份证号:4128271964****2512 青海西宁 810000 摘要:随着中国建筑业的快速发展,建筑模板技术应运而生,并得到越来越广泛的应用。建筑模板技术不仅可以有效提高施工效率,还可以提高施工项目的质量。最重要的作用是弥补中国建筑技术的不足,加快中国建筑业的发展,取得显着成效。近年来,我国研制成功了液压自动爬模技术,并在建筑行业得到广泛应用,由此我国建筑工程模板技术跨入了一个新时代。建筑工程施工中,模板常常会大面积大规模地使用,模板安装和施工技术的质量通常会影响整个建筑结构的质量。因此,研究建设项目模板的施工过程具有重要意义。关键词:建筑工程;模板;施工;控制 1、建筑工程模板施工技术概述 模板工程的施工过程是指工程模板和支架的准备、安装、监护、移位和拆除等。其中的模板工程在装拆方式上有散装散拆、整装整拆等。装配拆卸和移位操作是模板工艺的主要部分,并以其为主导形成模板工艺的主要技术和施工特点。模板工程的标准化要求提高施工技术的保证水平和综合施工水平,这是模板施工标准化的前提和条件。模板工程的配置、安装、移位和拆卸的工艺步骤占主导地位。不同的模板支架组装和拆卸方法各有其优缺点和适用范围。在设计和施工过程中,有必要根据不同的工程对象和工程部件进行选择,并选择最佳的不断改进的支撑方法。模板施工是混凝土成型施工中不可或缺的环节之一。施工的目的是确保工程结构和部件的形状和尺寸,并确保相对位置的准确性。因此,模板必须首先具有足够的强度和刚度,具有稳定、易于安装和拆卸等优点。此外,它还需要具有表面光滑整齐、接缝紧密、无泄漏的特点。高层建筑的模板施工要求更高,更复杂,因此有必要高度重视模板的施工工作。 2、建筑工程模板安装 2.1垫层模板 ①在准备进行安装时,要先检查基础中心线和标高是不是符合标准,当侧模板垂直度和标高都符合标准之后,借助支撑和斜撑来加固,保证适当的侧压力稳定性和刚度。②做好独立基础底板砼垫层浇捣后,根据图纸做好基础放线,在混凝土垫层上弹出独立基础的外边线,接下来的模板制作及安装工作就在所弹的墨线以外进行。 2.2基础梁模板 ①夯实基础梁底土方后,用1:3水泥砂浆,采用砖砌胎模,为利于砼浇捣,每边砌粘土实心砖按承台的宽度至孔桩标高。②梁两侧边线先在垫层上弹出,梁的宽度一般不大而跨度较大,拼装后组成基础梁外侧的模板,侧模根据边线的大小,确保垂直度和标高都正确之后,借助斜撑和支撑进行加固。 2.3构造柱模板 ①外墙构造柱。外墙构造柱的模板尺寸,在墙上按垂直高度每隔400~500mm间距穿φ12螺栓,应根据图纸中构造柱加上砖马牙槎每边60mm制作,将配好的模板安装在构造柱部位,在其中一边下部留150~200cm的垃圾清除孔。为防漏浆,用海绵粘贴模板帖墙处。②内墙构造柱。内墙与外墙构造柱支模手段大体上是一致的,他们不一样的地方就是不用楞木作箍,而是使用螺栓,用楞木组成柱箍,在构造柱两边砌砖时留的孔洞中穿过楞木。其它施工采用的是外墙构造柱的施工手段。 2.4安装柱模板 ①井字形钢管架在柱模板安装时先搭设好,柱模外边与井字形钢管架横管留50mm左右空隙。在柱模上口中心线拉通线来校正中间的柱模,同在一条直线上两头的柱模应先校正,借助锤球来看是不是已经垂直,经检查如果是垂直的,再用木楔塞紧,用柱箍箍紧后用支撑钉牢固定。②柱比较高,尽管断面尺寸比较小,但是在准备进行安装时要先按弹出十字交叉线和四周边线组合定型模板。 2.5安装墙板模板 ①安装墙体模板时,选择的是两侧模板拼装的方法,先按中心线在基层上向两侧弹出墙体两侧边线,按边线尺寸垂直竖立,侧模对准边线,借助斜撑和支撑,确定侧模板垂直度和标高都正确之后将其钉牢,达到稳固。②墙体内加螺栓撑头支撑,墙体模板由侧板、横档、立板、水平撑和螺栓组成,以保证墙体的厚度。 2.6圈梁模板 ①一般除窗口及其他个别地方是架空外,因为圈梁断面小但很长的特点,均搁置在墙上。故主要由侧板和相应的卡具组成圈梁模板。 ②圈梁的支模工作还是不难完成的,支模工作在内墙面弹出统一的+50cm标高线后进行,然后根据这条线来确定圈梁高度。 2.7梁模板 ①构造上对于由主次梁的模板还有特殊要求,在两侧模板外面,应根据楼板的标高在次梁模板钉上托木,主梁与次梁交接处,需要在主梁侧板上保留缺口,并钉上衬口档,次梁和底板的侧板就钉在衬口档上。②梁模板由侧模、底模、夹木及支撑系统组成,梁的跨度较大而宽度一般不大,底模板和侧模板使用的是18mm厚胶合板,用木档拼制好,边线由在基层上弹出的梁中心线向两侧量出,根据四周边线的大小让侧模板对准边线,并垂直竖立,当侧模板垂直度和标高都符合标准之后,借助支撑和斜撑来加固,保证适当的侧压力稳定性和刚度。 2.8楼板模板的安装 水平线的标高为楼板标高减去楼板底模厚度及楞木高度,安装模板时,在主、次梁模板两侧板外侧弹出水平线,然后按水平线钉上托木,水平线与托木上皮平齐。 3、建筑工程模板拆除技术要点 3.1及时拆除模扳 ①侧模、柱模拆除时的混凝土强度应能保证其表面及棱角不受损伤。 ②模板拆除时,不应对楼层形成冲击荷载。拆除的模板和支架宜分散堆放并及时清运。

建筑工程模板工程施工方案

1.编制依据:1.编制依据 2.工程概况2.1设计概况

2.2结构平面图(详见设计图) 3.施工安排 3.1施工部位及工期要求 3.1.1本工程分为主楼和地下车库两部分,施工按后浇带划分流水段,进行流水施工。 3.1.2工期要求:本工程计划工期2010年6月13日至2012年12月30日,总工期932日历天,由于征地问题迟迟未得到解决,计划2012年8月30日结构封顶。

3.2劳动组织及职责分工 3.2.1模板工程负责人: 3.2.2根据工程特点和工期要求,模板工程中地下室墙、柱、顶板、梁模板需要投入大量的人力,安排具体管理和施工人员如下: 3.2.3模板工程施工人员在技术、生产负责人进行完详细的交底之后才能开始正式施工。模板工程负责人应提前熟悉图纸,明确各结构部位的特点和模板施工的要求,然后组织工人进行下料和拼装。木工应在专业负责人的指导下,按要求搭设模板支撑系统并支设模板,在操作过程中应注意控制各项偏差。普工则负责配合木工完成模板的加工和安装工作,其主要任务是配合木工以保证工序的连续性。 4.施工准备 4.1技术准备 4.1.1相关人员熟悉图纸及设计变更洽商,分析各结构构件的特点以确定使用模板材料和支撑系统,在此过程中注意施工难点和较特殊部位对模板支设的要求。 4.1.2编制施工方案和技术交底等技术资料,用以作为工人施工的依据和质量控制的标准。

4.1.3组织有关管理人员和劳务人员进行培训,组织各级施工人员学习有关技术规范、操作规程、工艺标准、质量验评标准及相关新技术、新材料、新工艺,并组织相应的技术培训。 4.1.4在模板设计过程中着重对梁柱接头、高柱、超高顶板等部位的考虑并制定相应技术措施。 4.2生产准备 4.2.1机具准备 施工前准备模板工程所需的各种机械并组织进场和调试以确保正常使用。主要机械列表如下: 4.2.2材料准备 4.2.2.1各种模板材料提前做计划并提交材料部门进行采购和组织进场。 4.2.2.2木方进场要对其规格、材质、外观、含水率等指标进行验收,不合格的不允许进场。 4.2.2.3多层板进场时检查出厂合格证、规格尺寸等内容,以确保与施工要求相一致。 4.2.2.4碗扣架子和钢管扣件、可调顶托、支座等及时租赁进场备用。 4.2.2.5模板、支撑、龙骨、隔离剂采购和进场安排。 模板、支撑、龙骨的需要数量见下页表,工程部提供计划,技术质量部控制质量。

相关文档
相关文档 最新文档