文档库 最新最全的文档下载
当前位置:文档库 › 汽车动力总成悬置系统位移控制设计计算方法_上官文斌

汽车动力总成悬置系统位移控制设计计算方法_上官文斌

汽车动力总成悬置系统位移控制设计计算方法_上官文斌
汽车动力总成悬置系统位移控制设计计算方法_上官文斌

2006年(第28卷)第8期

汽 车 工 程A uto m otive Eng i neer i ng

2006(V o.l 28)N o .8

2006165

汽车动力总成悬置系统位移控制设计计算方法

*

*广东省自然科学基金博士启动项目(04300111)和宁波拓普集团2005年度研发基金资助。

原稿收到日期为2005年9月15日,修改稿收到日期为2005年11月4日。

上官文斌1,3

,徐 驰1

,黄振磊1

,李 岐2

,李 涛

2

(11宁波拓普减震系统有限公司,宁波 315800; 21泛亚汽车技术中心有限公司,上海 201201;

31华南理工大学汽车工程学院,广州 510641)

[摘要] 论述了动力总成位移控制设计的一般原理。以一轿车动力总成4点悬置系统为例,针对汽车的一特殊行驶工况,对动力总成的质心位移、悬置位移和支承点反力进行了计算。文中论述的动力总成位移控制的设计思想和计算方法对汽车动力总成的设计具有指导意义。

关键词:汽车动力总成悬置系统,力位移非线性关系,位移控制

D esi gn ofM oti on Control f or A uto m oti ve Po w ertrai n M ounti ng Syste m s

Shangguan W enbin 1,3

,X u Chi 1

,Huang Zhenlei 1

,L iQ i 2

&Li Tao

2

11N i ngbo Tuopu Vibra tion Isol a tion C o .L t d.,N i ng bo 315800; 21P an Asi a T ec hn i ca lAu t omotive Cen t er Co.,L t d.,S hangha i 201201;

31C olle ge of Au to m oti ve Eng i n ee ring,Sou t h Ch i na Universit y of Tec hn ology,Guang zhou 510641

[Abstrac t ] The general pri n ciple for the desi g n o fm otion contro l for auto m otive po w ertrain m ounti n g syste m is presented .A i m i n g at a spec ific driving m ode of a car engine w ith a 4-po i n tsm oun,t the disp lace m ents of cen ter

of grav ity of po w ertrai n and the d isp lace m ents and reaction forces at mounting points are calcu lated .

K eyw ords :Auto m otive pow er t rai n m ounting syste m,N onlinear relation bet w een force and displace -m ent ,M otion control

1 前言

在汽车动力总成悬置系统振动控制设计中,以下2点为基本设计内容。(1)设计动力总成悬置系统的6阶固有频率,以避免悬置系统与汽车的其它零部件系统(如车身、悬架系统)共振;尽可能使悬置系统在6个方向的振动互不耦合(解耦),尤其是动力总成在垂直方向的振动和沿曲轴方向的扭转振动应和其它方向的振动解耦[1-8]

。(2)在汽车的各种行驶工况下(通用汽车公司规定为29种工况),动力总成质心的位移应控制在指定的范围内,悬置在各弹性主轴方向的变形应处于指定的工作点。作者考虑了悬置在其3个弹性主轴方向力位移特性的非线性关系,推导了动力总成位移计算公式,给出了动力总成质心的位移计算的迭代算法和

悬置位移、支承点力计算方法。

2 悬置系统的静态特性

进行动力总成的振动控制设计时,将动力总成视为刚体,由n 个(n \3)悬置支承在车架、副车架或车身上,悬置简化为沿3个垂直的弹性主轴方向(u i 、v i 和w i 方向)具有刚度和阻尼的元件(见图1)。

图1 汽车动力总成悬置系统

2006(V o.l 28)N o .8上官文斌,等:汽车动力总成悬置系统位移控制设计计算方法#739 #

悬置在其3个弹性主轴方向上的力位移曲线为非线形曲线,为了计算上的方便,可以用5段或3段线性曲线拟合,以表示其非线性特性,如图2所示。当力位移关系为3段线性时,k 2=k 4=k 3。是用5段还是用3段线性的力位移曲线来表示悬置在一个方向的力位移非线性特性,主要取决于k 2、k 4和k 3值的差异。

图2 悬置力位移非线性特性

k 3主要根据动力总成固有频率、能量解耦率的要求确定。动力总成的固有频率和模态向量可由下式求得。

[1-5]

|[K ]-X 2

[M ]|=0

{[K ]-X 2

i [M ]}{U }i =0

(1)式中[K ]为悬置系统的刚度矩阵,它含有每个悬置的静刚度(考虑橡胶悬置的动态硬化率)、安装位置和安装方位设计变量;[M ]为质量矩阵,由动力总成的质量、转动惯量和惯性积形成,这些参数可由实验或计算得到;{U }为模态矩阵。求解式(1)可以得到动力总成振动的6阶固有频率f i =X i /2P (i =1,2,,6)和与之相对应的振型{U }i 。当动力总成悬置系统以第i 阶固有频率f i 和振型{U }i =(U 1i ,U 2i ,U 3i ,,,U 6i )T

振动时,第k 个广义坐标上的能量分布E (k ,i)(能量解耦率)为

[3,4]

E (k ,i)=

12

X 2

i U ki E 6

l=1m kl U li

12

X 2i {U }T

i [M ]{U }i =

U ki

E 6

l=1m

kl

U li

{U }T

i

[M ]{U }i

(2)

由设计要求确定的悬置系统6阶振动频率和在主要振动方向的能量解耦率,对悬置系统进行优化,即可确定每个悬置力位移曲线中线性段的刚度值(k 3)、安装位置和安装方位。力位移非线性特性曲线中其它各段刚度值及拐点的确定,主要考虑在汽

车的各种行驶工况下,动力总成运动姿态、运动位移

的限值和悬置疲劳寿命的要求。图3给出了几种行驶工况下,期望悬置力位移曲线的工作点。

图3 不同行驶工况下悬置力位移曲线工作点

3 动力总成位移计算的迭代算法

建立一个固定坐标系G 0-X YZ (曲轴坐标系,

见图1)来描述动力总成的运动,原点G 0为动力总成的质心位置,X 轴平行于发动机曲轴轴线方向并指向发动机前端,Z 轴垂直曲轴向上。动力总成运动的位移用{X }表示,{X }T

=(x t ,y t ,z t ,x r ,y r ,z r ),其

中x t 、y t 、z t 分别动力总成质心沿X 、Y 、Z 轴的平动位移,x r 、y r 、z r 分别表示动力总成绕X 、Y 、Z 轴的转角。

在支承点i 建立一个局部坐标系o i -u i v i w i (u i 、v i 和w i 方向为悬置i 的3个弹性主轴方向),悬置i 在3个弹性主轴方向的刚度记为k ui 、k vi 和k w i 。一般情况下,k u i 、k vi 和k w i 具有图2所示5段非线性刚度值。

动力总成位移的分析方程为[K ]{X }={EF }

(3)

式中{EF }为作用在动力总成上的外力(静态力或准静态力)。由于悬置在3个方向上的力与位移的关系是非线性的,作用在动力总成上的外力不一样时,[K ]中各个元素的值不一样,因此计算动力总成的位移时,要用迭代算法。

图2中力与位移非线性关系的数学表达式为

F =kx +$

(4)

当变形量x 不同时,k 和$不同,其计算公式见表1。

表1 k 和$的值

x 的范围k $

第1段(-],a ]k 1-k 1a +k 2(a -b)+k 3b

第2段(a,b]k 2-k 2b +k 3b

第3段(b,c ]k 30第4段(c ,d ]k 4k 3c -k 4c

#740#汽车工程2006年(第28卷)第8期

对第i个悬置点,在局部坐标系o i-u i v i w i下,

u i、v i和w i方向上的力与变形的关系为

{f i}=[k i]{U i}+{$i}(5)

其中[k i]=d iag(k u i,k vi,k w i)。[k i]为第i个悬置在其局部坐标系中的刚度矩阵,{$i}为力位移关系的修正项,[k i]与{$i}中各元素的值与悬置在3个弹性主轴方向的位移$u i、$v i和$w i相关,是由表1得到的;{f i}为悬置i在其局部坐标系o i-u i v i w i中的力,{U i}为悬置i在其局部坐标系中的位移。

将悬置i在其局部坐标系中o i-u i v i w i的力{f i}转换到动力总成坐标系G0-X Y Z中的力{F i},有

{F i}=[A i]{f i}(6)式中[A i]为第i个悬置的3个弹性主轴在G0-X YZ 坐标系中的方向余弦矩阵。

将式(5)代入式(6),有

{F i}=[A i][k i]{U i}+[A i]{$i}(7)

第i个悬置在其局部坐标系o i-u i v i w i中的位移{U i}与在动力总成坐标系G0-XYZ中位移{U i}的关系为:

{U i}=[A i]{U i}(8)

将式(8)带入式(7),有

{F i}=[K*i]{U i}+[A i]{$i}(9)式中[K*i]为第i个悬置在动力总成坐标系G0-X YZ下的刚度矩阵,计算公式为

[K*i]=[A i][k i][A i]T(10)

第i个悬置在G0-X YZ坐标系中的支承点坐标为(x i,y i,z i),支承点矢量为r v i

r v i=x i i_+y i j_+z i k_(11)

第i个悬置在动力坐标系G

-X YZ中的位移{U i}与汽车动力总成的位移{X}之间的关系为[1,8] {U i}=(I-r~i){X}(12)式中I为3@3阶的单位矩阵,r~i为第i个支承点矢量r v i的斜对称矩阵,斜对称矩阵具有r~T i=-r~的性质。将式(12)带入式(9),有

{F i}=([K*i]-[K*i]r~i){X}+[A i]{$i}(13)支承点i的力作用于动力总成上的反力{RFM i}为

{RF M i}=-{F i}

=(-[K*i][K*i]r~i){X}-[A i]{$i}

(14)

力{RF M i}作用于动力总成上的力矩为

{RMM i}=r~i{RFM i}=(r~T i[K*i]-r~T i[K*i]r~i){X}-r~i#[A i]{$i}(15)第i个支承点作用于动力总成上的力为{EFM i}={{RF M i},{RMM i}}T=

-[K*i][K*i]r~i

r~T i[K*i]-r~T i[K*i]r~i

{X}-

[A i]{$i}

r~i[A i]{$i}

(16)

n个支承点作用于动力总成上的合力为

{EFM}=E n i=1{EFM i}=

-E n i=1[K*i]E n i=1[K*i]r~i

E n

i=1

r~T i[K*i]-E n i=1r~T i[K*i]r~i

{X}-

E n

i=1

[A i]{$i}

E n

i=1

r~i[A i]{$i}

(17)

在不同的行驶工况下,作用在动力总成上的外力(准静态力)记为{EF}。在进行计算动力总成质心位移计算时,可不考虑悬置在其3个弹性主轴方向的阻尼,因而动力总成悬置系位移分析的方程为{EFM}+{EF}=0(18)展开方程(18),有

[K]{X}={EF}-{D elta}(19)其中[K]为悬置系统的刚度矩阵,{Delta}为力位移关系的修正项,它们的计算公式为

[K]=

E n

i=1

[K*i]-E n i=1[K*i]r~i

-E n i=1r~T i[K*i]E n i=1r~T i[K*i]r~i

(20)

{D elata}=

E n

i=1

[A i]{$i}

E n

i=1

r~i[A i]{$i}

(21)

方程(19)刚度矩阵[K]中各个元素的值与外力{EF}的大小有关,因此在计算动力总成质心位移{X}时,须用迭代的方法,迭代步骤如下。

(1)在动力总成重力的作用下,求各悬置在其弹性主轴方向的位移。此时各悬置在弹性主轴方向的变形应处于线性范围[b,c]内,且{D elta}=0,由此形成方程(19)并求解,得到在该载荷下,动力总成质心的位移{X};由式(8)和式(12)求出各悬置在弹性主轴方向上的位移。

(2)根据第(1)步中求出的各悬置在弹性主轴方向的位移,对图2所示的力位移曲线进行平移,

2006(V o.l 28)N o .8上官文斌,等:汽车动力总成悬置系统位移控制设计计算方法#741 #

以动力总成处于静平衡时,各悬置在弹性主轴方向的变形位置为零点。

(3)当汽车在某一行驶工况时,作用在动力总成质心上的力已知。假定各悬置在弹性主轴方向变形处于线性范围内,由式(19)求出动力总成质心的位移{X }。

(4)由式(8)、式(12)求得各个悬置在其弹性主轴坐标系中的位移。

(5)检查悬置在各个弹性主轴方向上的位移是否在线性段内,如果是,则计算停止,将第(1)和第(4)步中求出的各个悬置在其弹性主轴方向的位移相加,得到在该载荷工况下,各个悬置在其弹性主轴方向上的位移;如果不是,则转入下一步。

(6)由悬置在其弹性主轴方向上的位移值,找到它对应的位移段(第1~5段),参考表1,并由公式(5)形成新的[k i ]与{$i },进而由式(10)、式(20)、式(21)形成悬置系统的刚度矩阵[K ]和力的修正项{D elta}。同时,将各个悬置在其弹性主轴方向的位移处于何段的信息记录下来。

(7)求解式(19),得到{X }。由式(8)、式(12)求得各个悬置在其弹性主轴坐标系中的位移。

(8)检查各悬置在其弹性主轴方向上的位移处于何段,如果与第(6)步中检查结果一致,则停止计算;否则,重复第(6)~第(8)步。

在有些载荷下,由于非线性刚度值及拐点坐标设计的不合理,会出现迭代不收敛的情况,因此在迭代中要设置中断程序。

由上面的迭代算法,可求出动力总成质心的位移和各悬置在其弹性主轴方向的位移,由式(13)可求出该载荷工况下各悬置点的反力,这些力是进行悬置支架强度、疲劳寿命计算的重要边界条件和进行支架疲劳实验的载荷工况。

4 计算实例

在进行动力总成位移控制设计计算时,按通用汽车公司的规范,其载荷工况有29种。在各种工况下,均要将动力总成的位移控制在指定的范围内,

作段,因此,如何设计各悬置在3度值及拐点的坐标,作为动力总成悬置的供应商,计算软件,根据泛亚汽车技术中心有限公司提供的载荷工况和动力总成位移控制的要求,宁波拓普减震系统有限公司对动力总成位移的控制进行了优化,设计了各个悬置在弹性主轴方向的非线性刚度值及其拐点坐标,计算了各种载荷工况下动力总成的位移、悬置点的力等,这些计算结果和利用通用汽车公司动力总成悬置系统计算和优化程序MTDES 计算的结果一致,证明了作者方法的正确性。优化得到的各悬置的刚度值,在某轿车车型的开发中得到了应用。

图4 轿车动力总

成悬置系统

该轿车动力总成悬置系统有4个悬置,如图4所示。汽车坐标系为:X 指向汽车的后方,Z 向上,动力总成的质量为215kg 。在汽车某一行驶工况下,动力总成质心在垂直方向有315g 的加速度载荷,右Y 向有2g 的加速度载荷。该载荷工况下,计算得到的动力总成的质心位移和

4个悬置在汽车坐标系下

的位移(相对于自由状态)和支承点的动反力分别见表2和表3。分析计算结果可知,在该种载荷下,动力总成的4个悬置在Y 方向的位移,以及Eng 悬置和Trans 悬置、Eng -front 悬置和Trans -rear 悬置在Z 方向的位移基本相等,表明动力总成在该载荷下,其姿态与静平衡状态的姿态相同。在该悬置系统中,Eng 悬置和Trans 悬置是承受预载的,因此,Eng 悬置和T rans 悬置在Z 方向的位移与Eng -front 悬置和T rans -rear 悬置在Z 方向的不同。由各个支承点的反力可以验证,动力总成处于平衡状态,表明

表2 动力总成质心在汽车坐标系下的位移

平动位移/mm

转动位移/(b )

X

Y Z R oll(H X )P itc h (H Y )

Yaw (H Z )

-01232361502

1017852

010169

-010481-010678

表3 悬置位移与支承点的力

#742 #汽 车 工 程2006年(第28卷)第8期

计算得到的各悬置的支承反力的正确性。图5为最终设计的Eng 悬置在其弹性主轴方向的力位移非线性曲线。在该种载荷工况下,该悬置的在v 向w 方向的位移均在非线性段。图6为该悬置在其它不同的载荷工况下,u i

方向的工作点的位置。

图5 Eng 悬置在3个弹性主轴方向的力

位移曲线

图6 不同载荷时,Eng 悬置在弹性主轴u 方向的工作点

5 结论

将动力总成悬置系统简化为在其3个弹性主轴

方向的刚度,并考虑悬置在弹性主轴方向的力位移关系为非线性关系时,推导了悬置系统动力学分析的方程。以一具有4点悬置的动力总成悬置系统为例,给出了某轿车动力总成悬置系统在某种载荷工况下,动力总成质心位移、悬置在弹性主轴方向的位移和各个支承点的反力。计算结果表明,在悬置系统中,利用悬置在其3个弹性主轴方向的力位移非线性特性,可以很好地控制动力总成的运动,同时兼顾动力总成隔振性能的要求。致谢

此文工作得到了上海泛亚汽车技术中心有限公司周美五工程师、陈丽莉工程师和宁波拓普减震系统有限公司蒋开洪工程师的帮助,在此表示感谢!

参考文献

[1] 徐石安,等.发动机悬置设计计算的研究自由振动部分[J ].

二汽科技,1980(6):25-53.

[2] 徐石安,肖德炳,等.发动机悬置的设计及其优化[J].汽车工

程,1988,10(4):12-23.

[3] C ho S.C on fi gurati on and S izi ng Des i gn Op ti m i zation of Po w ertrai n

M oun ti ng Sys t e m s [J].In t ernational J ournal of Veh icl e D es i gn ,

2000,24(1):34-47.

[4] 徐石安.汽车发动机弹性支承隔振的解耦方法[J].汽车工程,

1995,17(4):198-204.

[5] 上官文斌,蒋学峰.发动机悬置系统的优化设计[J].汽车工

程,1992,14(2):103-110.

[6] Geck P E,Patt on R D.Fron tW h eelD ri ve Engi ne M oun tOp ti m -i

zati on[C ].SAE Paper 840736.[7]

Johson S R,Subh edar J W.C o m pu ter O pti m iz ati on of Engine M oun ti ng Syste m s[C ].SAE Paper 790974.

[8] Sw an s on D A,W u H T ,A s h rafi uon H.Opti m izati on of A i rcraft

E ngi ne Suspen si on Syst e m s [J].Jou rnal of A i rcraft ,1993,30

(6):979-984.

制动系统匹配设计计算分解

制动系统匹配设计计算 根据AA车型整车开发计划,AA车型制动系统在参考BB轿车底盘制造平台的基础上进行逆向开发设计,管路重新设计。本计算是以选配C发动机为基础。 AA车型的行车制动系统采用液压制动系统。前、后制动器分别为前通风盘式制动器和实心盘式制动器,制动踏板为吊挂式踏板,带真空助力器,制动管路为双回路对角线(X型)布置,采用ABS。驻车制动系统为机械式手动后盘式制动,采用远距离棘轮拉索操纵机构。因AA车型与参考样车BB的整车参数接近,制动系统采用了BB样车制动系统,因此,计算的目的在于校核前/后制动力、最大制动距离、制动踏板力、驻车制动手柄力及驻坡极限倾角。 设计要符合GB 12676-1999《汽车制动系统结构、性能和试验方法》;GB 13594-2003《机动车和挂车防抱制动性能和试验方法》和GB 7258-2004《机动车运行安全技术条件》的要求,其中的踏板力要求≤500N,驻车制动停驻角度为20%(12),驻车制动操纵手柄力≤400N。 制动系统设计的输入条件 整车基本参数见表1,零部件主要参数见表2。 表1 整车基本参数

表2 零部件主要参数制动系统设计计算 1.地面对前、后车轮的法向反作用力 地面对前、后车轮的法向反作用力如图1所示。 图1 制动工况受力简图由图1,对后轮接地点取力矩得:

式中:FZ1(N):地面对前轮的法向反作用力;G(N):汽车重力;b(m):汽车质心至后轴中心线的水平距离;m(kg):汽车质量;hg(m):汽车质心高度;L(m):轴距;(m/s2):汽车减速度。 对前轮接地点取力矩,得: 式中:FZ2(N):地面对后轮的法向反作用力;a(m):汽车质心至前轴中心线的距离。 2.理想前后制动力分配 在附着系数为ψ的路面上,前、后车轮同步抱死的条件是:前、后轮制动器制动力之和等于汽车的地面附着力;并且前、后轮制动器制动力Fm1、Fm2分别等于各自的附着力,即:

底盘-10-麦弗逊式悬架的构造及拆装实训

底盘-10-麦弗逊式悬架的构造及拆装实训

汽修专业理实一体教案 课题项目七麦弗逊式悬架的结构、工作原理及拆装实训 教学目标一、知识目标 了解麦弗逊式悬架的工作原理原理二、技能目标 拆卸安装悬架 三、情感目标 培养团队合作能力 培养不怕脏不怕累的劳动精神 教学重点一、实训车间的行为规范 二、悬架及减震的工作原理 教学难点一、悬架的运动原理 二、规范的使用各种工具 教学准备一、转向系统实训台 二、拆装作业台 三、120件套工具箱 作业布置一、作业 二、实训报告 教学考核一、现场提问(30%) 二、现场实践操作(70%)

教学反思 教学内容或教学流程教法设计 一、课前三分钟 1.强调车间内不允许玩手机,督促班干部收缴手机 2.保持车间干净整洁,不准带入饮料零食等物 3.未经老师允许,不得擅自操作各个机械 4.检查教材、笔记本、笔 二、复习旧知与导入新课 1.复习旧知 底盘构成 2.导入新课 颠簸路面上,车辆如何减少震动,吸收能量? (1)弹簧延时,缓冲 (2)减震吸收能量 三、悬架的结构

『悬挂在汽车底盘安放位置的示意 图』 ●悬挂的概念和分类 首先让我们来了解一下什么 是悬挂:悬挂是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,悬架的主要作用是传递作用在车轮和车身之间的一切力和力矩,比如支撑力、制动力和驱动力等,并且缓和由不平路面传给车身的冲击载荷、衰减由此引起的振动、保证乘员的舒适性、减小货物和车辆本身的动载荷。典型的汽车悬挂结构由弹性元件、减

震器以及导向机构等组成,这三部分分别起缓冲,减振和力的传递作用。绝大多数悬挂多具有螺旋弹簧和减振器结构,但不同类型的悬挂的导向机构差异却很大,这也是悬挂性能差异的核心构件。根据结构不同可分为非独立悬挂和独立悬挂两种。 『奥迪S4前后均采用了独立悬挂』 非独立悬挂由于是用一根杆件直接刚性地连接在两侧车轮上,一侧车轮受到的冲击、振动必然要影响另一侧车轮,这样自然不会得到较好的操纵稳定性及舒适性,同时由于左

汽车智能照明控制系统设计

毕业设计(论文) 汽车智能照明控制系统 学生姓名: 学号: 所在系部: 专业班级: 指导教师: 日期:二〇一七年五月

学位论文原创性声明 本人郑重声明:所呈交的学位论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。 作者签名:年月日 学位论文版权使用授权书 本学位论文作者完全了解学院有关保管、使用学位论文的规定,同意学院保留并向有关学位论文管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。 本人授权省级优秀学士学位论文评选机构将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 本学位论文属于 1、保密□,在年解密后适用本授权书。 2、不保密□。 (请在以上相应方框内打“√”) 作者签名:年月日 导师签名:年月日

摘要 在当今社会,人们生活得到了极大的提高,汽车拥有量也在不断增加。汽车作为快捷方便的交通工具,给我们的生活带来了诸多方便,同时也带来不少的交通安全问题。汽车照明系统作为现代汽车的必备安全系统之一,在安全性方面有很多值得改进的地方。大部分的汽车的照明系统目前还是以传统手动操作为主,因此,实现汽车照明的智能控制是非常有必要的。 本文首先对汽车智能照明控制系统的研究背景和国内外概况作了简要介绍,给出了设计任务要求和总体设计方案,并根据实际情况做了硬件设计。硬件设计部分包括主控部分、电源设计部分、数据采集部分和模拟车灯控制部分。本设计是通过STM32单片机对传感器采集到的数据进行分析后对模拟车灯进行控制,控制的具体步骤通过软件编程实现。本文还对实物模型的制作流程作了简单介绍,并给出了实物图。最后对现阶段的研究进行总结并得出了结论,最终结论表明该系统在实际应用中是可行的。 关键词:汽车车灯;STM32F103C8T6;传感器

基于Matlab的自动控制系统设计与校正

自动控制原理课程设计 设计题目:基于Matlab的自动控制系统设计与校正

目录 目录 第一章课程设计内容与要求分析 (1) 1.1设计内容 (1) 1.2 设计要求 (1) 1.3 Matlab软件 (2) 1.3.1基本功能 (2) 1.3.2应用 (3) 第二章控制系统程序设计 (4) 2.1 校正装置计算方法 (4) 2.2 课程设计要求计算 (4) 第三章利用Matlab仿真软件进行辅助分析 (6) 3.1校正系统的传递函数 (6) 3.2用Matlab仿真 (6) 3.3利用Matlab/Simulink求系统单位阶跃响应 (10) 3.2.1原系统单位阶跃响应 (10) 3.2.2校正后系统单位阶跃响应 (11) 3.2.3校正前、后系统单位阶跃响应比较 (12) 3.4硬件设计 (13) 3.4.1在计算机上运行出硬件仿真波形图 (14) 课程设计心得体会 (16) 参考文献 (18)

第一章 课程设计内容与要求分析 1.1设计内容 针对二阶系统 )1()(+= s s K s W , 利用有源串联超前校正网络(如图所示)进行系统校正。当开关S 接通时为超前校正装置,其传递函数 11 )(++-=Ts Ts K s W c c α, 其中 132R R R K c += ,1 )(13243 2>++=αR R R R R ,C R T 4=, “-”号表示反向输入端。若Kc=1,且开关S 断开,该装置相当于一个放 大系数为1的放大器(对原系统没有校正作用)。 1.2 设计要求 1)引入该校正装置后,单位斜坡输入信号作用时稳态误差1.0)(≤∞e ,开环截止频率ωc’≥4.4弧度/秒,相位裕量γ’≥45°; 2)根据性能指标要求,确定串联超前校正装置传递函数; 3)利用对数坐标纸手工绘制校正前、后及校正装置对数频率特性曲线; c R R

实验七-对汽车控制系统的设计与仿真

实验七 对汽车控制系统的设计与仿真 一、实验目的: 通过实验对一个汽车运动控制系统进行实际设计与仿真,掌握控制系统性能的分析和仿真处理过程,熟悉用Matlab 和Simulink 进行系统仿真的基本方法。 二、实验学时:4 个人计算机,Matlab 软件。 三、实验原理: 本实验是对一个汽车运动控制系统进行实际设计与仿真,其方法是先对汽车运动控制系统进行建摸,然后对其进行PID 控制器的设计,建立了汽车运动控制系统的模型后,可采用Matlab 和Simulink 对控制系统进行仿真设计。 注意:设计系统的控制器之前要观察该系统的开环阶跃响应,采用阶跃响应函数step( )来实现,如果系统不能满足所要求达到的设计性能指标,需要加上合适的控制器。然后再按照仿真结果进行PID 控制器参数的调整,使控制器能够满足系统设计所要求达到的性能指标。 1. 问题的描述 如下图所示的汽车运动控制系统,设该系统中汽车车轮的转动惯量可以忽略不计,并且假定汽车受到的摩擦阻力大小与汽车的运动速度成正比,摩擦阻力的方向与汽车运动的方向相反,这样,该汽车运动控制系统可简化为一个简单的质量阻尼系统。 根据牛顿运动定律,质量阻尼系统的动态数学模型可表示为: ? ??==+v y u bv v m & 系统的参数设定为:汽车质量m =1000kg , 比例系数b =50 N ·s/m , 汽车的驱动力u =500 N 。 根据控制系统的设计要求,当汽车的驱动力为500N 时,汽车将在5秒内达到10m/s 的最大速度。由于该系统为简单的运动控制系统,因此将系统设计成10%的最大超调量和2%的稳态误差。这样,该汽车运动控制系统的性能指标可以设定为: 上升时间:t r <5s ; 最大超调量:σ%<10%; 稳态误差:e ssp <2%。 2、系统的模型表示

制动系统设计开题报告

毕业设计(论文)开题报告

1 选题的背景和意义 1.1 选题的背景 在全球面临着能源和环境双重危机的严峻挑战下世界各国汽车企业都在寻求新的解决方案一一如开发新能源技术,发展新能源汽车等等然而. 新能源汽车在研发过程中已出现!群雄争霸的局面在能源领域. 有压缩天然气,液化石油气,煤炼乙醇,植物乙醇,生物乙醇,,生物柴油,甲醇,二甲醚,合成油等等新能源动力汽车在转换能源方面有燃料电池汽车氢燃料汽车纯电动汽车轮毅电机车等等。选择哪种新能源技术作为未来汽车产业发展的主要方向是摆在中国汽车行业面前的重要课题。据有关专家分析进入新世纪以来,以汽车动力电气化为主要特征的新能源电动汽车技术突飞猛进。其中油电混合动力技术逐步进入产业化锂动力电池技术取得重大突破。新能源电动汽车技术的变革为我国车用能源转型和汽车产业化振兴提供了历史机遇[1]。 作为 21 世纪最清洁的能源———电能,既是无污染又是可再生资源,因此电动汽车应运而生,随着人民生活水平和环保觉悟的提高电动汽车越来越受到广泛关注[2]。传统车辆的转向、驱动和制动都通过机械部件连接来操纵,而在电动汽车中,这些系统操纵机构中的机械部件(包括液压件)有被更紧凑、反应更敏捷的电子控制元件系统所取代的趋势。加上四轮能实现± 90°偏转的四轮转向技术,车辆可实现任意角度的平移,绕任意指定转向点转向以及进行原地旋转。线控和四轮转向的有机结合,是当今汽车新技术领域的一大亮点,其突出特点就是操纵灵活和行驶稳定[3]。轮毂电机驱动电动车以其节能环保高效的特点顺应了当今时代的潮流,全方位移动车辆是解决日益突出的城市停车难问题的重要技术途径,因此,全方位移动的线控转向轮毂电机驱动电动车是未来先进车辆发展的主流方向之一。全方位移动车辆可实现常规行驶、沿任意方向的平移、绕任意设定点、零半径原地转向等转向功能[4]。 1.2 国内外研究现状及发展趋势 电动汽车的出现得益于19世纪末电池技术和电机技术的发展较内燃机成熟,而此时石油的运用还没有普及,电动车辆最早出现在英国,1834年Thomas Davenport 在布兰顿演示了采用不可充电的玻璃封装蓄电池的蓄电池车,此车的出现比世界上第一部内燃机型的汽车(1885年)早了半个世纪。1873年英国人Robert Davidson制造的一辆三轮车,它由一块铁锌电池向电机提供电力,这被认为是电动汽车的诞生,这也比第一部内燃机型的汽车早出现了13年。到了1881年,法国人Gustave Trouve 使用铅酸电池制造了第一辆能反复充电的电动汽车。此后三四十年间,电动汽车在当时的汽车发展中占据着重要位置,据统计,到1890年在全世界4200辆汽车中,有

基于MATLAB的汽车制动系统设计与分析软件开发.

基于MAT LAB 的汽车制动系统 3 设计与分析软件开发 孙益民(上汽汽车工程研究院 【摘要】根据整车制动系统开发需要, 利用MAT LAB 平台开发了汽车制动系统的设计和性能仿真软件。 该软件用户界面和模块化设计方法可有效缩短开发时间, 提高设计效率。并以上汽赛宝车为例, 对该软件的可行性进行了验证。 【主题词】制动系汽车设计 统分成两个小闭环系统, 使设计人员更加容易把 1引言 制动性能是衡量汽车主动安全性的主要指标。如何在较短的开发周期内设计性能良好的制动系统一直是各汽车公司争相解决的课题。 本文拟根据公司产品开发工作需要, 利用现有MA T LAB 软件平台, 建立一套面向设计工程师, 易于调试的制动开发系统, 实现良好的人机互动, 以提高设计效率、缩短产品开发周期。 握各参数对整体性能的影响, 使调试更具针对性。 其具体实施过程如图1所示。 3软件开发

与图1所示的制动系统方案设计流程对应, 软件开发也按照整车参数输入、预演及主要参数确定, 其他参数确定和生成方案报告4个步骤实现。3. 1车辆参数输入 根据整车产品的定位、配置及总布置方案得出空载和满载两种条件下的整车质量、前后轴荷分配、质心高度, 轮胎规格及额定最高车速。以便获取理想的前后轴制动力分配及应急制动所需面临的极限工况。 3. 2预演及主要参数确定 在获取车辆参数后, 设计人员需根据整车参数进行制动系的设计, 软件利用MAT LAB 的G U I 工具箱建立如图2所示调试界面。左侧为各主要参数, 右侧为4组制动效能仿真曲线, 从曲线可以查看给定主要参数下的制动力分配、同步附着系数、管路压力分配、路面附着系数利用率随路况的变化曲线, 及利用附着系数与国标和法规的符合现制动器选型、性能尺寸调节, 查看液压比例阀、感载比例阀、射线阀等多种调压工况的制动效能, 并通过观察了 2汽车制动系统方案设计流程的优化 从整车开发角度, 制动系统的开发流程主要包括系统方案设计、产品开发和试验验证三大环节。制动系统的方案设计主要包含结构选型、参数选择、性能仿真与评估, 方案确定4个环节。以前, 制动系统设计软件都是在完成整个流程后, 根据仿真结果对初始设计参数修正。因此, 设计人员往往要反复多次方可获得良好的设计效果, 而且, 在调试过程中, 一些参数在特定情况下的相互影响不易在调试中发现, 调试的尺度很难把握。 本文将整车设计流程划分为两个阶段:主要参数的预演和确定、其他参数的预演和参数确定。即根据模块化设计思想, 将原来一个闭环设计系 收稿日期:2004-12-27 3本文为上海市汽车工程学会2004年(第11届学术年会优秀论文。

第六章 控制系统的校正与设计 习题

第六章控制系统的校正与设计 6-1 试对以下特性的一阶网络,确定其电路结构、电阻和电容值、放大器的增益和复平面图: a)ω=4 rad/sec时相位超前60°,最小输入阻抗50000Ω和直流衰减为10db。 b)ω=4时相位之后60°,最小输入阻抗50000Ω和高频衰减-10db。 c)频率范围ω=1至ω=10rad/sec内,滞后-超前网络具有衰减10db和输入阻抗50000Ω。 在以上所有情况,电阻最大值接近1MΩ,电容约10μF。而且假设网络负载阻抗实质上是无穷大。 6-2 习题6-2图所示包含局部速度反馈回路的单位反馈系统。 a)当不存在速度反馈(b=0)时,试确定单位跃阶输入下系统的阻尼系数、自然频率、最大超调量以及由单位斜坡输入下所引起的稳态误差。 b)试决定当系统等效阻尼系数增加至0.8时的速度反馈常数b。 c)按速度反馈和0.8的阻尼系数,确定单位阶跃输入下系统的最大超调量和单位斜坡输入下引起的稳态误差。 d)试说明斜坡输入下具有速度反馈和不具有速度反馈,但阻尼系数仍为0.8的两系数,怎样使它们的稳态误差相同。 习题6-2图 6-3 如若系统的前向传递函数为20/s(1+s),重做习题6-2. 6-4 习题6-4图所示为一个摇摆控制系统的方块图。它可以提供足够的抗扰动力矩的动特性,以限制导弹摇摆偏移速度[12].扰动力矩由倾斜角的变化和操纵控制偏差产生。决定摇摆控制系统特性的主要限制是副翼的伺服响应。 a)试确定习题6-4图所示系统的传递函数C(s)/R(s) b)设若由共轭主导极点支配瞬态响应,为满足系统的等效阻尼系数接近于0.5,和等效自然频率近于4rad/sec,试说明对副翼的伺服响应参数的要求。

汽车底盘(悬架)毕业设计

课程设计说明书 学院:机械电子工程学院 班级:交通运输 学生:略 指导老师:略

任务书 本次课程设计的任务如下: 第一组: 建立汽车的前悬架模型,然后测试,细化,优化该模型,建立目标函数,最后与MATLAB实现联合仿真。 1.测量车轮接地点侧向滑移量 2.测量车轮侧偏角 3.测量车轮前束值 4.测量车轮跳动量 5.测量主销后倾角 第二组: 建立整车模型,实现该车在A,B,C三级道路路面上的仿真。

第一部分创建前悬架模型 (1)创建新模型 双击桌面上得ADAMS/View得快捷图标,创建一个名称为:FRONT_SUSP的新模型。(2)设置工作环境 在ADAMS/View选择菜单中得单位命令将长度单位,质量单位,力的单位,时间单位,角度单位和频率单位分别设置为毫米,千克,牛顿,秒,度和赫兹。在工作网格命令中将网格的X方向和Y方向分别设置为750和800,将网格距设置为50。同时将图标大小设置为50。( 3 ) 创建设计点 在ADAMS/View中的零件库中选择点命令,创建八个设计点,其名称和位置如下图: (4)创建主销,上横臂,下横臂,拉臂,转向拉杆,转向节 在ADAMS/View中的零件库中选择圆柱体命令,定义不同的参数值,在对应点之间创建主销,上横臂,下横臂,拉臂,转向拉杆,转向节。 在ADAMS/View中的零件库中选择球体命令,分别在上横臂,下横臂,转向横拉杆上相应点作为参考点创建铰接球。图形如下:

(5)创建车轮,测试平台及弹簧 在ADAMS/View中的零件库中选择圆柱体命令,选择转向节两端点作为设计点。并在ADAMS/View中的零件库中选择倒角命令,定义倒圆半径为50,完成车轮倒角的设计。 应用ADAMS/View中的零件库中选择圆柱体和长方体命令,在创建的(-350,-320,-200)设计点上创建测试平台。 在上横臂上选择创建一点(174.6,347.89,24.85),在大地上创建点(174.6,647.89,24.85),点击ADAMS/View力库的弹簧,设置其刚度和阻尼,选择创建的两点绘制弹簧。 如图:

电动汽车控制系统设计设计

电动汽车控制系统设计设计

摘要 在当前全球汽车工业面临金融危机和能源环境问题的巨大挑战的情况下,发展电动汽车,利用无污染的绿色能源,实现汽车能源动力系统的电气化,推动传统汽车产业的战略转型,在国际上已经形成了广泛共识。 本课题以电动汽车他励电机控制器为例,以实现电动汽车的加、减速,起、制动等基本功能以及一些特殊情况下的处理。以开发出高可靠性、高性能指标、低成本并且具有自主知识产权的电动汽车电机驱动控制系统为目的。主要包括硬件电路板的设计,以及驱动系统的软件部分的仿真调试。 在驱动系统硬件设计中,这里主控制芯片采用ATMEL公司的ATmega64芯片。功率模块采用多MOSFET并联的方 37

式,有效的节约了成本。电源模块采用基于UC3842的开关电源电路。选用IR 公司的IR2110作为驱动芯片,高端输出驱动电流可到1.9A,低端输出驱动电流可到2.3A,能够提供7个MOSFET并联时驱动电流。对于电流检测模块,本文没有采用电流传感器或者是康铜丝,而是采用了一种基于MOSFET管压降的电流检测电路,这种方式即节约了成本也保证了检测精度。 驱动系统的软件设计中,主要实现的功能为:开关量的检测处理,故障检测,串口通讯,励磁、电枢控制,报警功能等。针对他励电机电动汽车的控制特性,提出了节能控制算法和最大转矩控制算法,用于提高电动汽车的续航里程和加速性能。 他励直流电动机驱动系统能够很 37

好的运行在电动汽车上,性能可靠、结构简 单,并且节约了成本,使电动汽车的性价比大大提高,有利于电动汽车的普及。 关键词:电动汽车,ATmega64,他励直流电机,PID模糊控制 37

轿车鼓式制动器设计毕业设计

第1章绪论 1.1制动系统设计的意义 汽车是现代交通工具中用得最多,最普遍,也是最方便的交通运输工具。汽车制动系是汽车底盘上的一个重要系统,它是制约汽车运动的装置。而制动器又是制动系中直接作用制约汽车运动的一个关键装置,是汽车上最重要的安全件。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性要求越来越高,为保证人身和车辆的安全,必须为汽车配备十分可靠的制动系统。 通过查阅相关的资料,运用专业基础理论和专业知识,确定汽车制动器的设计方案,进行部件的设计计算和结构设计。使其达到以下要求:具有足够的制动效能以保证汽车的安全性;同时在材料的选择上尽量采用对人体无害的材料。 1.2制动系统研究现状 车辆在行驶过程中要频繁进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动性能是车辆非常重要的性能之一,改善汽车的制动性能始终是汽车设计制造和使用部门的重要任务。当车辆制动时,由于车辆受到与行驶方向相反的外力,所以才导致汽车的速度逐渐减小至零,对这一过程中车辆受力情况的分析有助于制动系统的分析和设计,因此制动过程受力情况分析是车辆试验和设计的基础,由于这一过程较为复杂,因此一般在实际中只能建立简化模型分析,通常人们主要从三个方面来对制动过程进行分析和评价: (1)制动效能:即制动距离与制动减速度; 1

(2)制动效能的恒定性:即抗热衰退性; (3)制动时汽车的方向稳定性; 目前,对于整车制动系统的研究主要通过路试或台架进行,由于在汽车道路试验中车轮扭矩不易测量,因此,多数有关传动系!制动系的试验均通过间接测量来进行汽车在道路上行驶,其车轮与地面的作用力是汽车运动变化的根据,在汽车道路试验中,如果能够方便地测量出车轮上扭矩的变化,则可为汽车整车制动系统性能研究提供更全面的试验数据和性能评价。 1.3制动系统设计内容 (1)研究、确定制动系统的构成 (2)汽车必需制动力及其前后分配的确定 前提条件一经确定,与前项的系统的研究、确定的同时,研究汽车必需的制动力并把它们适当地分配到前后轴上,确定每个车轮制动器必需的制动力。 (3)确定制动器制动力、摩擦片寿命及构造、参数 制动器必需制动力求出后,考虑摩擦片寿命和由轮胎尺寸等所限制的空间,选定制动器的型式、构造和参数,绘制布置图,进行制动力制动力矩计算、摩擦磨损计算。 (4)制动器零件设计 零件设计、材料、强度、耐久性及装配性等的研究确定,进行工作图设计。 1.4制动系统设计要求 制定出制动系统的结构方案,确定计算制动系统的主要设计参数制动器主要参数设计和液压驱动系统的参数计算。利用计算机辅助设计绘制装配图 2

最新汽车制动系统毕业设计

摘要 Formula SAE比赛由美国车辆工程师学会(SAE)于1979年创立,每年在世界各地有600余支大学车队参加各个分站赛,2011年将在中国举办第一届中国大学生方程式赛车,本设计将针对中国赛程规定进行设计。 本说明书主要介绍了大学生方程式赛车制动的设计,首先介绍了汽车制动系统的设计意义、研究现状以及设计目标。然后对制动系统进行方案论证分析与选择,主要包括制动器形式方案分析、制动驱动机构的机构形式选择、液压分路系统的形式选择和液压制动主缸的设计方案,最后确定方案采用简单人力液压制动双回路前后盘式制动器。除此之外,还根据已知的汽车相关参数,通过计算得到了制动器主要参数、前后制动力矩分配系数、制动力矩和制动力以及液压制动驱动机构相关参数。最后对制动性能进行了详细分析。 关键字:制动、盘式制动器、液压

Abstract Formula SAE race was founded in 1979 by the American cars institute of Engineers every year more than 600 teams participate in various races around the world,China will hold the first Formula one for Chinese college students,the design will be for design of the provisions of the Chinese calendar. This paper mainly introduces the design of breaking system of the Formula Student.First of all,breaking system's development,structure and category are shown,and according to the structures,virtues and weakness of drum brake and disc brake analysis is done. At last, the plan adopting hydroid two-backway brake with front disc and rear disc.Besides, this paper also introduces the designing process of front brake and rear break,braking cylinder,parameter's choice of main components braking and channel settings and the analysis of brake performance. Key words:braking,braking disc,hydroid pressure

智能小车速度测量控制系统设计

毕业教学环节成果 (2012 届) 题目智能小车速度测量控制系统设计学院信息工程学院 专业电气自动化技术 班级 学号 姓名 指导教师 2012年5月17日

目录 摘要 (1) 英文摘要 (1) 引言 ................................................................. - 2 -1 方案设计与论证 .. (3) 1.1 主控系统 (3) 1.2 电机驱动模块 (3) 1.3 测速模块 (4) 1.4 显示模块 (4) 2 系统的硬件电路 (4) 2.1 总体设计 (4) 2.2 单片机控制系统设计 (5) 2.3 电机驱动电路设计 (6) 2.4 LCD显示电路设计 (7) 2.5 键盘电路设计 (8) 2.6 测速电路设计 (8) 2.7 电源电路设计 (8) 3 系统软件设计 (9) 3.1 测速程序 (10) 3.2 显示程序 (10) 4 调试 (12) 结论与谢辞 .......................................................... - 13 -参考文献 ............................................................ - 14 -附件1.程序清单..................................................... - 15 -附件2.整体原理图................................................... - 23 -

毕业设计-制动器开题报告

上海工程技术大学 毕业设计(论文) 开题报告 题目SY1046载货汽车制动系统设计 汽车工程学院(系)车辆工程专业班 学生姓名 学号 指导教师 开题日期:2016 年3 月14 日

开题报告 一、毕业设计题目的来源、理论、实际意义和发展趋势 1、题目:SY1046载货汽车制动系统设计 2、题目来源:生产实践 3、意义: 从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显。汽车制动系统种类很多,形式多样。传统的制动系统结构型式主要有机械式、气动式、液压式、气-液混合式。它们的工作原理基本都一样,都是利用制动装置,用工作时产生的摩擦热来逐渐消耗车辆所具有的动能,以达到车辆制动减速,或直至停车的目的。伴随着节能和清洁能源汽车的研究开发,汽车动力系统发生了很大的改变,出现了很多新的结构型式和功能形式。新型动力系统的出现也要求制动系统结构形式和功能形式发生相应的改变,例如电动汽车没有内燃机,无法为真空助力器提供真空源,一种解决方案是利用电动真空泵为真空助力器提供真空。[1]制动系统在汽车中是非常重要的,当一辆车在高速上行驶的时候,制动系统突然出现问题导致汽车无法制动,这个是非常危险的,国内很多报道都报道过,某某车辆由于制动系统失灵出现了严重的事故,制动系统作用是:使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车;使已停驶的汽车在各种道路条件下(包括在坡道上)稳定驻车;使下坡行驶的汽车速度保持稳定。对汽车起制动作用的只能是作用在汽车上且方向与汽车行驶方向相反的外力,而这些外力的大小都是随机的、不可控制的,因此汽车上必须装设一系列专门装置以实现上述功能。 2013年7月14日至2014年3月1日期间生产的2013款翼虎汽车,共计191368辆。被福特召回,原因是由于制动真空助力器密封圈缺少润滑油脂,导致密封圈过早磨损,极端情况下密封圈会与隔板分离,导致制动踏板变硬,车主会感觉到真空助力不足从而需要更用力地踩刹车,存在安全隐患。长安福特汽车有限公司将为召回范围内的车辆免费检查并更换有潜在风险的制动真空助力器,以消除安全隐患。 可想而知,汽车拥有传动系统、制动系统、行走系统、转向系统,而可以看出,制动系统是汽车四大系统之一。 本课题研究的是SY1046载货汽车制动系统的设计,这个制动系统对整车来言是重要部件之一,设计的要求双管路前、后鼓式制动系统,进行动力分配,同时进行相关关键部件的校核运算。本设计能充分体现大学期间的知识掌握程度和创新思想,具有重要意义。 4、国内外研究现状与趋势 (1)国外研究现状与趋势:已经普遍应用的液压制动现在已经是非常成熟的技术,随着人们对制动性能要求的提高,防抱死制动系统、驱动防滑控制系统、电子稳定性控制程序、主动避撞技术等功能逐渐融人到制动系统当中,需要在制动系统上添加很多附加装置来实现这些功能,这就使得制动系统结构复杂化,增加了液压回路泄漏的可能以及装配、维修的难度,制动系统要求结

汽车理论课程设计制动性能计算

序号:汽车理论课程设计说明书题目:汽车制动性计算 班级: 姓名: 学号: 序号: 指导教师:

目录 1.题目要求 (3) 2.计算步骤 (4) 3.结论 (8) 4.改进措施 (9) 5.心得体会 (9) 6.参考资料 (9)

1. 题目要求 汽车制动性计算 数据: 1 ) 根据所提供的数据,绘制:I 曲线,β线,f 、r 线组; 2) 绘制利用附着系数曲线;绘制出国家标准(GB 12676-1999汽车制动5) 对制动性进行评价。 6) 此车制动是否满足标准GB 12676-1999的要求如果不满足需要采取什么附加措施(要充分说明理由,包括公式和图) 注: 1、 符号中下标a 标示满载,如m a 、h ga 分别表示满载质量和满载质心高度 2、 符号中下标0标示空载,如m 0、h g0分别表示空载质量和空载质心高度

2. 计算步骤 1)由前后轮同时抱死时前后制动器制动力的关系公式: 绘出理想的前后轮制动器制动力分配曲线,即I曲线 由β曲线公式 绘出β曲线,由于空载时和满载时β相同,则β曲线相同。 f线组:当前轮抱死时, 得: r线组:当后轮抱死时, 得: 空载时,将G=3980*,h=,L=3.950m,a=2.200m,b=1.750m,φ=,,,,,,带入公式放在一个坐标系内,绘出空载时r,f曲线: 图1 空载时r,f,I线组 满载时,将G=9000*,h=1.170m,L=3.950m,a=2.95m,b=1m,φ=,,,,,,带入公式放 在一个坐标系内,绘出空载时r,f曲线:

图2 满载时r,f,I线组2)前轴利用附着系数 后轴利用附着系数 将数据带入可绘出利用附着系数与制动强度关系曲线:

汽车防抱死制动系统设计论文

摘要 防抱死制动控制系统(ABS)是在传统制动系统的基础上采用智能控制技术,在制动时自动调节制动力防止车轮抱死,充分利用道路附着力,提高制动方向稳定性和操纵稳定性,从而获得最大制动力且缩短制动距离,尽可能地避免交通事故发生的机电一体化安全装置。 本文根据防抱死制动控制系统的工作原理,应用汽车单轮运动的力学模型,分析了制动过程中的运动情况。采用基于车轮滑移率的防抱控制理论,根据车速、轮速来计算车轮滑移率。以MSP430F149单片机为核心,完成了输入电路、输出驱动电路及故障诊断等电路设计,阐述了ABS系统软件各功能模块的设计思想和实现方法,完成了ABS 检测软件、控制软件的设计。 课题所完成的汽车防抱死制动控制系统己通过模拟试验台的基本性能试验,结果表明:汽车防抱死制动控制系统的硬件电路设计合理可行,软件所采用的控制策略正确、有效,系统运行稳定可靠,改善了汽车制动系统性能,基本能够满足汽车安全制动的需要。 本文对汽车防抱死制动系统进行了数学建模,并在Matlab/Simulink 的环境下,对汽车常规制动系统和基于PID 控制器的防抱死制动系统的制动过程进行了仿真,通过对比分析,验证了基于PID 控制器的汽车防抱死制动系统具有良好的制动性能和方向操纵性。 关键词:防抱死制动系统(ABS);滑移率;控制策略;单片机;建模;仿真;

第一章绪论 1.1 防抱死制动系统概述 1.1.1 防抱死制动系统的产生 当汽车以较高的车速在表面潮湿或有冰雪的路面上紧急制动时,很可能会出现这样一些危险的情况:车尾在制动的过程中偏离行进的方向,严重的时候会出现汽车旋转掉头,汽车失去方向稳定性,这种现象称为侧滑;另一种情况是在制动过程中驾驶员控制不了汽车的行驶方向,即汽车失去方向可操纵性,若在弯道制动,汽车会沿路边滑出或闯入对面车道,即便是直线制动,也会因为失去对方向的控制而无法避让对面的障碍物。产生这些危险状况的原因在于汽车的车轮在制动过程中产生抱死现象,此时,车轮相对于路面的运动不再是滚动,而是滑动,路面作用在轮胎上的侧滑摩擦力和纵向制动力变得很小,路面越滑,车轮越容易出现抱死现象;同时汽车制动的初速度越高,车轮抱死所产生的危险性也越大。这将导致汽车可能会出现下面三种情况: ① 制动距离变长 ②方向稳定性变差,出现侧滑现象,严重时出现旋转掉头 ③ 方向操纵性丧失,驾驶员不能控制汽车的行驶方向 防抱死制动系统ABS(Anti-lock Braking System)是一种主动安全装置,它在制动过程中根据“车辆一路面”状况,采用电子控制方式自动调节车轮的制动力矩来达到防止车轮抱死的目的。即在汽车制动时使车轮的纵向处于附着系数的峰值,同时使其侧向也保持着较高的附着系数,防止车轮抱死滑拖,提高制动过程中的方向稳定性、转向控制能力和缩短制动距离,使制动更为安全有效。 随着汽车行驶速度的提高、道路行车密度的增大、以及人们对汽车行驶安全性的要

制动系统设计计算分析

制动系统计算分析 一制动技术条件: 1. 行车制动: 2. 应急制动: 3. 驻车制动: 在空载状态下,驻车制动装置应能保证机动车在坡度20%(对总质量为整备质量的1.2倍以下的机动车为15%),轮胎与地面的附着系数不小于0.7的坡道上正反两个方向上保持不动,其时间不应少于5分钟。

二制动器选型 1.最大制动力矩的确定 根据同步附着系数和整车参数,确定前后轴所需制动力矩的范围,最大制动力是汽车附着质量被完全利用的条件下获得的,设良好路面附着系数φ=0.7。满载情况下,确定前后轴制动器所需要的最大制动力矩。 为:前轴 Mu1=G*φ(b+φ*h g)*r e /L (N.m) 后轴 Mu2=G*φ(a-φ*h g)*r e /L (N.m) 或者 Mu1=β/(1-β)* Mu2 【β=(φ*h g+b)/L】 其中 r e -轮胎有效半径 a-质心到前轴的距离 b-质心到后轴的距离 h g -质心高度 L-轴距φ-良好路面附着系数 G-满载总重量(N;g=9.8m/s2) 同理:空载亦如此。 前轴;Mu11 后轴:Mu21 根据满载和空载的情况,确定最大制动力矩,此力满足最大值。 所以:前轮制动器制动力矩(单个)≥Mu1或Mu11/2 后轮制动器制动力矩(单个)≥Mu2或Mu21/2 2.行车制动性能计算(满载情况下) 已知参数:前桥最大制动力矩Tu1(N.m) 单个制动器 后桥最大制动力矩Tu2(N.m) 单个制动器 满载整车总质量M(kg)

Mu1= Tu1*φ*2 (N.m) Mu2= Tu2*φ*2 (N.m) Fu= (Mu1+ Mu2)/r e (N) ②制动减速度 a b=Fu/M (m/s2) ③制动距离 S= U a0*(t21+ t211 /2)/3.6+ U a02 /25.92* a b 其中:U a0 (km/h)-制动初速度, t21+ t211 /2 为气压制动系制动系作用时间(一般在0.3-0.9s) 3.驻车制动性能计算 满载下坡停驻时后轴车轮的附着力矩:Mf Mf=M*g*φ(a*cosα/L -h g*sinα/L)*r e (N.m) 其中附着系数φ=0.7 坡度20%(α=11.31o) 在20%坡上的下滑力矩:M滑 M滑=M*g*sinα*r e (N.m)驻车度α=11.31o 则Mf>M滑时,满足驻车要求。 三储气筒容量校核 设储气筒容积为V储,全部制动管路总容积为∑V管,各制动气室压力腔最大容积之和为∑V s , 其中∑V管约为∑Vs的25%-50%,V储/∑V s=20-40(推荐值)。

控制系统滞后-超前校正设计

课 程 设 计 题 目: 控制系统的滞后-超前校正设计 初始条件:已知一单位反馈系统的开环传递函数是 ) 2)(1()(++= s s s K s G 要求系统的静态速度误差系数110v K S -≥,相角裕度 45≥γ。 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)

(1)用MATLAB画出满足初始条件的最小K值的系统伯德图,计算系统的幅值裕度和相角裕度。(2)前向通路中插入一相位滞后-超前校正,确定校正网络的传递函数。 (3)用MATLAB画出未校正和已校正系统的根轨迹。 (4)用Matlab画出已校正系统的单位阶跃响应曲线、求出超调量、峰值时间、调节时间及稳态误差。 (5)课程设计说明书中要求写清楚计算分析的过程,列出MATLAB程序和MATLAB输出。说明书的格式按照教务处标准书写。 时间安排: 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 ................................................................................................................... I 摘要 ................................................................................................................. II 1设计题目和设计要求 .. (1) 1.1题目 (1) 1.2初始条件 (1) 1.3设计要求 (1) 1.4主要任务 (1) 2设计原理 (2) 2.1滞后-超前校正原理 (2) 3设计方案 (4) 3.1校正前系统分析 (4) 3.1.1确定未校正系统的K值 (4) 3.1.2未校正系统的伯德图和单位阶跃响应曲线和根轨迹 (4) 3.1.3未校正系统的相角裕度和幅值裕度 (7) 3.2方案选择 (7) 4设计分析与计算 (8) 4.1校正环节参数计算 (8) 的确定 (8) 4.1.1已校正系统截止频率ω c ω的确定 (8) 4.1.4校正环节滞后部分交接频率 a ω的确定 (8) 4.1.1校正环节超前部分交接频率 b 4.2校正环节的传递函数 (8) 4.3已校正系统传递函数 (9) 5已校正系统的仿真波形及仿真程序 (10) 5.1已校正系统的根轨迹 (10) 5.2已校正系统的伯德图 (11) 5.3已校正系统的单位阶跃响应曲线 (12) 6结果分析 (13) 7总结与体会 (14) 参考文献 (14) 本科生课程设计成绩评定表........................................ 错误!未定义书签。

智能小车控制系统设计

智能小车控制系统设计 ——ARM控制模块设计 EasyARM615是一款基于32位ARM处理器,集学习和研发于一体的入门级开发套件,该套件采用Luminary Micro(流明诺瑞)公司生产的Stellaris系列微控制器LM3S615。本系统设计是以EasyARM615开发板为核心,通过灰度传感器检测路面上的黑线,运用PWM直流电机调速技术,完成对小车运动轨迹等一系列的控制。同时利用外扩的液晶显示器显示出各个参数。以达到一个简易的智能小车。 本文叙述了系统的设计原理及方法,讨论了ISR集成开发环境的使用,系统调试过程中出现的问题及解决方法。 据观察,普通的玩具小车一般需要在外加条件下才能按照自己的的设想轨迹去行驶,而目前可借助嵌入式技术让小车无需外加条件便可完成智能化。在小车行驶之前所需作的准备工作是在地面上布好黑线轨迹,设计好的小车便可按此黑线行驶,即为智能小车。其设计流程如下: 1、电机模块 采用由达林顿管组成的H型PWM电路。PWM电路由四个大功率晶体管组成,H桥电路构成,四个晶体管分为两组,交替导通和截止,用单片机控制达林顿管使之工作在开关状态,根据调整输入控制脉冲的占空比,精确调整电机转速。这种电路由于管子工作只在饱和和截止状态下,效率非常没。H型电路使实现转速和方向的控制简单化,且电子开关的速度很快,稳定性也极强,是一种广泛采用的PWM调整技术。 具体电路如下图所示。本电路采用的是基于PWM原理的H型驱动电路。该电路采用TIP132大功率达林顿管,以保证电动机启动瞬间的8安培电流要求。

2、传感器模块 灰度测量模块,是一种能够区分出不同颜色的的电子部件。灰度测量模块是专为机器人设计的灰度传感器。例如:沿着黑色轨迹线行走,不偏离黑色轨迹线;沿着桌面边沿行走,不掉到地上,等等。足球比赛时,识别场地中灰度不同的地面,以便于进行定位。不同的物体对红外线的反射率不同,黑色最低,白色最高;它通过发射红外线并测量红外线被反射的强度来输出反映物体颜色的电压信号,有效距离3-30毫米。 其技术规格如下: 已知灰度传感器的输出电压为0-3.3V,所以可通过ARM615开发板上的ADC 模块转换成数字信号,最后通过不断测试得出黑线与白线的大概参数值,完成对小车传感器部分的设计。 在本次设计中选择二个灰度传感器,其实现效果与布局如下所示。

相关文档