文档库 最新最全的文档下载
当前位置:文档库 › 数学建模红绿灯问题

数学建模红绿灯问题

数学建模红绿灯问题
数学建模红绿灯问题

十字路口红绿灯的合理设置

陈金康

检索词:红绿灯设置、红绿灯周期

一、问题的提出

作为城市交通的指挥棒,红绿灯对交通的影响起着决定性作用。如果红绿灯的设置不合理,不仅会影响到交通秩序;还有可能会影响到行人和自行车的安全。 目前杭城还有很多路口的红绿灯设置存在一些不合理的因素,我们以古墩路一个路口(界于天目山路和文苑路之间)的红绿灯设置为例,该路口是刚开通的,交管部门对路况和车流量的研究还不是很成熟,因此红绿灯的设置存在一些问题。该路口的车流量相对比较小,有几个方向的车流量特别小,但绿灯时间设置太长,经常出现路口空荡荡但是车辆必须长时间等待的情况;同时在这样的路口,右转红灯显得有些多余。另外,该路口不同时段的红绿灯设置没有什么区别,显然这是非常不合理的。

下面我们就针对该路口来研究一下红绿灯设置的合理方案。我们主要研究两个方面:红绿灯周期的设置以及一个周期内各个方面开绿灯的时间。

二、模型的建立 1、红绿灯周期

从《道路交通自动控制》中,我们可以找到有关红绿信号灯的最佳周期公式:

s

q L C ∑

-+=

15

其中 :

C 为周期时间。

相位:同时启动和终止的若干股车流叫做一个相位。

L 为一个周期内的总损失时间。每一相位的损失时间I=启动延迟时间-结束滞后时间;而整个周期的总损失时间为各个相位总损失时间的和加上各个绿灯间隔时间R 。(通俗地讲,启动延迟时间即司机看到绿灯到车子启动的反应时间,结束滞后时间即绿灯关闭到最后一辆车通过的时间。)

即R I L +∑= q 为相应相位的车流量

s 为相应相位的饱和车流量。(当车辆以大致稳定的流率通过路口时,该流率即该相位的饱和车流量。)

2、南北方向和东西方向开绿灯时间的分配

不妨忽略黄灯,将交通信号灯转换的一个周期取作单位时间,又设两个方向的车流量是稳定和均匀的,不考虑转弯的情形。

设E 是单位时间从东西方向到达路口的车辆数;S 是单位时间从南北方向到达路口的车辆数。假设在一个周期内,东西方向开红灯、南北方向开绿灯的时间为R ,那么在该周期内,东西方向开绿灯、南北方向开红灯的时间为1-R 。

我们要确定交通灯的控制方案,即确定R 。度量一个十字路口的串行效率的主要依据是单位时间内所有车辆在路口滞留的时间总和。因此要确定R ,只需保证在一个周期内,所有车辆在路口滞留的时间总和最短即可。一辆车在路口的滞留时间通常包括两部分,一部分是每辆车遇红灯后的停车等待时间,另一部分是停车后司机见到绿灯重新发动到开动的时间

0t ,它是可以测定的。

首先,对任意给定的R (0

2

22ER R R E =??

同理可得,南北向行驶的所有车辆在一个周期中等待时间的总和为

2

)1(2R S - 凡遇红灯的车辆均需花费t 单位时间启动,这部分时间也必须计入总滞留时间。一个周期中,各方向遇红灯停车的车辆总和为)1(R S R E -?+?,对应的这一部分滞留时间为

)]1([0R S R E t -?+??

从而总滞留时间为

2

)1(2)]1([)(220R S ER R S R E t R T T -++-+??==

2

])1[(20002S

S t R E t S t R S E ++-+-+=

])1([1

000Et t S S E R R -++==∴当

时,车辆总滞留时间最短。

令B=V+H ,表示一个周期中经过十字路口的车辆总数,上述表达式简化得最佳的0R 为

B

t E S S R 0

0)(?-+=

容易看到,最佳控制方案B

t E S S R 0

)(?-+=

3、两个方向直行和左转开绿灯时间的分配

进一步考虑车辆转弯的情况(假设右转弯不设红灯)。设南北方向直行和左转开绿灯时间总和(即上面的R )为一个单位时间,其中直行开绿灯时间为r ,则左转开绿灯时间为r -1;设单位时间内直行车辆数为H ,左转车辆数为L 。

则由上面的分析可知:L

H t L H H r +?-+=0

)(。

三、调查结果与数据处理 1、调查数据

2、数据处理

根据上述数据和前面建立的模型,我们可以计算出最佳周期和每个方向开绿灯的时间。(见表中最后两列)

上面的表格已经给出了不同时段,该路口的红绿灯周期和各个方向的绿灯时间。不过,事实上,红绿灯的设置是非常复杂的,它牵涉到各种因素,不可能用一个固定的模型解决一切问题,它必须根据实际情况不断调整。我们上面给出的方案只是一种理想化的、近似的方案,不过相信它对交警部门会有一定的参考价值和实际意义。

参考文献:

1、谭永基,俞文 ,数学建模,复旦大学出版社。

2、吴孟达,成礼智等,数学建模的理论与实践,国防科技大学出版社。

3、段里仁,道路交通自动控制,中国人民公安大学出版社。

数学建模论文十字路口绿灯

江西师范高等专科学校 论文题目:十字路口绿灯亮30秒,最多可以通过多少辆汽车? 组长:肖根金学号:9015300135 班级:15数教1班 组员:叶强学号:9015300143 班级:15数教1班 组员:谭伟学号:9015300132 班级:15数教1班 2017年4月15日

目录 一、问题重述 (3) 1.1问题背景 (3) 1.2问题简述 (4) 二、模型假设 (4) 3.1 停车位模型 (5) 3.2 启动时间模型 (5) 3.3 行驶模型 (5) 三、模型建立 (5) 四、模型求解 (5) 五、模型的检验与应用 (6) 5.1调查一个路口有关红绿灯的数据验证模型是否正确 5.2分析绿灯亮后,汽车开始以最高限速穿过路口的时间 5.3给出穿过路口汽车的数量n随时间t变化的数学模型 六、模型的评价 (6) 6.1 模型的优点 (6) 6.2 模型的缺点 (7) 参考文献

一、问题重述 1.1问题背景 随着经济和社会快速发展,我国城市道路建设增多,出行车辆增加,城市交通进入了快速发展阶段,城市交通的几个问题,即交通阻塞、交通事故、公共交通问题城市,道路交通问题日益突出.,为城市交通建设和路网规划提供方案和依据,达到优化城市道路交通状况的目的.因此我们针对于交通问题事故,将“十字路口绿灯亮30秒问题”单独列出以建模的形式来进行合理的规划,让十字路口的交通,更安全。在每年的节假时间里,有很多的人喜欢去旅游,交通的拥挤阻塞已经是很大问题,好多事故的发生。这是我们不愿意见到的事实。“十字路口绿灯亮30时间”对于现在的这个新时代的我们来说,城市的汽车车水马龙,它的合理设计是十分重要的。在交通管理中,绿灯的作用是为了维持交通秩序。在十字路口行驶的车辆中,主要因素是机动车辆,驶近交叉路口的驾驶员,在看到绿色信号后要通过路口。利用数学模型解决绿灯在十字路口亮30秒的问题,可以减少交通事故的发生,也相对合理的运用社会科学知识解决实际问题。某一天一个式子路口的绿灯灯亮30秒,那么能通过几辆汽车呢? 1.2问题简述 因为十字路口的交通现象较复杂,通过路口的车辆的多少依赖于路面上汽车的型号,数量和它们的行驶速度和方向以及同时穿过路口的非机动车辆的行人的状态等因素有关,因此,我们在求解“十字路

数学建模实验报告第十一章最短路问答

实验名称:第十一章最短路问题 一、实验内容与要求 掌握Dijkstra算法和Floyd算法,并运用这两种算法求一些最短路径的问题。 二、实验软件 MATLAB7.0 三、实验内容 1、在一个城市交通系统中取出一段如图所示,其入口为顶点v1,出口为顶点v8,每条弧段旁的数字表示通过该路段所需时间,每次转弯需要附加时间为3,求v1到v8的最短时间路径。 V1 1 V2 3 V3 1 V5 6 V6 V4 2 V7 4 V8

程序: function y=bijiaodaxiao(f1,f2,f3,f4) v12=1;v23=3;v24=2;v35=1;v47=2;v57=2;v56=6;v68=3;v78=4; turn=3; f1=v12+v23+v35+v56+turn+v68; f2=v12+v23+v35+turn+v57+turn+v78; f3=v12+turn+v24+turn+v47+v78; f4=v12+turn+v24+v47+turn+v57+turn+v56+turn+v68; min=f1; if f2

f4 实验结果: v1到v8的最短时间路径为15,路径为1-2-4-7-8. 2、求如图所示中每一结点到其他结点的最短路。V110 V3V59 V6

floy.m中的程序: function[D,R]=floyd(a) n=size(a,1); D=a for i=1:n for j=1:n R(i,j)=j; end end R for k=1:n for i=1:n for j=1:n if D(i,k)+D(k,j)

数学建模 生产计划问题

第一题:生产计划安排 2)产品ABC的利润分别在什么范围内变动时,上述最优方案不变 3)如果劳动力数量不增,材料不足时可从市场购买,每单位元,问该厂要不要购进原材料扩大生产,以购多少为宜 4)如果生产一种新产品D,单件劳动力消耗8个单位,材料消耗2个单位,每件可获利3元,问该种产品是否值得生产 答: max3x1+x2+4x3! 利润最大值目标函数x1,x2,x3分别为甲乙丙的生产数量 st!限制条件 6x1+3x2+5x3<45! 劳动力的限制条件 3x1+4x2+5x3<30! 材料的限制条件 End!结束限制条件 得到以下结果 1.生产产品甲5件,丙3件,可以得到最大利润,27元 2.甲利润在—元之间变动,最优生产计划不变 3. max3x1+x2+4x3 st 6x1+3x2+5x3<45 end 可得到生产产品乙9件时利润最大,最大利润为36元,应该购入原材料扩大生产,购入15个单位 4. max3x1+x2+4x3+3x4 st 6x1+3x2+5x3+8x4<45 3x1+4x2+5x3+2x4<30 end ginx1 ginx2 ginx3 ginx4 利润没有增加,不值得生产 第二题:工程进度问题 某城市在未来的五年内将启动四个城市住房改造工程,每项工程有不同的开始时间,工程周期也不一样,下表提供了这些项目的基本数据。

工程1和工程4必须在规定的周期内全部完成,必要时,其余的二项工程可以在预算的限制内完成部分。然而,每个工程在他的规定时间内必须至少完成25%。每年底,工程完成的部分立刻入住,并且实现一定比例的收入。例如,如果工程1在第一年完成40%,在第三年完成剩下的60%,在五年计划范围内的相应收入是*50(第二年)+*50(第三年)+(+)*50(第四年)+(+)*50(第五年)=(4*+2*)*50(单位:万元)。试为工程确定最优的时间进度表,使得五年内的总收入达到最大。 答: 假设某年某工程的完成量为Xij, i表示工程的代号,i=1,2,3,j表示年数,j=1,2,3,如第一年工程1完成X11,工程3完成X31,到第二年工程已完成X12,工程3完成X32。 另有一个投入与完成的关系,即第一年的投入总费用的40%,该工程在年底就完成40%,工程1利润: 50*X11+50*(X11+X12)+50*(X11+X12+X13)+50*(X11+X12+X13) 工程2利润: 70*X22+70*(X22+X23)+70*(X22+X23+X24) 工程3利润: 20*X31+150*(X31+X32)+150*(X31+X32+X33)+150*(X31+X32+X33+X34) 工程4利润: 20*X43+20*(X43+X44) max(50*X11+50*(x11+x12)+50*(X11+X12+X13)+50*(X11+X12+X13))+(70*X22+70*(X22+X23) )+70*(X22+X23+X24)+(150*X31+150*(X31+X32)+150*(X31+X32+X33)+150*(X31+X32+X33+X34)) +(20*X43+20*(X43+X44)) st 5000*X11+15000*X31=3000 5000*X12+8000*X22+15000*X32=6000 5000*X13+8000*X23+15000*X33+1200*X43=7000 8000*X24+15000*X34+12000*X44=7000 8000*X25+15000*X35=7000 X11+X12+X13=1 X22+X23+X24+X25≥ X22+X23+X24+X25≤1 X31+X32+X33+X34+X35≥ X31+X32+X33+X34+X35≤1 X43+X44=1 全为大于零的数

数学建模,红绿灯闪烁模型

建模实习作业题 之红绿灯闪烁模型班级:计算1502

交通管理中非数字灯闪烁时间模型 摘要 本文在了解过车辆通过红绿灯所遇见的情况,以及对车型的分析下,重点通过常微分方程建立起时间,刹车距离,以及刹车制动因素相关的数学模型。 在问题中对红绿灯灯应闪烁时间做出等价转换,闪烁的意图是让车辆在黄灯前停在停止线前,对于影响车辆刹车距离的因素主要由车辆制动力控制,闪烁时间应为驾驶员观察到信号变换反应的时间与驾驶员制动使车辆停在停车线所需时间之和。在法定通过红绿灯的速度下对大型车辆进行讨论,因为小型车辆制动距离明显小于大型载货汽车。 对于模型的评价,本文采用与实际生活中数据以及对车辆理论数据进行对比,以此检验模型建立的合理性及正确性。 最后,本文分析了现有模型的缺陷,并提出进一步改进方法,使之与贴合生活方面进一步。 【关键词】微分方程;刹车制动力;制动因素

目录 一、问题重 述………………………………………………………………………………… …4 二、基本假 设………………………………………………………………………………… …4 三、符号说 明………………………………………………………………………………… …4 四、模型建立、分析与求 解 (5) 五、模型评价与改 进 (6) 六、参考文 献 (7)

一、问题重述 从2013年元月一日,国家开始实行新的交通法规。在十字路口的交通管理中,最大而且最有争议的改变是闯黄灯。在以前的交规中,亮红灯之前要亮一段时间黄灯,这是为了让那些行驶在十字路口或距十字路口太近以致无法停下来的车辆通过路口.现在规定闯黄灯也是违规行为,为了不违反交通法规,对有时间数字的交通灯,司机根据时间数字可以提前对自己的行动作出决策,但还有很多交通灯是非数字的,这就不可避免的对司机的判断造成障碍,为此,非数字的交通灯在变灯前加入了闪烁,以提醒司机。为了让司机在十字路口有足够的时间决定过不过马路,请你考察实际生活中的道路,给出最佳的闪烁时间。 二、基本假设 1.假设刹车途中,刹车制动力恒定 2.行驶过程中没有意外事故

数学建模模最短路

基于最短路问题的研究及应用 : Fanmeng 学号: 指导老师:

摘要 最短路问题是图论中的一大问题,对最短路的研究在数学建模和实际生活中具有很重要的实际意义,介绍最短路问题的定义及这类问题的解决办法Dijkstra算法,并且能够在水渠修建实例运用到此数学建模的方法,为我们解决这类图论问题提供了基本思路与方法。 关键字数学建模最短路问题 Dijkstra算法水渠修建。

目录 第一章.研究背景 (1) 第二章.理论基础 (2) 2.1 定义 (2) 2.2 单源最短路问题Dijkstra求解: (2) 2.2.1 局限性 (2) 2.2.2 Dijkstra算法求解步骤 (2) 2.2.3 时间复杂度 (2) 2.3 简单样例 (3) 第三章.应用实例 (4) 3.1 题目描述 (4) 3.2 问题分析 (4) 3.3符号说明 (5) 3.4 模型假设 (5) 3.5模型建立与求解 (5) 3.5.1模型选用 (5) 3.5.2模型应用及求解 (5) 3.6模型评价 (5) 第四章. 参考文献 (6) 第五章.附录 (7)

第一章.研究背景 在现实生活中中,我们经常会遇到图类问题,图是一种有顶点和边组成,顶点代表对象,在示意图中我们经常使用点或者原来表示,边表示的是两个对象之间的连接关系,在示意图中,我们使用连接两点G点直接按的下端来表示。顶点的集合是V,边的集合是E的图记为G[V,E] ,连接两点u和v的边用e(u,v)表示[1]。最短问题是图论中的基础问题,也是解决图类问题的有效办法之一,在数学建模中会经常遇到,通常会把一个实际问题抽象成一个图,然后来进行求的接任意两点之间的最短距离。因此掌握最短路问题具有很重要的意义。

数学建模钢管下料问题

重庆交通大学 学生实验报告 实验课程名称数学建模 ^ 开课实验室数学实验室 学院信息院11 级软件专业班 1 班 学生姓名 学号 ¥ 开课时间2013 至2014 学年第 1 学期

! 】 )

/ 实验一 钢管下料问题 摘要 ( 生产中常会遇到通过切割、剪裁、冲压等手段,将原材料加工成规定大小的某种,称为原料下料问题.按照进一步的工艺要求,确定下料方案,使用料最省,或利润最大是典型的优化问题.下面我们采用数学规划模型建立线性规划模型并借助LINGO 来解决这类问题. 关键词线性规划最优解钢管下料 一,问题重述 1、问题的提出 某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割出售.从钢管厂进货得到的原材料的钢管的长度都是1850mm ,现在一顾客需要15根290 mm,28根315 mm,21根350 mm和30根455 mm的钢管.为了简化生产过程,规定所使用的切割模式的种类不能超过4种,使用频率最高的一种切割模式按照一根原料钢管价值的1/10增加费用,使用频率次之的切割模式按照一根原料钢管价值的2/10增加费用,以此类推,且每种切割模式下的切割次数不能太多(一根原钢管最多生产5根产品),此外为了减少余料浪费,每种切割模式下的余料浪费不能超过100 mm,为了使总费用最小,应该如何下料 ` 2、问题的分析 首先确定合理的切割模式,其次对于不同的分别进行计算得到加工费用,通

过不同的切割模式进行比较,按照一定的排列组合,得最优的切割模式组,进而使工加工的总费用最少. 二,基本假设与符号说明 1、基本假设 假设每根钢管的长度相等且切割模式理想化.不考虑偶然因素导致的整个切割过程无法进行. 2、定义符号说明 (1)设每根钢管的价格为a ,为简化问题先不进行对a 的计算. (2)四种不同的切割模式:1x 、2x 、3x 、4x . 》 (3)其对应的钢管数量分别为:i r 1、i r 2、i r 3、i r 4(非负整数). 三、模型的建立 由于不同的模式不能超过四种,可以用i x 表示i 按照第种模式(i =1,2,3,4)切割的原料钢管的根数,显然它们应当是非负整数.设所使用的第i 种切割模式下 每根原料钢管生产290mm ,315mm,,350mm 和455mm 的钢管数量分别为i r 1,i r 2,i r 3,i r 4(非负整数). 决策目标 切割钢管总费用最小,目标为: Min=(1x ?+2x ?+3x ?+4x ?)?a (1) 为简化问题先不带入a 约束条件 为满足客户需求应有 11r ?1x +12r ?2x +13r ?3x +14r ?4x ≧15 (2) ( 21r ?1x +22r ?2x +23r ?3x +24r ?4x ≧28 (3) 31r ?1x +32r ?2x +33r ?3x +34r ?4x ≧21 (4) 41r ?1x +42r ?2x +43r ?3x +44r ?4x ≧15 (5) 每一种切割模式必须可行、合理,所以每根钢管的成品量不能大于1850mm 也不能小于1750mm.于是: 1750≦290?11r +315?21r +350?31r +455?41r ≦1850 (6) 1750≦290?12r +315?22r +350?32r +455?42r ≦1850 (7) 1750≦290?13r +315?23r +350?33r +455?43r ≦1850

数学建模 红绿灯问题

十字路口红绿灯的合理设置 陈金康 检索词:红绿灯设置、红绿灯周期 一、问题的提出 作为城市交通的指挥棒,红绿灯对交通的影响起着决定性作用。如果红绿灯的设置不合理,不仅会影响到交通秩序;还有可能会影响到行人和自行车的安全。 目前杭城还有很多路口的红绿灯设置存在一些不合理的因素,我们以古墩路一个路口(界于天目山路和文苑路之间)的红绿灯设置为例,该路口是刚开通的,交管部门对路况和车流量的研究还不是很成熟,因此红绿灯的设置存在一些问题。该路口的车流量相对比较小,有几个方向的车流量特别小,但绿灯时间设置太长,经常出现路口空荡荡但是车辆必须长时间等待的情况;同时在这样的路口,右转红灯显得有些多余。另外,该路口不同时段的红绿灯设置没有什么区别,显然这是非常不合理的。 下面我们就针对该路口来研究一下红绿灯设置的合理方案。我们主要研究两个方面:红绿灯周期的设置以及一个周期内各个方面开绿灯的时间。 二、模型的建立 1、红绿灯周期 从《道路交通自动控制》中,我们可以找到有关红绿信号灯的最佳周期公式: s q L C ∑ -+= 15 其中 : C 为周期时间。 相位:同时启动和终止的若干股车流叫做一个相位。 L 为一个周期内的总损失时间。每一相位的损失时间I=启动延迟时间-结束滞后时间;而整个周期的总损失时间为各个相位总损失时间的和加上各个绿灯间隔时间R 。(通俗地讲,启动延迟时间即司机看到绿灯到车子启动的反应时间,结束滞后时间即绿灯关闭到最后一辆车通过的时间。) 即R I L +∑= q 为相应相位的车流量 s 为相应相位的饱和车流量。(当车辆以大致稳定的流率通过路口时,该流率即该相位的饱和车流量。) 2、南北方向和东西方向开绿灯时间的分配 不妨忽略黄灯,将交通信号灯转换的一个周期取作单位时间,又设两个方向的车流量是稳定和均匀的,不考虑转弯的情形。

数学建模之钢管下料问题案例分析

钢管下料问题 某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出,从钢管厂进货时得到的原料钢管都是19m 。 (1)现在一客户需要50根4m 、20根6m 和15根8m 的钢管。应如何下料最节省? (2) 零售商如果采用的不同切割模式太多,将会导致生产过程的复杂化,从而增加生产和管理成本,所以该零售商规定采用的不同切割模式不能超过3种。此外,该客户除需要(1)中的三种钢管外,还需要10根5m 的钢管。应如何下料最节省。 问题(1)分析与模型建立 首先分析1根19m 的钢管切割为4m 、6m 、8m 的钢管的模式,所有模式相当于求解不等式方程: 12346819 k k k ++≤ 的整数解。但要求剩余材料12319(468)4r k k k =-++<。 容易得到所有模式见表1。 决策变量 用i x 表示按照第i 种模式(i=1,2,…,7)切割的原料钢管的根数。 以切割原料钢管的总根数最少为目标,则有 1234567min z x x x x x x x =++++++ 约束条件 为满足客户的需求,4米长的钢管至少50根,有

1236743250x x x x x ++++≥ 6米长的钢管至少20根,有 25673220x x x x +++≥ 8米长的钢管至少15根,有 346215x x x ++≥ 因此模型为: 1234567min z x x x x x x x =++++++ 123672567346432503220..215,1,2,,7 i x x x x x x x x x s t x x x x i ++++≥??+++≥??++≥??=? 取整 解得: 12345670,12,0,0,0,15,0x x x x x x x ======= 目标值z=27。 即12根钢管采用切割模式2:3根4m ,1根6m ,余料1m 。 15根钢管采用切割模式6:1根4m ,1根6m ,1根8m ,余料1m 。 切割模式只采用了2种,余料为27m ,使用钢管27根。 LINGO 程序: model: sets: model/1..7/:x; endsets min=x(1)+x(2)+x(3)+x(4)+x(5)+x(6)+x(7); 4*x(1)+3*x(2)+2*x(3)+x(6)+x(7)>=50; x(2)+3*x(5)+x(6)+2*x(7)>=20; x(3)+2*x(4)+x(6)>=15; @for(model(i):@gin(x(i))); end 问题(2)模型建立 首先分析1根19m 的钢管切割为4m 、6m 、8m 、5m 的钢管的模式,所有模式相当

交通路口红绿灯__数学建模

交通路口红绿灯 十字路口绿灯亮30秒,最多可以通过多少辆汽车?一问题重述 因为十字路口的交通现象较复杂,通过路口的车辆的多少依赖于路面上汽车的型号,数量和它们的行驶速度和方向以及同时穿过路口的非机动车辆的行人的状态等因素有关,因此,我们在求解“十字路口绿灯亮30秒,最多可以通过多少辆汽车”时应综合考虑各方面因素二模型假设 (1)十字路的车辆穿行秩序良好不会发生阻塞; (2)所有车辆都是直行穿过路口,不拐弯行驶,并且仅考虑马路一侧的车辆。 (3)所有车辆长度相同,并且都是从静止状态开始匀加速启动; (4)红灯下等侍的每辆相邻车之间的距离相等; (5)前一辆车启动后同后一辆车启动的延迟时间相等。 另外在红灯下等侍的车队足够长,以至排在队尾的司机看见绿灯又转为红灯时仍不能通过路口。 参数,变量:车长L,车距D,加速度a,启动延迟T,在时刻 t 第n 辆车的位置 S n(t) 用数轴表示车辆行驶道路,数轴的正向为汽车行驶方向, 数轴原点为红绿灯的位置。于是, 当S n(30)>0时, 表明在第30秒第n辆车已通过红绿灯,否则,结论相反。

三模型建立 1.停车位模型: S n(0)=–(n-1)(L+D) 2. 启动时间模型: t n =(n-1)T 3. 行驶模型: S n(t)=S n(0)+1/2 a (t-t n) 2, t>t n 参数估计 L=5m,D=2m,T=1s,a=2m/s 四模型求解 解: S n(30)=-7(n-1)+(30-(n-1))2>0 得 n≤19 且 t19=18<30=t 成立。 答案: 最多19辆车通过路口. 改进:考虑到城市车辆的限速,在匀加速运动启动后,达到最高限速后,停止加速, 按最高限速运动穿过路口。 最高限速:校园内v*=15公里/小时=4米/秒,长安街上v*=40公里/小时=11米/秒,环城路上 v*=60公里/小时=17米/秒 取最高限速 v*=11m/s,达到最高限速时间t n*=v* /a+t n =5.5+n-1 限速行驶模型: S n(t)=S n(0)+1/2 a(t n *–t n )2+v*(t-t n*), t>t n* =S n(0)+1/2 a (t-t n) 2, t n*>t>t n = S n(0) t n>t 解:S n(30)=-7(n-1)+(5.5)2+11(30-5.5-(n-1))>0 得 n≤17 且 t17 * =5.5+16=21.5<30=t 成立。 结论: 该路口最多通过17辆汽车.

数学建模之下料问题

数学建模第三次作业 下料问题 摘要 本文是针对如何对钢管进行下料问题,根据题目要求以及下料时有关问题进行建立切割费用最少以及切割总根数最少两个目标函数通过结果分析需要使用何种切割模式。 生产方式所花费的成本价格或多或少有所不同,如何选取合理的生产方式以节约成本成为了很多厂家的急需解决的问题。这不仅仅关系到厂家的利益,也影响到一个国家甚至整个人类星球的可利用资源,人们的生活水平不断提高对物资的需求量也不断上升,制定有效合理的生产方式不仅可以为生产者节约成本也可以为社会节约资源,以达到资源利用最大化。本文以用于切割钢管花费最省及切割总根数最少为优化目标,通过构建多元函数和建立线性整数规划模型,利用数学及相关方面的知识对钢管的切割方式进行优化求解最佳方案。 本文最大的特色在于通过求解出切割钢管花费最省及切割总根数最少时分别得出两种目标函数取最小值时的切割模式。通过结果发现两种目标函数取最小值时所需切割根数都一样。于是选择切割钢管花费最省为目标函数,此时的切割模式达到最少,这样既满足了总根数最小有满足了切割费用最小。 关键词:切割模式LINGO软件线性整数

一、问题的提出 某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后出售。从钢管厂进货时得到的原料钢管的长度都是1850mm。现有一客户需要15根290mm、28根315mm、21根350mm和30根455mm的钢管。为了简化生产过程,规定所使用的切割模式的种类不能超过4种,使用频率最高的一种切割模式按照一根原料钢管价值的1/10增加费用,使用频率次之的切割模式按照一根原料钢管价值的2/10增加费用,依次类推,且每种切割模式下的切割次数不能太多(一根钢管最多生产5根产品)。此外,为了减少余料浪费,每种切割模式下的余料不能超过100mm。为了使总费用最小,应如何下料? 二、基本假设 1、假设所研究的每根钢管的长度均为1850mm的钢管。 2、假设每次切割都准确无误。 3、假设切割费用短时间内不会波动为固定值。 5、假设钢管余料价值为0. 6、假设一切运作基本正常不会产生意外事件。 7、每一根钢管的费用都一样,为一常值。 三、符号说明

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

数学建模论文——下料问题

3.下料问题 班级:计科0901班姓名:徐松林学号:2009115010130 摘要: 本文建立模型,以最少数量的原材料以及最少的余料浪费来满足客户的需求。主要考虑到两方面的问题。钢管零售商是短时间内出售钢管,则应该以最少原材料根数为目标函数来建模模型;钢管零售商是长时间内出售钢管,则应该以最少余料浪费为目标函数。有效地使用背包问题及线性规划、非线性规划等算法,算出最优解。特别是钢管零售商是短时间内出售钢管,需要分析切割模式的种类1到4种的各个情况的整数最优解,再依次比较每个情况的最优解得出总的最优解。 关键词:余料、原材料、加工费、总费用。 一、问题背景 工厂在实际生产中需要对标准尺寸的原材料进行切割,以满足进一步加工的需要,成为下料问题。 相关数据表明,原材料成本占总生产成本的百分比可以高达45%~60%,而下料方案的优劣直接影响原材料的利用率,进而影响原材料成本。因此需要建立优化的下料方案,以最少数量的原材料以及最少的余料浪费,尽可能按时完成需求任务。 二.问题描述及提出 某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出.从钢管厂进货时得到的原料钢管长度都是1850mm.现有一客户需要15根290mm、28根315mm、21根350mm 和30根455mm的钢管.为了简化生产过程,规定所使用的切割模式的种类不能超过4种,使用频率最高的一种切割模式按照一根原料钢管价值的1/10增加费用,使用频率次之的切割模式按照一根原料钢管价值的2/10增加费用,依此类推,且每种切割模式下的切割次数不能太多(一根原料钢管最多生产5根产品)。此外,为了减少余料浪费,每种切割模式下的余料浪费不能超过100mm.为了使总费用最小,应如何下料? 在该目标下要求考虑下面两个问题: 1.若钢管零售商是短时间内出售钢管(即每次将钢管按照顾客的要求切割后售 出,多余的零件不准备下次售出),则每次应该以最少原材料根数为目标函数。

数学建模--交通问题

摘要 近年来随着机动车辆的迅猛增长,城市道路的交通压力日渐增大,各大城市对旧城改造及城市道路建设的投入也不断扩大,交通拥挤问题却仍旧日益严重。因此,科学全面地分析和评价城市的绩效,进而找到适合我国的城市交通规划模式,已成为我国城市交通迫切需要解决的课题。 本文通过大量查阅城市交通绩效评价指标,结合目前我国交通发展现状,以兰州为例,首先建立了绩效评价指标的层次结构模型,确定了目标层,准则层(一级指标),子准则层(二级指标)。 其次,建立评价集V=(优,良,中,差)。对于目标层下每个一级评价指标下相对于第m 个评价等级的隶属程度由专家的百分数u 评判给出,即U =[0,100]应用模糊统计建立它们的隶属函数A(u), B(u), C(u) ,D(u),最后得出目标层的评价矩阵Ri ,(i=1,2,3,4,5)。利用A,B 两城相互比较法,根据实际数据建立二级指标对于相应一级指标的模糊判断矩阵P i (i=1,2,3,4,5) 然后,我们经过N 次试验调查,明确了各层元素相对于上层指标的重要性排序,构造模糊判断矩阵P ,利用公式 1 ,ij ij n kj k u u u ==∑ 1 ,n i ij j w u ==∑ 1 ,i i n j j w w w ==∑ []R W R W R W R W R W W R W O 5544332211,,,,==计算出权重值,经过一致性检验公式RI CI CR = 检验后,均有0.1CR <,由此得出各层次的权向量()12,,T n W W W W =K 。然后后, 给出建立绩效评价模型(其中O 是评价结果向量),应用模糊数学中最大隶属度原则,对被评价城市交通的绩效进行分级评价。 接着,为了优化兰州安宁区道路交通,我们建立了评价城市交通的指标体系,继而构造模糊判断矩阵P ,计算出相应的权重值。我们挑选了道路因素进行优化,以主干道利用率约束、红绿灯效率约束、公交站点数目约束、非负约束为约束条件建立了安宁区道路交通优化方案的权系数模型,最后利用实际测算数据给出最终优化模型,提出合理化的优化建议,希望能为更好的建设兰州交通体系作出贡献。 关键词:城市交通 层次分析 模糊综合评判 绩效评价 隶属度

数学建模模最短路

基于最短路问题的研究及应用令狐采学 姓名:Fanmeng 学号: 指导老师:

摘要 最短路问题是图论中的一大问题,对最短路的研究在数学建模和实际生活中具有很重要的实际意义,介绍最短路问题的定义及这类问题的解决办法Dijkstra算法,并且能够在水渠修建实例运用到此数学建模的方法,为我们解决这类图论问题提供了基本思路与方法。 关键字数学建模最短路问题Dijkstra算法水渠修建。

目录 第一章.研究背景1 第二章.理论基础2 2.1 定义2 2.2 单源最短路问题Dijkstra求解:2 2.2.1 局限性2 2.2.2 Dijkstra算法求解步骤2 2.2.3 时间复杂度2 2.3 简单样例3 第三章.应用实例4 3.1 题目描述4 3.2 问题分析4 3.3符号说明4 3.4 模型假设5 3.5模型建立与求解5 3.5.1模型选用5 3.5.2模型应用及求解5 3.6模型评价5 第四章. 参考文献5 第五章.附录6

第一章.研究背景 在现实生活中中,我们经常会遇到图类问题,图是一种有顶点和边组成,顶点代表对象,在示意图中我们经常使用点或者原来表示,边表示的是两个对象之间的连接关系,在示意图中,我们使用连接两点G点直接按的下端来表示。顶点的集合是V,边的集合是E的图记为G[V,E] ,连接两点u和v的边用e(u,v)表示[1]。最短问题是图论中的基础问题,也是解决图类问题的有效办法之一,在数学建模中会经常遇到,通常会把一个实际问题抽象成一个图,然后来进行求的接任意两点之间的最短距离。因此掌握最短路问题具有很重要的意义。

第二章.理论基础 2.1 定义 最短路问题(short-path problem ):若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点,(通常是源节点和目标节点)之间总权和最小的路径就是最短路问题。最短路问题是网络理论解决的典型问题之一,可用来解决管道铺设,线路安装,厂区布局和设备更新等实际问题[2]。 2.2 单源最短路问题Dijkstra 求解: 2.2.1局限性 Dijkstra 算法不能够处理带有负边的图,即图中任意两点之间的权值必须非负。 2.2.2Dijkstra 算法求解步骤 (1).先给图中的点进行编号,确定起点的编号。 (2).得到图的构成,写出写出图的矩阵 0000(,)(,) (,) (,) n n n n u u u u G u u u u = (3).根据要求求出发点S 到终点E 的最短距离,那么需要从当前没被访问过的结点集合 unvist={u | u {1,2,3...}}n ∈中找到一个距离已经标记的点的集合中vist={u | u {1,2,3...}}n ∈的最短距离,得到这个顶点; (4).利用这个顶点来松弛其它和它相连的顶点距离S 的值 (5).重复步骤(2)和(3),直到再也没有点可以用来松弛其它点,这样我们就得到了由起点S 到其它任意点的最短距离。 2.2.3时间复杂度 时间复杂度达到 2 ()O N

数学建模--钢管下料问题

钢管下料问题 摘要: 如何建立整数规划模型并得出整数规划模型的求解方法是本实验要点, 本题建立最常见的线性整数规划,利用分支定界法和Lingo 软件进行求解原料下料类问题,即生产中通过切割、剪裁、冲压等手段,将原材料加工成所需大小;按照工艺要求,确定下料方案,使所用材料最省,或利润最大。分支定界法可用于解纯整数或混合的整数规划问题,此方法灵活且便于用计算机求解,所以现在它已是解整数规划的重要方法。Lingo 软件的功能是可以求解非线性规划(也可以做线性规划,整数规划等),特点是运算速度快,允许使用集合来描述大规模的优化问题。 大规模数学规划的描述分为四个部分: model: 1.集合部分(如没有,可省略) SETS: 集合名/元素1,元素2,…,元素n/:属性1,属性2,… ENDSETS 2.目标函数与约束部分 3.数据部分(如没有,可省略) 4.初始化部分(如不需要初始值,可省略) end 关键字:材料 Lingo 软件 整数规划 问题描述: 某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出,从钢管厂进货时得到的原料都是19米。 (1)现有一顾客需要50根4米、20根6米和15根8 米的钢管。应如何下料最节省? (2)零售商如果采用的不同切割模式太多,将会导致生产过程的复杂化,从而增加生产和管理成本,所以该零售商规定采用的不同切割模式不能超过3种。此外,该客户除需要(1)中的三种钢管外,还需要10根5米的钢管。应如何下料最节省。 (1)问题简化: 问题1. 如何下料最节省 ? 节省的标准是什么? 原料钢管:每根19米 4米50根 6米20根 8米15根

数学建模——交通管理问题

190 实验十 交通管理问题 【实验目的】 1.了解微分方程的一些基本概念。 2.初步掌握微分方程模型建立、求解的基本方法和步骤。 3.学习掌握用MA TLAB 软件中相关命令求解常微分方程的解析解。 【实验内容】 在城市道路的十字路口,都会设置红绿交通灯。为了让那些正行驶在交叉路口或离交叉路口太近而又无法停下的车辆通过路口,红绿灯转换中间还要亮起一段时间的黄灯。对于一名驶近交叉路口的驾驶员来说,万万不可处于这样进退两难的境地:要安全停车但又离路口太近;要想在红灯亮之前通过路口又觉得距离太远。那么,黄灯应亮多长时间才最为合理呢? 已知城市道路法定速度为0v ,交叉路口的宽度为I ,典型的车身长度统一定为L ,一般情况下驾驶员的反应时间为T ,地面的磨擦系数为μ。(假设I =9m ,L =4.5m ,μ=0.2,T =1s ) 【实验准备】 微分方程是研究函数变化过程中规律的有力工具,在科技、工程、经济管理、人口、交通、生态、环境等各个领域有着广泛的应用。如在研究牛顿力学、热量在介质中的传播、抛体运动、化学中液体浓度变化、人口增长预测、种群变化、交通流量控制等等过程中,作为研究对象的函数,常常要和函数自身的导数一起,用一个符合其内在规律的方程,即微分方程来加以描述。 1.微分方程的基本概念 未知的函数以及它的某些阶的导数连同自变量都由一已知方程联系在一起的方程称为微分方程。如果未知函数是一元函数,称为常微分方程。如果未知函数是多个变量的函数,称为偏微分方程。联系一些未知函数的多个微分方程称为微分方程组。微分方程中出现的未知函数的导数的最高阶数称为微分方程的阶。若方程中未知函数及其各阶导数都是一次的,称为线性常微分方程,一般表示为 )(n y +)1(1)(-n y t a +…+'1)(y t a n -+y t a n )(=)(t b (1) 若(1)式中系数)(t a i (i =1,2,…,n )均与t 无关,称之为常系数(或定常、自治、时不变)的。 建立微分方程模型要根据研究的问题作具体的分析。一般有以下三种方法: 根据规律建模:在数学、力学、物理、化学等学科中已有许多经过实践检验的规律和定律,如牛顿运动定律、基尔霍夫电流及电压定律、物质的放射性规律、曲线的切线的性质等,这些都涉及某些函数的变化率。我们可以根据相应的规律,列出常微分方程。 微元法建模:利用微积分的分析法建立常微分方程模型,实际上是寻求一些微元之间的关系式,在建立这些关系式时也要用到已知的规律或定理。与第一种方法不同之处在于这里不是直接对未知函数及其导数应用规律和定理来求关系式,而是对某些微元来应用规律。 模拟近似法建模:在社会科学、生物学、医学、经济学等学科的实践中,常常要用模拟近似法来建立微分方程模型。这是因为,上述学科中的一些现象的规律性我们还不是很清楚,

下料问题数学建模(钢管)

防盗窗下料问题 摘要 本文针对寻找经济效果最优的钢管下料方案,建立了优化模型。问题中的圆形管下料设定目标为切割原料圆形管数量尽可能少且在使用一定数量圆形管的过程中使被切割利用过的原料总进价尽可能低。问题中的方形管原料不足以提供所需截得的所用钢管,故设目标为使截得后剩余方形管总余量最小。模型的建立过程中,首先运用了C语言程序,利用逐层分析方法,罗列出针对一根钢材的截取模式;然后根据条件得出约束关系,写出函数关系并对圆形管下料建立了线性模型,对方形管下料建立了非线性模型;接着,在对模型按实际情况进行简化后,借助lingo程序对模型求解,得出了模型的最优解,并给出了最符合经济效果最优原则的截取方案。 关键词:钢管下料;最优化;lingo;

问题提出 某不锈钢装饰公司承接了一住宅小区的防盗窗安装工程,为此购进了一批型号为304的不锈钢管,分为方形管和圆形管两种,方管规格为25×25×1.2(mm),圆管规格Φ19×1.2(mm)。每种管管长有4米和6米两种,其中4米圆形管5000根,6米圆形管9000根,4米方形管2000根,6米方形管2000根。 根据小区的实际情况,需要截取1.2m圆管8000根, 1.5m圆管16500根,1.8m圆管12000根,1.4m方形管6000根,1.7m方形管4200根,3m方形管2800根。 请根据上述的实际情况建立数学模型,寻找经济效果最优的下料方案。 基本假设和符号说明 1、假设钢管切割过程中无原料损耗或损坏; 2、假设余料不可焊接; 3、假设同种钢材可采用的切割模式数量不限; 4、假设不同长度钢管运费、存储资源价值没有区别; 5、假设该304型号不锈钢管未经切割则价值不变,可在其它地方使用。 为便于描述问题,文中引入一些符号来代替基本变量,如表一所示: 问题分析与模型建立 问题中的圆形管原料足够,寻找经济效果最优的下料方案,即目标为切割原料圆形管数量尽可能少。考虑到6米圆形管与4米圆形管的采购价格应该是不同的,所以我们寻求的是在使用一定数量6米圆形管与4米圆形管的过程中使被切割利用过的原料总进价尽可能低。 首先要确定针对6米和4米不同规格的圆形管合理的截取模式各有哪几种。然后我们从所有截取模式中选取若干种截取模式,并设计出最佳的截取方案。 问题中的方形管原料不足以提供所需截得的所用钢管,所用的原料必然都要用于切割,不存在使用总钢管数量最少的说法,故我们可建立模型使截得后剩余方形管总余量最小。

数学建模 绿色波浪红绿灯

评分栏 1、设计"绿色波浪"红绿灯 摘要: 本文主要研究交通问题中的“绿色波浪”线控模型,把主干道相邻交通交通信号联 动起来,通过对其距离和信号周期的分析,给出“时间-距离”图,利用图解法对简单系 统优化求解;提出对复杂系统的数值计算法,用精确的数值进一步研究红绿灯控制问题, 并实地考察从哈尔滨秋林公司到太平桥各路口的实际情况,采集了数据,用此法给出了对 此路段的“绿色波浪”红绿灯的设计方案。从而政府可以逐渐改变道路的结构和尽可能多 地设置“绿色波浪”道路,大大节约整个行车组的汽油消耗,改善环境。 一、问题重述 随着全球温室效应的加剧和石油资源的逐渐减少,很多国家都将节能减排 提到了政府工作的重要议事日程之中。城市拥堵的交通是造成汽油消耗和大量 尾气排放的重要元凶,而汽车在反复刹车减速和提速的过程中不但耗油量是正 常行驶的数倍以至十多倍,所排放的有害气体也是成倍增加。哈尔滨秋林公司 到太平桥路线,该路段长约4公里,但是地处繁华地带,红绿灯密集,一路上 有大约10多处红绿灯,行车缓慢经常拥堵,行车时间长达20分钟。需要依照“绿色波浪”想法设计一套红绿灯系统。在保证安全的前提下尽可能实现顺畅 通行,并在最后向司机写一份推广文,介绍想法做法,和司机应该如何顺利实 现“绿色波浪”。 二、问题的分析与假设 1、假设从秋林公司到太平桥这一段,马路的宽度相等、各向车道数相等。 2、假设此路段上车总量大于与其他交叉的其他路口的车流量。 3、从各个路口进入此路段的车流量等于注入此路口的车流量。即各个路 口对此路段的车流量没有影响,此路段与它们相交叉时自身的车流量不会改变。 4、假设此路段从西到东的车流量相等,而且两个方向汽车的平均速度相等。 5、信号灯只有红灯、绿灯两种,不考虑黄灯。 6、各个路口的信号周期(红灯+绿灯时间)相等。 7、不考虑转盘等设施,认为在这些路口仍然使用红绿灯。 三、模型的建立与求解 在提出模型之前,现进行符号说明和参数解释。

相关文档
相关文档 最新文档