文档库 最新最全的文档下载
当前位置:文档库 › 基于FAMA PLC的中央空调监控系统解决方案

基于FAMA PLC的中央空调监控系统解决方案

基于FAMA PLC的中央空调监控系统解决方案
基于FAMA PLC的中央空调监控系统解决方案

基于FAMA PLC的中央空调监控系统解决方案

盟立自动化科技(上海)有限公司丁式超

摘要:FAMA PLC(Factory Automation Manufacture Automation)为盟立自动化股份有限公司的产品。本文是就FAMA PLC在中央空调系统中的实际应用给出的一种解决方案。包括主机控制器系统以及上位电脑的监控系统。重点介绍基于Modbus的中央监控系统的开发。

关键词:FAMA PLC Modbus 通讯监控

前言

随着社会的进步、科技的发展、企业管理的进步,现场设备的联网需求日益增加。本文就中央空调系统的主机控制器与中央监控系统作一些介绍。主要介绍基于RS-485的连接方式,简单介绍利用FAMA SoftPLC进行组网的方案。

本文主要内容如下:

一、主机控制器:FAMA SC-80 PLC

二、中央监控系统

三、 Modbus 通讯协议

四、 MSCOMM控件

五、 VB 监控系统编程示例

一、空调主机控制单元

空调主机控制单元:采用盟立公司FAMA SC-80 PLC。

(一) FAMA SC-80 PLC具有以下特性:

1. 标准I/O控制点:适合各种机械控制应用。

2. 内建中英文人机LCD Panel,具有高性能可编程控制及人机一体化能力,可弹性规划人机接口提供人机操作实时信息,LCD Panel含LED告警指示灯与操作键,可让实际I/O点数发挥最大效益,不需当作告警灯。

3. 程序记忆容量大:阶梯图程序容量为24K Word,可满足各项控制需求。

4. 程序扫描速度快:执行每1K words的程序仅需0.25ms,系统反应迅速。

5. 应用指令丰富:除具基本阶梯图指令、计数、计时指令外,尚具有浮点数之四则运算指令、数码转换指令、数据处理指令、及特殊指令(如MSG, PID)等,能适应各种复杂之控制要求,易于使用、学习容易。

6. 可连接多种厂牌之变频器:内建RS232/RS485通讯功能,可连接富士,施耐德,台达,Vacon,Unico,东元等多种厂牌变频器。

7. 具有内建式的PLC LINK功能:藉由PLC LINK的功能,可减轻单站PLC的工作负担,更可达到分布式控制的成效。

8. 具备完整之自我诊断功能:遇故障时即自我警告,并关掉系统之运作。

9. 在线操作控制能力:可于设备运行的状况下随时做在线程序编辑、存取、模拟、控制及参数设定等工作,而不影响系统之正常运作。

10. 强大的模拟控制与显示能力:透过程序规划器的显示画面,可同时进行数百个接点之模拟控制输入与输出显示,不必制作仿真箱即可进行控制程序之仿真。

11. 一体化之I/O结构设计:I/O点及现场配线均采用欧式端子台,更换、维修方便、快速。

12. 程序防止读取保护:可将程序保护,无法读取,达成智慧财产的Know Now保护。

13. 远程I/O:可作为Modbus远程I/O不需编写程序,即可连接I/O。

(二)现场控制器人机界面

1. 现场人机功能:

a) 启动、停止主机。

b) 设定温度、其他工作参数。

c) 设定自动开关机定时功能。

d) 工作状态指示。

e) 查询历史警报等。

2. 画面示例:

(三)通讯接口:

该控制器具有以下通讯接口:COM1(RS-232)、COM2(RS-422/RS-485)。通讯协议为Modbus。

采用Modbus协议,方便了中央监控程序的开发。

二、中央监控系统

(一)系统框图

利用RS-485网络连接方式进行组网。

(二)系统功能

1. 可选择机台察看、参数设定。

2. 监视各机台的工作状况。包含现场人机所显示的一切参数值。包括当前温度值、设定温度值、参数设定值、动作步骤、警报提示等。

3. 能够进行参数值的设定。直接更改一系列参数值。不必亲临现场即可完成。

4. 可察看当前警报信息,并可察看历史警报记录。

5. 可查询输入、输出点的状态。

6. 可启动主机工作,亦可将主机停止。

7. 提供权限保护的功能。只有相关人员方可进行某些操作。

8. 可开发功能更强大的监控程序。

(三)开发工具

该系统采用Microsoft Visual Basic 6.0来开发,主要应用了MSCOMM通讯控件。

下面先就Modbus 通讯协议以及MSCOMM控件作一些介绍。

三、 Modbus 通讯协议

(一) Modbus 协议简介

Modbus 协议是应用于电子控制器上的一种通用语言。通过此协议,控制器相互之间、控制器经由网络(例如以太网)和其它设备之间可以通信。它已经成为一通用工业标准。有了它,不同厂商生产的控制设备可以连成工业网络,进行集中监控。控制器通信使用主—从技术,

即仅一设备(主设备)能初始化传输(查询)。其它设备(从设备)根据主设备查询提供的数据作出相应反应。

Modbus有两种传输模式:

ü ASCII模式

以ASCII(美国标准信息交换代码)模式通信,在消息中的每个8Bit字节都作为两个ASCII 字符发送。这种方式的主要优点是字符发送的时间间隔可达到1秒而不产生错误。使用LRC(纵向冗长检测)来进行错误检测。

ü RTU(远程终端单元)模式

在消息中的每个8Bit字节包含两个4Bit的十六进制字符。这种方式的主要优点是:在同样的波特率下,可比ASCII方式传送更多的数据。使用CRC(循环冗长检测) 来进行错误检测。本案采用Modbus RTU模式进行传输,所以就RTU模式进行说明。

(二) Modbus 通讯协议(就RTU传输模式说明)

Modbus查询、回应如图示:

1. 读取多个接点:(功能码:01)

发送查询资料格式如下:

接收回应资料格式说明如下:

2.

读取多个寄存器:(功能码:03)

发送查询资料格式如下:

接收回应资料格式说明如下:

3. 写入单个接点:(功能码:05)

发送查询资料格式如下:

接收回应资料格式说明如下:

接收到数据后校对ID、FUNC、CRC_LO、CRC_HI,一致则表示通讯成功。

4. 写入多个寄存器:(功能码:16)

发送查询资料格式如下:

接收到数据后校对ID、FUNC、CRC_LO、CRC_HI,一致则表示通讯成功。

5. CRC/LRC错误校验

(1) LRC检测

使用ASCII模式,消息包括了一基于LRC方法的错误检测域。LRC域检测了消息域中除开始的冒号及结束的回车换行号外的内容。LRC域是一个包含一个8位二进制值的字节。LRC 值由传输设备来计算并放到消息帧中,接收设备在接收消息的过程中计算LRC,并将它和接收到消息中LRC域中的值比较,如果两值不等,说明有错误。

LRC方法是将消息中的8Bit的字节连续累加,丢弃了进位。

(2) CRC检测

CRC域是两个字节,包含一16位的二进制值。它由传输设备计算后加入到消息中。接收设备重新计算收到消息的CRC,并与接收到的CRC域中的值比较,如果两值不同,则有误。CRC是先调入一值是全“1”的16位寄存器,然后调用一过程将消息中连续的8位字节各当前寄存器中的值进行处理。仅每个字符中的8Bit数据对CRC有效,起始位和停止位以及奇偶校验位均无效。CRC产生过程中,每个8位字符都单独和寄存器内容相或(OR),结果向最低有效位方向移动,最高有效位以0填充。LSB被提取出来检测,如果LSB为1,寄存器单独和预置的值或一下,如果LSB为0,则不进行。整个过程要重复8次。在最后一位(第8位)完成后,下一个8位字节又单独和寄存器的当前值相或。最终寄存器中的值,是消息中所有的字节都执行之后的CRC值。CRC添加到消息中时,低字节先加入,然后高字节。

四、 MSCOMM控件的属性及事件

VB 6.0自带通信控件MSCOMM的主要属性及事件:

1. 通信参数设置

(1) CommPort属性

语法:https://www.wendangku.net/doc/7814876079.html,mPort[=value]

作用:设置或返回联接MODEM的串口的编号。

值:用1,2,...表示串口COM1,COM2....

(2) Settings属性

语法:MSCOMM1.Settings[=value]

作用:设置或返回通信参数。

值:String型。例入用"19200,N,8,1"表示传输速率为19200bps,没有奇偶校验位,8位数据位,1位停止位。

(3) Handshaking属性

语法:MSCOMM1.Handshaking[=value]

作用与值:设置或返回硬件握手协议。指的是PC机MODEM之间为了控制流速而约定的内部协议。

0 没有握手协议。不考虑流量控制。

1 XON/XOFF。即在数据流中嵌如控制苻来进行流控。

2 RTS/CTS。既由信号线RTS/CTS自动进行流量控制。

3 两者皆可。

2. 打开/关闭端口

(1) Port粜?BR>语法:MSCOMM1.Port=value]

作用:打开或关闭端口。

值:Boolean型。设为True/False可以打开/关闭端口。

3. 发送数据

(1) OutBufferSize属性

语法:MSCOMM1.OutBufferSize[=value]

作用:设置或返回传输缓冲区大小。

值:Integer型。传输缓冲区的字节数。例如可选1024。

(2) OutPut属性

语法:MSCOMM1.OutPut[=Variant]

作用:向传输缓冲区写数据流。

值:Variant型变量。

注:传输文本数据时,应将String型数据放入Variant变量,传输二进制数据(即按字节)时Byte 型数组数据放入Variant变量

4. 接收数据

(1) InBufferSize属性

语法:MSCOMM1.InBufferSize[=value]

作用:设置或返回接收缓冲区大小。

值:Integer型。接收缓冲区的字节数。例如可选1024。

(2) InputMode属性

语法:MSCOMM1.InputMode[=value]

作用:设置或返回接收数据的数据类型。

值:0用Input属性接收文本型数据。

1用Input属性接收二进制数据。

(3) InBufferCount属性

语法:MSCOMM1.InBufferCount[=value]

作用:返回接收缓冲区中已传到但还未取走的字符个数。

值:Integer型。

(4) Input属性

语法:MSCOMM1.Input[=Variant]

作用:将接收缓冲区中收到的数据读入变量。

值:Variant型变量。

注:当InputMode属性值为0(文本模式)时,变量中含String型数据,当InputMode属性值为1(二进制模式)时,变量中含Byte型数组数据。

5. 主要事件:OnComm,用属性CommEvent的十七个值来区分不同的触发时机。主要有以下几个:

(1) CommEvent=1时:传输缓冲区中的字符个数已少于Sthreshold(可设置的属性值)。(2) CommEvent=2时:接收缓冲区中收到hreshold(可设置的属性值)个个字符.利用此事件可编写接收数据的过程。

(3) CommEvent=3时:CTS线发生变化。

(4) CommEvent=4时:DSR线发生变化。

(5) CommEvent=5时:CD线发生变化。

(6) CommEvent=6时:检测到振铃信号。

五、 VB 监控系统编程示例

(一)部分监控画面

(二)实现方法

使用VB所带的MSCOMM控件,根据Modbus协议进行通讯程序的开发。(三)部分程序代码(CRC检查码的计算)

[an error occurred while processing this directive]

Public Function CRC(ByVal vBAry As Variant, ByVal iLen As Integer) As Variant '目的:

' 计算Byte数组中选定长度数据的Crc检查码,并传回

'传入:

' vBAry:欲计算之Byte数组

' iLen:欲计算之长度(以Byte为单位)

'传回:

' 数值数组的Crc Check码

'注:计算由0开始至iLen-1的元素为止

Dim I, j As Integer

Dim bbL, ddL, bbH, ddH, tta, ttb, ttc As Integer

bbL = 255

ddL = 255

bbH = 255

ddH = 255

For I = 0 To iLen - 1

tta = vBAry(I)

bbL = bbL Xor bbL

ddL = ddL Xor tta

ttc = 0

For j = 0 To 7

If ((ddL And (2 ^ j)) <> 0) Then ttc = ttc + 1 Next j

If ((ttc And 1) <> 0) Then bbL = 7

bbH = ddL

If ((bbL And 1) <> 0) Then

tta = 1

Else

tta = 0

End If

If ((bbH And 1) <> 0) Then

ttb = 1

Else

ttb = 0

End If

bbH = bbH \ 2 '向右移1 bit

bbL = bbL \ 2 '向右移1 bit

If (tta = 1) Then bbH = bbH Or 128

If (ttb = 1) Then bbL = bbL Or 128

bbH = bbH Xor ddL

If ((bbL And 1) <> 0) Then

tta = 1

Else

tta = 0

End If

If ((bbH And 1) <> 0) Then

ttb = 1

Else

ttb = 0

End If

bbH = bbH \ 2 '向右移1 bit

bbL = bbL \ 2 '向右移1 bit

If (tta = 1) Then bbH = bbH Or 128

If (ttb = 1) Then bbL = bbL Or 128

bbL = bbL Xor ddH

ddL = bbL

ddH = bbH

Next I

CrcB = Array(ddL, ddH)

End Function

六、结束语

本文介绍了基于RS-485网络的连接方式中央监控系统的解决方案。

另外可提供一套用FAMA SoftPLC进行联网的解决方案。

FAMA SoftPLC为一套完整之软件与硬件,除了传统PLC所具备的现场或设备自动化控制能力之外,该产品并具备完整的数据处理及因特网整合功能。在该平台上除可执行计算机语言程序(C语言程序、Java语言程序)、自动化控制所用的Ladder语言程序,并支持强力的因特网服务软件功能(e-Service功能、Web功能…等),除使现场自动化得以顺利推行,更能同时担任企业管理与现场运作的整合桥梁,使企业资源与现场资源得以整合运用,Intranet/Internet的因特网能力也将帮助企业本身与企业外部之资源整合,使因应未来全球竞合发展之要求。

利用FAMA SoftPLC强大的系统整合能力,可达到比较理想的联网效果。因为SoftPLC是基于JAVA技术的,所以结合网络短信接口开发短信、用手机或者E-mail来接收现场生产资讯都可实现。

具体方法不在本文讨论的范围。仅作简要说明。

作者简介:

丁式超:男,1978年出生,2000年毕业于上海大学自动化学院自动控制专业,从事PLC控制系统的开发、FAMA PLC的技术支持。现任职盟立自动化科技(上海)有限公司工控部、FAMA PLC应用课课长。

空调监控系统

空调监统控系空调系统监控功能智能大厦中的空调系统是指空调机组、新风机组,变风量机组,风机盘管等设备。其控制主要是指温、湿度调节、预定时间表和自动启停控制。如果大厦内的空调系统已经有很高的自动化控制时,也可以采用只监不控的方式。空气处理机采用集中送风的控制方式,通过检测回风的温度、湿度、来决定是否对电动冷/热水阀和加湿阀进行调节。空气处理机一般是夏季送冷风,冬季送暖风,春秋季节送新风。并通过检测回风的空气质量来决定是否调节风阀的开度。(1)空气处理机组的监控 采用定时程序控制,累计运行时间。风机控制: 夏季送冷风、冬季送暖风、春秋季节送新风。温度控制:根据回风湿度调节加湿阀流量开度,控制蒸汽送给量。湿度控制:的焓值,调整风阀开度。CO2风阀控制:根据室外温度和回风中热水电动阀、加湿阀、新风风阀、回风风阀实施联动。/联锁控制:风机启停和冷 自动转换,风机运/送风温度、湿度,回风温度、湿度,室内温度,室外温度,手动参数监测:行状态,电动水阀阀位反馈,加湿阀阀位反馈,过滤网压差开关,风机压差开关,防霜冻保护开关,)等。室内空气质量(CO2过滤网压差超限(过滤网堵塞)报警、风机故障报警、防霜冻低温报警、参数越限报报警功能:警等。湿度、新风温湿度、阀动态流程画面、数据查询、运行曲线、送风温湿度、回风温显示打印: 位置显示、故障报表、数据报表。)新风机组的监控2(新风机是采用定时送风它对房间的温度并不实施控制,新风机组主要是用来给大楼内提供新风。的方式(属于开环控制),通常和末端风机盘管组合来完成大楼的空调控制。)末端风机盘管控制系统(3室内恒温器通过对房间的温度检测,控制冷水或热水电动阀的开启和关闭来改善房间温度。同时,设定风机在不同的速度下工作,也可以改善房间的温度。末端风机盘管和新风机组联合使用,不需要控制器参与对它的控制和调节。DDC由. 制冷站系统监控系统制冷站系统监控功能制冷站的功能是为大楼的空调系统提供冷源,它由制冷机组、冷却水循环泵、冷却塔、冷冻水循环泵、补水泵及电动蝶阀等组成。制冷机组包括压缩机、冷凝器、蒸发器及其他辅助装置,冷冻循环所以,通过释放热量而达到降低水温的目的。水进入制冷机组后,制冷机组工作后吸收了大量的热量,必须由冷却循环水来为其降温。

中央空调节能改造方案书

中央空调节能改造方案书 一、改造实例及节电效果 1、最早进行该项技术开发的厂家 我司专业从事变频器技术开发及综合应用节能工程改造、变频器进行稳压、调速自动化。投入大量人力、物力对注塑机进行变频器技术、节能改造的研发,已稳定在市场立足五年。 10000多台注塑机、空压机、中央空调的改造,使我公司工程师积累了丰富的现场实际操作经验及各种异常情况处理的经验,可确保在改造或使用过程中发生的各种异常现象和故障在最快的时间得到处理。 2、已改造的部份厂家资料及节电效果 至今我司已改造过的机器有10000多台,现提供以下资料,仅供贵司参考:

二、中央空调节能概述 在中央空调系统中,冷冻泵和冷却泵的容量是根据建筑物最大设计热负荷选定的,且留有一定的设计余量。在没有使用调速的中央空调系统中,水泵一年四季在工频状态下全速运往地,只好采用节流或回流的方式来调节流量,产生大量的节流或回流损失,胵水泵电机而言,由于它是在工频下全速运行,因此造成了能量的大大浪费。 实践证明,在中央空调的循环系统中接入变频系统,利用变频技术改变电机转速来调节流量和压力的变化用来取代阀门控制流量,能取得明显的节能效果。 三、中央空调节能原理 中央空调上的水泵和风机的运行工况由负荷情况决定,根据流体力学理论,电机轴功率P和流量Q、压力H之间的关系为 P=K*H*Q/η 其中K为常数; η为效率。 它们与转速N之间的关系为 Q1/Q2=N1/N2 H1/H2=(N1/N2)2 P1/P2=(N1/N2)3

图中曲线1为风机在恒速下压力 H和流量Q的特性曲线,曲线2是 H 管网风阻特性(阀门开度为100%)。H2 假设风机在设计时工作在A点的效 率最高,输出风量Q1为100%,此 时的轴功率P1=Q1*H1与面积AH10Q1 成正比。根据工艺要求,当风量需 从Q1减少到Q2(例如70%)时,如 采用调节阀门的方法相当于增加了 管网阻力,使管网阻力特性变到为 曲线3,系统由原来的工况A点变 到新的工况B点运行,由图中可以 看出,风压反而增加了,轴功率P2 与面积BH20Q2成正比,减少不多。 如果采用变频调速控制方式,将风机转速由N1降到N2,根据风机的比例定律,可以画出在转速N2下压力H和流量Q特性如曲线4所示,可见在满足同样风量Q2的情况下,风压H3将大幅度降低,功率P3(相等于面积CH30Q2)也随着显著减少,节省的功率△P=△HQ2与面积BH2H3C成正比,节能的效果是十分明显的。 由流体力学可知,风量Q与转速的一次方成正比,风压H与转速的平方成正比,轴功率P与转速的立方成正比,当风量减少,风机转速下降时,起功率下降很多。 例如风量下降到80%,转速也下降到80%时,则轴功率下降到额定功率的51%;如风量下降到50%,功率P可下降到额定功率的13%,当然由于实际工况的影响,节能的实际值不会有这么明显,即使这样,节能的效果也是十分明显的。 因此在有风机、水泵的机械设备中,采用变频调速的方式来调节风量和流量,在节能上是一个最有效的方法。 四、中央空调节能方案实例 爱普生深宝工厂中央空调机组的水泵组一共有4台30KW电机,在正常情况下,一般用三台水泵给中央空调机组供水,一台备用。

中央空调节能控制设计方案

TJSMART中央空调节能控制系统 设 计 方 案 南京图久楼宇科技有限公司 二○○九年十月

目录 1、概述 (2) 2、中央空调系统概况 (3) 2.1、中央空调系统能耗分析 (3) 2.2、中央空调使用情况分析 (3) 2.3、中央空调系统的智能化控制要求 (4) 3、设计目标 (5) 4、TJSMART主机节能系统控制原理 (6) 4.1、节能控制目标和范围 (6) 4.2、先进的系统节能控制技术 (7) 4.3、冷冻水系统——最佳输出能量控制 (8) 4.4、冷却水系统——系统效率最佳控制 (9) 4.5、冷却风系统——最佳运行组合控制 (10) 4.6、动态冷热量平衡系统 (10) 4.7、系统控制接口-BA接口 (11) 4.8、机组群控 (11) 5、TJSMART中央空调主机节能控制系统设计方案 (12) 5.1、TJSMART中央空调主机节能控制系统构成 (12) 5.2、主要控制设备 (12) 5.3、节能分析 (13) 6、中央空调风机盘管联网控制系统设计 (14) 6.1系统结构与功能 (14) 6.2风机盘管联网控制系统主要设备 (18) 6.3风机盘管联网控制系统节能分析 (19) 7、中央空调常见控制系统与TJSMART中央空调节能控制系统的差异 (19) 7.1、楼控系统与TJSMART节能控制系统的差异 (20) 7.2、传统的变频控制系统与TJSMART节能控制系统的差异 (21) 8、TJSMART中央空调节能控制系统的管理功能 (22) 9、TJSMART中央空调节能控制系统的优势与产品技术性能 (24)

1、概述 中央空调是楼宇里的耗电大户,每年的电费中空调耗电占40~60%左右,因此中央空调的节能改造显得尤为重要。由于设计时,中央空调系统必须按天气最热、负荷最大时设计,并且留10-20%设计余量。但实际上绝大部分时间空调是不会运行在满负荷状态下的,存在较大的富余。中央空调系统冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化做出相应调节,存在很大的浪费。因此,通过引进先进的中央空调节能技术及设备,可以大幅度降低酒店的能源消耗,创造显著的经济效益。 南京图久楼宇科技有限公司提供的TJSMART系列中央空调节能控制系统已在全国多个项目里面为用户实现20%以上的综合节能,降低中央空调能耗,降低企业运营成本,为客户创了巨大的节能收益。 南京图久楼宇科技有限公司是专业从事现代建筑节能控制技术与产品的研发,节能设备制造以及用户能源诊断,节能方案设计,工程实施和运行保障等综合性节能服务企业,公司凭借着世界领先的节能控制技术和成熟可靠的产品,目前现已成为该领域的技术领跑者,公司已成功与工业控制及楼宇自动化控制Lonworks的发明者美国埃施朗(Echelon)公司建立战略合作关系,在楼宇自动化、建筑节能、智能照明领域可为用户提供全面的解决方案。 公司在世界上率先通过先进的P-Bus控制网络技术,实现主机节能、管理节能、系统节能的整合,将现代模糊控制技术引入中央空调控制,并实现主机系统与风机盘管的联网控制,实现了中央空调总体节能20%~40%,彻底解决了中央空调使用的不可控问题,实现中央空调各个环节的远程管理控制、自动控制、节能控制,在国内外都处于领先水平。 TJSMART中央空调节能控制系列产品不仅具有强大的自动控制功能,实现了中央空调系统的高效节能,而且具有完善的管理功能,如便捷的状态监控、机组群控、风机盘管状态、房间温度实时监测、实时的维护预测、服务质量控制、系统参数设置、能耗记录分析、事件记录等,为用户提供了一个运用计算机管理中央空调系统的先进工具,可

山东大学科技成果——中央空调物联网远程监控及节能系统

山东大学科技成果——中央空调物联网远程监 控及节能系统 项目概况: 中央空调远程监控目前是国内外对于现代商业、办公及住宅楼群实施温度自动控制的一种趋势。它具有节能效率高、环境热污染低、便于维护管理等优点。由于长期以来人们对中央空调节能不够重视,能源浪费的现象相当严重且普遍。按国内南方及沿黄省会城市的统计,中央空调用电量分别占各地市总用电量的28%左右(重庆29%,上海31.1%),这给各城市的供配电带来了沉重的压力。高能耗己经成为制约中央空调健康发展的一大瓶颈,解决中央空调的节能问题迫在眉睫。 我们研发的中央空调以太网远程监控系统是一个集制冷、麦通、控制、信息于一体,跨学科、跨行业(学会)的复杂工程。该系统由符合IEEE80X.3标准的以太网中间站、网络路由器、现场控制器及以太网远程监控软件等组成,软硬件全部自主知识产权。应用本系统进行中央空调的升级改造,不仅能够有效地从源头上遏制制度和政策漏洞造成的能源浪费,也为各级政府节能降耗树立了一个新的标杆,必将推动节能减排工作上一个新的台阶。该项目作为省政府节能减排样板,己连续多年受到省政府“全省节能减排节约型先进单位”的表彰和奖励。 技术特点: 1、当空调采样温度大幅度偏离政府倡导的办公、生活温度时,系统将给于自动修正;

2、采用模糊控制理论,以风机能耗最小为目标,对空调风机转速进行优化控制; 3、自动监测空调风机状态,即当空调运行中,遇有开门窗通风时,系统则会检测到空调末端处在长期高速运转状态,即发出警示并自动修正运行参数; 4.采用时间表设定模式,即对中央空调末端可实现上、下班按设定时间自动开、关机; 5、根据用户特殊要求,温控器加装光电检测,可实现多种开、关机模式; 中央空调远程监控界面 6、采用以太网以及GPRS技术。可将境内外不同地域的被控对象,同时组态于同一个监控界面中; 7、在任何具备上网条件的地方,可对中央空调/集中供热系统的用户,实时进行末端参数的修正和运行模式的控制,并可以进行远程故障诊断。用户也可选择禁止外网访问模式,自行在局域网内使用; 8、采用可靠的网络安全技术,只有IP、MAC、端口号等7种设置以及登录密码同时满足时方可登录该系统;

空调监控系统

空调监控系统 空调系统监控功能 智能大厦中的空调系统是指空调机组、新风机组,变风量机组,风机盘管等设备。其控制主要是指温、湿度调节、预定时间表和自动启停控制。如果大厦内的空调系统已经有很高的自动化控制时,也可以采用只监不控的方式。 空气处理机采用集中送风的控制方式,通过检测回风的温度、湿度、来决定是否对电动冷/热水阀和加湿阀进行调节。 空气处理机一般是夏季送冷风,冬季送暖风,春秋季节送新风。并通过检测回风的空气质量来决定是否调节风阀的开度。 (1)空气处理机组的监控 风机控制:采用定时程序控制,累计运行时间。

温度控制:夏季送冷风、冬季送暖风、春秋季节送新风。 湿度控制:根据回风湿度调节加湿阀流量开度,控制蒸汽送给量。 风阀控制:根据室外温度和回风中CO2的焓值,调整风阀开度。 联锁控制:风机启停和冷/热水电动阀、加湿阀、新风风阀、回风风阀实施联动。 参数监测:送风温度、湿度,回风温度、湿度,室内温度,室外温度,手动/自动转换,风机运行状态,电动水阀阀位反馈,加湿阀阀位反馈,过滤网压差开关,风机压差开关,防霜冻保护开关,室内空气质量(CO2)等。 报警功能:过滤网压差超限(过滤网堵塞)报警、风机故障报警、防霜冻低温报警、参数越限报警等。 显示打印:动态流程画面、数据查询、运行曲线、送风温湿度、回风温湿度、新风温湿度、阀位置显示、故障报表、数据报表。 (2)新风机组的监控 新风机组主要是用来给大楼内提供新风。它对房间的温度并不实施控制,新风机是采用定时送风的方式(属于开环控制),通常和末端风机盘管组合来完成大楼的空调控制。

(3)末端风机盘管控制系统 室内恒温器通过对房间的温度检测,控制冷水或热水电动阀的开启和关闭来改善房间温度。同时,设定风机在不同的速度下工作,也可以改善房间的温度。末端风机盘管和新风机组联合使用,不需要由DDC控制器参与对它的控制和调节。 制冷站系统监控系统 制冷站系统监控功能 制冷站的功能是为大楼的空调系统提供冷源,它由制冷机组、冷却水循环泵、冷却塔、冷冻水循环泵、补水泵及电动蝶阀等组成。制冷机组包括压缩机、冷凝器、蒸发器及其他辅助装置,冷冻循环水进入制冷机组后,通过释放热量而达到降低水温的目的。制冷机组工作

001中央空调监控系统设计方案

中央空调监控系统设计方案 一、引言 楼宇自动化系统中中央空调子系统占有重要的地位,目前中央空调系统的自动化实现方式很多,有采用单片机,接口采用RS485,现场总线或者以太网,能实现中央空调的远程监控功能;还有采用PLC,比如西门子的S7-200实现数据的采集和监控。目前单片机种类很多,能实现本采集监控功能的芯片选择范围也较广,比如MEGA系列,freescale系列等,另外高端的芯片本身带有丰富的接口,实现更加方便,但是成本较高,另外基于PLC的中央空调监控系统成本瓶颈限制了其进一步的推广。所以开发一套低成本、高可靠性的中央空调远程监控系统是很有必要的。 中央空调监控系统是一套工业远程监控系统。利用此系统,可以通过电脑对中央空调的主机和管道系统的各类参数进行远程集中监控。中央空调监控系统包括:空调冷源监控、空调机组监控、新风机组监控、风机盘管监控、膨胀水箱高、低水位监测报警和屋顶排气风机、通风机控制等。 二、系统结构 本系统采用模块化可编程控制器(PLC)进行设计,使用人机界面进行集中操作,保证系统的安全、可靠、连续运行。整个监控系统由可编程控制器(PLC)、监控电脑和数据通讯网络(TCP/IP以太网)组成。 下图为中央空调监控系统结构示意图

图1 系统结构示意图 三、系统设计思路 目前的中央空调系统按输送介质主要有以下三类:空气,水和冷凝剂,所以相应的中央空调系统主要分为风管系统、冷热水系统和制冷剂系统。本方案主要适用对象是冷热水系统。冷热水系统分主机和风机盘管,主要工作原理是通过室外主机产生出空调的冷热水,由管道系统送至室内的各末端装置,在末端处冷热水与室内空气进行热量交换,产生冷热风,从而消除房间空调负荷。冷热水空调系统的末端通常都装有风机盘管,风机盘管的控制原理采用温控器加电动阀结构,如图1示。所以可以通过调节末端风机转速来调节送入室内的冷热量,由此可见,此种系统的特点是可以对各个末端(房间进行)单独的控制和调节。 室内温度可由设于每台风机盘管回水支管上与各房间内的温度传感器连锁的电动三通阀调节,亦可由风机盘管三速开关调节。

中央空调系统节能分析

中央空调系统的节能分析 翟少斌孙文哲付秉恒张立华 (上海海事大学上海2007813) 摘要随着能源的紧缺及公用及商用建筑中央空调的高速发展,对中央空调系统的节能改造途径的研究变的非常重要,尤其是中央空调制冷系统在部分负荷下运行状况。本文分别对空调冷热源系统,空调机组及末端设备,水或空气输送系统进行分析,其中特别设计一种含有射流装置的回水循环系统。 关键字节能中央空调系统射流装置 The analyses of energy conservation in Air-conditioning System Zhai Shaobin Sun Wenzhe Fu Bingheng Zhang Lihua (Shanghai Maritime University, Shanghai,2007813) Abstract: As the scarcity of energy and the rapid development of air-condition system in public and commercial buildings ,the approach of saving energy has become very important in air-condition system, it is more important when the air-condition system works in part .This article analyses the air-condition system of cold and heat source,the air-condition units and the water and air feeding system .we especially design a backwater circular system with jet pump . Keywords: energy conservation air-condition system jet pump 1 引言 在当今世界上充满着“能源紧缺”的时刻,“节能”问题已成为世界各国最关心的首要问题,也是我国政府和研究部门广大科学工作者探计中最注重的一环。一些发达国家空调工 程的能耗,已占据建筑物总能耗的60~70%。我国也占据50~60%[1]。 一般空调制冷系统的设计都是以最大负荷为设计工况,但在实际运行中,所有的因素综合与设计工况相符合的情况是比较少的,因此空调制冷系统常常会在部分负荷下运行。据统计,空调制冷系统在满负荷情况下运行只占20~30%,在70~80%的时间是在部分负待下运行。这就给空调设计工程师们提出了一个新问题,在部分负荷运行情况下如何设计才能使空 调制冷系统符合节能的原则。这比在设计工况下提出能耗指标更为重要[2]。 中央空调节能途径主要有以下两个方面:一是依靠科学的运行管理方法;二是系统自身,采用合理的设计方案,并考虑部分负荷下运行的节能问题。 中央空调系统的能耗一般包括三个部分,即: 1)空调冷热源系统; 2)空调机组及末端设备; 3)水或空气输送系统。

空调远程监控系统方案

空调的远程监控系统设计方案 一、空调监控系统总述 (2) 二、特点 (2) 三、空调双机切换器介绍 (4) 2.1、产品介绍 (4) 2.2、产品特点 (4) 2.3、产品的技术参数 (5) 四、功能 (5) 五、空调品牌及其应用领域 (7) 六、组网方案 (8) (9) 七、综合使用 (11)

一、空调监控系统总述 空调监控系统是以实现空调系统的集中管理、自动化节能控制为目的,针对计算机机房、移动基站、手术室、净化厂房、实验室、档案室、图书馆、大型酒店、写字楼、电子厂等空调机组多、管理分散、专业性强、人机交互差而开发的空调集中监控管理系统,是提高工作效率、节约能源、保障设备的创新解决方案。 随着信息化的高速发展提供多种远程监控组网方案,按区域分:本地远程监控管理系统、跨区远程监控管理系统、移动远程监控管理系统;按通讯网络分:Rs485网络监控、局域网监控、INTERNET网监控、GPRS无线网监控。 二、特点 1.◆节能控制管理 条件开关机(室内、外环境温度、关联机组运行状态是否故障)、定时开关机、设备值班轮值、各机组工作 模式自定义。 2.◆设备分级管理、报警分级通知 各空调机组可按区域划分管理、责任人划分管理、报警通知根据设备责任人定向通知。

3.◆稳定可靠的制冷系统实时监控、集中控制、自动化管理 自动巡测、故障预警、故障定位、自动寻呼、自动记录、历史数据导出/打印、自动在线检测、节能控制、 自动化管理、远程调试、远程控制。 4.◆灵活多样的组网方式 可利用RS485总线、固定IP、DDN、ISDN、PPPOE、VPN、WAN、LAN、GPRS、APN等方式组网。 5.◆功能完备的监控、控制、调试、管理平台 空调系统实时监控、工作模式切换、故障原因处理提示、自动化节能控制管理、远程控制、远程调试、远 程故障分析等将空调远程监控管理及远程控制、调试于一个平台。 6.◆支持多品牌、多机组无缝整合 支持海瑞弗(HIREF)、菲尼克斯(Phoenix)、依米康(emicom)、登高(denco)、麦克维尔、意大利法亚(TECNA IR LV)、优力(Uniflair)、申凌空调、志高空调、吉荣空调、富田空调、五洲制冷、清华同方、捷丰、风

中央空调节能自控系统改造方案设计

1.1空调自控系统改造方案 1.1.1控制设备范围 一套制冷系统中的制冷机组、冷冻水循环泵、冷却水循环泵、冷却塔、相关 阀门、膨胀水箱、软化水箱等。 1.1.2空调自控系统 1.1. 2.1.监测功能信息采集优化 A通过冷机通讯接口读取(包括但不限于)以下参数: 冷水机组运行状态、故障报警状态 冷冻水供/回水温度、冷却水供/回水温度 冷冻水温度设定值 运行时间、压缩机运行电流百分比、压缩机运行小时数、压缩机启动次数、蒸发温度、冷凝温度、蒸发压力、冷凝压力。 B冷冻水系统 冷冻水泵运行状态、故障报警、手/自动模式反馈(DI) 冷冻水补水泵运行状态、故障报警、手/自动模式反馈(DI) 冷冻水供回水管温度、水流量反馈(AI) 冷冻水泵进口、出口分支管压力(AI) 冷冻水供回水环网压力、冷冻水供回水环网间压差反馈(AI) 冷冻水泵变频器频率反馈(AI) 最不利末端供回水压差

C冷却水系统 冷却水泵、冷却塔风机运行状态、故障报警、手/自动模式反馈(DI) 冷却水供回水管温度、环网水流量反馈(AI) 冷却水泵进口、出口分支管压力反馈(AI) 冷却水泵、冷却塔风机变频器频率反馈(AI) 冷却水补水泵运行状态、故障报警、手/自动模式反馈(DI) D电动蝶阀 压差旁通阀开度反馈(AI) 免费供冷管路上切换电动蝶阀开关状态反馈(DI)E液位监控 膨胀水箱超高、超低水位监测(DI) 软化水补水箱高、低水位监测(DI) F其他参数 室外干球温度、相对湿度(AI) 计算室外湿球温度、焓值 免费供冷系统水泵运行、故障、手/自动状态(DI) 免费供冷板换进出口压力监测(AI) 1.1. 2.2.控制功能 1、冷水机组启/停控制、出水温度设定(通过冷机通讯接口控制) 2、冷冻水系统: 冷冻水泵启/停控制(DO)及反馈

中央空调监控系统

中央空调监控系统 中央空调监控系统是一套工业远程监控系统。利用此系统,可以通过电脑对中央空调的主机和管道系统的各类参数进行远程集中监控。中央空调监控系统包括:空调冷源监控、空调机组监控、新风机组监控、风机盘管监控、膨胀水箱高、低水位监测报警和屋顶排气风机、通风机控制等。 一、系统结构 本系统采用模块化可编程控制器(PLC)进行设计,使用人机界面进行集中操作,保证系统的安全、可靠、连续运行。整个监控系统由可编程控制器(PLC)、监控电脑和数据通讯网络(TCP/IP以太网)组成。 下图为中央空调监控系统结构示意图 图1 系统结构示意图 二、系统组成 1、空调冷源系统 监测内容: ◇冷水机组运行状态 ◇冷冻水泵、冷却水泵、冷却塔风机运行状态 ◇冷水机组冷冻水、冷却水管水流状态 ◇冷却水供、回水温度 ◇冷冻水供、回水温度 ◇冷冻水供、回水压差 ◇冷冻水总供水流量 ◇冷冻水供、回水管电动平衡阀瞬时开度 ◇冷水机组冷冻水、冷却水供水阀开关 控制内容: (1)系统根据事先编制好的工作及节假日作息时间表自动启停机组,并自动累计机组运行时间,提示定时维修;

(2)根据冷冻水供、回水温度及总供水流量计算实际冷负荷,按冷水机组额定制冷量,控制冷水机组运行台数,达到节能目的; (3)根据冷水机组累计运行时间,在不需要开启全部冷水机组时,启动累计运行时间最短的冷水机组,使设备处于均衡运行状态; (4)为保证机组的安全可靠运行,系统按以下顺序进行启停: 启动顺序:冷却塔进水蝶阀→冷却塔风机→冷却水蝶阀→冷却水泵→冷冻水蝶阀→冷冻水泵→延时冷水机组; 停止顺序:冷水机组→延时冷冻水泵→冷冻水蝶阀→冷却水泵→冷却水蝶阀→冷却塔风机→冷却塔进水蝶阀; (5)根据冷冻水供、回水总管压差,调节旁通阀开度,保持冷冻水系统压力的稳定; (6)通过调整冷却塔风机的运行台数,使冷却水供水温度保持在设定范围内;(7)根据季节变化进行冬夏季转换。 2、空调机组系统 监测内容: ◇空调机组送风机运行状态、故障状态 ◇空调机组过滤器阻塞状态、提醒运行操作人员及时清洗 ◇空调机组新风温、湿度 ◇空调机组回风温、湿度 ◇空调机组送风温、湿度 控制内容: (1)系统根据事先编制好的工作及节假日作息时间表自动启停机组,并自动累计运行时间,提示定时维修; (2)根据室内外空气状况,调节新、回风阀开度,合理利用新风,节约能源;(3)根据回风温度,自动调节表冷器/加热器的冷/热水阀开度,使回风温度控制在设定值; )根据回风湿度,自动调节加湿阀的开关,满足室内湿度要求;4(. (5)在北方地区冬季气候寒冷,为防止空调机组盘管受冻,在表冷器后端设置防冻开关,当温度低于一定值(一般设定为5oC)时报警,并自动停止风机,关闭新风阀,全部打开热水阀,以防盘管冻裂; (6)新风阀与送风机联锁,风机停止时自动关闭新风阀。 3、新风机组系统 监测内容: ◇新风机组新风温、湿度 ◇新风机组送风温、湿度 ◇新风预加热器后端温度 ◇过滤器阻塞状态,提醒运行操作人员及时清洗 ◇送风机运行状态、故障状态 控制内容: (1)系统根据事先编制好的工作及节假日作息时间表自动启停机组,并自动累计运行时间,提示定时维修; (2)根据新风预加热器后端温度,自动调节新风预加热器热水阀开度,使该温度控制在设定值; (3)根据送风温度,自动调节表冷器/加热器的冷/热水阀开度,使送风温度控

中央空调节能自控管理系统

中央空调节能自控管理系统 一、背景 长期以来,随着中央空调在公共建筑中的普及应用,所产生的“高能耗”带来的负担也日益加剧。据统计,建筑能耗约占全社会总能耗的,其中最大的能耗就是由中央空调系统产生的。这与国家所倡导的美丽中国、节能低碳、绿色环保等趋势显得格格不入。以一座每天总耗电量高达数千度的商务大楼为例,其中有接近40%到50%的电量是被中央空调系统消耗掉的。因此,如何实现中央空调的节能控制成为摆在我们面前的一个重要问题。 二、现状 目前市场上做空调节能自控的厂家多为机房自控,将末端与机房连接起来的只有郑州春泉暖通节能设备有限公司。郑州春泉是“当量能量计费方法”的奠基人,空调末端的数据可实时采集,瘵末端需要的能量传递到机房中心,改变了从“送多少用多少”或是“送不出去了再不送”到“用多少送多少”的局面,有效地解决了能源的浪费问题。 三、原理 郑州春泉节能股份有限公司自主研发的“中央空调节能自控管理系统”就是针对传统中央空调系统运行中存在大量能耗问题而研发的高科技产品,由中央空调末端能耗监控系统和能源中心集中监控系统两个子系统组成,利用中央空调末端能耗检测系统的实时数据和能源中心设备的运行特性,采用负荷随动的专利技术,在确保中央空调系统安全和舒适的前提下,同步调节中央空调主机能量输出,实现运行能效最大化,降低系统能耗。 四、技术 中央空调节能自控管理系统采用了“实时监测”、“负荷随动”等优势技术,使用现场编辑和就地数字化方法,使产品在实际应用中安装方便,使用简单,最终达到节能环保、减少使用成本和延长中央空调系统使用寿命的效果。其中采用的实时监测系统能进行全天候自动检测,实现高度实时的状态监测、能耗分析及故障报警等功能。而“负荷随动”技术则是一种以中央空调系统为模型对

双机切换空调机房远程空调监控系统方案

机房远程空调监控系统方案 一、产品介绍 (2) 二、产品架构 (3) 三、技术亮点 (3) 四、空调多机切换器 (4) (1)、产品介绍: (4) (2)、主要功能: (4) 五、双机启动切换 (5) (1)、来电自启动功能: (5) (2)、定时切换功能: (5) (3)、高温同开/低温同关功能: (5) (3)、智能学习功能: (5) (4)、故障模式保护: (6) 六、系统主要的功能特点 (6) 1、在线检测: (6) 2、定时切换: (7) 3、温控切换: (7) 4、组合模式(温控+定时)切换: (7) 4、故障切换: (7) 5、维护设置功能: (7) 6、具有断电来电或异常停机自启动功能: (7) 7、联网功能报警 (7) 8、安装简便: (7) 9、优势 (8)

一、产品介绍 本系统通过多种先进技术的有机结合,实现了机房空调的远程监控,解决了机房空调的分布不合理,制冷温度设置随意、运行状况、用电量无法实时控制等现状,提高了工作效率和经济效益的同时为用户的决策提供依据,真正实现了机房空调集约化、精确化管理。 绝大多数机房都配有不间断电源UPS或电池组。这些UPS或电池组保证机房里面的计算机及网络、通讯等设备在外界电网断电时能正常运行二个小时以上。但一般情况下,空调机却没有这样“幸运”。一旦遇到停电,空调机即停止工作。即使在短时间内恢复供电,一般的空调机都不会自动启动。这时,机房的温度会逐步升高,如没有工作人员及时发现并立即处理的话,轻则导致昂贵的设备容易损坏,重则导致火患!——这是一个安全生产的大问题!!

二、产品架构 三、技术亮点 单片智能传感器技术 将传感器、AD转换器、可编程数值越限报警器和I2C总线串行接口集成在同一个芯片中。通过I2C总线地址选择端,实现数据接口访问。空调远程控制技术 远程空调控制器是带通讯接口的空调遥控器,监控系统与之通讯,可以获取现场温度,远程设置温度和工作模式,并实现远程开关机。该控制器具有自学习功能,通过配套软件学习空调遥控器的各种控制命令,因而适用于多种品牌多种型号的空调。 数据采集网关层技术 数据采集使用高信自主研发的基于工业级设计的智能网关,适应恶劣环境工作,抗潮湿、抗干扰,具备长时间无故障持续工作的特点,同

酒店中央空调节能改造方案

酒店中央空调节能改造 方案 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

深圳市碳战军团投资技术 有限公司 开平威尔逊 酒店 中央空调节能改 造方案 草稿完成日期: 二〇一〇年六月 十七日 文档编号:开平威尔逊酒店中 央空调节能改造方案1 作 者 : 卓 毅 目录 第1章中央空调系统概况............................................................................... .. (3) 第2章威尔逊酒店中央空调原系统分析............................................................................... .. (3) 第3章中央空调系统节能改造的具体方案............................................................................... . (4) 3.1中央空调系统的运行参 数............................................................................ (4) 3.2空调水泵变频改造方 案............................................................................ (4) 3.2.1控制原 理....................................................................... ......................................................................... .. 4 3.2.2变频系统组 成....................................................................... (5)

中央空调系统变频节能改造案例研究

中央空调系统变频节能改造案例分析 一、前言 中央空调系统是现代大型建筑物不可缺少的配套设施之一,电能的消耗非常大,约占 建筑物总电能消耗的50%。由于中央空调系统都是按最大负载并增加一定余量设计,而实际上在一年中,满负载下运行最多只有十多天,甚至十多个小时,几乎绝大部分时间负载都在70%以下运行。通常中央空调系统中冷冻主机的负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配的冷冻泵、冷却泵却不能自动调节负载,几乎长期在100%负载 下运行,造成了能量的极大浪费,也恶化了中央空调的运行环境和运行质量。 随着变频技术的日益成熟,利用变频器、PLC、数模转换模块、温度传感器、温度模 块等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量,达到节能 目的提供了可靠的技术条件。 二、1、原系统简介 某酒店的中央空调系统的主要设备和控制方式:100冷吨冷气主机2台,型号为三洋 溴化锂蒸汽机组,平时一备一用,高峰时两台并联运行;冷却水泵2台,扬程28M,配用功率 45 KW,冷水泵有3台,由于经过几次调整,型号较乱,一台为扬程32M,配用功率37KW, 一台为扬程32M,配用功率55KW, 一台为扬程50M,配用功率45KW。冷却塔6台,风扇电机5.5KW,并联运行。 2、原系统的运行 某酒店是一间三星级酒店。因酒店是一个比较特殊的场所,对客人的舒适度要求比较 高,且酒店大部分空间自然通风效果不好,所以对夏季冷气质量的要求较高。 由于中央空调系统设计时必须按天气最热、负荷最大时设计,且留有10%-20%左右的设 计余量。其中冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应的调节。这样,冷冻水、冷却水系统几乎长期在大流量、小温差的状态下运行,造成了能量的极大浪费。

空调物联网智能控制系统方案

系统构成 空调物联网智能控制系统是由:系统控制中心、数据转接处理机、空调智能终端以及展示平台组成的,其相互之前的数据转接是通过以太网(有线或无线)、电力载波、3G无线通讯技术及全球定位系统(GPS)来实现的。 如图: 1.无线:主要是通过两种方式进行信号传输,第一种是使用电力载波技术,通过原有的电网进行信号传输,第二种是使用单位原有的网线进行传输(485线中有八根线,而日常的网络需要六根线,也就是说还有两根线是闲置的,可以使用这两根线进行信号的传输,同时也不会影响该区域原有的网络速度)。 2.有线:通过重新布置网线,设置空调物联网系统的专属网络,通过这个网络进行信 号的传输。 系统介绍 什么是物联网? 物联网就是“物与物相连控制的互联网”:第一,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通讯。 物联网的概念最初来源于美国麻省理工学院(MIT)在1999年提出的网络无线射频识别(RFID)系统,该系统可以把所有物品通过射频识别等信息传感设备与互联网连接起来,实现

智能化识别和管理。随着技术和应用的发展,物联网的涵已发生了较大变化。虽然物联网这一概念的严格定义还存在分歧,但是,关于物联网的基本特征是非常明确的。 物联网就是指通过通过射频识别(RFID)、红外感应器、全球定位系统(GPS)、激光扫描器等信息传感设备,按照约定的协议,把任何物品与互联网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。 物联网实际上是互联网的延伸和扩展。它包含了三个基本的要素,搭载在物品上的传感器、用于传输和存储信息的网络系统以及安装了应用软件的终端设备。传感器可以是条形码、RFID卡、电量表、温度传感器,也可以是其它能够用设备识别的信息载体;而根据应用系统的规模,网络系统可以是局域网(LAN),也可以是广域网(WAN),可以是有线网,也可以是无线网或各种总线及其综合系统;终端设备可以是PC、PDA,甚至是手机。利用物联网的这些特征,可以建立起包括中央空调机组、空调用户及室外环境的物联网,从而实现中央空调系统的管控一体化,达到高效管理和节能运行的目的。 什么是物联网空调? 物联网空调是通过信息传感设备,按约定的协议,直接对空调终端进行信息交换和通讯,以实现智能化识别、跟踪、监控和管理的一种网络空调。有别于原有的端到中端再到终端的传统网络空调,物联网空调是利用更强大的网络直接端到端的智能服务,快捷服务用户的智能网络空调。 什么是空调物联网智能控制系统? 空调物联网智能控制系统是基于物联网概念的设计,以健康、时尚、节能为理念,根据人体对温度的感知模糊理论和智能系统集成技术相结合,通过智能优化单元,改变并优化空调压缩机的运行曲线,以达到最大限度降低能耗,提高利用效率,延长空调使用寿命的目的。 物联网在空调产业的首次应用 2011年8月,恒凯能源科技宣布,首台具有智能安防、远程运行监控、管理等功能的空调物联网节能控制终端——“爽帝”在新研发基地研制成功。 这是首家企业在物联网技术方面的成功应用,标志着省在空调产业发展上进入了一个崭新的阶段。物联网作为一项以互联网为基础的全新智能技术,将对人们的生活产生翻天覆地的变化。它改变了人们传统的生活理念与模式,对人们的生活与工作提供细致入微的协调与帮助,在不久的将来,必将成为人们不可或缺的助手。

远程中央空调监控系统设计方案

远程中央空调监控系统设计方案 一、引言 中央空调监控系统是一套工业远程监控系统。利用此系统,可以通过电脑对中央空调的主机和管道系统的各类参数进行远程集中监控。中央空调监控系统包括:空调冷源监控、空调机组监控、新风机组监控、风机盘管监控、膨胀水箱高、低水位监测报警和屋顶排气风机、通风机控制等。 楼宇自动化系统中中央空调子系统占有重要的地位,目前中央空调系统的自动化实现方式很多,有采用单片机,接口采用RS485,现场总线或者以太网,能实现中央空调的远程监控功能;还有采用PLC,比如西门子的S7-200实现数据的采集和监控。目前单片机种类很多,能实现本采集监控功能的芯片选择范围也较广,比如MEGA系列,freescale系列等,另外高端的芯片本身带有丰富的接口,实现更加方便,但是成本较高,另外基于PLC的中央空调监控系统成本瓶颈限制了其进一步的推广。所以开发一套低成本、高可靠性的中央空调远程监控系统是很有必要的。 二、系统结构 本系统采用模块化可编程控制器(PLC)进行设计,使用人机界面进行集中操作,保证系统的安全、可靠、连续运行。整个监控系统由可编程控制器(PLC)、监控电脑和数据通讯网络(TCP/IP以太网)组成。 下图为中央空调监控系统结构示意图

图1 系统结构示意图 三、系统设计思路 目前的中央空调系统按输送介质主要有以下三类:空气,水和冷凝剂,所以相应的中央空调系统主要分为风管系统、冷热水系统和制冷剂系统。本方案主要适用对象是冷热水系统。冷热水系统分主机和风机盘管,主要工作原理是通过室外主机产生出空调的冷热水,由管道系统送至室内的各末端装置,在末端处冷热水与室内空气进行热量交换,产生冷热风,从而消除房间空调负荷。冷热水空调系统的末端通常都装有风机盘管,风机盘管的控制原理采用温控器加电动阀结构,如图1示。所以可以通过调节末端风机转速来调节送入室内的冷热量,由此可见,此种系统的特点是可以对各个末端(房间进行)单独的控制和调节。 室内温度可由设于每台风机盘管回水支管上与各房间内的温度传感器连锁的电动三通阀调节,亦可由风机盘管三速开关调节。

中央空调系统节能策略分析

中央空调系统节能策略分析 中央空调系统作为建筑的重要组成部分,在给人们带来舒适建筑环境的同时,也消耗了大量的能量,对中央空调系统的节能优化是建筑节能优化的重点。基于此,笔者进行了相关介绍。 1、中央空调工作原理 中央空调系统是一个极其复杂的系统,主要由2部分组成,即水系统部分和空气处理系统部分。其中,制冷机组为中央空调系统的正常运行提供所需要的冷负荷,不仅将制造的冷量传递给冷冻水循环系统,且把工作过程中释放的热量传递给冷却水循环系统,是中央空调系统中最重要的组成部分。冷却水泵、冷冻水泵以及冷却塔为中央空调系统提供水循环,是进行热交换的载体。冷冻水将制冷机组制造的冷量带到风机盘管系统中与室内空气进行热交换,并将室内热量带回到制冷机组中;冷却水将制冷机组在工作和热交换中产生的大量废热排放到室外空气中,经过冷却塔降温后的冷却水又流回制冷机组的冷凝器中进行热交换,如此循环往复。 2、控制策略 不同的控制策略对中央空调系统总能耗的影响特别明显,由于中央空调的系统由冷水机组、冷冻水系统、冷却水系统、冷却塔风机系统组成,冷水机组的控制由其自身的控制策略直接控制,但其制冷效果会受中央空调系统中水系统控制的影响。某酒店主楼高18层,辅楼高4层,拥有178余间客房。酒店中央空调系统原控制策略采用冷冻水恒压控制,冷冻水回水压力作为反馈值,0.558MPa作为目标值;冷却水出水恒温控制,冷却水出水温度作为反馈值,目标值设为31℃;冷却塔风机工频控制。经过对系统运行状况的评估同时考虑现场条件,节能改造采用以下的控制方式:冷冻水恒温差控制,冷冻水进出水温差作为反馈值,5℃做目标值;冷却水恒温差控制,冷却水进出水温差作为反馈值,目标值为5℃;冷却塔

中央空调能耗与管理系统

中央空调能耗计量与管理系统 系统概述及组成 本工程采用自动计费系统对建筑内中央空调能耗数据进行采集、运算、综合分析处理,并形成报表自动计费,提高用户的节能意识,降低物业管理成本,提升了物业管理水平。 本系统管理服务器安装于机房或监控中心,通过总线将中央空调计费仪表等集成在一个系统中,从而中央空调的计费实行自动化管理。 系统组成: 系统由中央空调计量仪表、中央空调计时温控器、能耗采集设备(如集中器、数据采集器等)、数据传送设备(如信号隔离放大器、路由器等)、通讯线路(如通讯总线、网线)、管理电脑、管理软件等组成。中央空调能耗计量对象全,不留下任何死角,便于统一管理! 1、中央空调计量管理 对于使用中央空调的建筑,采用区域能量计量方式,末端温控计量方式: (1)区域能量计量原理和方法 用户所消耗的能量是一段时间内供水的流量和供回水的温差的乘积对时间的积分,用流量计测量逐时的流量并用温度传感器测量逐时的供回水温差,将这些数据输入结算控制器计算就能得出用户所用的能量。 能量Q=∫μ*ΔΤ*ΔΜdt 能量计量由一个流量计、一对温度传感器、和一个结算控制器组成。流量计安装在系统的供水管上,并将温度传感器分别装在供、回水管路上。对于制冷系统和制热系统,均可使用以上方法计量能耗。 中央空调监控系统温湿度控制的分析 空调系统结构组成一般包括以下几部分: (1)新风部分 空调系统在运行过程中必须采集部分室外的新鲜空气(即新风),这部分新风必须满足室内工作人员所需要的最小新鲜空气量,因此空调系统的新风取入量决定于空调系统的服务用途和卫生要求。新风的导入口一般设在周围不受污染影响的地方。这些新风的导入口和空调系统的新风管道以及新风的滤尘装置(新风空气过滤器)、新风预热器(又称为空调系统的一次加热器)共同组成了空调系统的新风系统。 (2)空气的净化部分 空调系统根据其用途不同,对空气的净化处理方式也不同。因此,在空调净化系统中有设置一级初效空气过滤器的简单净化系统,也有设置一级初效空气过滤器和一级中效空气过滤器的一般净化系统,另外还有设置一级初效空气过滤器,一级中效空气过滤器和一级高效空气过滤器的三级过滤装置的高净化系统。 (3)空气的热、湿处理部分 对空气进行加热、加湿和降温、去湿,将有关的处理过程组合在一起,称为空调系统的热、湿处理部分。 在对空气进行热、湿处理过程中,采用表面式空气换热器(在表面式换热器内通过热水或水蒸气的称为表面式空气加热器,简称为空气的汽水加热器)。设置在系统的新风入口,一次回风之前的空气加热器称为空气的一次加热器;设置在降温去湿之后的空气加热器,称为空气的二次加热器;设置在空调房间送风口之前的空气加热器,称为空气的三次加热器。三次空气加热器主要起调节空调房间内温度的作用,常用的热媒为热水或电加热。在表面式换热器内通过低温冷水或制冷剂的称为水冷式表面冷却器或直接蒸发式表面冷却器,也有采用喷淋冷水或热水的喷水室,此外也有采用直接喷水蒸汽的处理方法来实现空气的热、湿处理过程。

相关文档
相关文档 最新文档