文档库 最新最全的文档下载
当前位置:文档库 › 序批式活性污泥法-SBR

序批式活性污泥法-SBR

序批式活性污泥法-SBR
序批式活性污泥法-SBR

序批式活性污泥法(SBR)简介

1、SBR法的发展背景

SBR(sequncing batch reactor)法是一种序批式生物反应器间歇运行的活性污泥法污水处理工艺。作为一种污水生物处理方法,它始终没有离开过同连续流式活性污泥法(CFS)的共同发展,但由于序批式的污水处理方法受到曝气头孔眼堵塞,设备利用率不高等问题的困扰,致使间歇式活性污泥法发展缓慢。事实上,自20世纪20年代以来污水处理基本以CFS (Continuous Flow System Sludge Prorcess) 为主。

SBR处理工艺其实也并不是一种“全新”的污水处理技术。早在1914 年由英国人Alden 和Lockett 等人就提出污水按批量运行(operated in batch mode)的概念,只是当时没有得到推广应用,直到20世纪70 年代初,由美国Natre Dame 大学的Irvine教授等人,采用实验室规模装置对SBR 工艺进行了系统研究,并于1980 年在美国国家环保局(USEPA) 的资助下,在印第安纳州的Culver 城改建并投产了世界上第一个SBR 污水处理厂。此后,日本、德国、澳大利亚、法国等国都对SBR 处理工艺进行了应用与研究。法国的Degrement 水公司将SBR反应器作为定型产品供小型污水处理站使用。

我国于20 世纪80 年代中期开始对SBR 进行研究和应用.上海市政设计院

于1985 年在吴淞肉联厂设计投产我国第一座SBR 污水处理站,设计处理能力为2400t/d。目前北京、广州、无锡、扬州、昆明、山西、福州、陕西等地已有多座SBR 处理设施投入使用。

2、SBR法工艺原理

SBR 本质上仍属于活性污泥法的一种,它是由5 个阶段组成,即进水

( Fill ) 、反应(React ) 、沉淀(Settle) 、排水(Decant) 、闲置( Idle),从污水流入开始到待机时间结束算一个周期。在一个周期内,一切过程都在一个设有曝气或搅拌装置的反应池内进行,这种周期周而复始反复进行(如图1 所示) 。

图 1 SBR运行工序

2.1 进水阶段

反应池接纳废水的过程,在废水开始流入之前是前一周期排水或闲置状态,因此反应池内有高浓度的活性污泥混合液。当废水进入反应器内,池内水位逐渐

上升,当达到最高水位或设定的时间时,停止进水。由于进水阶段仅仅流入废水,不排放处理水,因此反应池具有调节池的功能。

在SBR工艺的进水阶段,当废水进入反应池后,废水组分与反应池内前一周期剩余活性污泥微生物反应的程度,完全取决于曝气系统和搅拌系统所处的状态。在静态进水阶段,反应池内主要进行废水组分的积累,没有发生明显的生物降解。但在曝气进水阶段,反应池内不仅实现了废水组分的积累,而且还可以观察到明显的好养生物反应。此外,缺氧和厌氧反应可以同时发生在搅拌进水阶段。总体来说,这些生化反应进行的程度取决于易生物降解基质的质量流速和所采取的进水策略。

2.2 反应阶段

当废水注入达到预定容积后,进行曝气或搅拌反应,以达到去除有机物、硝化、脱氮除磷的目的。如果进行曝气,则系统处于好氧状态,通过好样氧物反应,实现有机物氧化、氨氮硝化和吸磷反应。若进行搅拌,且存在电子供体和电子受体的情况下,则系统处于缺氧状态,通过缺氧生物反应,实现反硝化脱氮和缺氧吸磷。如果系统不曝气,仅进行搅拌或静态,并且存在电子供体的情况下,则系统处于厌氧状态,通过厌氧反应实现有机物厌氧硝化、厌氧释磷。

2.3 沉淀阶段

停止曝气和搅拌,本阶段相当于传统活性污泥的二沉池。混合液中污泥通过重力沉降实现固液分离,澄清的上清液排出。由于静止沉降,因此沉降效率很高

(1.5-2h)。

2.4 排水期

经过沉淀后产生的上清液作为处理水排放,一直到最低水位。此时也排出一部分剩余污泥,在反应器内残留一部分活性污泥作为泥种。

2.5闲置期

处理水排放后,反应器处于停滞状态,等待下一个操作周期开始的阶段。此期间的长短应根据现场的情况而定。如时间过长,为避免污泥完全失去活性,应进行轻微曝气或间断的曝气。在新的操作周期开始之前,也可考虑对污泥进行一定时间的曝气,使污泥再生,恢复、提高其活性。

在SBR工艺中,剩余污泥的排放通常选在沉淀阶段之后,而不是在反应几乎完成时或沉淀过程中,并且可以每周、每天或任一周期内进行定期排放。由于SBR工艺是一个固定容积的活性污泥系统,当进水流量较大时,处于闲置阶段的SBR反应器可以起到调节池的功能。但是,如果通过调节池、储水池或其他有效方法来调节、控制进水水量的变化,那么SBR工艺可以不设置闲置阶段。

从输入能量角度分析,进水阶段和反应阶段又包括几个亚级阶段:进水阶段包括静态进水:进水阶段系统没有能量输入,仅仅是基质积累过程。搅拌进水:进水阶段只进行搅拌,同时进行最小限度的好氧曝气,主要是抑制好氧反应,此过程也称为限制曝气过程。典型的运行模式是缺氧或厌氧反应。曝气进水:进水阶段进行搅拌,同时曝气,为典型的好氧生化反应。有机物在进水过程几乎被氧化,该过程称之为非限制曝气过程。此过程常伴随同步缺氧反应。反应阶段包括搅拌反应:系统处于仅进行搅拌,不曝气的状态,将好氧氧化反应降至最小限度,主要是抑制好氧反应,此过程也称为限制曝气过程,主要进行缺氧或厌氧反应。曝气反应:系统内同时进行搅拌和曝气,该过程称为非限制曝气过程。主要进行好氧生化反应,几乎全部有机物、氨氮和磷在曝气过程被去除。

3、SBR污水处理影响因素

SBR 法生物处理过程中,由于多种菌( 脱氮菌、PAOs、DPB 等) 的协同作用,不同的环境及运行条件都将会影响总体处理效果。碳源、泥龄、DO 等之间存在着诸多内在矛盾,若条件控制不好,常常会造成脱氮效果好而除磷结果不佳。

3.1C/N

碳源影响着脱氮除磷的总体效果,这是因为聚磷菌( PAO) 和反硝化菌会竞争碳源。必要时需外加碳源以满足二者的需求,同时还要考虑碳源能否快速转化成脂肪酸( VFA) 供PAO 利用.在脱氮除磷工艺中同时存在着反硝化菌和反硝化聚磷菌,而后者在该微生物体系中占绝对的优势。厌氧阶段存在硝态氮的情况下,反硝化菌与反硝化聚磷菌形成对有机底物的竞争;而在缺氧阶段存在好氧有机物的情况下,反硝化菌与反硝化聚磷菌存在对硝态氮的竞争。反硝化聚磷菌以硝酸盐作为电子受体进行吸磷,因此反硝化除磷过程中硝态氮的浓度过低将影响缺氧段磷的吸收,降低除磷效果;浓度过高使反硝化菌与反硝化聚磷菌形成对好氧有机底物的竞争,同时硝态氮影响下一周期厌氧释磷,降低了系统除磷效果。

有研究表明,在C/N 值大于5,C/P 值大于23 的条件下,SBR 系统对氮、磷及碳的去除率在90%以上,其中通过反硝化聚磷去除磷的比例达60%~70%。

3.2MLSS

提高MLSS 浓度可加快反硝化除磷系统的反应速度,但是吸磷效率有所降低。过高的MLSS 不仅会增加污泥处理费用,同时给泥水分离带来困难,缺氧吸磷过程还可能出现磷的二次释放。适当降低MLSS 浓度和延长反应时间,可以达到良好的吸磷效果。

3.3曝气及DO

DO影响脱氮除磷效果。如反硝化正常运行时要求DO低于0.5 mg/ L,而厌

氧区则要严格控制DO,否则会影响聚磷菌过量吸磷能力。于晓彩等的研究结果显示:进水时限量曝气方式脱氮除磷效果较好。而控制曝气时间最佳( 315 h) 可达到较高的T N及T P去除率( 分别为97.6%、65.6%)。

3.4污泥龄

泥龄长短对脱氮除磷也有直接影响。一般来说短泥龄,排泥量大,除磷效果好,但泥龄小于15 d 时硝化受抑制。综合考虑脱氮除磷,应根据实际情况选择最佳SRT。张可方等通过实验得出满足硝化和除磷的最佳SRT( 17~ 21 d)。Fikret Kargi等研究了SRT 对营养物去除的影响,结果显示:SRT 为10 d 时,可达到最大的氨氮及磷去除率( 分别为84% 和70% ),SRT \15 d 时营养物去除率下降。

3.5pH

pH对反硝化除磷系统的影响和其对传统除磷系统的影响有相似之处。在一定pH值范围内,随着pH升高厌氧释磷量升高。但是,pH值达到8以上时由于磷酸盐沉淀,释磷量下降;pH值对缺氧摄磷有一定的影响,大于8时磷酸盐主要经过化学沉淀被去除。

3.6NO2-N

亚硝酸盐在浓度相对较低的情况下,可作最缺氧吸磷的电子受体,但是浓度过高时会对反硝化聚磷菌有一定的抑制作用,而这个上限值仍然无法定论。4、SBR污水处理工艺特征

4.1具有理想的推流式发拧起的特征

连续流反应器有两种完全对立的理想类型,分别称为推流型与完全混合型。根据活性污泥动力学理论,生物反应速度受基质浓度的作用,基质浓度越小,反应速度越慢。完全混合型反应器,由于人为地强化混合,使基质浓度降低,减慢了生物反应速度,这是不适宜的。SBR池则从进水开始基质浓度逐渐增加,进水结束时达到最大,随着反应的进行,基质浓度逐渐减小。直到反应临近结束,基质降解速率降至最低,此时和连续式完全混合反应器的反应速率一样。

在理想的推流式装置中,不存在返混作用,起始端的污水浓度大,生物反应速度亦大,全池的单位容积处理效率高于完全混合型。目前,实际采用的推流式并不是理想状态,而是一种带返混的旋流式池子。而间歇式或半连续式的反应器装置是一种按时间作推流的,即随着污水在池内反应时间的延长,基质浓度由高变低,是一种理想的推流型反应器。

4.2具有控制丝状活性污泥膨胀的特性

构成活性污泥微生物的细菌可分为菌胶团形成菌与丝状菌,当菌胶团形成菌

占优势时,污泥的凝聚性、沉降浓缩性好;反之,当丝状菌占优势,则污泥沉降性能恶化,发生污泥膨胀。菌胶团形成菌与丝状菌的增殖速度,随BOD基质浓度不同而异,在低浓度中丝状菌增殖速度大;反之,高浓度的BOD基质有利于菌胶团形成菌的增殖。间歇法能使基质在一定的时段内,维持较高浓度的条件下运行,可控制丝状菌生长。

在间歇装置中,由于活性污泥微生物周期性地处于高浓度、低浓度基质的环境,不利于丝状菌生长。相反,使菌胶团形成菌成为优势菌种。因此,间歇法具有控制丝状活性污泥膨胀的特性。

4.3简化污水处理流程,较少占地面积,降低工程造价

采用SBR法,工艺过程极为简单,一个SBR构筑物取代了普通活性污泥法中的厌氧反应池、曝气池、二沉池和污泥回流系统。由于其省去了多个水处理构筑物,因此节约了水处理构筑物的占地面积。据统计,一般可以节约占地面积。由于水处理构筑物减少以及构筑物之间的连接管道、流体输送设备减少,特别是省去了污泥回流系统和混合液回流系统,因而大大节约了工程投资。据工程资料统计,扣除由于自控设备增加引起的工程投资增加外,一般工程总投资可以降低约20%~25 %。

除此以外,更重要的是运转费用的降低。对于普通活性污泥法,包括污泥回流和混合液回流在内的约5倍于原水量的流体必须依靠污水泵输送进行循环而消耗动力,而动力消耗是生化法污水处理的重要成本。由于SRB法无需污泥回流,只需要在一定时间内交替地进行水下搅拌和曝气就可去除有机物,同时完成脱氮、脱磷过程,从而降低了运转费用,具有普通活性污泥法难以比拟的优点。据资料统计,采用SBR法比活性污泥法可降低运转费用30%以上。

4.4运转灵活,可以实现极高成都自动化

由于SBR工艺的构筑物简单,各个工序通过时序来控制,各个工序的操作可以通过PLC编程很容易地实现自动控制和监视。此外,通过调节运行参数,可以容易地对公益过程进行改进,以实现水质、水量和对处理要求的变化。因此,SBR法对于情况复杂多变的工业废水处理过程也具有极为广阔的推广前景。而且,SBR法耐冲击负荷能力也非常强。

4.5生化反应效率高,具有处理高浓度,难降解废水的特性

SBR反应器存在着繁多的微生物种类,呈现出复杂的生物相。在运行周期内,出现对氧要求不同的微生物类群的演替,为好氧-缺氧的组合流程提供了条件。难降解有机物可生化性得到提高;在池体中通过控制排水后底物浓度,利用经沉淀后上清液的稀释作用,使其可接纳较高浓度的有机废水。生物反应最佳控制条件在SBR池中通过灵活控制曝气量、搅拌程度、沉淀、限制时间、水位变

化、污泥的排放与回流等措施来实现。

因此,间歇法的污泥沉降性能好,且不需污泥回流设备,可使反应池中的MLSS维持较高的浓度,通常达8000-20000mg/L,是常规法的4-10倍。如果间歇法的进水浓度与常规法相比亦提高同样倍数,则其有机负荷量F/M之比仍与常规法相等。由此看出,间歇法是处理高浓度有机废水的有效方法。

4.6对水质、水量变化适应性强,是小规模污水治理的有效方法

目前,我国中小企业发展很快,排放污水总量不大,且间断排放,加之技术管理水平较低,经费少,若采用常规的连续式活性污泥系统进行治理,难度很大。若采用间歇法,在一个池中就可完成连续式活性污泥系统的全部过程,与连续式相比,具有均化水质、勿需污泥回流、不需二沉池、建设与运行费用都较低等优点。并且可适应水质、水量变化的冲击,通过设置多个池体按序分配每个池体五个运行周期的时间,用时间控制完成多种功能要求。对于某些化工、机械、农药、制药等难于生物降解废水,再通过向池中投加生物载体去除废水中各有机污染物。可提高承受各种冲击负荷稳定性。所以间歇法更适于小规模的污水处理。4.7脱氮除磷效果好,特别适合处理城市生活污水

SBR法通过在时间灵活控制,为其实现脱氮除磷提供了极有利的条件。在进水期,原水有机物使池内DO逐渐下降而进入缺氧或厌氧,反硝化菌将NO一N、NO2—N还原为N2。反应期、沉降期和排放期,反硝化菌分别利用贮存性碳和内源碳进行反硝作用,因此,SBR具有较强的脱氮效果。

5、SBR法的演变工艺

5.1 间歇式循环延时曝气活性污泥法(ICEAS)

在1968年由澳大利亚新威尔士大学与美国ABJ公司合作开发的。1976年世界上第一座ICEAS工艺污水厂投产运行。ICEAS与传统SBR相比,最大特点是:在反应器进水端设一个预反应区,整个处理过程连续进水,间歇排水,无明显的反应阶段和闲置阶段,因此处理费用比传统SBR低。由于全过程连续进水,沉淀阶段泥水分离差,限制了进水量。

ICEAS过程由缺氧生物选择器和主反应池串联而成,预反应区与主反应区

的体积比为1:30,污水连续进入预反应区,然后通过隔墙下端的小孔以层流速度进入主反应区,由于是在其池底扩散,故对主反应区沉淀不造成搅动。因此,主反应区即使连续进水,也可同时沉淀、排水,不影响污水处理进程。ICEAS 采用连续进水,间歇出水的方式控制,既有传统活性污泥的连续性和高效性,又具有SBR过程的灵活性。其中预反应区连续进水,内部的缺氧环境可以促进菌胶团微生物的繁殖并抑制丝状菌生长;主反应区间歇出水,由曝气、沉淀和排水三个过程阶段组成,使污水在交替的好氧-缺∕厌氧和缺∕厌氧-好氧条件下完成脱氮除磷。

典型的ICEAS工艺的一个过程周期一般由反应、沉淀、排水三个基本过程组成。污水经过沉砂池后,连续进入曝气池的预反应区,由于预反应区内部的F ∕M很高,可促进微生物对底物的生物吸附,进而加速对非溶解性底物的去除。预反应区也是一个生物选择器,可抑制丝状菌引起的污泥膨胀。污水进入主反应区后,进入反应、沉淀、排水三阶段的周期运行。反应阶段,污水可多次经历曝气好氧、闲置缺氧状态,从而有利于有机底物的降解、硝化、反硝化和磷的吸收与释放过程。ICEA工艺的剩余污泥只能在排水阶段运行,正常周期一般为4-5h,各阶段时间根据进水情况可以调节。

5.2循环式活性污泥法( CASS/CAST )

是ICEAS工艺的一种改进,不同是在缺氧生物选择器和主反应池间增设厌氧池以强化生物除磷效能,并增设了主反应区向生物反应器的污泥回流系统,三个区的体积比为1:5:30。CASS工艺中每次循环由进水/曝气、充水∕沉淀、撇水、闲置组成,每一阶段中皆有污泥回流,污泥回流比约为进水流量的20%。

在生物选择器中,通过回流污泥与进水混合,可利用污泥的吸附作用而加速对非溶解性底物的去除,并对难降解有机物起到水解作用,还利于改善污泥沉降性能,防止污泥膨胀。厌氧区辅助生物选择器对进水水质、水量变化有缓冲作用,还可促进磷的释放和反硝化脱氮。通过调节主反应区的曝气强度使主反应池溶液处于好氧状态、活性污泥内部处于缺氧状态,造成DO向污泥絮体的传递受限而硝态氮由污泥内向主体溶液的传递不受限,从而主反应区中可发生有机底物的降解、好氧吸磷和同步硝化∕反硝化过程。

CASS工艺可看作是一种传统的吸附再生活性污泥工艺与SBR工艺的结合。连续的污泥回流是CASS工艺的显著特点,回流在一个构筑物中进行,较为简单;另一个重要特征是硝化与反硝化在曝气阶段同时进行,运行时控制供养强度以及曝气池中的DO水平,使得活性污泥絮体外部发生硝化、内部缺氧发生反硝化,脱氮效果好。

5.3好氧间歇曝气系统( DAT-IAT )

ICEAS 工艺的容积利用率不高,一般不超过60%,反应池没有得到充分利用,曝气设备相当一段时间闲置,为提高反应池和设备的利用率,开发出了DAT-IAT(demand aeration tank-intermittent aeration tank)工艺。DAT-IAT 工艺采用连续进水、间歇出水的方式运行,它是用隔墙把反应池分成大小相同的两个池子,污水连续进入DAT 池,在池中连续曝气,池中水流成完全混合流态,基本上相当于传统活性污泥法中的曝气池,绝大部分有机物在DAT 中降解。然后通过隔墙以层流速度进入IAT 池,在此池中按曝气、沉淀、排水、排泥周期运转,IAT 相当一个传统的SBR 池,但进水为连续流。整个反应池的容积利用率可达66.7%,减少了池容和基建费用。可以将DAT-IAT 看作是传统的活性污泥法与SBR 法的结合。

DAT 池和IAT 池串联组成,DAT 连续进水,连续曝气(也可间歇曝气),IAT 也是连续进水,但间歇曝气,清水和剩余活性污泥均由IAT 池排出。和

型的SBR 反应池一样,IAT 池运行操作由进水、反应、沉淀、出水和待机五个阶段组成。DAT-IAT系统有SBR 工艺的优点,又改进了SBR 工艺的不足,具有以下特点:

(1)增加了工艺处理的稳定性:DAT 起到了水力均衡和防止连续进水对出水水质的影响,特别是在处理高浓度工业废水时,DAT 连续曝气加强了系统对难降解有机物的降解,相对缩短了运行周期。DAT 池连续曝气也使整个系统更接近于完全混合式,更有利于消除高浓度工业废水中毒性物质或COD 浓度过高积累而带来的不良影响。

(2)提高了池容的利用率:对于曝气池和二沉池合建的污水处理构筑物来说,

在保留沉淀分离效果的前提下,尽可能提高曝气容积比,与传统SBR法及其它变型方法来比,由于DAT-IAT 中DAT 池连续曝气和IAT 的间歇曝气,使该工艺方法的曝气容积比是最高的。

(3)提高了设备的利用率:由于DAT 池连续进水,因此不需要增设进水的闸阀及自控装置;DAT池连续曝气,减少了整个系统的曝气强度,提高了曝气装置的利用率,所需鼓风机的额定风量和功率也减小了。

(4)增加了整个系统的灵活性:DAT-IAT 系统可以根据进、出水量、水质变化来调整DAT 池与IAT 池的工作状态和IAT 池的运转周期,使之处于最佳工况,同时也可以根据脱氮除磷要求,调整曝气时间,创造缺氧或厌氧环境。

5.4一体化活性污泥系统( UNITANK )

20 世纪90 年代,比利时的史格斯清水公司推出了一体化活性污泥法系统,取名UNITANK。UNITANK 最通用的形式是采用三个池子的标准系统,三池之间水力连通,每池都设有曝气设备,外侧的两池设有出水堰及剩余污泥排放口,它们交替作为曝气池和沉淀池,中间的一个矩形池只作曝气池。UNITANK 工艺采用连续进水、周期交替的运行方式。运行周期包括两个对称的运行阶段,即左侧进水右侧排水和右侧进水左侧排水两个阶段,之间有短暂的过渡段相连。

UNITANK 的优点:

(1)UNITANK系统在恒定水位下连续运行,从整个系统来看,它已经不属于SBR 了,与交替运转的三沟氧化沟非常相似,这是UNITANK 最显著的一个特点。(2)出水系统采用固定堰而不是滗水器,设备费用低。

(3)UNITANK在任意时刻,总有一个池子作为沉淀池(在设计上应满足平流沉淀池的功能)。

(4)标准的UNITANK系统由三个正方形池所组成,弥补了单个反应器完全混合的缺点。

(5)池中约有2/3 的设备同时运行,与普通SBR相比,其容积利用率和设备利用率高。

(6)在SBR 系列中占地面积最少,基建费用更低,更适用于土地特别紧张的场合。

UNITANK 的缺点:

(1)UNITANK 的三池污泥浓度相差大,影响池容利用。

(2)UNITANK 要脱氮时,需要延长周期,加大排水设备,增加搅拌。

(3)UNITANK 的除磷效果不好,当出水水质有除磷要求时,要慎用。

(4)当处理水量过大时,增加了系统设计、运行的复杂性,故UNITANK 工艺更适用于中小型污水处理厂。

5.5改良型间歇活性污泥过程( MSBR )

由于传统的SBR 工艺和一些早期的变型工艺(ICEAS、CASS、CAST、DAT-IAT 等)都难以克服SBR 的一个很大的问题,即反应池水面上下波动和不连续出水,造成后续串联工艺的水头损失很大,增加了污水处理厂的高程设计难度。为此国内外开发了多种改良型SBR 工艺(Modified Sequencing Batch Reacter),下面介绍一种较新的改良工艺。MSBR 的核心处理设备是由两个SBR 反应器、曝气池、厌氧池和缺氧池组成,一般设计成矩形,如图所示。

MSBR 有别于传统SBR 的几个显著特点:(1)连续进水;(2)水位恒定;(3)进行混合液回流;(4)脱氮除磷效果好;(5)MSBR 工艺在排水阶段也不停止进水。因此,池型设计的好坏对沉淀效果的影响很大。

5.6厌氧序批间歇式反应器(ASBR)

厌氧序批间歇式反应器(Anaerobic Sequencing Batch Reactor,简称ASBR),是20 世纪90 年代由美国IOWA州立大学的Richard R. Dague 教授等在厌氧活性污泥法的研究基础上,将其与SBR 工艺相结合,提出并发展的一种新型高效厌氧反应器。ASBR 工艺是一种以序批间歇运行操作为主要特征的污水厌氧生物

处理,即厌氧SBR 工艺。

ASBR 一个完整的运行操作周期包括进水期、反应期、沉淀期和排水期。ASBR 通过间歇进料可以获得较低的出水浓度,同时利用间歇排水,不断排出沉降性能较差的污泥,可进一步优化污泥颗粒化过程。

ASBR 具有以下优点:(1)生物污泥絮凝与颗粒化使得ASBR 固液分离效果好,出水澄清;并且污泥沉淀性能好,活性高;(2)耐冲击负荷强,适应性强;(3)运行操作灵活,处理效果稳定;(4)工艺简单占地面积小,基建费用低;(5)温度影响小,适应范围广。

目前,利用ASBR 工艺处理垃圾渗滤液的研究较多,此外,ASBR 还应用于粪便消化液、食品工业废水、屠宰场废水等的生物处理。

5.7射流式SBR工艺

射流式SBR是一个投资小、出水水质高的系统,曝气系统是由大孔喷射混合器来完成的,它不仅提高了氧的利用率,而且不会堵塞。管理也很方便,只要一个程序化的操作平台便能完成所有功能的操作。在曝气时,池内污水通过内设喷嘴被泵带到吸气室,与吸入的空气混合(空气通过吸气管吸入),然后从一个大喷嘴摄入池中,在不断搅动污水的同时,产生细小气泡,保证了水中充足的溶解氧。只需混合时,空气管可关闭。SBR 反应池装有射流曝气器和挡板来完成生物氧化、沉淀、硝化和反硝化等生物过程。

Fluidyne SBR 适用于中小型污水处理厂,尤其适用于以下几种情况:(1)系统进水的有机负荷或水力负荷变化大;(2)要求管理工作少;(3)出水要求严格控制,如对某些特种物质的去除;(4)适用于中小型社区或食品加工厂等废水处理。

5.8膜法SBR工艺

生物膜法具有单位体积生物量大,抗冲击能力强、污泥易于沉淀、运行管理方便以及节能的优点。将SBR 和接触氧化法相结合可以组成新的膜法SBR,BSBR。

BSBR 工艺及曝气池、沉淀池于一体,运转按进水、反应、沉淀、排水等几个阶段运行,可使生物膜在时间上交替处于A/O 状态,使混合液在空间上交替处于A/O 状态,因此,BSBR 可以达到脱氮除磷的目的。

活性污泥法的基本原理

活性污泥法的基本原理 一、活性污泥法的基本工艺流程 1、活性污泥法的基本组成 ①曝气池:反应主体 ②二沉池:1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内的污泥浓度。 ③回流系统:1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。 ④剩余污泥排放系统:1)是去除有机物的途径之一;2)维持系统的稳定运行。 ⑤供氧系统:提供足够的溶解氧 2、活性污泥系统有效运行的基本条件是: ①废水中含有足够的可容性易降解有机物; ②混合液含有足够的溶解氧; ③活性污泥在池内呈悬浮状态; ④活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥; ⑤无有毒有害的物质流入。 二、活性污泥的性质与性能指标 1、活性污泥的基本性质 ①物理性能:“菌胶团”、“生物絮凝体”: 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1,(1.002~1.006); 粒径:0.02~0.2mm; 比表面积:20~100cm2/ml。 ②生化性能: 1) 活性污泥的含水率:99.2~99.8%; 固体物质的组成:活细胞(M a)、微生物内源代谢的残留物(M e)、吸附的原废水中难于生物降解的有机物(M i)、无机物质(M ii)。 2、活性污泥中的微生物:

① 细菌: 是活性污泥净化功能最活跃的成分, 主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等; 基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌; 2) 在好氧条件下,具有很强的分解有机物的功能; 3) 具有较高的增殖速率,世代时间仅为20~30分钟; 4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。 ② 其它微生物------原生动物、后生动物----在活性污泥中大约为103个/ml 3、活性污泥的性能指标: ① 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ): MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3 ② 混合液挥发性悬浮固体浓度(MLVSS )(Mixed VolatileLiquor Suspended Solids ): MLVSS = M a + M e + M i ; 在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75~0.85 ③ 污泥沉降比(SV )(Sludge Volume ): 是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常数值为20~30%。 ④ 污泥体积指数(SVI )(Sludge Volume Index ): 曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。 ) /()/((%))/()/(l g MLSS l ml SV l g MLSS l ml SV SVI 10?== 能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过高,说明其沉降性能不好,将要或已经发生膨胀现象; 城市污水的SVI 一般为50~150 ml/g ; 三、活性污泥的增殖规律及其应用 活性污泥中微生物的增殖是活性污泥在曝气池内发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。 1、活性污泥的增殖曲线

活性污泥指标及污泥膨胀处理

活性污泥法 处理的关键在于具有足够数量和性能良好的污泥。它是大量微生物聚集的地方,即微生物高度活动的中心,在处理废水过程中,活性污泥对废水中的有机物具有很强的吸附和氧化分解能力,故活性污泥中还含有分解的有机物和无机物等。污泥中的微生物,在废水中起主要作用的是细菌和原生动物。 微生物的指示作用 (1)着生的缘毛目多时,处理效果良好,出水BOD5和浊度低。(如小口钟虫、八钟虫、沟钟虫、褶钟虫、瓶累枝虫、微盘盖虫、独缩虫)这些缘毛目的种类都固定在絮状物上,并随窗之而翻动,其中还夹杂一些爬行的栖纤虫、游仆虫、尖毛虫、卑气管叶虫等,这说明优质而成熟的活性污泥。 (2)小口钟虫在生活污水和工业废水处理很好时往往就是优势菌种。 (3)如果大量鞭毛虫出现,而着生的缘毛目很少时,表明净化作用较差。 (4)大量的自由游泳的纤毛虫出现,指示净化作用不太好,出水浊度上升。 (5)如出现主要有柄纤毛虫,如钟虫、累枝虫、盖虫、轮虫、寡毛类时,则水质澄清良好,出水清澈透明,酚类去除率在90%以上。 (6)根足虫的大量出现,往往是污泥中毒的表现。

(7)如在生活污水处理中,累枝虫的大量出现,则是污泥膨胀、解絮的征兆。 (8)而在印染废水中,累枝虫则作为污泥正常或改善的指示生物。 (9)在石油废水处理中钟虫出现是理想的效果。 (10)过量的轮虫出现,则是污泥要膨胀的预兆。 另在一些对原生动物不宜生长的污泥中,主要看菌胶团的大小用数量来判断处理效果。 活性污泥中的微生物 活性污泥是微生物群体及它们所吸附的有机物质和无机物质的总称。微生物群体主要包括细菌、原生动物和藻类等。其中,细菌和原生动物是主要的两大类。 (一)细菌 细菌是单细胞生物,如球菌、杆菌和螺旋菌等。它们在活性污泥中种类多、数量大、体积微小,具有强的吸附和分解有机物的能力,在污水处理中起着关键作用。 在活性污泥培养的初期,细菌大量游离在污水中,但随着污泥的逐步形成,逐渐集合成较大的群体,如菌胶团、丝状菌等。 1.菌胶团 菌胶团是细菌及其分泌的胶质物质组成的细小颗粒,是活性污泥的主体,污泥的吸附性能、氧化分解能力及凝聚沉降等性能均与菌胶团有关。菌胶团有球形、分枝状、蘑菇形、垂丝形等

活性污泥处理工业废水..

活性污泥法处理工业废水项目建议书 一、项目提出的必要性和依据: (1)世界的淡水资源极端紧缺,前联合国秘书长德奎利亚尔曾讲到:“过去人类最可怕的是战争,未来人类最可怕的是淡水资源的紧缺”。淡水资源面临取尽,使人类产生巨大的危机感。(2)中国水资源的拥有量在世界排名第121位,可见我国水资源的占有量居于世界排位之后,说明我国淡水资源匮乏,需引起我们高度关注,并在节约用水的同时还要积极杜绝水资源的污染。 这就需要我们积极研究和保护水资源,活性污泥法处理工业废水是一个热点。(3)由于该行业排放的废水中生化可降解成分较多,因而处理效率一般较高。Wheaton等人研究了连续活性污泥法对水果加工业废水的处理,发现对BOD去除率较高;(4)只要保持较低有机负荷和较高水力停留时间(2·5 天),活性污泥能成功处理玉米碱性发酵厂废水;对已连续运行两年的处理高强度啤酒厂废水的深井曝气活性污泥系统的运行结果分析后可知:尽管该废水具有S含量高、水量变化大、悬浮物浓度达6 10 0一9 6 0 0mgl/等特点,活性污泥对进水有机负荷的平均去除率仍达到97 %。(5)活性污泥法是以活性污泥为主体的废水处理方法,是目前有机废水生物处理的主要方法之一。它主要是利用活性污泥中的好氧菌及其它原生动物,对废水中的酚、氛等有机物进行氧化和分解,把有机物最终变成CO2和H2O,其过程主要由物理化学和生物化学作用来完成的。(6)活性污泥处理效率也在不断提高,生化处理的关键是细菌的繁殖与生长,这就要求活性污泥(7)要有较好的

质量,应具备颗粒松散,易于吸附氧化有机物,有良好的凝聚、沉降性能。(8)因此,在实际操作时,要严格控制活性污泥的性能指标。通过多年实践,我们认识到,理想的指标应控制在如下范围: 污泥沉降比:1 5一30%; 污泥浓度:2一39 / L; 污泥指数:50一150。 (9)日本一专利习对生物固定滤床加以改进,用含15 %铁酸钻的聚乙烯和1%偶氮甲酞胺发泡剂制成发泡磁化聚乙烯颗粒填充滤床,连续运转一周,滤床形成生物膜处理工业废水中有机污染物。(10)实验应用表明,以磁化的塑料作为生物载体能高效地处理工业废水中BO D、COD (见表1)。 表l磁化峨料固定溥床处理效果mg/L (11)活性污泥法的新发展: 到目前为止, 对活性污泥法在运行方式上还没有大的突破, 往往所作的是一些局部的改进, 但在曝气方式上确取得了较大的成果, 如纯氧曝气、深井曝气、射流曝气, 采用微气泡扩散器等, 这些都增大了氧转移率、提高了氧的利用率使曝气池中氧的浓度增加。如美日等

序批式活性污泥法

序批式活性污泥法(SBR工艺)除磷_水处理技术SBR工艺是按时间顺序进行进水,反应(曝气)、沉淀、出水、排泥等五个程序进行操纵,从污水的进进开始到排泥结束称为一个操纵周期,这种操纵通过微机程序控制周而复始反复进行,从而达到污水处理之目的。因此SBR工艺最明显的工艺特点是不需要设置二沉池和污水,污泥回流系统;通过程序控制公道调节运行周期使运行稳定,并实现除磷脱氮;不设二沉淀池及省却回流系统,占地少,投资省,基建和运行费低,适合于中小水量污水处理的工艺,但由于该工艺是稳定状态下运行的活性污泥工艺,产业化运用时间较短,尚无十分成熟的设计、运行、治理经验,因此SBR工艺是一种尚处于发展、完善阶段的技术。

MSBR(Modified Sequencing Batch Reactor)指的是改良式序列间歇反应器,是C.Q.Yang等人根据SBR技术特点,结合传统活性污泥法技术,研究开发的一种更为理想的污水处理系统。MSBR既不需要初沉池和二沉池,又能在反应器全充满并在恒定液位下连续进水运行。采用单池多格方式,结合了传统活性污泥法和SBR 技术的优点。不但无需间断流量,还省去了多池工艺所需要的更多的连接管、泵和阀门。通过中试研究及生产性应用,证明MSBR法是一种经济有效、运行可靠、易于实现计算机控制的污水处理工艺。

特点 1.1 MSBR的基本组成反应器由三个主要部分组成:曝气格和两个交替序批处理格。主曝气格在整个运行周期过程中保持连续曝气,而每半个周期过程中,两个序批处理格交替分别作为SBR和澄清池。 1.2MSBR的操作步骤在每半个运行周期中,主曝气格连续曝气,序批处理格中的一个作为澄清池(相当于普通活性污泥法的二沉池作用),另一个序批处理格则进行以下一系列操作步骤。 UASB( Up-flow Anaerobic Sludge Bed,注:以下简称UASB) 厌氧生物处理过程能耗低;有机容积负荷高,一般为5-10kgCOD/m3.d,最高的可达30-50kgCOD/m3.d;剩余污泥量少;厌氧菌对营养需求低、耐毒性强、可降解的有机物分子量高;耐冲击负荷能力强;产出的沼气是一种清洁能源。在全社会提倡循环经济,关注工业废弃物实施资源化再生利用的今天,厌氧生物处理显然是能够使污水资源化的优选工艺。近年来,污水厌氧处理工艺发展十分迅速,各种新工艺、新方法不断出现,包括有厌氧接触法、升流式厌氧污泥床、档板式厌氧法、厌氧生物滤池、厌氧膨胀床和流化床,以及第三代厌氧工艺EGSB和IC厌氧反应器,发展十分迅速。而升流式厌氧污泥床UASB( Up-flow Anaerobic Sludge Bed,注:以下简称UASB)工艺由于具有厌氧过滤及厌氧活性污泥法的双重特点,作为能够将污水中的污染物转化成再生清洁能源——沼气的一项技术。对于不同含固量污水的适应性也强,且其结构、运行操作维护管理相对简单,造价也相对较低,技术已经成熟,正日益受到污水处理业界的重视,得到广泛的欢迎和应用。 本文试图就UASB的运行机理和工艺特征以及UASB的设计启动等方面作一简要阐述。

活性污泥法污水处理

水污染控制工程课程设计城镇污水处理厂设计 指导教师刘军坛 学号 130909221 姓名秦琪宁

目录 摘要 (3) 第一章引言 (4) 1.1设计依据的数据参数 (4) 1.2设计原则 (5) 1.3设计依据 (5) 第二章污水处理工艺流程的比较及选择 (6) 2.1 选择活性污泥法的原因 (6) 第三章工艺流程的设计计算 (7) 3.1设计流量的计算 (7) 3.2格栅 (9) 3.3提升泵房 (9) 3.4沉砂池 (10) 3.5初次沉淀池和二次沉淀池 (11) 3.6曝气池 (15) 第四章平面布置和高程计算 (25) 4.1污水处理厂的平面布置 (25) 4.2污水处理厂的高程布置 (26) 第五章成本估算 (27) 5.1建设投资 (27) 5.2直接投资费用 (28) 5.3运行成本核算 (29) 结论 (29) 参考文献: (30) 致谢 (30)

摘要 本设计采用传统活性污泥法处理城市生活污水,设计规模是200000m3/d。该生活污水氨氮磷含量均符合出水水质,不需脱氮除磷,只考虑除掉污水中的SS、BOD、COD。传统活性污泥法是经验最多,历史最悠久的一种生活污水处理方法。污泥处理工艺为污泥浓缩脱水工艺。污水处理流程为:污水从泵房到沉砂池,经过初沉池,曝气池,二沉池,接触消毒池最后出水;污泥的流程为:从二沉池排出的剩余污泥首先进入浓缩池,进行污泥浓缩,然后进入贮泥池,经过浓缩的污泥再送至带式压滤机,进一步脱水后,运至垃圾填埋场。本设计的优势是:设计流程简单明了,无脱氮除磷的设计,节省了成本,该方法是早期开始使用的一种比较成熟的运行方式,处理效果好,运行稳定,BOD 去除率可达90%以上,适用于对处理效果和稳定程度要求较高的污水,城市污水多采用这种运行方式。 关键词:城市污水传统活性污泥法污泥浓缩

8.1活性污泥法工艺流程

活性污泥法工艺流程 (活性污泥法、微孔曝气器、管式曝气器、污水厂、水处理工艺)活性污泥法是以活性污泥为主体的废水生物处理的主要方法。活性污泥法是向废水中连续通入空气,经一定时间后因好氧性微生物繁殖而形成的污泥状絮凝物。其上栖息着以菌胶团为主的微生物群,具有很强的吸附与氧化有机物的能力。利用活性污泥的生物凝聚、吸附和氧化作用,以分解去除污水中的有机污染物。然后使污泥与水分离,大部分污泥再回流到曝气池,多余部分则排出活性污泥系统。 活性污泥法工艺流程图: 一、活性污泥法由五部份组成: ①曝气池:反应主体;②二沉池: 1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内的污泥浓度;③回流系统: 1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况;④剩余污泥排放系统: 1)是去除有机物的途径之一;2)维持系统的稳定运行;⑤供氧系统:提供足够的溶解氧。 污水和回流的活性污泥一起进入曝气池形成混合液。从空气压缩机站送来的压缩空气,通过铺设在曝气池底部的空气扩散装置,以细小气泡的形式进入污水中,目的是增加污水中的溶解氧含量,还使混合液处于剧烈搅动的状态,呈悬浮状态。溶解氧、活性污泥与污水互相混合、充分接触,使活性污泥反应得以正常进行。 第一阶段,污水中的有机污染物被活性污泥颗粒吸附在菌胶团的表面上,这是由于其巨大的比表面积和多糖类黏性物质。同时一些大分子有机物在细菌胞外酶作用下分解为小分子有机物。 第二阶段,微生物在氧气充足的条件下,吸收这些有机物,并氧化分解,形成二氧化碳和水,一部分供给自身的增殖繁衍。活性污泥反应进行的结果,污水中有机污染物得到降解而去除,活性污泥本身得以繁衍增长,污水则得以净化处理。 经过活性污泥净化作用后的混合液进入二次沉淀池,混合液中悬浮的活性污泥和其他固体物质在这里沉淀下来与水分离,澄清后的污水作为处理水排出系统。经过沉淀浓缩的污泥从沉淀池底部排出,其中大部分作为接种污泥回流至曝气池,以保证曝气池内的悬浮固体浓度和微生物浓度;增殖的微生物从系统中排出,称为“剩余污泥”。事实上,污染物很大程度上从污水中转移到了这些剩余污泥中。

第六章:污水处理

第六章含酚、氰污水的处理 第一节含酚、氰污水的来源、水质及处理方法 焦化厂含酚、氰污水的来源很多,这些水中都不同程度的含有酚、油、硫化氢、氰化五、硫氰化物、吡啶、苯等多种有害物质,其中以酚的含量最多,所以简称为酚水。 1.含酚废水的危害 含酚废水污染范围广,危害性大,对人体、水体、鱼类及农作物带来严重危害。分水危害主要表现如下: 1)对人体的毒害作用 酚类化合物是原型质毒物,它对一切生物都有毒害作用。酚可通过与人的皮肤、粘膜接触发生化学反应,形成不溶性蛋白质,而使细胞失去活力,浓度高的酚溶液还会使蛋白质凝固。酚还能向深部渗透,引起深部组织损伤、坏死,直至全身中毒。长期饮用被酚污染的水会引起头晕、贫血以及各种神经系统病症。 2)对水体及水生物的危害 水体受含酚无水污染后会产生严重不良后果。由于含酚废水耗氧量高,水体中氧的平衡精受到破坏,水中含酚0.002~0.015毫克/升时,加氯消毒就会产生氯酚恶臭,不能做饮用水。水体中含酚0.1~0.2毫克/升时,鱼类有酚味,浓度高时引起鱼类大量死亡。酚类物质对鱼类毒害极限浓度一般在4~15毫克/升,但苯二酚毒性强,浓度为0.2毫克/升。 3)对农作物的危害 用未经处理的含酚废水(100~750毫克/升)直接灌溉农田,会使农作物枯死和减产。 2.焦化厂酚水的来源 焦化厂酚水的来源主要有以下几个方面: 1)剩余氨水约占焦化厂酚水量的一半以上,一般先经萃取脱酚再送去蒸氨,是首先须加处理的酚水。 2)产品加工过程中产生的废水来自化产回收和精制各有关工段的分离水,以

及各种贮槽定期排出和事故排出的酚水。这些水的数量随操作管理的好坏波动较大,应视其含酚浓度高低分别送萃取脱酚或生化脱酚工段处理。 3)粗苯终冷水在煤气最终冷却时,有一定数量的酚、苯、氰化物、硫化物及吡啶盐基等进入冷却水。为保证煤气的终冷温度和减轻脱苯蒸馏设备的腐蚀,终冷循环水一般须部分用新水更换,而排出一定量的含酚、氰污水。终冷外排污水含酚较低,可直接(或先经黄血盐生产装置脱除氰化氢后)送往生化脱酚工段处理。 各种酚水的组成及性质,不同的焦化厂是有差别的。 3.脱酚方法 酚水中所含酚、氰等均为有毒物质,须经妥善处理后才能外排。酚水的处理方法很多,在焦化厂得到较为广泛采用的有:蒸汽循环法;溶剂萃取法及活性污泥法。前两者用于处理高浓度酚水,后者用于处理含酚200~300毫克/升的废水。 为了对酚水进行深度净化,可对低浓度酚水进一步采用活性碳吸附法及臭氧氧化法加以处理,但由于成本高,焦化厂尚少应用。 在焦化厂内,低浓度的酚水还可用于炼焦。此法是将高浓度酚水先予脱酚,然后将全厂低浓度酚水(含酚<250毫克/升=集中起来,先经机械净化澄清,除去其中所含的固体沉淀物及焦油后,送往焦炉熄焦。酚水熄焦对焦炭质量影响很小,但对大气有一定污染,使熄焦车加快腐蚀,对其他金属设备也会产生腐蚀。 第二节蒸汽循环法脱酚 蒸汽循环法是酚水脱酚的主要工业方法之一,在我国一些大型焦化厂还有应用,其脱酚效率可达80%以上。 一、蒸汽循环法脱酚的工艺流程 蒸汽循环法脱酚的工艺流程如图所示。

序批式活性污泥法

序批式活性污泥法(SBR)计算机辅助设计 从目前的污水好氧生物处理的研究、应用及发展趋势来看,序批式活性污泥法能称得上是一种简易、快速且低耗的污水处理工艺,非常适用于水质水量变化大的中小城镇的生活污水处理,以及易生物降解的工业废水处理。因此,SBR工艺是一种适合我国国情的处理工艺,具有很大的发展潜力和应用前景。 近年来,计算机辅助设计(CAD)已渗透到水处理专业,并被专业人员接受和使用。但目前建筑给排水CAD软件应用广泛,污水处理工程设计CAD系统则研究较少。SBR艺计算机辅助设计系统的开发,不仅能够提高设计效率及设计质量,也是计算机技术同污水处理技术有机结合的积极实践,对促进当前污水处理工程CAD的进一步发展具有积极的意义。 1 SBR工艺设计计算 SBR工艺设计计算包括SBR反应池容积的确定以及需氧量、污泥量的计算。 SBR工艺设计方法主要分两大类:经验设计法。动力学模式设计法[1]。经验设计法指污泥负荷率法,污泥负荷率是影响曝气反应时间的主要参数,污泥负荷率的大小关系到SBR反应池容积的大小。这种方法在目前的工程设计中应用较广泛。动力学模式设计法则是根据进水、出水和SBR系统的各种参数条件,建立数学模型后进行设计。由于动力学模式设计方法用于工程设计还有待进一步研究、优化,因

此本系统在开发过程中针对生活污水的处理仍沿用经验设计法。 1.1 参数选取 污泥负荷率与SBR反应池内的混合液污泥浓度是SBR设计与运行的重要参数[2]。 ①对生活污水,污泥负荷普遍采用BOD污泥负荷,其参数值为:高负荷运行时取0.2-0.4kg[BOD5]/(kg[MLSS]·d),低负荷运行时选用0.03-0.07kg[BOD5]/(kg[MLSS].d)。 ②反应池内的污泥浓度(MLSS)可考虑取值3000-5000mg/L。 ③SVI值取90-150mL/g。 ④每周期运行时间一般tr=4.8-12h。 1.2 设计计算步骤 ①确定一个运行周期内曝气时间所占的比例e,根据BOD污泥负荷Ns,计算所需污泥量M; Ns=QS0/eXV (1) M=XV=QS0/eNs (2) 式中:X——混合液中活性污泥浓度(MLSS),mg/L; Q——平均日污水量,m3/d; S0——进水基质浓度,mg/L; V——反应池总有效容积,m3。 ②根据SVI值和污泥量,计算沉淀时所需的污泥体积Vm; Vm=SVI·M (3) ③确定SBR反应池的个数n,引入每周期运行时间tR,计算每周

03-第三章活性污泥法030916

第三章废水好氧生物处理工艺(1)——活性 污泥法 第一节、活性污泥法的基本原理 一、活性污泥法的基本工艺流程 1、活性污泥法的基本组成 ①曝气池:反应主体 ②二沉池:1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池的污泥浓度。 ③回流系统:1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。 ④剩余污泥排放系统:1)是去除有机物的途径之一;2)维持系统的稳定运行。 ⑤供氧系统:提供足够的溶解氧 2、活性污泥系统有效运行的基本条件是: ①废水中含有足够的可容性易降解有机物; ②混合液含有足够的溶解氧; ③活性污泥在池呈悬浮状态; ④活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥; ⑤无有毒有害的物质流入。 二、活性污泥的性质与性能指标 1、活性污泥的基本性质 ①物理性能:“菌胶团”、“生物絮凝体”: 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1,(1.002 1.006);

粒径:0.02~0.2 mm ; 比表面积:20~100cm 2/ml 。 ② 生化性能: 1) 活性污泥的含水率:99.2~99.8%; 固体物质的组成:活细胞(M a )、微生物源代的残留物(M e )、吸附的原废水中难于生物降 解的有机物(M i )、无机物质(M ii )。 2、活性污泥中的微生物: ① 细菌: 是活性污泥净化功能最活跃的成分, 主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等; 基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌; 2) 在好氧条件下,具有很强的分解有机物的功能; 3) 具有较高的增殖速率,世代时间仅为20~30分钟; 4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。 ② 其它微生物------原生动物、后生动物----在活性污泥约为103个/ml 3、活性污泥的性能指标: ① 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ): MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3 ② 混合液挥发性悬浮固体浓度(MLVSS )(Mixed V olatile Liquor Suspended Solids ): MLVSS = M a + M e + M i ; 在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75~0.85 ③ 污泥沉降比(SV )(Sludge V olume ): 是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常数值为20~30%。 ④ 污泥体积指数(SVI )(Sludge V olume Index ): 曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。 )/() /((%))/()/(l g MLSS l ml SV l g MLSS l ml SV SVI 10?= = 能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过 高,说明其沉降性能不好,将要或已经发生膨胀现象; 城市污水的SVI 一般为50~150 ml/g ; 三、活性污泥的增殖规律及其应用 活性污泥中微生物的增殖是活性污泥在曝气池发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。

污水处理中关于活性污泥的浅谈(1)

【格林课堂】 一直以自己是环境工程专业的自称,但是从来没有在公司的网站上投稿过什么专业 类的文章,说起来比较惭愧。主要是觉得自己才学疏浅,实在不敢在公司的这种对所有人公开的网站上面班门弄斧。但是最近看了伟大的数学家华罗庚的一篇文章后觉得班门弄斧才能有助于自身的提高,同时也希望借此能够加强与各位资深的前辈们交流工艺技术方面的东西。当然,这篇文章是比较初级的东西,写的是一些比较基本的入门的知识,如果你系统的学过但是理解不够深刻那么我希望你看完这篇文章后能够让你对水处理有一个重新的系统理解,如果你已经对水处理方面有一套自己独特的理解的话也希望你看完后能提出意见以供我学习,让我改进。 我个人研究比较多的方向是生物处理,对于水处理这个专业而言,生物处理也算比较核心的一块吧。所以我们就来简单的谈谈生物处理吧。 说起水处理,不得不说最初的发现过程,让我们先来对“活性污泥”进行一个简单的认识吧。将经过沉淀处理后的生活污水注入沉淀管(或者适宜的器皿)中,然后注入空气对污水加以曝气,并使生活污水保持下列条件;水温在20℃左右,水中溶解氧值介于1—3mg/L。pH在6—8之间,每日保留沉淀物,更换部分污水,注入经过沉淀处理后的新鲜生活污水,这样的操作持续一段时间(10天到2周)后,在污水中形成一种呈黄褐色絮凝体状的群体,这种絮凝体易于沉降与水分离,污水已得到净化处理,水质澄清,这种絮凝体是由大量繁殖的以细菌为主体的微生物所构成,是一种生物性污泥,它就是“活性污泥”。希望各位看完这篇文章后能想想这个过程是什么。留一个问题作为悬念,接下来就开始我们的正式话题。生物处理篇: 活性污泥M的组成分为四个部分,具有代谢功能活性的微生物群体Ma、微生物内源代谢自身氧化的残留物Me、由原水挟入附着的难降解的有机物Mi、由原水挟入附着的生物表面的无机物Mii。 即 M=Ma+Me+Mi+Mii。 活性污泥的主体组成部分是具有活性的微生物。接下来整个活性污泥系统我都将围绕微生物来讨论。 微生物的组成:其中包括细菌,原生动物后生动物等等。当然这其中组成主体部分是细菌,细菌的种类比较多,主要类型有假单胞菌属、分枝杆菌属、芽孢杆菌属等

工业废水污染防治第习题第六章(含解答)

1 单选(1分) 下列哪种废水不属于丝纺印染行业产生的废水?()得分/总分 ? A. 缫丝脱胶废水 ? B. 染色废水 ? C. 油脂废水 1.00/1.00 ? D. 印花废水 2 单选(1分) 下列哪项不属于纺织印染废水的特点?() 得分/总分 ? A. 浓度高 ? B. 水质波动大 ? C. 水量大 ? D. 属于无机废水 1.00/1.00

印花废水中常含有的重金属离子是() 得分/总分 ? A. ? B. 1.00/1.00 ? C. ? D. 4 单选(1分) 下列哪项不属于纺织行业实现清洁生产的途径?()得分/总分 ? A. 改革工艺,革新设备 ? B. 原料替代 ? C. 采用传统碱法退浆 1.00/1.00 ? D. 加强生产管理

超滤法回收染料属于清洁生产中的哪个途径?()得分/总分 ? A. 改革工艺,革新设备 ? B. 原料替代 ? C. 资源综合利用 1.00/1.00 ? D. 加强生产管理 6 单选(1分) 末端治理的处理方法主要是() 得分/总分 ? A. 生物处理 1.00/1.00 ? B. 化学处理 ? C. 物理处理 ? D. 物理化学处理

水解酸化-好氧生物处理工艺 ? B. 物理化学处理 ? C. 厌氧生物处理 1.00/1.00 ? D. 活性污泥法 8 单选(1分) 混凝-沉淀法适用于去除() 得分/总分 ? A. 溶解性有机污染物 ? B. 重金属 ? C. 无机污染物 ? D. 颗粒性有机污染物 1.00/1.00

中和 ? C. 废铬液处理 1.00/1.00 ? D. 气浮 10 单选(1分) 以下适宜采用厌氧生物处理的是()得分/总分 ? A. 洗毛废水 1.00/1.00 ? B. 麻印染废水 ? C. 棉针织产品废水 ? D. 真丝绸印染废水

sbr序批式活性污泥法

10.5.7 序批式活性污泥法(SBR工艺) Sequencing Batch Reacter Activated Sludge Procee,其机理与普通活性污泥法完全相同。 SBR工艺是按时间顺序进行进水,反应(曝气)、沉淀、出水、排泥等五个程序进行操作,从污水的进入开始到排泥结束称为一个操作周期,这种操作通过微机程序控制周而复始反复进行,从而达到污水处理之目的。因此SBR工艺最显著的工艺特点是不需要设置二沉池和污水,污泥回流系统;通过程序控制合理调节运行周期使运行稳定,并实现除磷脱氮;不设二沉淀池及省却回流系统,占地少,投资省,基建和运行费低,适合于中小水量污水处理的工艺,但由于该工艺是稳定状态下运行的活性污泥工艺,工业化运用时间较短,尚无十分成熟的设计、运行、管理经验,因此SBR工艺是一种尚处于发展、完善阶段的技术。

(1)SBR工艺特点 ①工作原理 SBR是活性污泥法的一个变型,它的反应机理以及污染物质的去除机制与传统活性污泥基本相同,仅运行操作不同,操作模式由进水——反应——沉淀——排水——排泥5个程序,在一个周期均在一个设有曝气和搅拌装置的反应器(池)中进行,这种操作周而复始进行,以达到不断进行污水处理的目的,省却二沉池和污水、污泥回流系统。 传统SBR工艺在工程应用中存在一定的局限性,首先是在进水流量较大的情况下,需对反应系统进行调节,如果处理出水要求同时除磷脱氮,则更需对工艺流程进行必要的改造,因而在实际应用中SBR逐渐发展了各种新形式。 ②循环式CAST(CASS)系统 CAST是SBR工艺的一种新型式,称为循环式活性污泥法(亦称CASS)它分为主

活性污泥法实验

活性污泥实验 一、 实验目的 1、观察完全混合活性污泥处理系统的运行,掌握活性污泥处理法中控制参数(如污泥负荷、泥龄、溶解氧浓度)对系统的影响; 2、加深对活性污泥生化反应动力学基本概念的理解; 3、掌握生化反应动力学系数K 、Ks 、Vmax 、Y 、Kd 、a 、b 等的测定。 二、 实验原理 活性污泥好氧生物处理是指在有氧参与的条件下,微生物降解污水中的有机物。整个过程包括微生物的生长、有机底物降解和氧的消耗,整个过程变化规律如何正是活性污泥生化反应动力学研究的内容,活性污泥生化反应动力学内容包括: (1)底物的降解速度与有机底物浓度、活性污泥微生物量之间的关系; (2)活性污泥微生物的增殖速度与有机底物浓度、活性污泥微生物量之间的关系; (3)有机底物降解与氧需。 1、底物降解动力学方程 Monod 方程: S Ks S V dt dS +=- max (1) Vmax-------有机底物最大比降解速度, Ks-----------饱和常数, 在稳定条件下,对完全混合活性污泥系统中的有机底物进行物料平衡: 0)(=++-+dt dS V Se Q R Q Se Q R Q So (2) 整理后,得

dt dS V Se So Q - =-)( (3) 于是有 S Ks S V Xt Se So XV Se So Q +=-=-max )( (4) 而M F Xt Se So XV Se So Q /)(=-=-,F/M 为污泥负荷。 完全混合曝气池中S=Se ,所以(4)式整理后可得 max 11max V Se V Ks Se So t X +=- (5) (5)式为一条直线方程,以Se 1 为横坐标,Xt Se So -(污泥负荷)为纵坐标,直 线的斜率为 max V Ks ,截距为max 1 V ,可分别求得max V 、Ks 。 又因为在低底物浓度条件下,Se<

活性污泥法的基本工艺流程

第一节活性污泥法的基本原理 一、活性污泥法的基本工艺流程 1、活性污泥法的基本组成 ①曝气池:反应主体 ②二沉池: 1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内的污泥浓度。 ③回流系统: 1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。 ④剩余污泥排放系统: 1)是去除有机物的途径之一;2)维持系统的稳定运行。 ⑤供氧系统:提供足够的溶解氧 2、活性污泥系统有效运行的基本条件是: ①废水中含有足够的可容性易降解有机物; ②混合液含有足够的溶解氧; ③活性污泥在池内呈悬浮状态; ④活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥; ⑤无有毒有害的物质流入。 二、活性污泥的性质与性能指标 1、活性污泥的基本性质 ①物理性能:“菌胶团”、“生物絮凝体”: 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1,(1.002~1.006); 粒径:0.02~0.2 mm; 比表面积:20~100cm2/ml。 ②生化性能: 1) 活性污泥的含水率:99.2~99.8%; 固体物质的组成:活细胞(M a)、微生物内源代谢的残留物(M e)、吸附的原废水中难于生物降解的有机物(M i)、无机物质(M ii)。 2、活性污泥中的微生物:

① 细菌: 是活性污泥净化功能最活跃的成分, 主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等; 基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌; 2) 在好氧条件下,具有很强的分解有机物的功能; 3) 具有较高的增殖速率,世代时间仅为20~30分钟; 4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。 ② 其它微生物------原生动物、后生动物----在活性污泥中大约为103个/ml 3、活性污泥的性能指标: ① 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ): MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3 ② 混合液挥发性悬浮固体浓度(MLVSS )(Mixed Volatile Liquor Suspended Solids ): MLVSS = M a + M e + M i ; 在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75~0.85 ③ 污泥沉降比(SV )(Sludge Volume ): 是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常数值为20~30%。 ④ 污泥体积指数(SVI )(Sludge Volume Index ): 曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。 ) /()/((%))/()/(l g MLSS l ml SV l g MLSS l ml SV SVI 10?== 能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过高,说明其沉降性能不好,将要或已经发生膨胀现象; 城市污水的SVI 一般为50~150 ml/g ; 三、活性污泥的增殖规律及其应用 活性污泥中微生物的增殖是活性污泥在曝气池内发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。 1、活性污泥的增殖曲线

活性污泥法工艺的原理

活性污泥法工艺的原理 一、活性污泥的形态、组成与性能指标 1.活性污泥法工艺 活性污泥法工艺是一种应用最广泛的废水好氧生化处理技术,其主要由曝气池、二次沉淀池、曝气系统以及污泥回流系统等组成(图2-5-1)。废水经初次沉淀池后与二次沉淀池底部回流的活性污泥同时进入曝气池,通过曝气,活性污泥呈悬浮状态,并与废水充分接触。废水中的悬浮固体和胶状物质被活性污泥吸附,而废水中的可溶性有机物被活性污泥中的微生物用作自身繁殖的营养,代谢转化为生物细胞,并氧化成为最终产物(主要是CO2)。非溶解性有机物需先转化成溶解性有机物,而后才被代谢和利用。废水由此得到净化。净化后废水与活性污泥在二次沉淀池内进行分离,上层出水排放;分离浓缩后的污泥一部分返回曝气池,以保证曝气池内保持一定浓度的活性污泥,其余为剩余污泥,由系统排出。 2.活性污泥的形态和组成 活性污泥通常为黄褐色(有时呈铁红色)絮绒状颗粒,也称为“菌胶团”或“生物絮凝体”,其直径一般为0.02~2mm;含水率一般为99.2%~99.8%,密度因含水率不同而异,一般为1.002~1.006g/m3;活性污泥具有较大的比表面积,一般为20~100cm2/mL。 活性污泥由有机物及无机物两部分组成,组成比例因污泥性质的不同而异。例如,城市污水处理系统中的活性污泥,其有机成分占75%~85%,无机成分仅占15%~25%。活性污泥中有机成分主要由生长在活性污泥中的微生物组成,这些微生物群体构成了一个相对稳定的生态系统和食物链(如图2-5-2所示),其中以各种细菌及原生动物为主,也存在着真菌、放线菌、酵母菌以及轮虫等后生动物。在活性污泥上还吸附着被处理的废水中所含有的有机和无机固体物质,在有机固体物质中包括某些惰性的难以被细菌降解的物质。

序批式活性污泥法(SBR)实验讲义(2015-04)

序批式活性污泥法实验讲义 序批式活性污泥处理系统也称间歇式活性污泥处理系统,即SBR工艺(Sequencing Batch Reactor)。 一.实验目的 1.应熟练掌握SBR活性污泥法工艺各工序操作要点; 2.熟练掌握活性污泥浓度、COD和SV%的测定方法; 3.了解SBR活性污泥工艺曝气池的内部构造和主要组成; 4.了解有机负荷对有机物去除率及活性污泥增长率的影响。 二.实验原理 SBR工艺作为活性污泥法的一种,其去除有机物的机理与传统的活性污泥法相同。但SBR技术采用时间分割的操作方式替代空间分割的操作方式,非稳定生化反应替代稳态生化反应,静置理想沉淀替代传统的动态沉淀,它的主要特征是在运行上的有序和序批操作。SBR技术的核心是SBR反应池,该池集水质均化、初沉、生物降解、二沉等功能于一身,无污泥回流系统。正是SBR工艺这些特殊性使其具有以下优点: 1、理想的推流过程(流态上属于完全混合式,有机物降解方面是随时间上的推流)使生化反应推动力增大,效率提高,池内厌氧、好氧处于交替状态,净化效果好。 2、运行效果稳定,污水在理想的静止状态下沉淀,需要时间短、效率高,出水水质好。 3、耐冲击负荷,池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量和有机污物的冲击。 4、工艺过程中的各工序可根据水质、水量进行调整,运行灵活。 5、处理设备少,构造简单,便于操作和维护管理。 6、反应池内存在DO、BOD5浓度梯度,有效控制活性污泥膨胀。 7、SBR法系统本身也适合于组合式构造方法,利于废水处理厂的扩建和改造。 8、脱氮除磷,适当控制运行方式,实现好氧、缺氧、厌氧状态交替,具有良好的脱氮除磷效果。 9、工艺流程简单、造价低。主体设备只有一个序批式序批反应器,无二沉池、污泥回流系统,调节池、初沉池也可省略,布置紧凑、占地面积省。 SBR的工艺流程如图1所示: 进水反应沉淀闲置 图1 SBR工艺曝气池运行工序示意图

生活污水处理工艺调试及流程

EH 工艺污水处理调试方法及微生物培养流程 (一)、活性污泥的培养流程 1. 向瀑汽池(好氧池)注入清水同时引入(工业废水)或生活污水,至一定水位,并注意水温。 2. 按风机操作规程启动风机,鼓风或开动液下瀑汽机。 3. 向好氧池投加经过滤的浓粪便水(当粪便水不充足时,可用化粪池和排水沟内的污泥补充。),使得污泥浓度不小于1000mg/L ,BOD 达到一定数值。 4. 有条件时可投加活性污泥的菌种,加快培养速度。 5. 按照活性污泥培养运行工艺对反应池进行曝气、搅拌、沉降、排水。 6. 通过镜检及测定沉降比、污泥浓度,注意观察活性污泥的增长情况。并注意观察在线PH 值、DO 的数值变化,及时对工艺进行调整。 7. 测定初期水质及排水阶段上清液的水质,根据进出水NH3-N 、BOD、COD、NO3-、NO2- 等浓度数值的变化,判断出活性污泥的活性及优势菌种的情况,并由此调节进水量、置换量、粪水、NH4Cl 、H3PO4、CH3OH 的投加量及周期内时间分布情况。 8. 注意观察活性污泥增长情况,当通过镜检观察到菌胶团大量密实出现,并能观察到原生动物(如钟虫),且数量由少迅速增多时,说明污泥培养成熟,可以进生产废水,进行驯化。 二、活性污泥的驯化流程; 1. 通过分析确认进水各项指标在允许范围内,准备进水。 2. 开始进入少量生活污水或废水,进入量不超过驯化前处理能力的20%。同时补充新鲜水、粪便水及NH4Cl 。 3. 达到较好处理后,可增加生活污水或生产废水投加量,每次增加不超过10?20%,同时 减少NH4C1 投加量。且待微生物适应巩固后再继续增污水或生产废水,直至完全停加 NH4Cl 。同步监测出水CODcr 浓度等指标,并观察混合液污泥性状。在污泥驯化期还要适时排放代谢产物, 即泥水分离后上清液。 4. 继续增加生产废水投加量,直至满负荷。满负荷运行阶段, 由于池中已培养和保持了高浓度、高活性的足够数量的活性污泥,池中曝气后混合液的MLSS 达到5000mg/L, 此过程同步监测溶解氧,控制曝气机的运行,并进行污泥的生物相镜检。 三、调试期间的监测和控制 在调试及运行过程有许多影响处理效果的因素,主要有进水CODcr 浓度、pH 值、温度、溶解氧等,所以对整个系统通过感官判断和化学分析方法进行监测是必不可少的。根据监测分析的结果对影响因素进行调整,使处理达到最佳效果。 1 、温度 温度是影响整个工艺处理的主要环境因素,各种微生物都在特定范围的温度内生长。生化处 理的温度范围在10?40C ,最佳温度在20?30C。任何微生物只能在一定温度范围内生存,在适宜的温度范围内可大量生长繁殖。在污泥培养时, 要将它们置于最适宜温度条件下, 使微生物以最快的生长速率生长, 过低或过高的温度会使代谢速率缓慢、生长速率也缓慢, 过高的温度对微生物有致死作用。 2、p H 值 微生物的生命活动、物质代谢与pH值密切相关。大多数细菌、原生动物的最适pH值为6.5?

相关文档