文档库 最新最全的文档下载
当前位置:文档库 › 2014涂装废水生化处理工艺改进研究

2014涂装废水生化处理工艺改进研究

2014涂装废水生化处理工艺改进研究
2014涂装废水生化处理工艺改进研究

涂装废水生化处理工艺改进研究

李明喜

长春凯密特尔化学品有限公司,吉林长春,130103

摘要:针对某整车厂涂装车间废水生化处理COD去除率低的问题,重新设计生化处理工艺,改造管路,增加厌氧池和好氧接触氧化池,增加污水在生化系统的停留时间,提高COD的去除率。运行结果表明,出水达到了国家污染物三级排放标准,且具有投资少、处理效果稳定、操作简便等优点。

关键词:涂装废水;COD去除率;水解酸化;接触氧化;生物滤池。

在汽车工业中,涂装车间涉及到前处理脱脂、磷化钝化处理、电泳涂装、喷漆等生产工艺,这些生产过程中会产生大量的工业废水,其中含有各类污染物,包括酸、碱、磷酸盐、矿物油、表面活性剂、涂料、稀料和各种重金属等,COD较高且难以生化,其污染程度和毒性危害较大。

长春某整车厂涂装车间每天都会产生含上述污染物废水,车间污水站原有工艺为混凝沉淀+水解酸化+好氧生物滤池组合处理工艺,该工艺实践运行证明,水解酸化后污水直接曝气生物滤池,生化系统的COD去除率不高且不稳定,经常维持在20-30%左右,且生物滤池易堵塞需经常反冲洗,影响运行效率。针对这一情况,对该污水站布水管路、水解酸化池、生物滤池等进行改造,并增加好氧接触氧化池,提升生化系统COD去除率、稳定出水水质。1·设计水质水量及排放标准

1.1污染源分析

整车涂装生产过程中排放的废水主要来源于脱脂、表调、磷化、电泳、喷涂等工序。根据表1中列出的汽车涂装生产使用原材料、主要成分及含量,结合整车涂装工艺可以看出,涂装前处理主要污染物有磷酸盐、表面活性剂、油类、重金属离子、酸液、碱液等,电泳工序和喷涂工序的污染物主要有水溶性树脂、溶剂型树脂、颜料、填料、溶剂等。另外,汽车涂装使用的原料种类较多,根据车身材料不同,会有不同的配方[1]。

(1)脱脂废水:整车厂前处理采用热碱液洗去车身油脂工艺,白车身在涂装前要将其表面油污、铁屑、焊渣焊球、灰尘等杂质清洗干净。常用的清洗液是含有高效表面活性剂的复合碱性脱脂剂。该工序通过溢流方式连续排放含污染物浓度相对低些的清洗废水,排放量8~10吨/小时;脱脂液使用一定时间后,必须定期(1~3月)排放含高浓度污染物的整槽废液或槽底残液及清槽废水。主要污染物为石油类、LAS、SS、磷酸盐、COD、pH等,COD 浓度较高。

(2)磷化钝化废水:来源于前处理过程磷化钝化工艺。该工序所用磷化液为酸式磷酸盐(主要为锌盐、锰盐、铁盐)、氧化剂(常用硝酸盐、亚硝酸盐、氯酸盐)和多种添加剂(锌、锰、镍、氟添加剂、结渣剂等),大多数整车厂已经采用无铬钝化工艺替代了原有的有铬钝化工艺,钝化废水含有氟化锆。该工序会连续排放污染物浓度相对较低的磷化漂洗废水,排放量10吨/小时左右,定期倒槽残液及清槽废水。该工序废水主要成分为SS、酸性物质、重金属、磷酸盐等污染物,其浓度相对较高。

(3)电泳废水:来源于车身电泳后清洗废水、超滤废水等。电泳工序所用涂料主要是阴离子水溶性树脂、色浆、对应中和剂(有机酸、有机胺和有机碱等)。电泳废水主要产生于车身电泳后,在清洗槽中冲洗掉的车身附着浮漆及倒槽更换槽液的过程[5]。其废水中主要是高浓度的超滤液、阳极液和电泳倒槽槽底残液以及连续低浓度电泳清洗液,排放量6~8吨/小时左右。废水中含有电泳漆(如酚醛树脂、水溶性环氧树脂、乙醇胺、乙氰酸脂等)、颜料(如氧化铁红、碳黑等)、填料(如滑石粉、钛白粉等)、有机溶剂(如丁醇、三乙醇胺等)、醋酸等。

(4)喷漆循环水:源于喷房漆雾捕捉的循环水处理系统。该工序利用系统槽循环水在文丘里对空气中夹带的漆雾进行吸附和洗涤,达到除去喷房空气中漂浮的漆雾,从而净化喷

房空气,并保证车身涂装外观质量。该循环水也需要定期更换,每天有少量溢流水排放,排放量2吨/小时左右。排放的废水中含有大量的细漆渣、低分子有机溶剂等,含有的有机溶剂通常有芳香族类(如二甲苯)、酯类(如乙酸丁酯、乙酸乙酯)、酮类(如环己酮)、醇类(如丁醇)。

喷涂的油漆通常含有的有机树脂类型:丙烯酸氨基树脂、丙烯酸树脂、环氧树脂、醇酸树脂。

(5)涂装车间其他废水:热轮清洗废水、反渗透清洗酸碱清洗剂废水、去离子水生产用树脂再生酸碱废水、打磨工序湿打磨废水、空调加湿废水、化验室废水等。

1.2涂装废水水质水量

(1)涂装废水水量情况

表1.2为年产33万辆该整车厂涂装车间废水排放量统计。

表1.2 涂装车间废水排放水量统计表

序号区域每小时水量(吨)每天水量(吨)每周水量(吨)

1 前处理一区0 0 45

2 前处理二区0 0 13

3 前处理三区0 0 13

4 前处理四区8 112 1440

5 前处理五区0 0 90

6 前处理六区0 0 16

7 前处理七区8 112 1440

8 前处理八区0 0 40

9 前处理九区0 0 60

10 前处理十区0 0 100

11 废漆及其它0 30 320

12 电泳11区每年倒2次槽 0 2

13 电泳12区每年倒4次槽0 30

14 电泳13区每年倒6次槽0 25

15 电泳14区 6 144 1880

16 电泳16区0 0 202

17 电泳阳极液0 0 150

18 电泳卷式超滤每月倒1次槽0 30

19 电泳板式超滤0 0 35

20 其他废水0 20 140

根据上述表格统计,该涂装车间产各废工段有每天排放、每周排放和不定期排放多种情况,排放水不规律。废水每年排废水总量22万吨左右。

(2)涂装废水水质情况

表1.3为年产33万辆该整车厂涂装车间废水排放水质情况统计。

表1.3 涂装车间废水排放水质统计表

1.3汽车涂装废水的特征

根据汽车涂装生产工艺的要求,各工序的停留时间不同,各槽液的使用周期也不同,因此,汽车涂装废水的排放除部分清洗废水连续排放外,其他废水多为间歇排放。

(1)废水种类繁多、成分复杂

汽车涂装线排放的废水种类很多,每一种废水水质(成分、浓度)会因使用的材料而不同,仅脱脂液就有多种配方,磷化液成分也是相当复杂,分为铁系、锌系、锰系磷化液,涂料(每种涂料都是由树脂、溶剂、颜料、填料、添加剂等组成)种类更多。

(2)可生化性差

废水所含多种有机污染物BOD

5/COD

cr

比值<0.3,属不宜生化的废水,是较难处理的废水。

(3)排放水量、水质变化大

由于各种废水成分、浓度各异,造成汽车涂装车间排水水量、水质变化很大,一般无规律可循[3]。

(4)排放无规律

仅有一部分水洗水连续溢流排放,涂装线大量的废水或废液多为间歇式集中排放。

1.4排放标准

车间的排放内控值标准优于《国家污水排放标准》(GB8978-1996)。

表1.4 排放水的主要指标排放要求

2·工艺流程

2.1 原工艺流程

该涂装车间污水站原涂装废水生化处理工艺流程见图2.1。

图2.1 某整车厂涂装车间磷化废水生化处理原工艺流程图

从图2.1可以看出,原废水处理工艺采用化学混凝沉淀法对车间废水进行处理,经两级沉淀进入pH 调整箱调节后进入水解酸化槽厌氧消解,出水通过提升泵进入好氧生化滤池。

污染物名称 排放指标要求 (mg/L)

目前该工艺及设备存在以下问题:

(1)整体分析

a)污水站现水解酸化池+曝气生物滤池容积为350m3左右,生化处理系统停留时间只

有5h左右,停留时间太短无法满足对水质处理的要求;

b)涂装前处理废水为难降解废水,因此在进入生化系统时需要调节废水的营养比,确

少营养剂药箱;

(2)水解酸化池

a)池体腐蚀严重;

b)池内部积化学污泥较多;

c)水解酸化池停留时间太短,处理效果不明显;

(3)曝气生物滤池

a)滤板腐蚀,造成跑料现象;

b)滤头使用周期长,摩擦损坏较多;

c)内部填料使用周期较长,需要更换;

(4)罗茨风机

a)罗茨风机损坏,无法正常启动;

b)管道、阀门腐蚀严重需要更换;

2.2改造思路

针对原废水生化处理工艺存在的不足,采取如下的改造措施:

(1)新增厌氧水解池,增加污水厌氧生化停留时间。

厌氧水解的原理是利用异养型兼性细菌和厌氧菌将废水中难降解的大分子有机物转化为易降解的小分子有机物,将复杂的有机物转变成简单的有机物,将不溶性的有机物转化为溶解性的有机物,形成有机酸、醇类、醛类等,从而提高废水的可生化性。实践证明,酸化水解工艺能够有效提高废水的可生化性,为后续的处理工艺创造有利条件。

(2)新增好氧接触氧化池

好氧生化目前大多采用活性污泥法和生物接触氧化法;氧化沟工艺也有一定的应用,但由于氧化沟占地面积较大,应用上有一定的限制。活性污泥法曝气池结构简单,不需填料及支架,但连续进水的曝气池后必须串联二沉池以提供回流污泥;若管理不善易造成污泥流失或污泥膨胀,影响处理效果。综合比较,好氧处理部分选用生物接触氧化法。

接触氧化法的优点如下:

a )填料的比表面积大,活性污泥易附着在填料上形成生物膜,细菌等微生物不易流失,微生物量大,有利于提高生化处理效果;

b )接触氧化法易于启动,运行管理较方便;

c )污泥产率低,且不易发生污泥膨胀;

d )对于低浓度废水处理,由于接触氧化池出水中流失的污泥少,可省去二沉池直接串联混凝沉淀池。

(3)改造维修曝气生物滤池

曝气生物滤池与普通活性污泥法相比,具有有机负荷高、占地面积小(是普通活性污泥法的1/3)、投资少(节约30%)、不会产生污泥膨胀、氧传输效率高、出水水质好等优点,但它对进水SS 要求较严(一般要求SS≤100mg/L,最好SS≤60mg/L),因此对进水需要进行预处理。另外,曝气生物滤池作为集生物氧化和截留悬浮固体于一体的新工艺,节省了后续沉淀池(二沉池),具有容积负荷、水力负荷大,水力停留时间短,所需基建投资少,出水水质好,运行能耗低、费用少的特点。曝气生物滤池作为集生物氧化和截留悬浮固体于一体的新工艺,可以将出水COD 降至较低值。 2.3改造后工艺流程

改造后的生化处理工艺流程如图2.2所示。

图2.2 改造后车间废水生化处理工艺流程图

(1)水解酸化池改造

调配池内废水通过管道自流至水解酸化池1、2内,水从池底板进入上部流出,水在上升过程中与水解酸化池内悬挂的填料接触,上部出水通过集水堰流入水解酸化池内的沉淀池内,将随水带出的污泥沉淀下来,上清液自流至中间水池1

内。在调配池内安装营养剂加药

管,根据需要向池内投机营养剂。

通过水泵将中间水池1内废水按70m3/h的流量抽至新建的水解酸化池3、4内,水从池底板进入上部流出,水在上升过程中与水解酸化池内悬挂的填料接触,上部出水通过集水堰流入好氧池内进行后续处理。

厌氧池主要设计参数:厌氧池水力停留时间,6h;厌氧池上升流速1m/h。

(2)新增好氧接触氧化工艺设备

水解酸化池上清液流至好氧池内。本次好氧池采用二级接触氧化工艺,将好氧池分为两组,分别为1#、2#好氧池。

水从一级好氧池上部进入,从底部进入二级好氧池,然后通过二级好氧池设置的出水堰收集后自流至沉淀池5内。

好氧池上清液自流至沉淀池5内。在沉淀池3内将随水带出的好氧污泥沉入池底,上清液流入中间水池2内。沉淀池5设回流泵,回流泵与水解酸化池、好氧池进水管道联通,通过回流泵定时回流污泥,将沉淀池5内具有活性的带出的污泥回流至水解酸化池和好氧池内增加污泥浓度。剩余污泥排入污泥浓缩池内,排泥采用静压气动蝶阀自动排泥。好氧池内安装有DO在线测定仪,用于溶解氧的监控。

好氧池、沉淀池5主要设计参数如下:

好氧池水力停留时间,4.5h;沉淀池水力停留设计,1.5h;沉淀池表面负荷,2m3/m2.h。

(3)曝气生物滤池的改造

更换曝气生物滤池滤料、曝气头、滤板等老化部件。生化出水自流至中间水池2内,通过泵将水按70m3/h提升至曝气生物滤内。在池内经过微生物和填料的共同左右,可以有效的降低废水中固定物质含量,使出水COD达到350mg/L以下。曝气生物滤池运行一段时间填料间空隙会被所截留物质堵塞,因此需要定期进行反冲洗,通过排放水池的反冲洗水泵定时对曝气生物滤池进行反冲洗。反冲洗出水通过排空管道回流至地坑内,在通过地坑泵提升至脱脂废水储槽进行再次处理。

曝气生物滤池出水自流至排放水池内,经过池内设置的仪表监测达标后外排,超标回流。

曝气生物滤池主要设计参数:停留时间,1.5h;过滤流速,2m/h;

3·主要构筑物及设备参数

4.生物菌群的培养

4.1水解池、生物滤池挂膜启动

水解池、生物滤池的启动与传统的生物膜法工艺基本相同。采用三种启动方式:

(1)先间歇培养,后连续运行,并逐渐提升进水流量;

(2)连续培养,在进水流量不变或逐渐提高的条件下进行连续培养;

(3)接种培养,用活性污泥进行接种,在稳定条件下运行。

启动—般采用同类接种污泥,在温度适宜时,启动时间约2~6周。

接种方法:向水解酸化池中投入缺氧、厌氧以及好氧代谢的多种微生物菌种。如果不投入接种污泥,靠生物池本身积累的微生物数量来启动,将需要延长3~5倍的培养时间。接种物为城市污水处理厂缺氧、厌氧或好氧池内的污泥。厌氧水解菌(纤维分解菌)在接种污泥中的含量比较高时,有利于有机物的水解(酸化),可以大大缩短启动时间,有效提高有机物的水解酸化率。按容积比来计算,投加的接种污泥量为10~30%。

投加足量接种污泥后,控制分批进入废水的量,启动运行初期水解池、生物滤池采用间歇运行的方法。每批废水进入后,水解在静止状态下进行缺氧代谢(或通过回流泵适当进行循环搅拌),使接种污泥或增殖的污泥能够一定程度聚集,或附着于池内填料表面,而不随水流失。经过几天缺氧反应后,大部分有机物被酸化分解后,再进第二批废水。间歇分批进水运行时,逐渐提高进水的浓度或进人的废水量,逐步缩短在水解池的停留时间,直至最后完全适应废水水质并连续运行。

启动初期,进水量严格控制在设计能力的30~40%,并且需要按比例投加营养物质,投加量:好氧生物滤池中BOD∶N∶P=80∶5∶1,厌氧水解池中BOD∶N∶P=350∶5∶1。由于水解池厌氧菌的培养需要时间较长,因此沉淀池的污泥回流基本上都是回流至水解酸化池中,这样节省很多驯化时间。水解池溶解氧合理范围要求在0.2~0.5mg/L,生物滤池溶解氧合理范围要求在2~3mg/L。经过两个星期左右的培养驯化,水解池、生物滤池中微生物开始大量生长繁殖,进水量逐渐增加到设计流量的50~60%,再经过2个星期左右时间,逐步增加进水量到设计流量的60~70%。

4.2水解池、生物滤池调试运行

在这一过渡阶段中微生物菌群经过培养驯化,微生物菌群处于良好的生存环境中,微生物菌群持续良性生长,稳定运行保证处理出水能达到设计目标。试运行阶段的长短根据原水水质和生物菌群生长状况来确定,并根据实际运行情况、出水情况选择比较适合的运行参数,保证整个生化处理系统运行正常。

(1)进水量

进水量持续保持在设计能力的60~70%。

(2)污泥浓度

水解酸化池还没有达到预期效果、生物膜没有完全生长出来时,需要提高生化池中的污泥浓度,来减少冲击负荷、提高微生物的降解能力,污泥浓度可控制在5000mg/L左右。

(3)营养物质

试运行阶段仍然必须保证微生物菌群所需要的营养物质,由于微生物数量较多,应根据水量合理调整营养物质的投加量,投加比例可按水解酸化池BOD∶N∶P=350∶5∶1,好氧高效生物滤池BOD∶N∶P=80∶5∶1。经过一段时间的运行,出水水质能显著提高,这时再重调整营养物质的投加量。

(4)溶解氧

水解酸化池溶解氧保持在0.2~0.5mg/L,生物滤池溶解氧保持在2~3mg/L比较合适。

4.3水解池、生物滤池满负荷运行

满负荷运行阶段必须保证进水水质稳定,保证整个物化混凝沉淀、厌氧好氧生化处理系统正常运转,进水量可以达到设计能力。在保证出水水质的同时可以根据情况逐渐减少污泥浓度、营养物质、溶解氧等值,进而降低运行成本。满负荷稳定运行1个多月后,出水水质已经完全达到预期排放指标。

运行过程中产生的问题及对策:

(1)泡沫问题

由于涂装车间脱脂废水、电泳废水含有一定量的表面活性剂,在曝气过程中会出现较多泡沫,在运行中加大水解酸化的污泥回流量,适当增加了水解酸化池中的营养物质投加量,同时少量喷洒消泡剂和自来水冲淋,消除泡沫。

(2)处理出水透光性差、混浊

当进水水质变化较大,有机负荷增高,导致水解酸化池的降解效率明显下降,从而影响到后面的高效生物滤池,使得一部分有机物随出水排出,可以通过适当减少进水量、提高污泥浓度或者增加营养物质来解决。

(3)沉淀池污泥上浮

沉淀池污泥上浮的原因有以下几种:泡沫上浮带起一部分污泥、污泥老化、污泥龄过长、部分生物膜脱落等,可以通过及时排泥、消除泡沫等措施来解决,注意每隔1~2天对进行排放过量污泥。

(4)水温

微生物菌群生长比较适合的温度在15℃~35℃。在夏季炎热的情况下,如果水温的升高会影响微生物的活性,使得出水水质变差;在冬季寒冷的情况下,水温的降低致使微生物生长缓慢,影响出水水质。

(5)溶解氧的变化

溶解氧含量一般应保持在2~3mg/L比较适宜,操作的失误、供氧设备(鼓风机)的异常,会导致水中溶解氧发生改变,另外天气的变化也使溶解氧发生细微变化,所以平时应该多注意生化系统中的溶解氧含量,尽量使其保持在正常范围内,这样既可以保证微生物的正常生长,污染物得以的正常消解,又可以降低电能消耗。

(6)生物滤池的反冲洗

滤池在运行一段时间后,根据滤层的实际情况需要定期反冲洗。

陶粒填料中截留的悬浮物质和微生物量不断增加,填料空隙率减少,发生一定程度的堵塞,水头损失增加,造成动力消耗增加;随着堵塞程度的不断加深,进一步出现布气不均匀的现象,使生物膜表面以及填料层局部出现溶解氧供应不足;另外,集中于滤池内某处集中过大的曝气量对填料层剧烈扰动会造成穿透,出水水质会突然变差。为避免以上情况的发生,曝气生物滤池必须通过定期的反冲洗操作来恢复处理能力。生物滤池一般采用的是气、水联合反冲同时进行,把附着在滤料上的悬浮物质和老化生物膜脱落,随反冲洗水排出。

反冲洗的周期、反冲强度、反冲时间长短需要在运行中不断摸索,去除率下降说明滤池已经需要反冲洗了,一般周期为2~3天。

5.运行效果

安装结束后,经过5个月的调试运行,该涂装废水站各方面运行正常,生化系统处理效果良好,处理能力和出水指标可以达到设计目标,各指标均符合《国家污水排放标准》(GB8978-1996)三级排放标准要求。部分检测数据见表5.1:

表5.1 物化污染物平均去除率

6·结论

在利用原废水处理工艺设备的基础上,针对原有生化系统污水停留时间段、COD去除率低、出水指标不稳定的问题,对该污水站布水管路、水解酸化池、生物滤池等进行改造,并增加厌氧池与好氧接触氧化池,大大提高了生化系统COD去除率,去除率从原来的40%提升至65%,改造后的生化系统运行良好,出水水质稳定,各项指标均达到《国家污水排放标准》(GB8978-1996)三级排放标准要求,实现了稳定达标排放。

参考文献:

[1] 张宁远.汽车涂装废水的处理[J].污染防治技术,2003,16(4):92-94.

[2] 蔡亮,高莹.典型汽车涂装废水处理工艺[J].净水技术,2004,(6):41-44.

[3] 王锡春,姜英涛.涂装技术.第一册(总论)[M].北京:化学工业出版社,1986.

[4] 李明喜,整车厂涂装车间废水处理工艺及应用研究.中国优秀博硕士学位论文全文数据库, 2013.05.01.

污水处理生化调试技术方案

污水处理生化调试技术方案 一污泥的培养 方法有同步与异步培养与接种,同步是培奍与驯化同时进行或交替进行,异步是先培后驯化,接种是利用类似污水的剩余污泥接种。 活性污泥可用糞便水经曝气培养而得,因为粪便污水中,细菌种类多,本身含有的营养丰富,细菌易于繁殖。?通常为了缩短培菌周期,我们会选择接种培养。?先说粪便水培菌?具体步骤:?将经过过滤的粪便水投入曝气池,再用生活污水或河水稀释,至BOD约为300-400,进行连续曝气。这样过二,三天后,为补充微生物的营养物质和排除由微生物产生的代谢产物,应进行换水,换水根据操作情况分为间断和连续操作。?1.间断操作:?当第一次加料曝气并出现模糊的活性污泥绒絮后,就可停止曝气,使混合液静止沉淀,经1-1.5小时后排放上清液,把排放的上清液约占总体积的60-70%。?然后再加生活污水和粪便水,这时的粪便水可视曝气池内的污泥量来调整,这样一直下去,直至SV达到30%。一般需2周,水温低时时间要延长。 在每次换水时,从停止曝气,沉淀到重新曝气的总时间要控制在2小时之内为宜?成熟的污泥应具有良好的混凝,沉降性能,污泥内有大量的菌胶菌和终生?纤毛类原生动物,如钟虫,等枝虫,盖纤虫等,并可使污水的生化需氧量去除率达90%左右 2.连续操作:?在第一次加料出现绒絮后,就不断地往曝气池投加生活污水或河水,添加粪便水的控制原则与间断投配相同。往曝气池的投加的水量,应保证池内的水量能每天更换一次,随着培奍的进展,逐渐加大水量使在培养后期达到每天更换二次。在曝气池出水进入二次沉淀池后不久(0.5-1)就开始回流污泥,污泥的回流量为曝气池进水量的50%?驯化的方法:可在进水中逐渐增加被处理的污水的比例,或提高浓度,使生物逐渐适应新的环境开始时,被处理污水的加入量可用曝气池设计负荷的20-30%,达到较好的处理效率后,再继续增加,每次以增加设计负荷的10-20%为宜,每次增加负荷后,须等生物适应巩固后再继续增加,直至满负荷为止。?如果被处理工业污水中,缺氮和磷以及其它营养物时,可根据BOD:N:P为100:5:1的比例来调整。?个人认为在此阶段,必要的超赿管路要具备,工艺没设计的可用消防管代替。 而且各种分析要跟上去,和种参数需及时测定,特别是镜检,因为有经验的人可能通过镜检和数据就可以很好的完成任务,另外良好的心理素质也比较重要,有些现象要果断处理,有些则需等侍再认定上面是异步法,同步就是在污泥培养过程中,不断加入工业污水,使污泥在增长过程中逐渐适应工业污水的环境,这样虽可缩短培养和驯化的时间,但在这一过程中发生的问题,又缺实践经验则难以判断问题出在哪一个环节上。 若有条件,就是接种培养,这样可缩短时间,若是相似的污水的污泥,更可提高驯化效果。 二、试运行

污水处理各种工艺大全及优缺点对比

污水处理各种工艺大全及优缺点对比 一、A/O工艺 1.基本原理 A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。 A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH 3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(N H4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O 在生态中的循环,实现污水无害化处理。 2.A/O内循环生物脱氮工艺特点 根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点:

(1)效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。 (2)流程简单,投资省,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。 (3)缺氧反硝化过程对污染物具有较高的降解效率。如COD、BO D5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。 (4)容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的容积负荷。 (5)缺氧/好氧工艺的耐负荷冲击能力强。当进水水质波动较大或污染物浓度较高时,本工艺均能维持正常运行,故操作管理也很简单。通过以上流程的比较,不难看出,生物脱氮工艺本身就是脱氮的同时,也降解酚、氰、COD等有机物。结合水量、水质特点,我们推荐采用缺氧/好氧(A/O)的生物脱氮(内循环) 工艺流程,使污水处理装置不但能达到脱氮的要求,而且其它指标也达到排放标准。

汽车涂装废水处理技术

汽车涂装废水处理技术 汽车涂装是保护和装饰汽车的主要措施,是非常重要的汽车制造工艺之一。 1 汽车涂装工艺简介[1] 涂装工艺一般由漆前表面处理、涂布和干燥等三个基本工序组成。 漆前表面处理是涂装工艺的基础,它包括表面清理(除锈、脱脂等)和磷化处理两部分。 脱脂一般用热碱液清洗和有机溶剂清洗,碱液由强碱、弱酸、聚合碱性盐(如磷酸盐、硅酸盐等)、表面活性剂(阳离子型或非离子型)等适当配合而成。 磷化处理是通过化学反应在金属表面形成一层非金属的、不导电的、多孔的磷酸盐薄膜,磷化膜可显著提高涂层的附着力。耐蚀性和耐水性。车身、车厢等磷化一般都采用薄膜锌盐快速磷化处理。磷化液的主要成分是磷酸二氢锌、氧化剂(如硝酸钠)、催化剂(如亚硝酸钠、氯酸钠)和一些添加剂(如三聚磷酸钠、氟化钠)。磷化处理后一般再进行2-3次水洗。 涂布系指将涂料在被涂物表面扩散开的操作,目前多用阴极电泳涂装法泳涂阳离子型水溶性漆。电泳 后用超滤液进行2-3次回收水洗,再用脱离子水淋洗。装饰性要求高的轿车和轻型载重汽车一般采用静电 涂装法涂中间层涂料;面漆一般用三聚氰氨基醇酸树脂磁漆,采用自动喷涂或静电喷涂。 2 汽车涂装废水特征 2.1 污染源分析[1] 在涂装工艺生产中产生的废水主要分前处理废水、电泳涂漆废水和喷漆废水。 前处理废水来自漆前表面处理的脱脂、磷化、表面调整等工序,含有乳化油、表面活性剂、磷酸盐、重金属离子(如Zn 2+)、填料(如钛白粉)、溶剂等。电泳涂漆废水产生于涂件上附着的浮漆和槽液的清洗过程,一般包括去离子水洗水和超滤液;其成分与槽液成分相同,含有水溶性树脂(如环氧树脂、酚醛树脂等)、颜料(如碳黑、氧化铁红、铅汞等)、填料(如钛白粉、滑石粉等)、助溶剂(如三乙醇胺、丁醇等)和少量重金属离子。 湿式喷漆室用水洗涤喷漆室作业区空气,空气中漆雾和有机溶剂被转移到水中形成了喷漆废水;废水中含有大量漆雾颗粒,其水质由所用漆料(以硝基漆、氨基漆、醇酸漆和环氧漆为主)和溶剂(如乙醇、丙酮、 脂类、苯类等)、助溶剂而定。 2.2 汽车涂装废水特征 2.2.1 废水种类多、成分复杂 汽车涂装线排放的废水(或废液)种类很多,每一种废水水质(成分、浓度)因使用的材料而异。仅脱脂液就有多种配方,涂料(任何一种涂料均由树脂、颜料、溶剂、添加剂等组成)种类更多。 2.2.2 排放无规律 除部分水洗水连续溢流排放外,涂装线废水或废液多为间歇集中排放。某汽车厂车身车间排水情况见 表1。 2.2.3 水量、水质变化大 由于各种废水成份、浓度各异,且排放无规律,造成汽车涂装线排水水量、水质变化很大且无规律可 循。 3 国内汽车涂装废水处理技术 中国城镇水网w w w .c h i n a c i t y w a t e r .o r g

一体化污水处理核心处理工艺比较选择

一体化污水处理核心处理工艺比较选择 污水处理工艺的选择是污水处理厂设计的主体和关键,污水处理工艺是否合理,直接关系到污水处理厂的出水水质、处理效果、运转的稳定性、运转成本和操作管理的水平。因此必须结合实际,在满足处理效果的前提下,选择成熟、可靠、经济、高效且操作管理方便、先进的污水处理工艺,以取得最佳的效益。 由设计水质和处理要求可以看出,污水处理厂主要污染为有机污染,参考我国《室外排水设计规范》(GB50014-2006)对污水处理厂的处理效率的规定,一级处理方法,对于SS处理效率为40~55%,对于BOD5处理效率为20~30%;二级处理方法,对于SS处理效率为60~90%,对于BOD5处理效率为65~95%。结合本工程设计,应采用二级处理方法。 普通活性污泥法具有运行稳定、管理方便的优点,前人在设计和运行方面积累了大量的工程经验,但普通活性污泥法也存在着在运行不当时或进水水质异常时易发生污泥膨胀导致出水恶化的问题,同时由于污泥泥龄较短和没有缺氧工况;对氮、磷的去除率不理想,随着社会经济发展,进入水体的污染负荷已严重超过水体自然净化能力,特别是氮、磷在自然水体中积累,造成水体的富营养化已成为人们普遍关注的问题。所以城市生活污水的脱氮除磷显得越来越重要。 现就目前国内外城市污水脱氮除磷二级生物处理采用较多的工艺作一分析比较。 生物除磷脱氮污水处理工艺比较 目前,用于城市污水处理具有一定脱氮除磷效果的污水处理工艺大致分为两大类:第一类为按空间进行分割的连续流活性污泥法;第二类为按时间进行分割的间歇性活性污泥法。另外还有一类就是以BAF工艺为代表的生物膜法。

按空间分割的连续流活性污泥法 按空间分割的连续流活性污泥法是指各种处理功能(如进水、曝气、沉淀、出水)在不同的空间(不同的池子)内完成。目前,较成熟的工艺有:传统A2/O 工艺、A2/O氧化沟工艺等。 传统A2O工艺及UCT、倒置A2/O工艺 传统A2O工艺于70年代由美国专家在厌氧—好氧除磷工艺(AO工艺)的基础上开发出来的。该工艺是在AO工艺中增加一个缺氧段,将好氧段流出的一部分混合液回流至缺氧段,以达到脱氮的目的。 传统A2O工艺可以完成有机污染物的去除、硝化反硝化脱氮、磷的过量摄取而被去除等功能。其流程简图如下: 进水出水 回流污泥剩余污泥 传统A2O工艺流程简图 传统A2O工艺的特点: 在去除有机污染物的同时可达到除磷脱氮目的; 工艺简单、水力停留时间较短; 在厌氧—缺氧—好氧条件下交替运行,丝状菌不会过度繁殖,从而不会引发污泥膨胀。 传统A2O工艺的缺点是回流污泥中过多的硝酸盐破坏厌氧环境,影响厌氧放磷效果,为此产生了UCT工艺。与传统A2O工艺比较,UCT工艺不同之处在于污泥先回流至缺氧段,再将缺氧段部分混合液回流至厌氧段,从而减少了回流污泥中硝酸盐对厌氧放磷的影响。但UCT工艺增加了一次回流,即多一次提

喷涂废水处理方案

喷涂废水处理工程 设 计 方 案 ****环境科技股份有限公司2015年11月25日

目录 第一章项目概况 (2) 1.1项目概况 (2) 1.2废水水量及水质 (2) 1.3排放标准 (3) 第二章设计原则与依据 (4) 2.1设计依据 (4) 2.2设计思路 (4) 2.3设计原则 (5) 2.4设计范围 (5) 第三章废水处理工艺确定 (6) 3.1处理工艺的选择 (6) 3.2 工艺流程 (7) 3.3 工艺流程说明 (8) 3.4 各工艺去除率预测 (9) 第四章主要工艺设计计算及说明 (10) 4.1 间歇调节池1 (10) 4.2 化学反应槽1—隔油器 (10) 4.3 间歇调节池2 (11) 4.4 化学反应槽2—平流沉淀池 (12) 4.5 综合调节池 (12) 4.6 化学反应槽3—气浮机 (13) 4.7过滤罐 (13) 4.8 清水池 (14) 4.9 设备间 (14) 第五章工程概算 (16) 第六章运行费用分析 (18) 6.1 电耗 (18) 6.2 药剂费 (19) 6.3 人工费 (19) 6.4 直接运行费用 (19) 第七章电气自控设计 (19) 第八章公用工程 (20)

喷涂废水处理工程 2015-11 第九章消防、安全及劳动定员 (20) 9.1 消防 (20) 9.2 安全 (20) 9.3劳动定员 (21) 第十章人员培训 (21) 第十一章工程执行周期 (22) 第十二章售后服务承诺 (22) 第十三章质量保证计划 (23)

技术方案设计说明 1.废水总设计连续处理水量为85m3/d, 2.设计标准:《污水排入城镇下水道水质标准》(CJ343-2010)A级排放标准,其中 -N:45mg/l CODcr:500mg/l, SS:400mg/l,NH 3 3.主导工艺: 分质物化预处理→综合调节→絮凝气浮→砂滤→炭滤→排入城镇下水道。 工艺特点: (1)脱脂废水先加酸乳化隔油预处理再排入综合调节池连续处理; (2)喷漆废水先絮凝沉淀预处理再排入综合调节池连续处理; (3)分质预处理,技术经济性价比高,系统运行费用低,稳定性好,处理效果佳。 4.系统设计:充分考虑现场布局的前提下,系统优先选用成熟工艺、操作简单方便,降低项目工程造价。 5.本工程污水总造价:77.42万元人民币(不包括土建)。 6.平均吨水运行费用:3.73元/吨污水。 7.污水站占地面积:84m2,地下式。

污水处理工艺简介及对比方案必选比用

污水处理工艺简介及对比方案必选比 用

A/O工艺、A2/O工艺、氧化沟、SBR工艺、CAST工艺 一、A/O工艺 1.基本原理 A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,因此A/O法是改进的活性污泥法。A/O 工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充分供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,经过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。2.A/O内循环生物脱氮工艺特点 根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点: (1)效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混

凝沉淀,可将COD值降至100mg/L以下,其它指标也达到排放标准,总氮去除率在70%以上。 (2) 流程简单,投资省,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。特别,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。 (3) 缺氧反硝化过程对污染物具有较高的降解效率。如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。 (4) 容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的容积负荷。 (5) 缺氧/好氧工艺的耐负荷冲击能力强。当进水水质波动较大或污染物浓度较高时,本工艺均能维持正常运行,故操作管理也很简单。经过以上流程的比较,不难看出,生物脱氮工艺本身就是脱氮的同时,也降解酚、氰、COD等有机物。结合水量、水质特点,我们推荐采用缺氧/好氧(A/O)的生物脱氮 (内循环) 工艺流程,使污水处理装置不但能达到脱氮的要求,而且其它指标也达到排放标准。 3. A/O工艺的缺点 1.由于没有独立的污泥回流系统,从而不能培养出具有独特

涂装废水处理处理技术方案

涂装废水处理处理技术方案 作为工业废水之一的涂装废水,主要来自于预脱脂、脱脂、表调、磷化、钝化等车身前处理工序,特别是其中的电泳废水、喷漆废水成份复杂,浓度高,可生化性差。涂装废水处理主要采用分质处理、混凝沉淀、混凝气浮、砂滤等工艺对涂装废水进行处理。 1. 涂装废水处理的特征 1.1 磷化-喷漆是钢铁表面防护处理行之有效的常用方法。近年来,随着我国汽车、摩托车、家用电器等工业的迅速发展,磷化-喷漆工艺也相应得到了飞速发展,应用愈来愈广。而这些工艺的大量应用,势必会产生大量有害废水污染环境。从环境保护方面考虑,研究开发并大量推广应用合理的、可靠的涂装废水处理技术是当务之急。 2. 涂装废水的来源及其危害性 铁件涂装工艺流程:预脱脂-脱脂-水洗-水洗-水洗-表面调 整-磷化-水洗-水洗-水洗-干燥-喷漆-烘干。 塑料件涂装工艺流程:脱脂-水洗-水洗-水洗-界面活化-干 燥-喷漆-烘千-喷导电剂-静电喷漆-烘干。 脱脂后的水洗水含有不少表面活性剂及已乳化的油污,水中的COD,:约达700mg/L,BOD约达200mg/L,这种水如果不经处理,直接排到江河中,废水中的有机物在水中分解时要消

耗大量的溶解氧,从而破坏水体中氧的平衡,使水质产生恶臭。 磷化后的水洗水含有超过排放标准的镍离子(Ni十),锌离子(Zn十)等重金属。众所周知,镍离子是致癌物质;超量的锌对水生物有明显的毒害作用。在喷漆过程中会产生漆雾,要正常生产就要将废弃的漆雾从喷漆房除去,常用而有效的方法就是在喷漆线的侧面(也即抽风道的人口)设置水帘,让水帘剂吸收大部份的漆雾,未被水帘剂吸收的废气再用处理废气的方法进行处理。漆的种类繁多,涂装车间所漆的配方都是保密的,但不管任何漆,漆及其中的有机溶剂都是有毒性的,甚至毒性很大。 有机溶剂通常有如下几种类型:香族型:如甲苯、二甲苯、苯乙烷等醋类:如乙酸乙醋、乙酸丁醋等酮类:如丙酮、环己酮等醇类:如乙醇、丁醇、异丙醇等水帘剂-般是由烧碱及耐碱的又能吸收漆雾的复合有机物组成的。水帘剂吸收漆雾后,水体的成份变得很复杂,毒性-也很大,有机物含量很高,据分析它的CODcr常常处于几千mg/L,有时高达13000mg/L。虽然水帘水通常在清除浮渣(或沉渣)后可循环使用,但也必然存在两种情况:其-是水帘水的部分被排出成为废水,并补充足够的新鲜水及水帘剂;其二则是水帘水经过-定时期的 环循使用后全部更新。这种含量很高而毒性又很大的水帘水如果不经处理就直接排人江河(湖泊)中,给人类带来的危害

常见污水处理工艺对比

常见污水处理工艺对比 一、A/O工艺 1、基本原理 A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。 A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。 2、A/O内循环生物脱氮工艺特点 根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点: (1) 效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。 (2) 流程简单,投资省,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。 (3) 缺氧反硝化过程对污染物具有较高的降解效率。如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。 (4) 容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的

涂装废水方案

涂 装 预 处 理 废 水 处 理 设 计 方 案 浙江东大水业有限公司二零一二年八月十一日

第一章工程概述 本工程废水为涂装废水。金属涂装清洗废水成份复杂,主要为油脂、表面活性剂、悬浮杂质等。一般废水量不大但污染源较多,且处理困难。此类废水的特点是油处于乳化状态,油滴直径在1微米以下,采用一般方法难以达到理想处理效果。根据我公司多年积累的经验结合当前新技术我们采用如下技术:破乳+混凝沉淀+混凝气浮+过滤,来处理该类废水。 第二章设计依据和设计原则 2.1.设计原则 本设计遵循如下原则进行工艺路线的选择及工艺参数的确定: ?采用成熟、合理、先进的处理工艺,处理能力符合处理要求。 ?投资少、能耗和运行成本低,操作管理简单,具有适当的安全系数,各工艺参数的 选择略有富余,并确保处理后的污水可以达标排放。 ?根据地形地貌,结合站区自然条件及外部物流方向,并尽可能使土石方平衡,减少 土石方量,以节约基建投资,降低运行费用,即在满足工艺要求的条件下,尽量减少建设投资,降低运行费用。 ?废水处理系统在运行上有较大的灵活性和可调性,可以适应污水水质、水量和水温 的波动,即处理设施应有利于调节、控制、运行操作。 ?处理设施具有较高的运行效率,以较为稳定可靠的处理手段完成工艺要求。 ?总图设计应考虑符合环境保护要求。管线设计应包括各专业所有管线,并满足工艺 的要求;工程竖向设计应结合周边实际情况提出雨水排放方式及流向; ?在设计中采用耐腐蚀设备及材料,以延长设施的使用寿命。 ?废水处理系统的设计考虑事故的排放、设备备用等保护措施。 ?所有设计应满足国家相关专业设计规范和标准; ?所有设备的供应安装应满足国家相关专业施工及安装技术规范; ?所有工程及设备安装的验收及资料应满足国家相关专业验收技术规范和标准。 2.2.设计依据及采用标准 2.2.1.国家现行的建设项目环境保护设计规定。 2.2.2.国内外有关该类废水治理的技术资料。

生化处理工艺说明

生化处理工艺说明 厌氧池 调节池的水由潜水泵打入厌氧池。 厌氧微生物对于杂环化合物和多环芳烃中环的裂解,具有不同于好氧微生物的代谢过程,其裂解为还原性裂解和非还原性裂解。 厌氧生物发酵池的主要目的是去除COD和改善废水的可生化性。厌氧过程对于浓度较高的有机废水,可以将废水中的有机物分解为甲基等,以气体的形式从池中排中,可以去除废水中50~80%左右之COD。同时,还可以将废水中的芳烃类有机质所带的苯、萘、蒽醌等环打开,提高难降解有机物的好氧生物降解性能,为后续的好氧生物处理创造良好条件。厌氧过程分为四个阶段:水解阶段、酸化阶段、酸性衰退阶段及甲烷化阶段。在水解阶段,固胶体性有机物质降解为溶解性有机物质,大分子物质降解为小分子物质。厌氧反应池是把反应控制在第二阶段完成之前,故水力停留时间短,效率高,同时提高了污水的可生化性。 厌氧池启动后,污水由布水系统进入池体,由池底向上流动,经细菌形成的污泥层,污泥层对悬浮物、染料颗粒及细小纤维进行吸附、网捕、生物学絮凝、生物降解作用,使污水在降解COD的同时也得以澄清。 焦化废水厌氧工艺水力停留时间较其他废水长,COD去除率15~30%,同时具有很强的抗冲击负荷能力。 缺氧池 缺氧池是生物脱氮的主要工艺设备,废水中NH3-N在下一级好氧硝化反应池中被硝化菌与亚硝化菌转化为NO3--N与NO2--N的硝化混合液,循环回流于缺氧池,通过反硝菌生物还原作用,NO3--N与NO2--N转化为N2。此转化条件,一是废水中含有足够的电子供体,包括与氧结合的氢源和反硝化异养菌所需之足够的有机碳源,二是厌氧或缺氧条件。由第一

级厌氧池之出水,已留有足够的有机碳源,可供反硝化菌消耗,但不能太大的过量碳源,以免出水含碳源过多,影响后续硝化反应。反硝化反应影响因素: 碳源进入缺氧池之废水中,BOD5/TN>3—5,即认为碳源充足,本系统内碳源充足; pH pH在6.5—7.5为宜,原废水满足要求; 水中溶解氧<0.5mg/L; 适宜温度20~40℃; 硝化混合液回流率100~400%。 厌氧池排出的厌氧消化液在进入好氧活性污泥处理工艺前进行缺氧曝气,其作用如下: 缺氧池回流入大量的曝气池的沉淀污泥,使缺氧池和好氧池组合为A-O工艺,具有较好的脱氮效果; 在缺氧过程中溶解氧控制在0.5mg/L一下,兼性脱氮菌利用进水中的COD作为氢供给体,将好氧池混合液中的硝酸盐及亚硝酸盐还原成氮气排入大气,同时利用厌氧生物处理反应过程中的产酸过程,把一些复杂的大分子稠环化合物分解成低分子有机物。 好氧池 好氧池采用推流式活性污泥曝气池,它由池体、布水和布气系统三部分组成。 缺氧池流出的废水自流入推流式活性污泥曝气池,在此完成含氨氮废水的硝化过程。硝化菌为自养好氧菌,在好氧条件下,将废水中NH3—N氧化为NO3--N,此过程消耗废水中碳酸盐碱度计),一方面须中和过程产生的H+,另一方面,硝化菌细胞生长需要消耗一定量碱度。每硝化1g氨氮,需消耗7.1g碱度(以CaCO3计)。因此需要在此投加适量Na2CO3,以补充碱度。反应温度20~40℃;pH8.0~8.4。此过程,要求较低的含碳有机质,以免异氧菌增殖过快,影响硝化菌的增殖。气水比20:1。与悬浮活性污泥接触,水中的有机物被活性污泥吸附、氧化分解并部分转达化为新的微生物菌胶团,废水得到净化。该工艺在水底直接布气,活性污泥直接受到气流的搅动,加速了微生物的更新,使其经常保持较高的活性。

涂装废水处理方案

涂装废水处理工程 初 步 设 计 方 案 设计单位: 2016年6月

目录 1、工程概况 (2) 2、设计依据 (2) 3、设计原则 (2) 4、设计范围 (3) 5、设计污水处理站进、出水水质以及水量 (3) 5.1进水水质及水量 (3) 5.2出水水质 (3) 6、工艺流程图 (4) 7、工艺设计计算及说明 (4) 7.1 磷化废水池 (4) 7.2生产废水池 (5) 7.3 化粪池 (5) 7.4 中和池 (5) 7.5 调节池 (5) 7.6 一体机 (5) 8、工程造价 (6) 8.1、主要设备一览表及投资费用 (6) 9质量保证措施及售后服务承诺 (7) 9.1技术咨询 (7) 9.2 售后服务 (7)

1、工程概况 本项目为---公司已建好的标准化厂房及附属设施进行建设,项目营运期产生的废水主要包括生产废水和生活污水。生产废水主要为涂装工艺生产中产生的废水,主要分为前处理废水、电泳废水和喷漆废水。前处理废水来自前表面处理的脱脂、酸洗、表调、磷化等工序,含有表面活性剂、磷酸盐、锌离子、溶剂等。电泳废水产生于车架上附着的浮漆和槽液的清洗过程,含有水溶性树脂(环氧树脂)、颜料、醇醚类溶剂等。水帘式漆雾捕集装置用水洗涤喷漆室作业区空气,空气中的漆雾和有机溶剂被转移到水中形成了喷漆废水,废水中含有大量漆雾颗粒,其水质中含有漆料和溶剂。 2、设计依据 1.用户提供工程的相关资料; 2.《给水排水手册》; 3.《给水排水标准实施规范》; 4.《污水综合排放标准》GB8978-1996; 5.《城市区域环境噪声标准》GB3096-93; 6.《污水综合排放标准》(GB8978—1996); 3、设计原则 1.严格执行国家保护法律法规,确保出水指标达到《污水综合排放标准》(GB8978-1996)中三级标准要求的限值。 2.本设计采用目前国内较为成熟、先进的处理工艺,处理效果好,操作维护方便。 3.根据工程实际情况及建设工期污水处理设备采用钢结构设备,充分考虑防腐措施,力求占地面积小,工程投资省,运行能耗低,处理费

废水除氨氮工艺比较知识讲解

国内高浓度氨氮废水处理常见工艺 物化法 国内外处理高浓度氨氮废水的物理化学方法很多,主要有空气吹脱法、蒸 汽汽提法、折点加氯法、离子交换法、化学沉淀法、催化湿式氧化法和烟 道气治理法等,这些方法各有优缺点,可用于不同条件的废水处理。 1.2.1.1空气吹脱法 空气吹脱法是使废水作为不连续相与空气接触,利用废水中组分的实际浓 度与平衡浓度之间的差异,使氨氮由液相转移至气相而去除。废水中的氨 氮通常以离子铵(NH4+)和游离氨(NH3)的状态保持平衡而存在,将废水pH值调节至碱性时,NH4+转化为NH3,然后通入空气将NH3吹脱出来。 NH4++ OH-→ NH3+ H2O 在吹脱过程中,废水pH值、水温、水力负荷及气水比对吹脱效果有较大影响。一般来说,pH值要提高至10.8~11.5,水温一般不能低于20℃,水力 负荷为2.5~5 m3/(m2·h),气水比为2500~5000 m3/m3,此时氨氮去除率 在80%~95%。 空气吹脱法工艺流程简单,但NH3-N仅从溶解状态转化为游离态,并没有 彻底除去,需要相应的回收装置,否则易造成二次污染;当温度低时, NH3-N吹脱效率大大低,不适合在寒冷的冬季使用。 另外,在当前越来越严格的排放要求条件下,作为一种较为简单粗糙的氨 氮废水处理工艺,空气吹脱法由于无法达到排放要求(如15 mg?L-1以下),加上氨的回收利用上受到限制,因此采用它的改良方法。

1.2.1.2蒸汽汽提法 蒸汽汽提法是利用蒸汽将废水中的游离氨转变为氨气逸出,处理机理与吹脱法一样,即在高pH值时使废水与气体密切接触,从而降低废水中氨浓度的过程。其传质过程的推动力是气体中氨的分压与废水中氨的浓度相当的平衡分压之间的差值。延长汽水间的接触时间及接触紧密程度可提高NH3-N 的处理效率,用填料塔可以满足此要求。由于采用蒸汽作为工作介质,氨自废水进入蒸汽中,然后在塔顶蒸馏成浓氨水、浓氨气或者液氨回收,或是采用酸吸收成为相应的铵盐。 蒸汽汽提法适用于处理连续排放的高浓度氨氮废水(浓度在1000 mg?L-1以上),操作条件易于控制。对于浓度在1000~30000 mg?L-1,甚至更高浓度的氨氮废水,采用该法可以经一次处理后,氨氮浓度达到15 mg?L-1(国家一级排放标准)以下。 蒸汽汽提脱氨技术因为是以蒸汽为脱氨介质,由于蒸汽价格较高(约200元/吨),因此蒸汽消耗就成为了该技术关键指标。传统蒸汽汽提脱氨技术蒸汽消耗达到300kg/吨废水以上,因此传统蒸汽汽提脱氨技术成本很高。随着近些年来技术的进步,一些在传统蒸汽汽提脱氨技术上研究开发的新型蒸汽汽提脱氨技术已经大大降低了蒸汽单耗,达到了30kg/吨废水,因此新型蒸汽汽提脱氨技术正在高浓度工业氨氮废水处理领域得到广泛地推广应用,为我国氨氮污染物减排起到了强有力的技术支撑作用。 1.2.1.3折点加氯法 折点加氯法是将氯气通入水中,当投入量达到某一值(点)时,水中游离氯含量最低而氨的浓度降为零,当投入量超过该点时,水中的游离氯就会增多。因此,该点称为折点,该状态下的氯化称为折点氯化。折点氯化去除氨的的机理为氯气与氨反应生成无害的氮气,氮气逸入大气。

各种污水处理工艺的比较及特点

表4 常用工艺性能简述 工艺 名称 工艺简述优点缺点 AB法工艺AB法工艺即吸附-生物降解工艺, 该工艺不设初沉池,由A、B二级 活性污泥系统串联组成,并分别有 独立的污泥回流系统。A段负荷高, 主要进行吸附去除,B段负荷低, 进行生物氧化降解。 ①抗冲击负荷能力强、运 行稳定性好;②去除COD、 BOD效果好;③具有良好的 脱氮除磷效果;④投资省, 运转费用低。 ①A段负荷太高, 如果控制不好, 很容易产生臭 气;②A段产生 的污泥量较大, 有机物含量高, 不易稳定化处置 [3]。 A/A/O 工艺A/A/O生物脱氮除磷工艺由厌氧 池、缺氧池、好氧池串联而成。在 工艺流程内,BOD5、SS和以各种形 式存在的氮和磷一并出去。系统的 活性污泥中,菌群主要由硝化菌、 反硝化菌和聚磷菌组成。在好氧 段,硝化细菌通过生物硝化作用, 将氨氮及有机氮转化成氮气逸入 大气中,从而达到脱氮目的;在厌 氧段,聚磷菌释放磷,并吸收低级 脂肪酸等易降解的有机物;而在好 氧段,聚磷菌超量吸收磷,并通过 剩余污泥的排放,将磷去除。且以 上三菌均有去除BOD的作用。 ①在同类脱氮除磷的工艺 中,该工艺流程最为简单, 总的水力停留时间也少于 同类其它工艺;②在厌氧- 缺氧-好氧交替运行条件 下,丝状菌不会大量繁殖, SVI一般小于100,污泥易 沉淀,不易发生污泥膨胀; ③污泥中磷含量高,一般 在2.5%以上,污泥肥效好。 ①该工艺适用于 TP/BOD值较低的 污水,当TP/BOD 值很高时,BOD负 荷过低会使得剩 余污泥量少,难 以达到满意的处 理效果②当污水 量变化时(高低 峰)会造成沉淀 池内污水停留时 间长,导致聚磷 菌在厌氧条件下 产生磷的释放, 会降低除磷效 率。 传统SBR工艺SBR活性污泥法又称序批式活性污 泥法、间歇式活性污泥法。此法将 初沉池出水引入SBR反应池,按时 间顺序进行进水、曝气、沉淀、出 水等基本操作。各操作周而复始反 复进行,且在同一池子中完成。此 工艺不需要设置专门的二沉池和 污泥回流系统,但每个池子都需设 ①工艺流程简单,造价低, 占地面积小;②处理效果 良好,出水可靠;③较好 的脱氮除磷效果;④污泥 沉降性能良好。⑤控制灵 活,易于实现脱氮除磷⑥ 对进水水质水量的波动具 有良好的适应性 ①设备的闲置率 较高;②污水提 升水头损失较 大;③不连续出 水时,需要较大 的调节池;④不 适合于大型污水 处理厂[4]。

常用生活污水处理工艺介绍及对比

几种常用生活污水处理工艺的比较 一、概述 生活污水处理工艺目前已相当成熟,其核心技术为活性污泥法和生物膜法,对活性污泥法(或生物膜法)的改进及发展形成了各种不同的生活污水处理工艺,传统的活性污泥法处理工艺在中小型生活污水处理已较少使用。根据污水的水量、水质和出水要求及当地的实际情况,选用合理的污水处理工艺,对污水处理的正常运行、处理费用具有决定性的作用。 本文主要对生活污水几种常用的处理工艺作简单介绍,包括氧化沟、序批式活性污泥法(SBR)、生物接触氧化法、曝气生物滤池(BAF)、A-0工艺、膜生物反应器(MBR)等。 二、中小型生活污水处理工艺简介 典型的生活污水处理完整工艺如下: 污水——前处理——生化法——二沉池——消毒——出水 | | ——-——污泥处理系统-- 前处理也称为预处理技术,常用的有格栅或格网、调节池、沉砂池、初沉池等。 由于生活污水处理的核心是生化部分,因此我们称污水处理工艺是特指这部分,如接触氧化法、SBR法、A/O法等。用生化法(包括厌氧和好氧)处理生活污水在目前是最经济、最适用的污水处理工艺,根据生活污水的水量、水质及现场的条件而选择不同的污水处理工艺对投资及运行成本具有决定性的影响。下面就目前常用的生活污水处理工艺作一简介。 1、氧化沟工艺 氧化沟是活性污泥法的一种变形,其池体狭长,故称为氧化沟。氧化沟有多种构造型式,典型的有:A:卡罗塞式;B:奥巴尔型;C:交替工作式氧化沟;D:曝气—沉淀一体化氧化沟 氧化沟技术已广泛应用于大中型城市污水处理厂,其规模从每日几百立方米至几万立方米,工艺日趋完善,其构造型式也越来越多。其主要特点是:进出水装置简单;污水的流态可看成是完全混合式,由于池体狭长,又类似于推流式;BOD负荷低,处理水质良好;污泥产率低,排泥量少;

常用的生化法处理污水

随着水污染的日益严重,水资源的短缺,对污水的处理越来越受到人们的重视。目前所采用的生物处理方法主要包括普通活性污泥法和生物接触氧化法,普通活性污泥法又称传统活性污泥法,活性污泥废水生物处理系统的传统方式,系统由曝气池、二沉池和污泥回流管/线及设备三部分组成。 需要曝气池容积大,占用的土地较多,基建费用高;好氧菌作用速率会随水中氧含量进行变化,而供氧速度难于与其相吻合、适应,运行效果易受水质、水量变化的影响。今天,博尔环保就给大家说说曝气法处理污水分析。 曝气设备是活性污泥法污水处理工艺系统中的重要组成部分,通过曝气设备向曝气池供氧,同时曝气设备还有混合搅拌的功能,以增强污染物在水处理系统

中的传质条件,提高处理效果。 曝气方法主要有①鼓风曝气②机械曝气 机械曝气也称为表面曝气,机械曝气器大多以装在曝气池水面的叶轮快速转动,进行表层充氧。按转轴方向不同,可分为立式和卧式两类。常用的立式表面曝气机有平板叶轮、倒伞型叶轮和泵型叶轮等,卧式表面曝气机有转刷曝气机和转盘曝气机等。 曝气叶轮的充氧能力和提升能力同叶轮浸没深度、叶轮的转速等因素有关,在适宜的浸深和转速下,叶轮的充氧能力大,并可保证池内污泥浓度和溶解氧浓度均匀。 一般而言,机械曝气常用于曝气池较小的场合,可减少动力消耗,维护管理也较方便。鼓风曝气供应空气的伸缩性较大,曝气效果也较好,一般用于较大的曝气池。 污水处理的曝气方法及其装置,其具有以下优点和功效: (1)藉由上述在水反应槽中,将曝气管设置呈距离槽底面有一段高度距离位置的方式,便能大量培养出对污水槽中环境有益性的微生物菌群。 (2)各水反应槽都设有微曝气设备,藉由水中超微细气体带动水中杂物产生

污水处理几种常见工艺比较

一、A/O工艺 1.基本原理 A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。 A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。 2.A/O内循环生物脱氮工艺特点 根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点: (1)效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。 (2) 流程简单,投资省,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。 (3) 缺氧反硝化过程对污染物具有较高的降解效率。如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。 (4) 容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的容积负荷。 (5) 缺氧/好氧工艺的耐负荷冲击能力强。当进水水质波动较大或污染物浓度较高时,本工艺均能维持正常运行,故操作管理也很简单。通过以上流程的比较,不难看出,生物脱氮工艺本身就是脱氮的同时,也降解酚、氰、COD等有机物。结合水量、水质特点,我们推荐采用缺氧/好氧(A/O)的生物脱氮 (内循环) 工艺流程,使污水处理装置不但能达到脱氮的要求,而且其它指标也达到排放标准。 3. A/O工艺的缺点 1.由于没有独立的污泥回流系统,从而不能培养出具有独特功能的

涂装电泳废水处理工艺流程

一、江苏金山污水处理工艺流程 根据本项目的污水特点及我公司在涂装项目中的施工及运行经验,本项目的处理采用物化法和生化法相结合。具体工艺流程图如下: 1

工艺流程说明如下: 1、磷化废水处理系统 2、含油废水预处理系统 3、生产废液预处理系统 排泥4、生产废水处理系统

5、混合污水处理系统及回用系统 6、污泥处理系统 3.3工艺流程说明 1、废水废液分质分流措施 考虑该项目废水种类多,水质差异大,成分复杂,水质水量波动大,首先对各厂区排放的污水采取相应的分流、分质措施。 2、废液预处理系统 针对各废水水质特征,对高浓度废水、废液首先进行预处理,然后再与相对低浓度废水进行混合处理。减小对后续处理工序的冲击负荷,提高处理的稳定性。 污泥 排泥 排泥

(1)含油废水预处理系统 采用盐析破乳及电聚法进行处理。 含油废水池内设浮油吸收机,对浮油吸除率可达到85%~90%,废水经废液泵提升至破乳反应槽,向破乳反应槽中投加CaCl2进行破乳,静止撇渣,然后顺序投加混凝剂PAC和阴离子PAM,经混合、反应、静置、沉淀、撇油后,排水排泥。上清液进入电解气浮,通过电聚法处理,撇除浮渣,出水排入生产废水调节池。 (2)生产废液预处理系统 采用混凝沉淀方法间歇处理。 生产废液池中废水经废液泵提升至间歇反应槽,向间歇反应槽中投加石灰乳,调节pH值至10~11,然后顺序投加混凝剂PAC和阴离子PAM,经混合、反应、静置、沉淀、排水排泥。上清液排入生产废水调节池中,污泥排至污泥池中。(3)表调磷化废液定量投配系统 将表调磷化废液及磷化废液定量均匀投配至磷化废水调节池,减小对磷化废水处理系统的冲击负荷,保证系统出水稳定性。 来自座椅厂的表调磷化废液及磷化废液在磷化废液池经废液投加泵定量投加至磷化废水调节池,废液投加量应根据废液排放情况灵活调整,保证均匀投配。(4)磷化废水处理系统 采用混凝沉淀处理方法。 以上废水在磷化废水调节池中混合后经经潜污泵提升至絮凝反应槽1,槽内设在线pH计并与石灰乳投药管上的电动阀连锁,控制石灰乳的投加量,自动调节废水pH值至10~11,然后投加絮凝剂(PAC)、助凝剂(PAM),使废水中磷酸 盐生成的羟基磷灰石Ca 5(OH)(PO 4 ) 3 ,重金属生成氢氧化物的絮凝体,通过吸附架 桥作用去除水中的SS和COD等污染物质,在斜管沉淀器1内完成固液分离,出水进入pH反调槽,槽中设在线pH计,并与稀硫酸投加管道上的电磁阀连锁,控制稀硫酸投加量,使其出水pH值调节至7~9,pH反调槽出水进入混合污水调节池。斜管沉淀器产生的污泥排入污泥池。 (5)生产废水处理系统 主要处理各厂区排放的脱脂废水、电泳废水、酸洗废水、电泳废水及经预处理后的废水。采用混凝沉淀+气浮处理方法。 生产废水调节池中废水经废水泵提升至絮凝反应槽2,槽内设在线pH计并与石灰乳投药管上的电动阀连锁,控制石灰乳的投加量,自动调节废水pH值至10~11,然后投加絮凝剂(PAC)、助凝剂(PAM),使废水中磷酸盐生成的羟基磷 灰石Ca 5(OH)(PO 4 ) 3 ,重金属生成氢氧化物的絮凝体,通过吸附架桥作用去除水中 的SS和COD等污染物质,在斜管沉淀器2内完成固液分离,出水进入絮凝反应

相关文档