文档库 最新最全的文档下载
当前位置:文档库 › 智能小车设计方案报告

智能小车设计方案报告

智能小车设计方案报告
智能小车设计方案报告

摘要

自主反应式智能系统是一种应用广泛的控制系统。对电路的分析和验证工作依靠智能化来完成,效率高。因此它的研究与开发是一项非常有意义的工作。

本小车以MSP430超低功耗单片机为核心,在SHARK二型小车的基础上研究小车避障寻迹的设计和实现方法,完成障碍检测、避障、寻迹功能。充分运用了430单片机的功能。本论文介绍了智能小车的机械结构及相应的硬件电路和实现算法。在机械结构上,对普通的小车作了改进,即用一个万用轮来代替两个前轮,使小车的转向更加灵敏。利用反射式红外传感器来寻迹、红外一体化接收头来检测障碍物的位置,通过改变单片机产生的PWM方波的占空比,使其能在设计范围内可实现任意角度黑线和任意角度移动,还可以实现避障的功能。在算法上,利用矢量分解法、PID算法等对小车的运行进行控制并能有效的改善其运行轨迹。关键字:MSP430寻迹避障PWM

Abstract

Independence’s responding type intelligence system is a kind of applied extensive control system.Analyzing electric circuit and verifying a work depends on the intelligence to complete,its efficiency is high.So its research and development is a very meaningful works.

With the core of430microcomputer and at the foundation of SHARK,the No.3 small car can complete an obstacle examination,avoiding stumbling block and looking for vestige function,making full use of430microcomputer.This thesis introduced machine structure,homologous hardware electric circuit and the calculate way of the intelligence small car.Making improvement to the common car on the machine structure,we use a perfect wheel to make the car turning more easily.And we use some sensors to look for vestige and avoid stumbling block.By change the empty ratio of PWM,the car can arbitrarily move with any angle of the black line within the scope of the design.On the calculate way,we use vector decomposition method、PI D to control the car and improve its track.

Key word:MSP430looking for vestige avoiding stumbling block PWM PID

目录

第一章绪论 (1)

第二章各部件的工作原理 (3)

2.1前轮(导向轮) (3)

2.2电机 (4)

2.3反射式红外传感器 (5)

2.4红外一体化接收头 (6)

第三章硬件电路 (11)

3.1电机驱动电路 (11)

3.2反射式红外传感器电路 (13)

3.3红外一体化接收头电路 (14)

3.4处理器电路 (16)

第四章电路原理图 (19)

第五章控制算法 (21)

5.1黑线位置判别 (21)

5.2巡线算法 (21)

5.3搜线算法 (23)

5.4障碍物位置判别 (23)

5.5转弯控制 (25)

5.6迷宫探路控制 (26)

第六章相关软件 (29)

第七章总结 (35)

7.1本文总结 (35)

7.2进一步的工作 (35)

致谢 (37)

参考文献 (39)

附录一 (41)

附录二 (42)

第一章绪论

当今社会,科学技术日新月异,时代前进的步伐越迈越宽,应用自动化设备,计算机处理,现代化通讯,数字化信息,现代化显示设备等高新技术而建立的现代化智能,监控等系统已经得到充分的发展与应用,智能机器人也就应运而生。同时,在建设以人为本的和谐社会的过程中,智能服务机器人能够完成考古发掘,海底揭密,宇宙探索等危险作业,以保证人身安全。《国家中长期科学和技术发展规划纲要》一文指出:智能服务机器人是在非结构环境下为人类提供必要服务的多种高技术集成的智能化装备。以服务机器人和危险作业机器人应用需求为重点,研究设计方法、制造工艺、智能控制和应用系统集成等共性基础技术。重点研究低成本的自组织网络,个性化的智能机器人。2006━2020年,既是国家中长期技术发展计划实现阶段,也是我们最具有活力和最激情洋溢的时段。

该智能小车模型是一辆由PCB和车体拼装的小车。所有的机械结构和零部件都安装固定在电路板上。因此完全不需要机械加工,非常适合实验阶段机器人的研制。本文简述了智能巡线避障小车自主走迷宫的设计思路和实现过程。包括小车的机械结构、电路、软件、控制算法、调试方法等。可作为一般的设计参考。

小车的左右轮分别由2只舵机提供动力,作为驱动轮和导向轮使。430单片机的PWM发生器产生2路(分为两组)占空比可变的方波,经三极管进行扩流后分别驱动左右舵机。控制2路PWM的比例,不仅可以调节小车向前运动的速度,还可通过2路PWM占空比的差异,改变小车运动方向。

5只反射式红外传感器位于小车前下方,用于查找黑线位置并且实现寻迹。小车前端还分布有3个红外一体化接收头,实现避障并完成走迷宫。

第二章各部件的工作原理

2.1驱动轮(导向轮)

前轮亦为驱动轮,其决定小车能否灵活拐弯的关键部分。这辆小车和汽车不同,不是靠摆舵来控制转弯,而是靠左右后轮速度差来实现转弯控制。

图为小车的仰视图(未画出传感器)。小车的两前轮是靠舵机进行驱动的。通过两路PWM波实现对其的控制。只要调整PWM波的占空比即可控制舵机的转速。当小车左轮的速度高于右轮时,小车右转弯;反之,当小车右轮的速度高于左轮时,小车左转弯。

小车后轮属从动轮,质地较硬,其与地面磨擦力较小,与其动力相比可以忽略不记。所以它可以自由偏移,而不影响小车的转向.

2.2舵机

舵机是一种位置伺服的驱动器。它接收一定的控制信号,输出一定的角度,适用于那些需要角度不断变化并可以保持的控制系统。在微机电系统和航模中,它是一个基本的输出执行机构。

准的舵机有3条导线,分别是:电源线、地线、控制线,如图所示。

电源线和地线用于提供舵机内部的直流电机和控制线路所需的能源.电压通常介于4~6V,一般取5V。注意,给舵机供电电源应能提供足够的功率。控制线的输入是一个宽度可调的周期性方波脉冲信号,方波脉冲信号的周期为20ms(即频率为50Hz)。当方波的脉冲宽度改变时,舵机转轴的角度发生改变,角度变化与脉冲宽度的变化成正比。

2.3反射式红外传感器

反射式红外传感器ST188采用高发射功率红外广电二极管和高灵敏度光电晶体管组成。检测距离可调整范围为4-15mm;采用非接触检测方式。可用于IC 卡电度表脉冲数据采集、集中抄表系统数据采集和传真机纸张检测等。

图2.4反射式红外传感器工作原理

反射式红外传感器中包含一个发射器LED和一个光探测器(光敏二极管/光

敏三极管)。着两个元件被封装在同一个塑料壳体中,并且排列成适合他们工作的理想位置。LED发出的一束光被一个表面反射后又回到探测器中。

图1.4是反射式红外传感器的工作原理图。封装在矩形壳体中的是发射器LED(由左侧的白色方块表示)和探测器装置(在右侧)。虚线表示光线从发射器LED中发出并反射回探测器;探测器检测到的光强大小取决于物体表面的反射率,而这一光强就是传感器的输出值。

如图所示,选通信号(高电平)经过三极管扩流后送到传感器的K脚,如果检测到黑线,传感器C脚输出高电平;否则输出为低电平。

图2.5反射式红外传感器及其检测距离与转换效率的关系图反射式传感器在高度受控的理想环境下的工作性能更好,因为影响它输出的外界因素有很多,如环境光的变动、传感器与被探测物体之间的距离,以及被探测物体的反射率等。为了减少环境光的干扰,首先需要调整传感器的方位使环境光不能直接射到探测器。

反射式红外传感器ST188的最佳探测距离为6-14mm。所以将传感器垂直于地面并且调整传感器与地面的距离,大约在10mm左右。

2.4红外一体化接收头

电视机、唱机等家电中广泛使用红外线遥控器。红外遥控器发出38KHz调制的红外线,在接收端,被一体化红外接收头接收,解调出原始键码值。

因为红外遥控使用广泛、成熟、大批量,所以相关红外接收、发射元件价格很低。本方案使用通用遥控器的一体化红外接收头作为检测元件。

图2.7一体化红外接收头工作原理

一体化接收头内部集成有带通滤波器,它只允许大约38kHz的红外信号通过。这种仅对38KHz敏感的特性,有助于消除环境光对遥控器接收的影响。如图,当红外线发射管IR LED)发出的38KHz的红外线被一体化接收头接收时,接收头输出“0”。当没有侦测到红外线,或非38KHz红外线(如日光灯干扰),输出“1”。

第三章硬件电路

3.1舵机驱动电路

此部分是整个小车的大脑,是整个小车运行的核心部件,起着控制小车所有运行状态的作用。通常选用单片机作为小车的核心控制单元。这里选用MSP430F425单片机.考虑到小车必须能够前进、倒退、停止,并能灵活专性,在左右两轮各装一个舵机分别进行驱动。当左轮电机转速高于右轮电机转速时小车向右转,反之则向左转。为了能控制车轮的转速,左右两轮的转速,可以采取PWM调速法,即由单片机的TA1和TA2输出一系列频率固定的方波,再通过功率放大来驱动舵机,在单片机中编程改变输出方波的占空比,从而可以改变电机的转速。左右两轮两个电机转速的配合就可以实现小车的前进、倒退、转弯等功能。

驱动电路如图:

需要注意的是:被二极管分流到电源两端的电力将造成主板电压的瞬变或噪声。更严重的是当采用PWM信号控制电机时,每次关断都会产生这种影响。如果导通三极管又重新开启,同时反向电动势电流仍然存在,结果三极管将直接导通电源正极和地。这一现象时间的长短取决于续流二极管的关断时间。这一电流称作过冲电流,它同样会产生噪声。因此需在离接口慢近的地方加一旁路电容来消噪。旁路电容的作用是平滑电流脉动和电源电压的瞬变。当电压出现尖峰时,电容将迅速地吸收这一能量,从而使电压保持恒定。当电压降低时,电容将向电路中回馈能量,从而使电压有所回升。

经试验验证,从单片机出来的PWM电压大约在3.5V左右,加到舵机两边最多只有3V,这远远低于其耐压,因此转速也很慢,稍有摩擦就转不动了。因此需要再增加两个三极管来进行扩流,还可以起保护单片机的作用。

3.2反射式红外传感器电路

这里的寻迹是指小车在白色地板上寻黑线行走,通常采用的方法是红外探测法。即利用红外线在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向

地面发射红外光,当红外光遇到白色纸质地板时发生漫反射,反射光被安装在小车上的接收管接收;如果遇到黑线则红外光被吸收,小车上的接收管接收不倒红外光。单片机就是否反射回来的红外光为依据来确定黑线的位置和小车的行走路线。红外探测器探测的距离有限,一般最大不应超过15cm。

这里用反射式红外传感器ST188。当小车在白色地面行驶时,装在车下的红外发射管发射红外线信号,经白色反射后,被接收管接收,一旦接收管接收到信号,输出端将输出低电平;当小车行驶到黑线时,红外线信号被黑色吸收后,将输出高电平,从而实现了通过红线检测信号的功能。将检测到的信号送到单片机的I/O口,当I/O口检测到的信号为高电平时,表明红外光被地上的黑线吸收了,表明小车处在黑色的引线上;同理,当I/O口检测到的信号为低电平时,表明小车行驶在白色地面上。

传感器采取脉冲扫描式读。例如某时刻P_SEN1高电平,其余P_SEN2至5低,这样1、4号传感器的红外发射管亮,其余传感器不发射红外线。等待数据稳定后,读取1、4号传感器的数据。然后关闭1、4号传感器,打开2、5号传感器电源,依次类推,读取5个传感器的数据。这样可以保证任何时刻都不会有临近的传感器同时工作。从而保证了相邻传感器之间不会互相干扰。同时,红外发射管是除了电机之外耗电最大的器件,脉冲工作方式可以大大减少耗电量。

3.3红外一体化接收头电路

传感器排布采用如下结构:

每个传感器组由一只红外发射管、一只一体化红外接收头,和一只电容构成。可以测量该方向是否存在障碍物和判断障碍物的距离。电容用来稳定电路,防止电源和地发生短路。

硬件原理:采用一片MSP430F245作为控制器。利用BasicTimer的定时中断,产生38KHz附近的若干频率,从P1.1输出方波。该方波经过三极管扩流来增加驱动能力,给3个红外LED供电。为防止互相干扰,3只LED轮流点亮,每次只亮一只LED,由IRE选择哪支红外LED被点亮。如果接收到反射回来的红外线,接收端将输出TTL电平,被单片机接收,然后执行相应的避障措施。如果未接收到任何信号,将一直输出高电平。

因为一体化接收头只对38kHz的方波敏感,而且它内部带有带通滤波器,所以需要在发送38kHz的时候发送一段时间关闭一段时间,否则传感器会认为它是外界光而将返回的信号当作干扰信号而忽略掉。

为了避免各个传感器之间的相互干扰,需要轮流打开接收器。另外,因为发光管发出的光是沿四面八方发送的,而且只要打开电源发射管就会工作,所以也为了避免因别的发光管带来的干扰,需要将发光管包的严严实实的这三个传感器所起的作用是不同的。这三个传感器用来检测前方、左边还有右边是否有障碍物。通过对三方向的障碍物完成走迷宫的路线寻找。

3.4处理器电路

小车采用一片MSP430F245作为控制器。MSP430F425的特点是:有五种节电

模式;2个8位,1个6位并行端口,全部端口均具有中断能力;保密熔丝的程序代码保护;具有1个捕获/比较寄存器的16位定时器TIMER_A;多达16KB FLASH ROM和512RAM等等。

系统采用32.768KHz晶振作为定时采样用。另外留有JTAG口可以现场编程。并且还有液晶引脚未用到,将来还可以扩展其功能。在做PCB板时已将这些引脚引出,可以直接使用。

TIMERA共有4种计数模式:停止模式、增计数模式、连续计数模式和增/减计数模式。我们用TIMERA的增计数模式来产生38KHZ的方波。具体原理为:捕获/比较寄存器TACCR0用作TIMERA增计数模式的周期寄存器,因为TACCR0为16位寄存器,所以该模式适用于定时周期小于65536的连续计数情况。计数器TAR可以增加计数到TACCR0的值,当计数值与TACCR0的值相等(或定时器值大于TACCR0的值)时,定时器复位并从0开始重新计数。图2.8说明了增计数模式的计数过程。当定时器的值等于TACCR0的值时,设置标志位CCIFG0(捕获比较中断标志)为1,而当定时器从TACCR0计数到0时,设置标志位TAIFG(定时器溢出标志)为1。

计数过程中还可以通过改变TACCR0的值来重置技术周期。当新周期大于旧周期时,定时器会直接增计数到新周期;当新周期小于旧周期时,改变TATACCR0时的定值器时钟相位会影响定时器响应新周期的情况。时钟为高时改变TACCR0的值,则定值器会在下一个时钟上升沿返回到0,如果时钟为低时改变TACCR0的值,则定时器接受新周期并在返回到0之前,继续增加一个时钟周期。

可以随时间变化任意改变PWM信号的占空比,具体的做法是:

●保持TACCR0的值不变(周期不变)

●改变TACCRx值(改变占空比)

增计数模式时的输出实例

TIMERA的输出模式由模式控制位OUTMODEx决定,共有8种输出模式。除模式0外,其他的输出都在定时器时钟上升沿时发生变化。这里我们将输出模式选为输出模式7。用该方式产生占空比为50%的38KHZ的方波;也可以通过改变TACCRx的值来改变电机的转速,使其实现转弯、后退等动作。

第五章控制算法

5.1黑线位置判别

地面的黑线是导引线,位置读取和计算的准确度、稳定性将直接影响小车的控制和运行。下图是实际运行中出现的情况,黑块表示感应到黑线的传感器。传感器的排列比较密,可能1~2个传感器都能踩到黑线;转弯处车身倾斜甚至2~3个传感器都能踩到黑线。应该求黑线的中心位置作为结果。

Position=0

Position=-15

Position=0.5

Posit=(i+j)*10/2-20

图5.1反射式红外传感器的运算图

计算的方法是从左数,找到第一个黑色传感器编i,再从右数,找到第一个黑色传感器编j。(i+j)*10/2-20就是黑线中心位置。

这样算出来的结果中有小数部分,用起来不太方便,因此我们将结果放大10倍,再减去之间位置时算出来的值。

5.2巡线算法

小车是一个非常典型的惯性系统。对于这一类被控对象,PID算法能简单有效的进行控制。对PID算法做个简单的说明:

假设小车中心线在黑线中心线上,偏差为0,小车正常行驶。如果某时刻检测到黑线偏左,就要向左转弯;如果检测到黑线偏右,就要向右转。偏得越多,就要向黑线方向打越大的舵角。这就是比例控制(P)

遗憾的是,这种方法并不能将小车稳定在线上,因为小车有惯性。假设黑线偏左,说明小车偏右了,需要左传舵,等到小车回到中心的时候,停止转舵,可是小车的惯性会使车身继续左转,直到冲过黑线,黑线又偏右。然后控制过程反

复,车身是在左右摇摆中向前行走的。这种摇摆叫做“超调”,超调越大,控制越不稳定,容易出轨。

为了克服惯性,最简单的办法是任何控制动作都提前一点。适当调整提前量可以抵消惯性;另外,即使偏移量相同的情况下,在不同半径的弯道,也需要不同的舵角。这些都是比例控制不能实现的。我们除了位置信息之外,还需要知道轨迹的变化趋势。

为了实现提前控制,在时间上,除非延长传感器,否则没有办法提前获知转弯。那么我们只能在控制量上想办法。一个函数的导数,反映了该函数的变化趋势。同样我们可以用黑线位置的微分值来提前得到变化趋势。用本次位置减去前次位置求出差值,就大致知道偏移量的变化趋势。将该差值和比例相加后一起作为控制量,即可实现提前控制。这就叫做比例微分控制(PD控制)下图是小车的控制系统框图:

图5.2PID控制算法

传感器位置求出后,减去中心值,得到和中心的偏差量。该偏差量乘以比例系数得到比例控制量。并且计算相邻若干次偏差量之间的差值,乘以微分系数,得到微分控制量。将比例控制量和微分控制量相加,作为最终的舵角控制量。

积分控制在此系统中没有使用,原因是舵角到位置之间本身就是积分关系的,另外积分控制有相当大的滞后,对控制稳定性不利。

一般在调节P和D时需要先调节P的值,因为比例系数较微分系数对小车的影响更大。在调节P的值时可以先将D的值置为0。当发现小车在偏离黑线却可以很快的转回来时,P就调的差不多了;D的调节相对简单。

5.6迷宫探路控制

对于迷宫寻路程序,如果迷宫不太复杂,且主要为纵横方向的直线,我们采用让小车在路口始终左转或者始终右转的方法走迷宫,也就是让小车沿迷宫的边沿走。

利用小车前面三个传感器来检测障碍,设置向前,向左,向右三个转向优先级的高低,来进行自主搜索。左转优先级最高,其次是向前,最后是右转。通过延时使得小车每隔一段时间寻找左边界。在找到左边界的地方直行。倘若未找到边界,则再向左偏移一定的角度,继续寻找,直至找到为止。

对于不太复杂的迷宫,使用该方法,一直沿着左边就可以走出迷宫了。

第六章相关软件

软件部分我分为两步来单独实现寻迹和避障功能。寻迹部分使用了前面的五个反射式红外传感器,对于单独进行寻迹功能来说这已经足够了。红外一体化接收头用到前面的三个,用来执行走简单迷宫的功能。

关于硬件的调试:一)用万用表进行一些简单的测试,可以检测出是否有短路,断路,以及一些元器件的好坏。二)用示波器检测传感器的好坏,以及能否正常工作,对于传感器的正常工作与否,还要通过软件的调试与检测,以便知道CPU能控制传感器的工作和接受传感器的信号,对整个系统进行控制关于软件的调试:

一)对电机的控制运行调试;

二)对寻迹传感器的检测;

附:

#define P_SEN14_H P1OUT|=(BIT5)//P1.5

#define P_SEN14_L P1OUT&=~(BIT5)//开启或关闭1,4号传感器

#define P_SEN25_H P1OUT|=(BIT6)//P1.6

#define P_SEN25_L P1OUT&=~(BIT6)//开启或关闭2,5号传感器

#define P_SEN3_H P1OUT|=(BIT7)//P1.7

#define P_SEN3_L P1OUT&=~(BIT7)//开启,关闭三号传感器

#define SEN1_IN(P2IN&BIT1)//P2.1

#define SEN2_IN(P2IN&BIT2)//P2.2

#define SEN3_IN(P2IN&BIT3)//P2.3

#define SEN4_IN(P2IN&BIT4)//P2.4

#define SEN5_IN(P2IN&BIT5)//P2.51至5号传感器的输入的值

#define P_coefficient100

#define I_coefficient0

#define D_coefficient25

signed char Last_Position[5]={0,0,0,0,0};//声明数组,用于依次存放前5次的黑线位置。

/******************************************************

*名称:Sensor_Init()

*功能:对反射式红外传感器进行初始化设置

*入口参数:无

*出口参数:无

*******************************************************/

void Sensor_Init()

{

P1DIR|=(BIT5+BIT6+BIT7);

P1OUT&=~(BIT5+BIT6+BIT7);

_DINT();

//将IO设为输出,其它默认为输入

}

/******************************************************

*功能:程序延时

*入口参数:无

*出口参数:无

*******************************************************/

void Delay(unsigned int j)

{

for(unsigned int k=0;k

}

/******************************************************

*名称:Caculate_Position()

*功能:计算黑线位置

*入口参数:SensData,5个传感器的返回值

*出口参数:SensorPosition

*说明:通过计算黑线与中心位置的偏差来控制小车

*******************************************************/

signed char Caculate_Position(unsigned char*SensData)

{

signed char i,j,SensorPosition;//存储5个的传感器的值

for(i=0;i<5;i++)//从左往右数,第一个读到黑线的传感器编号i

{

if(SensData[i]!=0)break;

}

for(j=4;j>=0;j--)//从右往左数,找第一个读到黑线的传感器编号j

{

if(SensData[j]!=0)break;

}

if(i==5)return(0x80);

SensorPosition=(i+j)*10/2-20;//黑线中心位置就是(i+j)/2

//定点数表示不了0.5,所以除之前先乘10,这样0.5就对应5

//所以再减20,变成-20~0~+20表示黑线最左~中间~最右//如果全白(找不到黑线),就返回-128,作为出错标志。

return(SensorPosition);//将计算结果返回

}

/******************************************************

*名称:ReadSensor()

*功能:读取黑线位置

*入口参数:无

*出口参数:Position,小车偏移量

*******************************************************/

signed char ReadSensor()//从传感器读取小车当前位置

{

signed char position;

unsigned char i;

unsigned char SensorData[5];

P_SEN14_H;//打开1、6号传感器电源

Delay(400);//略延迟,等待数据稳定

SensorData[0]=SEN1_IN;//读1号传感器

SensorData[3]=SEN4_IN;//读6号传感器(注意数组下标从0开始,编号少1)

P_SEN14_L;//关闭1、6号传感器电源

P_SEN25_H;//打开2、7号传感器电源

Delay(400);//略延迟,等待数据稳定

SensorData[1]=SEN2_IN;//读2号传感器

SensorData[4]=SEN5_IN;//读7号传感器

P_SEN25_L;//关闭2、7号传感器电源

P_SEN3_H;

Delay(100);

智能循迹小车___设计报告

智能循迹小车___设计报告

智能循迹小车设计 专业:自动化 班级:自动化132 姓名:罗植升莫柏源梁 桂宾 指导老师: 2014年4月——2010年6月

本课题是基于STC89C52单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。小车系统以 STC89C52单片机为系统控制处理 器; 采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。

当今世界,传感器技术和自动控制技术正在飞速发展,机械、电气和电子信息已经不再明显分家,自动控制在工业领域中的地位已经越来越重要,“智能”这个词也已经成为了热门词汇。现在国外的自动控制和传感器技术已经达到了很高的水平,特别是日本,比如日本本田制作的机器人,其仿人双足行走已经做得十分逼真,而且具有一定的学习能力,还据说其智商已达到6岁儿童的水平。 作为机械行业的代表产品—汽车,其与电子信息产业的融合速度也显著提高,呈现出两个明显的特点:一是电子装置占汽车整车(特别是轿车)的价值量比例逐步提高,汽车将由以机械产品为主向高级的机电一体化方向发展,汽车电子产业也很有可能成为依托整车制造业和用车提升配置而快速成为新的增长点;二是汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具有交通、娱乐、办公和通讯等多种功能。 无容置疑,机电一体化人才的培养不论是在国外还是国内,都开始重视起来,主要表现在大学生的各种大型的创新比赛,比如:亚洲广播电视联盟亚太地区机器人大赛(ABU ROBCON)、全国大学生“飞思卡尔”杯智能汽车竞赛等众多重要竞赛都能很好的培养大学生对于机电一体化的兴趣与强化机电一体化的相关知识。但很现实的状况是,国内不论是在机械还是电气领域,与国外的差距还是很明显的,所以作为机电一体化学生,必须加倍努力,为逐步赶上国外先进水平并超过之而努力。 为了适应机电一体化的发展在汽车智能化方向的发展要求,提出简易智能小车的构想,目的在于:通过独立设计并制作一辆具有简单智能化的简易小车,获得项目整体设计的能力,并掌握多通道多样化传感器综合控制的方法。所以立“智能循迹小车”一题作为尝试。 此项设计是在以杨老师提供的小车为基础上,采用AT89C52单片机作为控制核心,实现能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。

智能婴儿车设计报告样本

智能婴儿车设计报 告

智能制造论文 专业:机械设计制造及其自动化 学号: 学生姓名: 指导老师: 多功能智能婴儿车

一、简介: 本设计是涉及触摸感应和电磁感应的触摸感应式婴儿车智能刹车装置,哭声检测智能摇摆及报警装置,大小便检测报警装置,婴儿车智能追踪定位装置,手动可调摇篮摇摆频率装置。这些智能设计旨在防止婴儿车在有坡度的地方无人推行时发生溜动而造成的安全事故,而且跟踪定位婴儿车的位置,使婴儿车时时刻刻都在身边,哭声检测智能摇摆及报警装置和手动可调摇篮摇摆频率装置是用于减轻婴儿照看者的负担,不用时时刻刻守在婴儿旁边,大小便检测报警装置是为了提醒照看者婴儿是否大小便,方便照看者给婴儿换尿布。 本创造结构简单,安装方便,能实现婴儿车在有人控制时正常行驶,无人控制时停止锁住无法滑动,避免发生事故,而且提醒照看人婴儿车内婴儿的各种信息。 二、技术背景: 照顾孩子的父母或是保姆不可能时时刻刻待在孩子身边,特别是在晚上,而且人们不可能因为孩子其它事什么都不做。基于以上几点我们设计出了智能婴儿车,它能帮助父母花更少的时间更好得照顾好婴儿,使婴儿更加健康茁壮的成长,而且能在照顾好孩子的同时做些家务及一些其它事情。智能婴儿摇篮能够提供给宝宝舒适摇晃,又能够经过自动移动和自动避障及自动追踪,使得妈妈们也可腾出手来处理家务或者休息。从而大大的减轻了

婴幼儿父母的劳动负担。 婴儿车是一种为婴儿户外活动提供便利而设让的工具车,有各种车型,一般0到4岁的孩子用的是婴儿车,是宝宝最喜爱的散步交通工具,更是妈妈带宝宝上街购物出游时的必须品,而当今的婴儿车的刹车装置方面还存在一定的缺陷,使得婴儿车存在一定的安全隐患。 由于婴儿车停放位置不当或婴儿的活动等其它原因,婴儿车可能会发生溜动,从而引发意外事故,而婴儿坐在婴儿车内不具有制止婴儿车运动的能力以致发生碰撞而导致惨剧发生。现已发生多起因为家长的疏忽导致的婴儿车滑动引起的安全事故。因此安全性是购买婴儿车的最重要的指标,如果婴儿车不具备很强的安全性,就极其容易伤害到脆弱的婴儿。因此出于安全因素的考虑,婴儿车应具有自动制动的能力,特别是在无人看管时。 现有的婴儿车安全装置旨在人工制动,需要在停放时人工打开刹车,可是很多家长往往意识不到安全隐患的存在从而忽略这个步骤,导致安全事故的发生,因此现在的婴儿车安全装置并不能解决无人看管时引发的安全隐患。 该创造正是要实现婴儿车智能化,具有很强的可控性,很大程度上减少了安全隐,很大地提高婴儿车的安全性,这个设计的应用范围较广,同样也能够用于残疾人的推车等。该设计轻巧方便,功耗低,成本较低,具有很高的实用性。 三、关键词:

智能小车单片机课程设计报告

题目: 智能小车设计 打开命令行终端的快捷方式: ctr+al+t:默认的路径在家目录 ctr+shift+n:默认的路径为上一次终端所处在的路径. linux@ubuntu:~$ linux:当前登录用户名. ubuntu:主机名 :和$之间:当前用户所处在的工作路径. windows下的工作路径如C:\Intel\Logs linux下的工作路径是:/.../..../ ~:代表的是/home/linux这个路径.(家目录). ls(list):列出当前路径下的文件名和目录名. ls -a(all):列出当前路径下的所有文件和目录名,包括了隐藏文件. .:当前路径 ..:上一级路径 ls -l:以横排的方式列出文件的详细信息 total 269464(当前这个路径总计所占空间的大小,单位是K) drwxr-xr-x 3 linux linux 4096 Dec 4 19:16 Desktop 第一个位置:代表的是文件的类型. linux系统下的文件类型有以下几种. b:块设备文件 c:字符设备文件 d:directory,目录 -:普通文件. l:连接文件. s:套接字文件. p:管道文件. rwxr-xr-x:权限 r:读权限-:没有相对应的权限 w:写权限

x:可执行权限 修改权限: chmod u-或者+r/w/x 文件名 chmod g-或者+r/w/x 文件名 chmod o-或者+r/w/x 文件名 第一组:用户权限 第二组:用户组的权限 第三组:其他用户的权限. chmod 三个数(权限) 文件名 首先根据你想要的权限生成二进制数,再根据二进制数转换成十进制的三位数 rwxr-x-wx 111101011 7 5 3 chmod 753 文件名 rwx--xr-x 第二个位置上的数字:对应目录下的子文件个数,如果是非目录,则数字是1 第三个位置:用户名(文件创造者). 第四个位置:用户组的名字(前边的用户所处在的用户组的名字). 第五个位置:对应文件所占的空间大小(单位为b) 第六~八个位置:Dec 4 19:16时间戳(最后一次修改文件的时间) 最后一个位置:文件名 操作文件: 1.创建一个普通文件:touch 文件名 2.删除一个文件:rm(remove) 文件名 3.新建一个目录:mkdir(make directory) 目录名 递归创建目录:mkdir -p 目录1/目录2/目录3 4.删除一个目录:rmdir 目录名.//仅删除一个空目录 rm -rf 目录名//删除一个非空目录 5.切换目录(change directory):cd 路径 linux下的路径分两种 相对路径:以.(当前路径)为起点. 绝对路径:以/(根目录)为起点, 用相对路径的方式进入Music:cd ./Music 用绝对路径的方式进入Desktop:cd /home/linux/Desktop 返回上一级:cd ..

智能循迹小车___设计报告

智能循迹小车设计 专业:自动化 班级:自动化132 姓名:罗植升莫柏源梁桂宾 指导老师: 2014年4月——2010年6月 摘要:

本课题是基于STC89C52单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。小车系统以 STC89C52单片机为系统控制处理器;采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。 引言

当今世界,传感器技术和自动控制技术正在飞速发展,机械、电气和电子信息已经不再明显分家,自动控制在工业领域中的地位已经越来越重要,“智能”这个词也已经成为了热门词汇。现在国外的自动控制和传感器技术已经达到了很高的水平,特别是日本,比如日本本田制作的机器人,其仿人双足行走已经做得十分逼真,而且具有一定的学习能力,还据说其智商已达到6岁儿童的水平。 作为机械行业的代表产品—汽车,其与电子信息产业的融合速度也显著提高,呈现出两个明显的特点:一是电子装置占汽车整车(特别是轿车)的价值量比例逐步提高,汽车将由以机械产品为主向高级的机电一体化方向发展,汽车电子产业也很有可能成为依托整车制造业和用车提升配置而快速成为新的增长点;二是汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具有交通、娱乐、办公和通讯等多种功能。 无容置疑,机电一体化人才的培养不论是在国外还是国内,都开始重视起来,主要表现在大学生的各种大型的创新比赛,比如:亚洲广播电视联盟亚太地区机器人大赛(ABU ROBCON)、全国大学生“飞思卡尔”杯智能汽车竞赛等众多重要竞赛都能很好的培养大学生对于机电一体化的兴趣与强化机电一体化的相关知识。但很现实的状况是,国内不论是在机械还是电气领域,与国外的差距还是很明显的,所以作为机电一体化学生,必须加倍努力,为逐步赶上国外先进水平并超过之而努力。 为了适应机电一体化的发展在汽车智能化方向的发展要求,提出简易智能小车的构想,目的在于:通过独立设计并制作一辆具有简单智能化的简易小车,获得项目整体设计的能力,并掌握多通道多样化传感器综合控制的方法。所以立“智能循迹小车”一题作为尝试。 此项设计是在以杨老师提供的小车为基础上,采用AT89C52单片机作为控制核心,实现能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。

智能小车课程设计

智能循迹小车 【摘要】 本课题是基于低功耗单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。小车系统以单片机为系统控制处器;采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。 一、实验目的 这次设计智能小车的目的是为了掌握电路设计的方法和技巧。如何将学习到的理论知识运用到实际当中去,怎样能够活学活用,深入的了解电子元器件的使用方法,了解各种元器件的基本用途和方法,能够灵活敏捷的判断电路中出现的故障,学会独立设计电路,积累更多的设计经验,加强焊接能力和技巧,完成基本的要求。并能完美的完成这次实训。 根据老师给的控制要求,和自己的发挥扩充能力,独立的,大胆的去实践,开拓创新,能够将自己的想法体现到实际电路当中去。 二、设计方案 该智能车采用红外传感器对赛道进行道路检测,单片机根据采集到的信号的不同状态判断小车当前状态,通过电机驱动芯片发出控制命令,控制电机的工作状态以实现对小车姿态的控制。 三、各芯片说明 W981216BH-6 一种髙速度同步动态随机存取存储器(SDRAM),具有1M 字(words) *4 层(banks)*16 位(bits)的存储结构组织.传输数据带宽最高达166M 字/秒(-6)。

对SDRAM是否访问是突发导向。在一个页面连续的内存位置可在一个1, 2, 4, 8或整页突发访问时长和行选择组由活动命令。列地址自动生成的SDRAM 的内部计数器在突发运作。随机栏也可以通过阅读在每个时钟周期提供其地址。该多组特性使交织在内部银行隐藏预充电时间。通过让一个可编程的模式寄存器,该系统可以改变突发长度,延时周期,交错或连续突发最大限度地发挥其性能。 W981216BH是在理想的主内存高性能应用。 特征: 1、.3V±0.3V电源 2、截至143 MHz时钟频率 3、2,097,152字×4层×16 位组织 4、自动刷新和自刷新 5、CAS 延时:2和3 6、突发长度:1, 2, 4, 8,和整页 7、突发读,写单人模式 8、自动预充电和预充电控制 9、4K刷新周期/ 64 ms TE28F160C3BD70(快闪记忆体)

智能循光小车毕业设计论文

毕业设计(论文) 智能循光小车设计 教学单位: 专业名称: 学号: 学生姓名: 指导教师: 指导单位: 完成时间:

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日导师签名:日期:年月日

智能小车课程设计报告书

※※※※※※※※※ 级学生※※2015※※课程设计材料※※※※※※※※※※※ 课程设计报告书 课题名称智能小车蓝牙操控和循迹的实现 名姓 学号 院学 专业 指导教师 2019年2月15日 设计目的1 通过设计进一步掌握51单片机的应用,特别是在嵌入式系统中的应用。进一步学习51单片机在系统中的控制功能,能够合理设计单片机的外围电路,并使之与单片机构成整个系统。 2功能要求

智能小车作为现代的新发明,是以后的发展方向,他可以按照预先设定的模式在一个环境里自动运作,不需要人为的管理,可应用于科学勘探等等用途;并且能实现显示时间、速度、里程,具有自动寻迹、寻光、避障等功能,可程控行驶速度、准确定位停车,远程传输图像、按键控制加速,减速,刹停,左转和右转、实时显示运行状态等功能。 3 总体设计方案 在现有玩具电动车的基础上,加了四个按键,实现对电动车的运行轨迹的启动,并将按键的状态传送至单片机进行处理,然后由单片机根据所检测的各种按键状态实现对电动车的智能控制。这种方案能实现对电动车的运动状态进行实时控制,控制灵活、可靠,精度高,可满足对系统的各项要求。本设计采用AT89C51单 片机。以AT89C51为控制核心,利用按键的动作,控制电动小汽车的状态。加 装光电、红外线、超声波传感器,实现对电动车的速度、位置、运行状况的实时测量,并将测量数据传送至单片机进行处理,然后由单片机根据所检测的各种数据实现对电动小车的智能控制,如图1所示。简易智能电动车采用AT89C51单 片机进行智能控制。开始由手动启动小车,并复位初始化,当到达规定的起始黑线,由小车底部的红外光电传感器检测到第一条黑线后,通过单片机控制小车[2]。在白纸所做轨迹道路中,小车通过超声波传感器正前开始记数、显示、调速方检测和光电传感器左右侧检测,由单片机控制实现系统的自动避障功能。在电动车进驶过程中,采用双极式H型PWM脉宽调制技术,以控制小车调速;并采用 动态共阴显示行驶时间和里程。小车通过光电传感装置实现驶向光源并通过循迹保持小车在白纸范围内行驶。当小车到达终点第二次检测到黑线时,单片机控制小车停车。 总体设计框架图图1 4 硬件电路选取与设计

简易智能小车设计报告

简易智能小车设计 报告

嵌入式系统课程设计题目:简易智能小车 学院:机电工程学院 专业:自动化 班级: 学生: 学号: 指导教师: 目录

摘要 (1) 第1章绪论 (2) 1.1 简易智能小车的概述 (2) 1.1 主要研究工作 (3) 第2章硬件电路设计 (3) 2.1 总体方案的设计 (3) 2.2 LPC2103的简介 (3) 2.3 单元电路的设计 (5) 2.3.1控制系统模块 (5) 2.3.2 键盘显示板模块 (6) 2.3.3稳压电源模块 (7) 2.3.4 驱动电路模块 (8) 第3章软件设计 (10) 3.1 EasyJTAG-H 仿真器的使用 (10) 3.2 软件程序编写 (10) 第4章调试 (18) 4.1 电路焊接与检查 (18) 4.2 键盘显示板的调试 (18)

4.2 执行电路的调试 (18) 第5章结论 (19) 致谢...................................................................................................19参考文献 (20) 附录 (21) 附录1实物图 (21) 附录2 元器件清单表 (22)

摘要:本次课程设计采用ARM7系列LPC2103作为智能小车的检测和控制核心。利用PWM技术动态控制电动机的转速,来实 现直流调速的功能模块。经过键盘显示板上的八个按键,实现 小车不同方向的行驶,实现ARM与键盘显示板的人机对 话。 关键词:LPC2103、键盘显示板、L298整流电路、直流电机、稳压电源。 。

智能小车设计报告

智能小车 学校:江汉大学 学院:物信学院 班级、姓名: 10通信曹聪慧 10自二彭洋

摘要: 本系统采用STC89C52作为主控制芯片,采用7805作为稳压芯片,采用L9110芯片作为直流电机驱动,在PWM 控制下,小车自动寻路,快慢速行驶和转向。三者的结合使小车更加智能化,自动化,并用霍尔元件测速,用1602液晶把速度显示出来。电路结构简单,可靠性能高。 关键词:STC89C52单片机、PWM调速、自动循迹,测速

目录 1.系统方案 (4) 1.1 车体设计 (4) 1.2 控制器模块 (4) 1.3电机模块 (4) 1.4电机驱动模块 (5) 1.5测速模块 (5) 1.6电源模块 (5) 1.7最终方案 (6) 2.系统硬件设计 (7) 2.1电源模块的设计 (7) 2.1控制模块的设计 (6) 2.1循迹模块的设计 (6) 2.1电机驱动模块的设计 (7) 2.1测速模块的设计 (7) 3.软件程序的设计 (10) 3.1总体流程图 (10) 3.2软件大体思路 (10) 4.系统功能测试 (9) 4.1 问题分析及解决 (10) 5.总结 (12) (附录)

系统方案 1.1 车体设计 自己制作电动车。一般的说来,自己制作的车体比较粗糙,性能不太稳定。但只要对车体仔细制作,通过优良的控制算法,也能实现控制小车前进转弯的功能。 1.2 控制器模块 采用STC公司的STC89C52单片机作为主控制器。STC89C52是一个低功耗,高性能的51内核的CMOS 8位单片机,片内含8k空间的可反复擦些1000次的Flash只读存储器,具有256 bytes的随机存取数据存储器(RAM),32个IO口,2个16位可编程定时计数器。且该系列的51单片机可以不用烧写器而直接用串口或并口就可以向单片机中下载程序。我们自己制作51最小系统板,体积很小,下载程序方便,放在车上不会占用太多的空间。 1.3电机模块 方案一:采用步进电机实现物体的精确定位和方向控制。步进电机可以作为一种控制用的特种电机,可以精确地控制角度和距离。缺点是相对体积较大,力矩比较小,容易失步,而且价格比较昂贵。 方案二:采用普通直流电机。直流电机运转平稳,精度有一定的保证。直流电机控制的精确度虽然没有步进电机那样高,但完全可以满足本题目的要求。通过单片机的PWM输出同样可以控制直流电机的旋转速度,实现电动车的速度控制。并且直流电机相对于步进电机

智能小车控制系统设计

智能小车控制系统设计 ——ARM控制模块设计 EasyARM615是一款基于32位ARM处理器,集学习和研发于一体的入门级开发套件,该套件采用Luminary Micro(流明诺瑞)公司生产的Stellaris系列微控制器LM3S615。本系统设计是以EasyARM615开发板为核心,通过灰度传感器检测路面上的黑线,运用PWM直流电机调速技术,完成对小车运动轨迹等一系列的控制。同时利用外扩的液晶显示器显示出各个参数。以达到一个简易的智能小车。 本文叙述了系统的设计原理及方法,讨论了ISR集成开发环境的使用,系统调试过程中出现的问题及解决方法。 据观察,普通的玩具小车一般需要在外加条件下才能按照自己的的设想轨迹去行驶,而目前可借助嵌入式技术让小车无需外加条件便可完成智能化。在小车行驶之前所需作的准备工作是在地面上布好黑线轨迹,设计好的小车便可按此黑线行驶,即为智能小车。其设计流程如下: 1、电机模块 采用由达林顿管组成的H型PWM电路。PWM电路由四个大功率晶体管组成,H桥电路构成,四个晶体管分为两组,交替导通和截止,用单片机控制达林顿管使之工作在开关状态,根据调整输入控制脉冲的占空比,精确调整电机转速。这种电路由于管子工作只在饱和和截止状态下,效率非常没。H型电路使实现转速和方向的控制简单化,且电子开关的速度很快,稳定性也极强,是一种广泛采用的PWM调整技术。 具体电路如下图所示。本电路采用的是基于PWM原理的H型驱动电路。该电路采用TIP132大功率达林顿管,以保证电动机启动瞬间的8安培电流要求。

2、传感器模块 灰度测量模块,是一种能够区分出不同颜色的的电子部件。灰度测量模块是专为机器人设计的灰度传感器。例如:沿着黑色轨迹线行走,不偏离黑色轨迹线;沿着桌面边沿行走,不掉到地上,等等。足球比赛时,识别场地中灰度不同的地面,以便于进行定位。不同的物体对红外线的反射率不同,黑色最低,白色最高;它通过发射红外线并测量红外线被反射的强度来输出反映物体颜色的电压信号,有效距离3-30毫米。 其技术规格如下: 已知灰度传感器的输出电压为0-3.3V,所以可通过ARM615开发板上的ADC 模块转换成数字信号,最后通过不断测试得出黑线与白线的大概参数值,完成对小车传感器部分的设计。 在本次设计中选择二个灰度传感器,其实现效果与布局如下所示。

开题报告(智能小车)

CHAHGZH0U 開TfRIE OF ENGINEERWG TECHNOLOGY 毕业设计(论文)开题报告 现状: 智能小车发展很快,从智能玩具到其它各行业都有实质成果。其基本可实 现循迹、避障、检测贴片寻光入库、避崖等基本功能,这几届的电子设计大赛 智能小车又在向声控系统发展。比较出名的飞思卡尔智能小车更是走在前列。 我此次的设计主要实现循迹避障这两个功能。 智能车辆也叫无人车辆,是一个集环境感知、规划决策和多等级辅助驾驶 等功能于一体的综合系统。它具有道路障碍自动识别、自动报警、自动制动、 自动保持安全距离、车速和巡航控制等功能。智能车辆的主要特点是在复杂的 道路情况下,能自动的操纵和驾驶车辆绕开障碍物并沿着预订的道路进行。智 能小车主要运用领域包括军事侦察与环境检测、探测危险与排除险情、安全检 测受损评估、智能家居。 发展趋势: 智能循迹小车可广泛应用于军事侦察、勘探、矿产开采等不便于人员实地 堪察 的环境。稍加改造,可应用于军事反恐、警察维和等领域,从而达到最大 限度的避免人员伤亡,保存战斗实力的目的。因此,具有重要的军事和经济意 义。 随着汽车工业的,其与电子信息产业的融合速度也显着提高,汽车开始向 电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具 有交通、娱乐、办公和通讯等多种功能。智能小车是一个集环境感知、规划决 策,自动行驶等功能与异地的综合系统,它集中的运用了计算机、传感、信息、 通信、导航及自动控制等技术,是典型的高新技术综合体。 、基本信息 学生姓名 倪小玉 班级 电子0911 学号 2009238108 系名称 自动化技术系 专业 应用电子 毕业设计(论文)题目 智能循迹小车的设计 指导教师 李玮 二、开题意义 课题 的现状与 发展趋势

智能循迹小车实验报告

简单电子系统设计报告 ---------智能循迹小车 学号201009130102 年级10 学院理学院 专业电子信息科学与技术 姓名马洪岳 指导教师刘怀强

摘要 本实验完成采用红外反射式传感器的自寻迹小车的设计与实现。采用与白色地面色差很大的黑色路线引导小车按照既定路线前进,在意外偏离引导线的情况下自动回位。 本设计采用单片机STC89C51作为小车检测、控制、时间显示核心,以实验室给定的车架为车体,两直流机为主驱动,附加相应的电源电路下载电路,显示电路构成整体电路。自动寻迹的功能采用红外传感器,通过检测高低电平将信号送给单片机,由单片机通过控制驱动芯片L298N驱动电动小车的电机,实现小车的动作。 关键词:STC89C51单片机;L298N;红外传感器;寻迹 一、设计目的 通过设计进一步掌握51单片机的应用,特别是在控制系统中的应用。进一步学习51单片机在系统中的控制功能,能够合理设计单片机的外围电路,并使之与单片机构成整个系统。 二、设计要求 该智能车采用红外传感器对赛道进行道路检测,单片机根据采集到的信号的不同状态判断小车当前状态,通过电机驱动芯片L298N发出控制命令,控制电机的工作状态以实现对小车姿态的控制,绕跑到行驶一周。 三、软硬件设计 硬件电路的设计 1、最小系统:

小车采用atmel公司的AT89C52单片机作为控制芯片,图1是其最小系统电路。主要包括:时钟电路、电源电路、复位电路。其中各个部分的功能如下: (1)、电源电路:给单片机提供5V电源。 (2)、复位电路:在电压达到正常值时给单片机一个复位信号。 图1 单片机最小系统原理图 2、电源电路设计: 模型车通过自身系统,采集赛道信息,获取自身速度信息,加以处理,由芯片给出指令控制其前进转向等动作,各部分都需要由电路支持,电源管理尤为重要。在本设计中,51单片机使用5V电源,电机及舵机使用5V电源。考虑到电源为电池组,额定电压为4.5V,实际充满电后电压则为4-4.5V,所以单片机及传感器模块采用最小系统模块稳压后的5V电源供电,舵机及电机直接由电池供电。 3、传感器电路:

智能小车控制系统开题

毕业设计(论文)开题报告 题目智能小车控制系统研究 系部车辆工程系 专业 学生姓名学号 指导教师职称讲师 毕设地点 2016年1 月16 日

1.结合毕业设计(论文)课题任务情况,根据所查阅的文献资料,撰写1500~2000字左右的文献 综述: 一丶选题背景 智能汽车的概念在上世纪80 年代初由美国提出,随着智能控制算法的不断发展,以及硬件设备的快速更新,对智能车的发展起到了巨大的促进作用。同时交通问题也逐渐成为世界各个国家都要面临的重要问题,这也加快了新技术、新方法的应用。在这样的背景下智能车的研究逐渐成为新的热点。 当前世界公路的总里程每年都在高速增长,同时汽车的总量也在成倍增加,其中我国的增量更是非常明显,随着汽车的越来越多,出现交通事故的概率也在不断提高。世界各国为了解决这方面的问题提出了很多的想法,而智能车是众多想法中最可行的一种解决当前问题的方法。许多国家在无人驾驶汽车和智能交通系统的研究上都取得了不错的成果,有些研究结构已经研制成功了智能车的原型,并进行相关试验。最近10 年在传统汽车中半导体和电子技术应用的越来越多。汽车产业已经进入到了电子时代,智能汽车将是未来的发展趋势。根据相关部门的统计数据,2012 年之后生产的汽车,汽车上电子装置系统占整个汽车总成本超过30%,甚至在一些配置较高的汽车上,比重超过50%。 随着改革开放的不断深入,我国经济在过去的一段时间迅速崛起,人民的生活水平和幸福指数每年都在提高,拥有一辆汽车也不在是一个的梦想,而是变成了一个很多家庭都能消费的起的代步工具,当前我国的汽车数量,每年以两位数增长,然而我国的公共配套却相对落后,这就造成了我国严重的交通问题,道路拥挤十分严重,出现了开车不如骑车快的现象。 因此发展智能车和智能交通系统,是解决现有问题的一种有效的方法,通过不断的研究会在交通拥堵、减少事故方面起到十分显著的作用。未来通过无人驾驶技术,实现汽车的自动行驶,对于我国汽车、控制、电子等领域在新时期提高国际竞争力和自主创新能力有着重要的作用。 智能汽车控制系统的研究是一项复杂的系统工程,其中包含了机械、电子、自动循迹、自适应控制、机器人技术、传感器技术等多学科相互交融的一项研究。智能车通过多个传感器模块的协同工作,经过控制单元进行决策实现汽车的自动行驶、最优化路径等功能。 同时无人驾驶智能车在货运、农业生产、军事等领域具有很好的应用前景。 综上所述,发展智能汽车控制技术能够提高我国在微电子技术、人工智能、电机控制等新技术领域的技术水平。同时随着智能汽车的不断发展也能够有效的改善现有的交

智能小车单片机课程设计报告

单片机课程设计 题目: 智能小车设计 专业: 计算机科学与技术 班级: 14级2班 姓名学号组长 成员 成员 成员 成员 2016 年 12 月 23 日

打开命令行终端的快捷方式: ctr+al+t:默认的路径在家目录 ctr+shift+n:默认的路径为上一次终端所处在的路径. linux@ubuntu:~$ linux:当前登录用户名. ubuntu:主机名 :和$之间:当前用户所处在的工作路径. windows下的工作路径如C:\Intel\Logs linux下的工作路径是:/.../..../ ~:代表的是/home/linux这个路径.(家目录). ls(list):列出当前路径下的文件名和目录名. ls -a(all):列出当前路径下的所有文件和目录名,包括了隐藏文件. .:当前路径 ..:上一级路径 ls -l:以横排的方式列出文件的详细信息 total 269464(当前这个路径总计所占空间的大小,单位是K) drwxr-xr-x 3 linux linux 4096 Dec 4 19:16 Desktop 第一个位置:代表的是文件的类型. linux系统下的文件类型有以下几种. b:块设备文件 c:字符设备文件 d:directory,目录 -:普通文件. l:连接文件. s:套接字文件. p:管道文件. rwxr-xr-x:权限 r:读权限 -:没有相对应的权限 w:写权限 x:可执行权限 修改权限:

chmod u-或者+r/w/x 文件名 chmod g-或者+r/w/x 文件名 chmod o-或者+r/w/x 文件名 第一组:用户权限 第二组:用户组的权限 第三组:其他用户的权限. chmod 三个数(权限) 文件名 首先根据你想要的权限生成二进制数,再根据二进制数转换成十进制的三位数 rwxr-x-wx 111101011 7 5 3 chmod 753 文件名 rwx--xr-x 第二个位置上的数字:对应目录下的子文件个数,如果是非目录,则数字是1 第三个位置:用户名(文件创造者). 第四个位置:用户组的名字(前边的用户所处在的用户组的名字). 第五个位置:对应文件所占的空间大小(单位为b) 第六~八个位置:Dec 4 19:16时间戳(最后一次修改文件的时间) 最后一个位置:文件名 操作文件: 1.创建一个普通文件:touch 文件名 2.删除一个文件:rm(remove) 文件名 3.新建一个目录:mkdir(make directory) 目录名 递归创建目录:mkdir -p 目录1/目录2/目录3 4.删除一个目录:rmdir 目录名.//仅删除一个空目录 rm -rf 目录名//删除一个非空目录 5.切换目录(change directory):cd 路径 linux下的路径分两种 相对路径:以.(当前路径)为起点. 绝对路径:以/(根目录)为起点, 用相对路径的方式进入Music:cd ./Music 用绝对路径的方式进入Desktop:cd /home/linux/Desktop 返回上一级:cd .. 返回加家目录的三种方式 (1).cd

智能小车设计报告

智能小车设计报告 魏旭峰、孔凡明、陈梦洋 (河北科技大学电气信息学院 ) 摘要: AT89S52单片机是一款八位单片机,他的易用性和多功能性受到了广大使用者的好评。该设计是结合科研项目而确定的设计类课题。本系统以设计题目的要求为目的,采用89S52单片机为控制核心,利用红外线传感器检测道路上的黑线,控制电动小汽车的自动寻路,快慢速行驶。整个系统的电路结构简单,可靠性能高。实验测试结果满足要求,本文着重介绍了该系统的硬件设计方法及测试结果分析。 采用的技术主要有: 通过编程来控制小车的速度及方向; 传感器的有效应用; 1602液晶显示的应用; 关键词: 89S52单片机、光电检测器、PWM调速、电动小车 第一章方案设计与论证 一供电系统 二光电检测系统 三单片机最小应用系统设计 四液晶显示1602的应用 五电机驱动 第二章软件设计 第二章方案设计与论证 根据要求,小车应在规定的赛道上行驶,赛道中央黑线宽为25MM,确定如下方案:在现有玩具电动车的基础上,加装光电检测器,实现对电动车的位置的实时 测量,并将测量数据传送至单片机进行处理,然后由单片机根据所检测的各种数据实现对电动车的转向和速度的智能控制. 这种方案能实现对电动车的运动状态进行实时控制,控制灵活、可靠,精度高,可满足对系统的各项要求。 一供电系统 本模块使用LM2940芯片输出+5V的电压,为89S52单片机光电检测电路供电,采用LM1117可控变压芯片输出+6V电压为舵机供电.而电机则由单片机来控制,当单片机输出的电压不同时,电机的转速不同,以此来达到控制小车速度的目的.电路如图:

二光电检测系统 本模块采用七对红外线发射和接收对管,来检测小车前方黑线位置和模拟车站停车位置.发射管发射管出红外线,当对管正下方为白色跑道时,发射管发射出去的红外线会被反射回来, 接收因接收到红外线

智能小车实训报告

智能小车实训报告 摘要: 本课题是基于AT89C52单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。小车系统以 AT89S52 单片机为系统控制处理器; 采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。 一、实验目的: 通过设计进一步掌握51单片机的应用,特别是在嵌入式系统中的应用。进一步学习51单片机在系统中的控制功能,能够合理设计单片机的外围电路,并使之与单片机构成整个系统。 二、设计方案 该智能车采用红外传感器对赛道进行道路检测,单片机根据采集到的信号的不同状态判断小车当前状态,通过电机驱动芯片L298N 发出控制命令,控制电机的工作状态以实现对小车姿态的控制。 三.报告内容安排 本技术报告主要分为三个部分。第一部分是对整个系统实现方法的一个概要说明,主要内容是对整个技术原理的概述;第二部分是对硬件电路设计的说明,主要介绍系统传感器的设计及其他硬件电路的设计原理等;第三部分是对系统软件设计部分的说明,主要内容是智

能模型车设计中主要用到的控制理论、算法说明及代码设计介绍等。 技术方案概要说明 本模型车的电路系统包括电源管理模块、单片机模块、传感器模块、电机驱动模块。 工作原理: 利用红外采集模块中的红外发射接收对管检测路面上的轨迹 将轨迹信息送到单片机 单片机采用模糊推理求出转向的角度,然后去控制 行走部分 最终完成智能小车可以按照路面上的轨迹运行。 硬件电路的设计 1、最小系统: 小车采用atmel公司的AT89C52单片机作为控制芯片,图1是其最小系统电路。主要包括:时钟电路、电源电路、复位电路。 其中各个部分的功能如下: 1、时钟电路:给单片机提供一个外接的16MHz的石英晶振。 2、电源电路:给单片机提供5V电源。 3、复位电路:在电压达到正常值时给单片机一个复位信号。

智能小车课程设计

精心整理 智能循迹小车 【摘要】 本课题是基于低功耗单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。小车系统以单片机为系统控制处器;采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。 一、实验目的 ????这次设计智能小车的目的是为了掌握电路设计的方法和技巧。如何将学习到的理论知识运用到实际当中去,怎样能够活学活用,深入的了解电子元器件的使用方法,了解各种元器件的基本用途和方法,能够灵活敏捷的判断电路中出现的故障,学会独立设计电路,积累更多的设计经验,加强焊接能力和技巧,完成基本的要求。并能完美的完成这次实训。 根据老师给的控制要求,和自己的发挥扩充能力,独立的,大胆的去实践,开拓创新,能够将自己的想法体现到实际电路当中去。 二、设计方案 该智能车采用红外传感器对赛道进行道路检测,单片机根据采集到的信号的不同状态判断小车当前状态,通过电机驱动芯片发出控制命令,控制电机的工作状态以实现对小车姿态的控制。三、各芯片说明 W981216BH-6 一种髙速度同步动态随机存取存储器(SDRAM),具有1M字(words)*4层(banks)*16位(bits)的存储结构组织.传输数据带宽最高达166M字/秒(-6)。 对SDRAM是否访问是突发导向。在一个页面连续的内存位置可在一个1,2,4,8或整页突发访问时长和行选择组由活动命令。列地址自动生成的SDRAM的内部计数器在突发运作。随机栏也可以通过阅读在每个时钟周期提供其地址。该多组特性使交织在内部银行隐藏预充电时间。通过让一个可编程的模式寄存器,该系统可以改变突发长度,延时周期,交错或连续突发最大限度地发挥其性能。W981216BH是在理想的主内存高性能应用。 特征: 1、.3V±0.3V电源

智能小车开题报告

华侨大学厦门工学院毕业设计(论文)开题报告 系:电气工程系专业班级:电气工程及其自动化4班

二、文献综述(国内外研究情况及其发展): 国外智能车辆的研究历史较长,始于上世纪50年代。它的发展历程大体可以分成三个阶段: 第一阶段 20世纪50年代是智能车辆研究的初始阶段。1954年美国Barrett Electronics 公司研究开发了世界上第一台自主引导车系统AGVS(Automated Guided Vehicle System)。 第二阶段从80年代中后期开始,世界主要发达国家对智能车辆开展了卓有成效的研究。在欧洲,普罗米修斯项目开始在这个领域的探索。在美洲,美国成立了国家自动高速公路系统联盟(NAHSC)。在亚洲,日本成立了高速公路先进巡航/辅助驾驶研究会。 第三阶段从90年代开始,智能车辆进入了深入、系统、大规模研究阶段。最为突出的是,美国卡内基.梅隆大学(Carnegie Mellon University)机器人研究所一共完成了Navlab系列的10台自主车(Navlab1—Navlab10)的研究,取得了显著的成就。 相比于国外,我国开展智能车辆技术方面的研究起步较晚,开始于20世纪80年代。而且大多数研究处在于针对某个单项技术研究的阶段。虽然我国在智能车辆技术方面的研究总体上落后于发达国家,并且存在一定得技术差距,但是我们也取得了一系列的成果,主要有: (1)中国第一汽车集团公司和国防科技大学机电工程与自动化学院与2003年研制成功我国第一辆自主驾驶轿车。 (2)南京理工大学、北京理工大学、浙江大学、国防科技大学、清华大学等多所院校联合研制了7B.8军用室外自主车,该车装有彩色摄像机、激光雷达、陀螺惯导定位等传感器。 可以预计,我国飞速发展的经济实力将为智能车辆的研究提供一个更加广阔的前景。因此,对智能小车进行深入细致的研究,不但能加深课堂上学到的理论知识,更能将理论转化为实际运用,为将来打下坚实的基础。

智能小车设计论文

单片机课程设计 题目智能小车的设计 学生姓名饶晓东 院(系)机械与电气工程学院 班级 10机械电子工程01班 学号 2010100548 指导老师于祯 完成日期 2013 年 5 月 31 日 南昌工程学院 课程设计(论文)任务书 I、课程设计(论文)题目: 智能小车的设计 II、课程设计(论文)使用的原始资料(数据)及设计技术要求: 通过Intel8253和1298N实现汽车的加速、减速、刹停,并可通过两个电

机的不同转速实现左转和右转等功能 III、课程设计(论文)工作内容及完成时间: 1、查阅资料,确定硬件系统框图组成。(5月20日~5月22日) 2、设计完整电原理图。(5月23日~5月25日) 3、设计软件结构流程框图。(5月26日~5月27日) 4、按流程编写各功能模块程序。(5月28日~5月29日) 5、完成课程设计报告(5月30日~5月31日) Ⅳ 主要参考资料: 1、张俊漠,单片机中级教程-原理与应用北京航空航天大学出版社2002 2、郭天祥,51单片机c语言教程 机械与电气系 10机械电子(本) 专业类 01班 学生:饶晓东 日期:自 2013 年 5 月20 日至 2013 年5 月31 日

指导教师:于祯 助理指导教师(并指出所负责的部分): 教研室主任 附注:任务书应该附在已完成的课程设计说明书首页。 摘要 智能作为现代的新发明,是以后的发展方向,它可以按照预先设定的模式在一个环境里自动的运作,不需要人为的管理,可应用于科学勘探等等的用途。智能电动车就是其中的一个体现。本次设计的简易智能电动车,采用AT89C52单片机作为小车的检测和控制核心;在小车行驶的过程中能够根据不同的要求通过改变PWM 输出改变小车的行驶速度。本设计结构简单,较容易实现,但具有高度的智能化、人性化,一定程度体现了智能。 采用的技术主要有: 1、通过AT89C52自带的定时器设置PWM输出来控制小车的速度; 2、电机驱动芯片L298N控制两个直流电机的转向; 3、数码管显示测量数据

相关文档