文档库 最新最全的文档下载
当前位置:文档库 › 位业内人士对基因检测的看法

位业内人士对基因检测的看法

位业内人士对基因检测的看法
位业内人士对基因检测的看法

某一位业内人士对基因检测相关认识

人体和几乎所有生命体(某些RNA病毒和朊病毒除外)每一个细胞里面都有一套完整的基因组DNA,好比是一本完整的蓝图+施工手册。从受精卵开始,生命体就从这套手册选择不同的章节搭建不同功能的细胞,并让它们执行相应的功能。每个人的这套手册都略有不同(大多数就是前述的SNP),这些不同之处定义了人种、皮肤头发眼睛颜色等所有性状,也定义了对疾病的敏感性。上述三个公司代表的基因健康咨询产业,说白了就是试图找到一些与疾病相关的SNP位点,检测它们的状态,然后计算出一个概率,最后交到被检测者的手里。

但是问题就出在这个原理上面:首先什么样的SNP位点是真的与疾病相关的?其次它的相关性到底有多少?

前一个问题基本是靠大规模的关联性分析,其实是个统计学的概念。打个最极端的比方,找一千个身高2米的小明,再找一千个1米4的小明,假定他们的人种、营养这些背景都一致,然后找一个SNP 位点(假定这个位点有A、B两种状态),在这两千人里面看一看有多少人在这个位点上是A,多少人是B,如果1000个高个子在这个位点上都是A,而1000个矮个子都是B,那么我们就可以比较肯定地说这个位点与身高的相关性非常强,一个婴儿刚生出来,就检查到他这个位点是A状态,那他长大后就有很大的几率长成高个子。

但这是非常理想非常极端的假设,实际上只有很少量单基因疾病(比如某种先天性耳聋)有这样斩钉截铁的结论,身高、体重、高血压、糖尿病、癌症,都是几百种基因相互纠结、再加上环境因素累加影响,再加上时间因素,才会表现出最后的差异。所以现在的人类遗传学里面,其实大家都是在尽可能地加大统计的人群,尽可能地寻找人种和背景条件一致的人群,尽可能地提高自己研究的统计力和概率的有效性。即使如此,不同的研究小组之间出来的结论也往往千差万别,而且由于他们选取的统计人群样本是不太会互相共享的,这种结论也就很少有条件由其他小组独立地重复核实。

到了这个时候,你就可以明白为什么这些基因遗传咨询公司给出的报告差异这么大。首先,他们选择的SNP位点可能来自于不同研究报告的结论,这些结论有的经过反复的检验,形成了金标准,但是还有一些并没有那么的靠谱;其次他们采用的检测技术和分析方案各有不同,同一个SNP位点的同一种状态,根据不同的分析方法也许就会出现不同的概率;最后他们在给出报告的时候,对人种、生活方式、环境因素的考量方式不同,也就会出现不同的概率。

那么现在基因检测里面有没有特别有临床意义,值得一做的呢?有!试列几个:

1. 乳腺癌易感基因BRCA1/2突变,其重要性已经被很多研究反复证实过,算是不多的可靠位点了。但是Angelina Julie是不是应该马上动刀切掉,个人意见是不以为然,实际上不如加强早期筛查,改善生活方式。

2. 癌症化疗药物的耐药基因,其中大多数都是经过大量临床实验验证的,针对特定癌症、特定药物,其关联性是比较高的。在确定化疗方案之前先选择相关药物耐药基因进行筛查,可以有效提高化疗方案的成功概率。

3. 通过采集母体血液进行胎儿染色体异常疾病(如唐氏综合症)无创筛查,准确率已经达到羊水穿刺等传统方法相同的水平。

基因检测具体实例

1)文章提到的基因检测,其实确切的说是direct to consumer genetics testing (直接面向用户的基因检测)。通常使用的方法是通过检测某些基因位点(这里不是对基因(组)进行测序)然后对一些常见病风险进行评估,给出一个患病的百分比,然后用户根据检测结果,在日后的生活中对饮食,生活方式以及相关的方面进行预防和干预。这种检测,个人认为更具“娱乐”性质,不太具有临床指导

意义。为什么呢?首先给出一个百分比就是一个很难解读的结果。比如,患二型糖尿病的风险26%,相比于平均人群的风险24% 高出2个百分点,这个2个百分点之于一个个体而言意义几乎为零。其次,评估风险的疾病大部分是一些常见病。不同于罕见病(大多数是单基因或少数基因造成,且基因型和疾病表型的关系比较简单明了)的是常见病大多数是多基因,以及基因和环境的相互作用造成,致病机理也相对复杂。目前,通过GWAS研究找到的和常见病相关的基因位点(具体方法原理参见火焰之河的回答里面关于2米小明的例子),很多只是证明的相关性,但是对造成疾病的作用(effect)有多大,有的还没有很好的功能性实验的证据。所以说,对常见病的患病的风险评估本身是一个非常具有挑战性的工作,目前的基因检测也只能做到靠大量的数据统计计算一个百分比的程度,生物学意义和临床意义都不大。 2)这种直接面向用户的基因检测其实是基因检测发展到近期,努力市场化的一个产物。但是这并不代表基因检测的全部应用。很多消费者其实不了解基因检测的应用,错误的认为基因检测就是用来预测疾病风险的,这样误解加上new york times上这样的报道,很容易让人们产生基因检测“不靠谱”的错误印象。事实上,基因检测还大量运用在临床检测方面(不同于直接面向用户的基因检测,这样的服务可以称作面向医生/病人的基因检测),这也是我一直强调的具有临床意义的基因检测。个人认为,目前的技术水平将基因检测使用在确切的具有临床指导意义的医学检测更实际,也更加“靠谱”。那么临床上如何应用基因检测的呢?这里举几个例子

本人工作的地方是美国一家大学附属医院下面的独立实验室,主要提供罕见病的基因检测。这里检测的大部分样本不是来自于“健康人群”,而是来自于病人的。这些病人因为出现某些罕见病的症状,去看医生,然后医生根据身体检查,做一些基本的检测,怀疑某种罕见病。于是,为了帮助确诊,医生将病人refer到实验室做基因检测。向我上面提到的,罕见病一般是单基因或者少数基因的突变造成的疾病,并且基因和疾病的关系比较明确,所以这类针对罕见病的检测,一般不会检测整个基因组,而只是针对可能的一个或几个致病基因进行深度的测序和分析。一旦找到明确的致病基因,那么该疾病的诊断便可以确立。再加上大部分罕见病也是遗传病,所以基因检测的同时,还为病人及家属提供遗传咨询服务,比如显性隐性的遗传概率多大;父母能否生育正常的孩子;病人将来生育遗传疾病给下一代的概率多大,等等之类。

关于罕见病,目前还有个应用就是:有少数的病人患了病后,根据临床症状连医生都没办法确切地知道是什么疾病,通常这个叫做undiagnosed disease(未确诊的疾病)。这样的病人现在有一个选择,就是做全基因组或者全外显子组测序,试图通过这样的基因检测,找到致病基因,然后把基因以及已知基因的功能和临床症状联系起来,看看能不能试图找到治疗方案。目前美国有实验室和公司都有提供这样的服务,也的确有病人通过这样的基因检测最后确诊了疾病,并且得到有效的治疗。不过这个技术目前更多使用在比较棘手的病人身上,因为测序尤其是数据的分析和解读非常困难且耗时,需要有经验的专业人员来做。

基因检测目前还用于癌症的诊断和治疗,主要在指导靶向药物的使用。比如病人患了癌症,可以对其癌变的组织进行检测,察看是哪个突变基因造成的癌症。肺癌白血病等都有针对某一个突变基因的靶向抗癌药物。如果病人刚好携带那个突变的基因,便可以使用对应的靶向药。这样的治疗不同于化疗,对病人的伤害比较小。但临床上有时候是和传统方法结合起来使用。但是,目前的靶向药物不多,如果病人即便得了癌症,但是不携带靶向药物针对的突变基因,那么靶向药物就起不到作用。

同样还是癌症,最近有研究发现对于癌症的划分可以不再遵循发病的器官,比如乳腺的癌变就是乳腺癌,结肠的癌变就是结肠癌。而根据基因检测的结果,可以把癌症按照致病的突变基因来划分。比如两个不同的病人,一个乳腺癌,一个宫颈癌,看似不同的疾病,但是可能是同样的基因突变造成的,且癌变组织里的其他分子特征都非常类似。那么这种情况下,可以把用于该突变基因的靶向药物同时使用在不同的癌症病人身上。这种做法已经在一些临床案例中证明有效的。去年大概CNN还是某个知名媒体就报道了一个神奇的案例,那个病人患白血病,不断地化疗但是复发,后来通过基因检测和基因表达谱

的检测,找到异常基因是一个经常造成肾癌的突变基因。于是医生大胆地把治疗肾癌的药物用在这个病人身上,结果白血病治好了。

药物基因检测。这个在临床上也有应用。因为每个人对药物的代谢和反应是不同的,这个主要是由体内药物代谢的酶决定的。为了防止不良药物反应,主要针对病人代谢药物的基因进行检测,根据不同的基因型,来给病人特定剂量的药物。比如用于针对抗血栓药物的warfarin(华法令)的药物基因检测,目前比较广泛应用在临床。

基因突变的检测方法

基因突变的检测方法 基因突变的研已成为当今生命科学研究的热点之一,检测方法也随之迅速发展。人类细胞癌基因的突变类型已如上所述,对于基因突变的检测,1985以前,利用Southern印迹法,可以筛选出基因的缺失、插入和移码重组等突变形式。对于用该法法不能检测的突变,只能应用复杂费时的DNA序列测定分析法。多聚酶链反应(polymerase chain reaction,PCR)技术是突变研究中的最重大进展,使基因突变检测技术有了长足的发展,目前几乎所有的基因突变检测的分子诊断技术都是建立于PCR的基础之上,并且由PCR衍生出的新方法不断出现,目前已达二十余种,自动化程度也愈来愈高,分析时间大大缩短,分析结果的准确性也有很大很提高。其中包括单链构象多态性(single-strand comformational polymorphism,SSCP)和异源双链分析法(heteroduplex analysis,HA)。下面分别介绍几种PCR衍生技术及经典突变检测方法,可根据检测目的和实验室条件选择时参考。 PCR-SSCP法 PCR-SSCP法是在非这性聚丙烯酰胺凝胶上,短的单链DNA和RNA分子依其大街基序列不同而形成不同构象,一个碱基的改变将影响其构象而导致其在凝胶上的移动速度改变。其基本原理为单链DNA在中性条件下会形成二级结构,这种二级结构依赖于其碱基组成,即使一个碱基的不同,也会形成不同的二级结构而出刺同的迁移率。由于该法简单快速,因而被广泛用于未知基因突变的检测。用PCR-SSCP法检测小于200bp的PCR产物时,突变检出率可达70%-95%,片段大于400bp时,检出率仅为50%左右,该法可能会存在1%的假阳性率。应用PCR-SSCP法应注意电泳的最佳条件,一般突变类型对检测的灵敏度无大的影响,同时该法不能测定突变的准确位点,还需通过序列分析来确定。Sarkar等认为对于大于200bp的片段,用其RNA分子来做SSCP会提高其录敏度。应用PCR-SSCP检测点突变已见报道于人类大部分的肿瘤组织或细胞,如乳腺癌、食管癌、肺癌、胃癌、肝癌、胰腺癌等。检测的基因包括多种癌基因及抑癌基因,也是检测抑癌基因p53突变最常用的方法,仅检测第5-8外显子即可发现85%以上的p53基因突变。由于该法简便快速,特别适合大样本基因突变研究的筛选工作。 异源双链分析法(HA) HA法直接在变性凝胶上分离杂交的突变型一野生型DNA双链。由于突变和野生型DNA形成的异源杂合双链DNA在其错配处会形成一突起,在非变性凝胶中电泳时,会产生与相应的同源双DNA不同的迁移率。该法与SSCP相似,所不同的是SSCP分离的是单链DNA,HA法分离的是双链DNA,也只适合于小片段的分析。但HA对一些不能用SSCP 检出的突变有互补作用,两者结合使用,可使突变检出率提高到近100%。

基因表达的检测的几种方法

基因表达检测的最终技术目标是能确定所关注的任何组织、细胞的 RNA的绝对表达量。可以先从样本中抽提RNA,再标记RNA, 然后将这些标记物作探针与芯片杂交,就可得出原始样本中不同 RNA的量。然而用于杂交的某个特定基因的RNA的量与在一个 相应杂交反应中的信号强度之间的关系十分复杂,它取决于多种 因素,包括标记方法、杂交条件、目的基因的特征和序列。所以 芯片的方法最好用于检验两个或多个样本中的某种RNA的相对 表达量。样本之间某个基因表达的差异性(包括表达的时间、空 间特性及受干扰时的改变)是基因表达最重要的,而了解RNA 的绝对表达丰度只为进一步的应用或多或少地起一些作用。 基因表达的检测有几种方法。经典的方法(仍然重要)是根据在 细胞或生物体中所观察到的生物化学或表型的变化来决定某一 特定基因是否表达。随着大分子分离技术的进步使得特异的基因 产物或蛋白分子的识别和分离成为可能。随着重组DNA技术的 运用,现在有可能检测.分析任何基因的转录产物。目前有好几 种方法广泛应用于于研究特定RNA分子。这些方法包括原位杂交.NORTHERN凝胶分析.打点或印迹打点.S-1核酸酶分 析和RNA酶保护研究。这里描述RT-PCR从RNA水平上检查 基因表达的应用。8 f3 f- |2 L) K) b7 ]- ~- | RT-PCR检测基因表达的问题讨论

关于RT-PCR技术方法的描述参见PCR技术应用进展,在此主要讨论它在应用中的问题。理论上1μL细胞质总RNA对稀有mRNA扩增是足够了(每个细胞有1个或几个拷贝)。1μL差不多相当于50-100,000个典型哺乳动物细胞的细胞质中所含RNA的数量,靶分子的数量通常大于50,000,因此扩增是很容易的。该方法所能检测的最低靶分子的数量可能与通常的DNAPCR相同;例如它能检测出单个RNA分子。当已知量的转录RNA(用T7RNA聚合酶体外合成)经一系列稀释,实验结果表明通过PCR的方法可检测出10个分子或低于10个分子,这是反映其灵敏度的一个实例。用此技术现已从不到1个philadelphia染色体阳性细胞株K562中检测到了白血病特异的MRNA的转录子。因此没必要分离polyA+RNA,RNA/PCR法有足够的灵敏度来满足绝大多数实验条件的需要。 7 H+ F& _* S6 W( a8 p: [, @- d, { 将PCR缓冲液同时用于反转录酶反应和PCR反应,可简化实验步骤。我们发现整个反应过程皆用PCR缓冲液的结果相当于或优于先用反转录缓冲液合成CDNA,然后PCR缓冲液进行PCR扩增循环。当然,值得注意的是PCR缓冲液并不最适合第一条DNA链的合成。我们对不同的缓冲液用于大片段DNA 合成是否成功还没有进行过严格的研究。

(3)理解基因突变的检测方法

第十章基因突变 一、教学目的与要求: (1)了解基因突变的类型和性质、特征 (2)掌握基因突变分子机理和诱变因素的作用方式 (3)理解基因突变的检测方法 (4) 掌握基因突变的修复途径 二、教学重点、难点、疑点: 1.突变的概念、类型和性质 2.诱发突变的分子基础 3.诱发突变与人类癌症 4.生物体基因突变的修复机制 5.果蝇基因突变的检出 6.植物基因突变的检出 7.人类基因突变的检出 [解决方法] (1)通过出示基因结构变化的示意图,加深学生对基因突变内涵的理解。 (2)课堂教学中不断提出问题,让学生通过概念的运用达到巩固概念和知识迁移的目的。 2.教学难点及解决办法 基因突变的原因。 [解决办法] 对人类镰刀型细胞贫血症病因结合图解进行分析,使学生真正明白基因突变的原因——DNA复制过程也可能发生差错,基因中个别碱基的变化,就会造成性状改变。 3.教学疑点及解决办法 为什么说基因突变是变异的主要来源? [解决办法]讲明基因突变与基因重组的区别,联系实际举例。 三、教学方法设计: 四、教具或教学手段:多媒体课件 五、教学过程与板书设计:

第一节基因突变的概念和特征 一、基因突变的概念及类别 1、基因突变:指在染色体上一定位点基因内部的化学变化引起的突变基因突变:指染色体上一定位点基因内部的化学变化引起的突变 2、类别 隐性突变:A a 显性突变:a A 自发突变—外界环境条件的自然作用或生物体内的生理生化变化而产生的突变 诱发突变—在专门诱变因素影响引起的突变,为“诱发突变” 形态突变型—可见突变:指造成外形改变的突变型 至死突变型—能造成个体死亡或生命力明显下降的突变型 条件突变型—在一定条件下有致死效应 3.一般特征 ①突变的频率:指生物体在每一世代中发生突变的机率,或者在一定时 间内突变可能发生的次数。 高等植物 10-5— 10-8 细菌和噬菌体 10-4—10-10范围大、突变频率比动植物高 例如:氨基酸过程中三种疾病是由三种基因突变导致酶发生变化引起的,有一定的突变频率 苯丙氨酸羟化酶缺乏导致苯丙酮尿症;尿黑尿酸氧化酶缺乏会产生尿黑酸尿症;酪氨酸酶缺乏导致白化病 苯丙氨酸羟化酶 苯丙酮酸苯丙氨酸酪氨酸 积累尿黑尿酸氧化酶 酪氨酸酶 苯丙酮尿症尿黑酸黑色素

基因突变的检测方法(完整资料).doc

此文档下载后即可编辑 基因突变的检测方法 基因突变的检测方法 基因突变的研已成为当今生命科学研究的热点之一,检测方法也随之迅速发展。人类细胞癌基因的突变类型已如上所述,对于基因突变的检测,1985以前,利用Southern印迹法,可以筛选出基因的缺失、插入和移码重组等突变形式。对于用该法法不能检测的突变,只能应用复杂费时的DNA序列测定分析法。多聚酶链反应(polymerase chain reaction,PCR)技术是突变研究中的最重大进展,使基因突变检测技术有了长足的发展,目前几乎所有的基因突变检测的分子诊断技术都是建立于PCR的基础之上,并且 由PCR衍生出的新方法不断出现,目前已达二十余种,自动化 程度也愈来愈高,分析时间大大缩短,分析结果的准确性也有很大很提高。其中包括单链构象多态性(single-strand comformational polymorphism,SSCP)和异源双链分析法(heteroduplex analysis,HA)。下面分别介绍几种PCR衍生技术及经典突变检测方法,可根据 检测目的和实验室条件选择时参考。 PCR-SSCP法PCR-SSCP法是在非这性聚丙烯酰胺凝胶上,短的单链DNA和RNA分子依其大街基序列不同而形成不同构象, 一个碱基的改变将影响其构象而导致其在凝胶上的移动速度改变。其基本原理为单链DNA在中性条件下会形成二级结构,这种二级结构依赖于其碱基组成,即使一个碱基的不同,也会形成不同的二级结构而出刺同的迁移率。由于该法简单快速,因而被广泛用于未知基因突变的检测。用PCR-SSCP法检测小于200bp 的PCR产物时,突变检出率可达70%-95%,片段大于400bp时,检出率仅为50%左右,该法可能会存在1%的假阳性率。应用PCR-SSCP法应注意电泳的最佳条件,一般突变类型对检测的灵敏度无大的影响,同时该法不能测定突变的准确位点,还需通过

基因突变检测多少钱检测方法是什么

基因突变检测多少钱检测方法是什么 一代测序法(Sanger法): 科学家Sanger,于1977年建立,他本人也因此而获得了诺贝尔奖。该技术至今已用 三十多年,现在已相当成熟完善。人类基因组计划的测序工作就是使用该项技术完成的, 现在***的仪器是美国ABI公司的***3730型全自动遗传分析仪,是经过国际和国家认证的仪器,可重复性达到100%,是亲子鉴定和法医鉴定的专用仪器。该方法是目前基因检测的国际金标准。缺点是通量小,适合少量样本,可进行个性化位点检测,成本极高,比芯片 或高通量检测高100倍。 Taqman法: 准确性好,适合于大量样本、少量位点,价格贵,缺点是不能读出序列,不太直观。 质谱法: 准确性较好,缺点只能读出质量数据,不能读出序列,对于缺失和插入突变无法读出,但这种突变更加可怕,适合于大量样本、多位点(最多能检测25个位点),所以可能会 出现少量假阳性和假阴性。 二代基因检测芯片法: 适合于超多位点,大量样品检测和科研参考,每个样本做几百个位点和做几千个位点 的检测成本,相差无几,最大优点是成本低廉,一个位点的价格只相当于一代测序价格的1%,缺点是出来的大量数据,可信度不高。 我们都知道“是药三分毒”,癌症患者的过度治疗会造成患者的器脏损伤,甚至化疗 整个过程费钱费力却“不讨好”,所以进行在进行治疗之前先进行基因测序检测,会让靶 向药物治疗事倍功半。 肺癌的靶向药基因检测,现在很多公司都可以做,医院基本上也是外送公司做,看你 检测几个几个基因,一般不会超过7200,一般检测就是EGFR,融合基因ALK,ROS1,C-MET,中源协和基因检测。 一般的,基因检测是通过血液、其他体液、或细胞对DNA进行检测的技术。 基因检测可以诊断疾病,也可以用于疾病风险的预测。疾病诊断是用基因检测技术检 测引起遗传性疾病的突变基因。目前应用最广泛的基因检测是新生儿遗传性疾病的检测、 遗传疾病的诊断和某些常见病的辅助诊断。目前有1000多种遗传性疾病可以通过基因检 测技术做出诊断。

特定基因表达水平的检测

特定基因表达水平的检测(试剂制备、操作步骤和注意事项)2010-01-10 23:19:59 来源:易生物实验浏览次数:192 网友评论0 条 Northern杂交也采用琼脂糖凝胶电泳,将分子量大小不同的RNA 分离开来,随后将其原位转移至固相支持物(如尼龙膜、硝酸纤维膜等)上,再用放射性(或非放射性)标记的DNA 或RNA 探针,依据其同源性进行杂交,最后进行放射自显影(或化学显影),以目标RNA 所在位置表示其分子量的大小,而其显影强度则可提示目标RNA 在所测样品中的相对含量(即目标RNA 的丰度)。 关键词:基因表达 RNA -gel blot analysis 或Northern Blot 继分析DNA 的Southern杂交方法出现后,1977年Alwine等人提出一种与此相类似的、用于分析细胞总RNA 或含poly A尾的RNA 样品中特定mRNA 分子大小和丰度的分子杂交技术,这就是与Southern相对应而定名的Northern杂交技术。这一技术自出现以来,已得到广泛应用,成为分析mRNA 最为常用的经典方法。 与Southern杂交相似,Northern杂交也采用琼脂糖凝胶电泳,将分子量大小不同的RNA 分离开来,随后将其原位转移至固相支持物(如尼龙膜、硝酸纤维膜等)上,再用放射性(或非放射性)标记的DNA 或RNA 探针,依据其同源性进行杂交,最后进行放射自显影(或化学显影),以目标RNA 所在位置表示其分子量的大小,而其显影强度则可提示目标RN A 在所测样品中的相对含量(即目标RNA 的丰度)。但与Southern杂交不同的是,总R NA 不需要进行酶切,即是以各个RNA 分子的形式存在,可直接应用于电泳;此外,由于碱性溶液可使RNA 水解,因此不进行碱变性,而是采用甲醛等进行变性电泳。虽然North ern也可检测目标mRNA 分子的大小,但更多的是用于检测目的基因在组织细胞中有无表达及表达的水平如何。 一、试剂准备(易生物试剂购销平台https://www.wendangku.net/doc/7d10486260.html,/yp/product-list-43.html) 1、0.5M EDTA: EDTA16.61g加ddH2O至80ml, 调pH至8.0, 定容至100ml。

P53基因突变检测方法

2、试剂和耗材) GIAGEN,德国QIAamp?DNA Blood Mini Kit ()Platiinim?Taq DNA Polymerase High Fidelity (Invitrogen, 11304-102 Nuclease-Free Water (Promega,P 1195) d NTP Mix (Promega,P 151B) PCR引物:北京博迈德科技有限公司合成 DL10000 DNA Marker(TAKARA,大连宝生物)DNA分子定量标准:技术Bioer 产物回收纯化试剂盒(BioSpiii Gel Extraction kit,日本PCR有限公司)公司) Axygen, 200-1000 ul 吸头(美国110.5?10 u、2?20 u k 20-200 □、管EP、 仪.器3 ;Taimon1600R凝胶成像系统分析仪(上海天龙公司)Eppendorf 5417R 高速冷冻离心机(Eppendorf公司,德国)公司,美国)Allegra 6R离心机(Beckman-Coulter应涡旋混合器(北京北德科学仪器厂)MVS-1公司,德国) 1000 u 150 口1、200 ul、(Eppendorf^ 口1 移液器、10 U 1、NEWAIR 公司,美国)1【级生物安全柜NU425-400E (拓速冷冻离心机(BECKMAN COULTER 公司,美国)X-15R 公司德国)仪(Eppendorf Eppendorf Masteicycter PCR 公司,美国)(Bio-Rad电泳仪:Universal 024BR电热恒温水浴器(北京来亨科贸有限责任公司)240全自动凝胶成像系统(中国)凝胶成像分析系统:Tocan 测序仪:GenomeLab CEQ/GeXP (BECKMAN COULTER 公司,美国)20 u k 200 ul和1000 ul加样器(吉尔森公司,法国)旋涡震荡器(Scientific Industries公司,美国) 二、实验方法 1、样品采集,送检和保存 乙二胺四乙酸(EDTA) -3K抗凝管采集HIV和HEV合并感染者外周静脉血,于24h内测定CD4+T淋巴细胞计?数,抗凝血经常规离心分离全血中间层,分装后-80°C冻存用于P53基因变异的测定。 2、血浆样本DNA的提取 取200 P1全血中间层于1.5ml无菌EP管中,加入20 口1蛋白酶K;再加入200 ul AL缓冲液,涡旋振荡15秒,56°C孵育10分钟;瞬时离心EP管,加入200 u 1 无

基因检测运营可行性方案精编版

基因检测运营可行性方 案 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

基因检测可行性运营方案 一.项目介绍 基因是DNA分子上的一个功能片断,是的基本单位,是决定一切生物物种最基本的因子;基因决定人的生老病死,是健康、靓丽、长寿之因,是生命的操纵者和者。因此,哪里有生命,哪里就有基因,一切生命的存在与衰亡的形式都是由基因决定的,包括您的长相、身高、体重、肤色、性格等均与基因密不可分。 检测是通过血液、其他体液、或细胞对DNA进行检测的技术。 基因(Gene,Mendelian factor)是指携带有遗传信息的DNA或序列(即基因是具有遗传效应的DNA或RNA片段),也称为遗传因子,是控制性状的基本遗传单位。基因通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。 1. 基因与健康 现代医学研究证明,除外伤外,几乎所有的疾病都和基因有关系。像血液分不同血型一样,人体中正常基因也分为不同的基因型,即基因型。不同的基因型对环境因素的敏感性不同,敏感基因型在环境因素的作用下可引起疾病。另外,单独由异常基因直接引起疾病,被称为为。 可以说,引发疾病的根本原因有三种: (1)基因的后天突变; (2)正常基因与环境之间的相互作用; (3)遗传的基因缺陷。 绝大部分疾病,都可以在基因中发现病因。 基因通过其对蛋白质合成的指导,决定我们吸收食物,从身体中排除毒物和应对感染的效率。 第一类与遗传有关的疾病有四千多种,通过基因由父亲或母亲遗传获得。 第二类疾病是常见病,例如心脏病、、多种癌症等,是多种基因和多种环境因素相互作用的结果。 基因是人类遗传信息的化学载体,决定我们与前辈的相似和不相似之处。在基因“工作”正常的时候,我们的身体能够发育正常,功能正常。如果一个基因不正常,甚至基因中一个非常小的片断不正常,则可以引起发育异常、疾病,甚至死亡。

肿瘤基因突变检测

肿瘤基因突变检测 癌症是一类难以预防的疾病,中晚期癌症治愈的可能性又很小,而早期癌症的治愈率可达65%以上,有些肿瘤可达90%以上,因此,战胜癌症的关键是早期发现癌症。由于癌症早期常无特殊症状,甚至毫无症状,故癌症的早期发现、早期诊断主要是通过定期健康体检和人群筛查完成。目前筛查癌症的方法主要是通过化验血肿瘤指标及B超、CT、MRI、PET-CT 等检查,但这些方法的敏感性和特异性均不高,发现有异常时往往已是中晚期。 17种常见高发肿瘤,包括乳腺癌(breast cancer)、结肠癌(colorectalcancer)、子宫癌(endometrial cancer)、脑胶质瘤(glioma)、白血病(leukemia)、肺癌(lungcancer)、淋巴癌(lymphoma)、成神经管细胞瘤(medulloblastoma)、黑色素癌(melanoma)、间皮瘤(mesothelioma) 、多性骨髓瘤(multiple myeloma) 、卵巢癌(ovarian cancer)、胰腺癌(pancreatic cancer) 、真性红细胞增多(polycythemia vera) 、前列腺癌(prostatecancer) 、肾细胞癌(renal cell cancer)和恶性内瘤(sarcoma),其发病机制涉及与多种肿瘤发生共同相关的肿瘤易感基因群介导的分子改变,参与了肿瘤发生的早期分子事件。系统寻找和探讨它们在肿瘤发生发展过程中的遗传学变异,对阐明肿瘤早期发生机制及寻找肿瘤早期预警、早期诊断和早期治疗的分子靶标都具有重要的现实意义。利用高通量分子测序技术平台,可同时开展多个肿瘤基因突变检测项目,如EGFR、K-RAS 、N-RAS、B-RAF、PI3K 、p53、p16、BRCA1、

基因检测运营可行性方案

基因检测可行性运营方案一.项目介绍 基因是DNA分子上的一个功能片断,是的基本单位,是决定一切生物物种最基本的因子;基因决定人的生老病死,是健康、靓丽、长寿之因,是生命的操纵者和者。因此,哪里有生命,哪里就有基因,一切生命的存在与衰亡的形式都是由基因决定的,包括您的长相、身高、体重、肤色、性格等均与基因密不可分。 检测是通过血液、其他体液、或细胞对DNA进行检测的技术。 基因(Gene,Mendelian factor)是指携带有遗传信息的DNA或序列(即基因是具有遗传效应的DNA或RNA片段),也称为遗传因子,是控制性状的基本遗传单位。基因通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。 1. 基因与健康 现代医学研究证明,除外伤外,几乎所有的疾病都和基因有关系。像血液分不同血型一样,人体中正常基因也分为不同的基因型,即基因型。不同的基因型对环境因素的敏感性不同,敏感基因型在环境因素的作用下可引起疾病。另外,单独由异常基因直接引起疾病,被称为为。 可以说,引发疾病的根本原因有三种: (1)基因的后天突变; (2)正常基因与环境之间的相互作用; (3)遗传的基因缺陷。

绝大部分疾病,都可以在基因中发现病因。 基因通过其对蛋白质合成的指导,决定我们吸收食物,从身体中排除毒物和应对感染的效率。 第一类与遗传有关的疾病有四千多种,通过基因由父亲或母亲遗传获得。 第二类疾病是常见病,例如心脏病、、多种癌症等,是多种基因和多种环境因素相互作用的结果。 基因是人类遗传信息的化学载体,决定我们与前辈的相似和不相似之处。在基因“工作”正常的时候,我们的身体能够发育正常,功能正常。如果一个基因不正常,甚至基因中一个非常小的片断不正常,则可以引起发育异常、疾病,甚至死亡。 健康的身体依赖身体不断的更新,保证蛋白质数量和质量的正常,这些蛋白质互相配合保证身体各种功能的正常执行。每一种蛋白质都是一种相应的基因的产物。 基因可以发生变化,有些变化不引起蛋白质数量或质量的改变,有些则引起。基因的这种改变叫做基因突变。蛋白质在数量或质量上发生变化,会引起身体功能的不正常以致造成疾病。 2. 基因检测概念 基因检测是通过血液、其他体液或细胞对DNA进行检测的技术,是取被检测者脱落的口腔黏膜细胞或其他组织细胞,扩增其基因信息后,通过特定设备对被检测者细胞中的DNA 分子信息作检测,预知身体患疾病的风险,分析它所含有的各种基因情况,从而使人们能了解自己的基因信息,从而通过改善自己的生活环境和生活习惯,避免或延缓疾病的发生。

基因突变的检测方法

基因突变的检测方法

基因突变的检测方法 基因突变的研已成为当今生命科学研究的热点之一,检测方法也随之迅速发展。人类细胞癌基因的突变类型已如上所述,对于基因突变的检测,1985以前,利用Southern印迹法,可以筛选出基因的缺失、插入和移码重组等突变形式。对于用该法法不能检测的突变,只能应用复杂费时的DNA序列测定分析法。多聚酶链反应(polymerase chain reaction,PCR)技术是突变研究中的最重大进展,使基因突变检测技术有了长足的发展,目前几乎所有的基因突变检测的分子诊断技术都是建立于PCR的基础之上,并且由PCR衍生出的新方法不断出现,目前已达二十余种,自动化程度也愈来愈高,分析时间大大缩短,分析结果的准确性也有很大很提高。其中包括单链构象多态性(single-strand comformational polymorphism,SSCP)和异源双链分析法(heteroduplex analysis,HA)。下面分别介绍几种PCR衍生技术及经典突变检测方法,可根据检测目的和实验室条件选择时参考。 PCR-SSCP法 PCR-SSCP法是在非这性聚丙烯酰胺凝胶上,短的单链DNA和RNA分子依其大街基序列不同而形成不同构象,一个碱基的改变将影响其构象而导致其在凝胶上的移动速度改变。其基本原理为单链DNA在中性条件下会形成二级结构,这种二级结构依赖于其碱基组成,即使一个碱基的不同,也会形成不同的二级结构而出刺同的迁移率。由于该法简单快速,因而被广泛用于未知基因突变的检测。用PCR-SSCP法检测小于200bp的PCR产物时,突变检出率可达70%-95%,片段大于400bp时,检出率仅为50%左右,该法可能会存在1%的假阳性率。应用PCR-SSCP法应注意电泳的最佳条件,一般突变类型对检测的灵敏度无大的影响,同时该法不能测定突变的准确位点,还需通过序列分析来确定。Sarkar等认为对于大于200bp的片段,用其RNA分子来做SSCP会提高其录敏度。应用PCR-SSCP检测点突变已见报道于人类大部分的肿瘤组织或细胞,如乳腺癌、食管癌、肺癌、胃癌、肝癌、胰腺癌等。检测的基因包括多种癌基因及抑癌基因,也是检测抑癌基因p53突变最常用的方法,仅检测第5-8外显子即可发现85%以上的p53基因突变。由于该法简便快速,特别适合大样本基因突变研究的筛选工作。 异源双链分析法(HA) HA法直接在变性凝胶上分离杂交的突变型一野生型DNA双链。由于突变和野生型DNA形成的异源杂合双链DNA在其错配处会形成一突起,在非变性凝胶中电泳时,会产生与相应的同源双DNA不同的迁移率。该法与SSCP相似,所不同的是SSCP分离的是单链DNA,HA法分离的是双链DNA,也只适合于小片段的分析。但HA对一些不能用SSCP 检出的突变有互补作用,两者结合使用,可使突变检出率提高到近100%。 突变体富集PCR法(mutant-enriched PCR)本法的基本原理是利用ras基因家族某个密码子部位存在已知的限制性内切酶位点,如K-ras基因第12密码子的BstNI位点,第13密古巴子有BgⅠⅡ位点。用链续二次的巢式PCR来扩增包括K-ras第12、13密码子的DNA片段,在两次扩增反应之间用相应的内切酶消化扩增的DNA片段,野生型因被酶切而不能进入第二次PCR扩增,而突变型则能完整进入第二次PCR扩增并得到产物的富集。 变性梯度凝胶电泳法(denaturing gradinent electrophoresis,DGGE) DGGE法分析PCR 产物,如果突变发生在最先解链的DNA区域,检出率可达100%,检测片段可达1kb,最适围为100bp-500bp。基本原理基于当双链DNA在变性梯度凝胶中进行到与DNA变性湿度一致的凝胶位置时,DNA发生部分解链,电泳适移率下降,当解链的DNA链中有一个碱基改变时,会在不同的时间发生解链,因影响电泳速度变化的程

基因检测相关问题及答案

十个问题及答案 问题1:基因检测有什么用途? 回答: 1. 辅助临床诊断:很多疾病表现出来的症状类似,临床上很难进行鉴别诊断,容易混淆。若是通过基因检测,在基因层面找到致病原因,可以辅助临床医生鉴别诊断甚至纠正临床上的诊断。 举例:某基因检测机构通过对一个临床疑似“先天性白内障-小角膜综合症”的家系进行了基因检测,最后在基因层面发现他们家系患的其实是“玻璃体视网膜脉络膜病”而非“先天性白内障-小角膜综合症”,帮其纠正了临床诊断。 又如:糖尿病中有一型特殊类型的糖尿病为“单基因糖尿病”(由单个基因突变引起,为孟德尔遗传病)由于其基因存在缺陷,使得患者在代谢特征、临床表现和治疗方案等方面,都与1型或者2型糖尿病患者有着明显的区别。但是,由于认识上的不足,单基因糖尿病常常被误认为1型或2型糖尿病。英国一项流行病学的调查显示,有80%的青春晚期糖尿病(MODY)患者未被正确诊断。在欧美国家的单基因糖尿病的研究中,发现有10%的1型糖尿病和2-5%的2型糖尿病其实是单基因糖尿病。所以,通过对正常人群体,特别是有糖尿病家族史的人群,进行单基因糖尿病致病基因的筛查,可以尽早发现基因缺陷,从而把单基因糖尿病患者从1型或者2型糖尿病患者中区分出来。 2.携带者筛查:最常见的是唐氏综合征的筛查。传统的唐氏综合征筛查是利用血清学筛查进行的,检出率为65%-75%,容易漏检。而无创产前基因检测则可以准确地筛查出唐氏综合征患儿,还包括对18三体综合征和13三体综合征的筛查。此外,针对具有某些单基因遗传病(尤其是隐性遗传病)家族史的高危人群进行相关致病基因的筛查,可以及时发现该家族中致病基因的携带情况,进而分析后代患病的风险,为家属成员提供有效的遗传信息,防止缺陷基因向下一代遗传。 3指导治疗:现在医生开药的遵循的是经过广泛测试后提供的剂量信息。但所有的药物在测试过程中都是以群体作为样本的,因此药物剂量在对于大多数人是合适的。但是由于每个人的基因不同,会导致正常剂量下的药物对一些人产生致命的作用。导致原本挽救健康的药可能反而对健康造成伤害。这样的现象就称为药物不良反应(adverse drug reactions, ADR)。如药物warfarin是一种抗凝剂,是防止血液凝固的一种药物,病人服用这种药物可以大大减轻血栓形成的危险。但是抗凝剂服用过多,血液便不容易凝固,会造成出血,甚至有生命危险。在我们身体中有一种酶叫CYP2C9,它可以代谢这种抗凝剂,把它分解成小分子物质,使之失去抗凝血作用。正常情况下warfarin发挥作用后被代谢,完成它的药物治疗作用,也并不对人身体造成危害。但是,如果一个人CYP2C9发生突变,代谢功能降低,是弱代谢型(poor metabolizer),就意味着warfarin代谢过慢,在身体中不断积累,最终可能造成出血倾向。基因检测的作用就在于此:它可以先判定某人的CYP2C9是否发生了突变,并判定他属于哪种代谢类型,然后再根据代谢类型决定药物剂量。如果是强代谢型,那就适当提

基因表达量实时荧光定量PCR检测步骤

基因表达量实时荧光定量PCR检测步骤 1 材料(试剂和耗材) 1.1 样本(小鼠组织)-2个 1.2 引物(life technology公司合成) 1.3 Bestar TM qPCR RT Kit(德国DBI货号:DBI-2220) 1.4 Bestar? SybrGreenqPCRmastermix(德国DBI货号:DBI-2043) 1.5 96孔板(美国life technology) 2 材料(仪器) 2.1 ABI7500荧光定量PCR仪(life technology公司) 2.2 TGL-16M低温冷冻离心机(湘仪) 2.3 SW-CJ-1D单人净化工作台(泸净净化) 2.4 HR40-ⅡA2生物安全柜(Haier) 3 实验步骤 3.1 RNA的抽提 RNA 的提取按life technology公司提供的Triozol RNA提取试剂盒的使用说明进行。程序如下: (1)将组织在液氮中磨碎,每50-100mg组织加入1ml TRIzol; (2)加入0.2mL氯仿,盖紧离心管管盖,上下颠倒混匀60s(请勿涡漩激烈振荡),室温静置3min,12,000g,4℃离心15min,置于冰上; (3)溶液分为三层,RNA溶解在水相中,小心吸取500μl水相至另一个新的RNase free的EP管中; (4)加入500μl异丙醇,-20度放置1h,12,000g,4℃离心10min,离心后管底出现RNA沉淀,弃上清; 1

(5)加入1ml 75%乙醇,用手轻轻颠倒,12,000g离心5min,去上清; (6)超净工作台上吹干样品10min,加入适量DEPC水溶解RNA。加入40μl DEPC 水溶解沉淀。 3.2 RNA质量检测 紫外分光光度计测定RNA浓度: 3.3去基因组DNA和cDNA的合成 将RNA加入到gDNA吸附柱,室温10,000g离心1min,收集滤液即为去除基因组DNA的RNA。 把RNA在65°C条件下热变性5分钟后,立即置于冰上冷却。 逆转录反应: 5×RT Buffer 2μL RT Enzyme Mix 0.5μL Primer Mix 0.5μL RNA 6μL RNase-free Water 1μL Toal10μL 反应条件: 37°C, 15min 98°C, 5min 4°C,hold 反应结束后,-20°C保存。

基因突变的检测方法

基因突变的检测方法 基因突变的检测方法 基因突变的研已成为当今生命科学研究的热点之一,检测方法也随之迅速发展。人类细胞癌基因的突变类型已如上所述,对于基因突变的检测,1985以前,利用Southern印迹法,可以筛选出基因的缺失、插入和移码重组等突变形式。对于用该法法不能检测的突变,只能应用复杂费时的DNA序列测定分析法。多聚酶链反应(polymerase chain reaction,PCR)技术是突变研究中的最重大进展,使基因突变检测技术有了长足的发展,目前几乎所有的基因突变检测的分子诊断技术都是建立于PCR的基础之上,并且由PCR衍生出的新方法不断出现,目前已达二十余种,自动化程度也愈来愈高,分析时间大大缩短,分析结果的准确性也有很大很提高。其中包括单链构象多态性(single-strand comformational polymorphism,SSCP)和异源双链分析法(heteroduplex analysis,HA)。下面分别介绍几种PCR衍生技术及经典突变检测方法,可根据检测目的和实验室条件选择时参考。 PCR-SSCP法 PCR-SSCP法是在非这性聚丙烯酰胺凝胶上,短的单链DNA和RNA分子依其大街基序列不同而形成不同构象,一个碱基的改变将影响其构象而导致其在凝胶上的移动速度改变。其基本原理为单链DNA在中性条件下会形成二级结构,这种二级结构依赖于其碱基组成,即使一个碱基的不同,也会形成不同的二级结构而出刺同的迁移率。由于该法简单快速,因而被广泛用于未知基因突变的检测。用PCR-SSCP法检测小于200bp的PCR产物时,突变检出率可达70%-95%,片段大于400bp时,检出率仅为50%左右,该法可能会存在1%的假阳性率。应用PCR-SSCP法应注意电泳的最佳条件,一般突变类型对检测的灵敏度无大的影响,同时该法不能测定突变的准确位点,还需通过序列分析来确定。Sarkar等认为对于大于200bp的片段,用其RNA分子来做SSCP会提高其录敏度。应用PCR-SSCP检测点突变已见报道于人类大部分的肿瘤组织或细胞,如乳腺癌、食管癌、肺癌、胃癌、肝癌、胰腺癌等。检测的基因包括多种癌基因及抑癌基因,也是检测抑癌基因p53突变最常用的方法,仅检测第5-8外显子即可发现85%以上的p53基因突变。由于该法简便快速,特别适合大样本基因突变研究的筛选工作。 异源双链分析法(HA) HA法直接在变性凝胶上分离杂交的突变型一野生型DNA双链。由于突变和野生型DNA形成的异源杂合双链DNA在其错配处会形成一突起,在非变性凝胶中电泳时,会产生与相应的同源双DNA不同的迁移率。该法与SSCP相似,所不同的是SSCP分离的是单链DNA,HA法分离的是双链DNA,也只适合于小片段的分析。但HA对一些不能用SSCP 检出的突变有互补作用,两者结合使用,可使突变检出率提高到近100%。 突变体富集PCR法(mutant-enriched PCR)本法的基本原理是利用ras基因家族某个密码子部位存在已知的限制性内切酶位点,如K-ras基因第12密码子的BstNI位点,第13密古巴子有BgⅠⅡ位点。用链续二次的巢式PCR来扩增包括K-ras第12、13密码子的DNA片段,在两次扩增反应之间用相应的内切酶消化扩增的DNA片段,野生型因被酶切而不能进入第二次PCR扩增,而突变型则能完整进入第二次PCR扩增并得到产物的富集。 变性梯度凝胶电泳法(denaturing gradinent electrophoresis,DGGE) DGGE法分析PCR 产物,如果突变发生在最先解链的DNA区域,检出率可达100%,检测片段可达1kb,最适

基因变异的研究方法与进展

基因变异广义上说就是指基因结构变化从而产生了可遗传的变异。也就是说DNA水平上的突变造成的基因改变。而这一突变过程可能有很多原因,有自发性的,比如DNA配对过程中的装配错误,也有外源性的诱导因素,如物理,化学,生物因素等造成染色体结构改变或者基因结构的直接变化。 突变的形式多种多样,常见的有:点突变,即一个或多个核苷酸发生了改变;框内突变指的是3个或是的倍数的碱基缺失或插入导致的突变,使基因丢失或增加1个或几个氨基酸;除此之外,还存在着DNA大片段的缺失,通常是指几百个bp至几十个kb的碱基缺失或复制。 这其中,最常见的莫过于点突变,他是指一个或者几个核苷酸的缺失或改变,通常会形成三种类型,第一种是同义突变,即碱基替换后,虽然密码子发生改变,但编码氨基酸没有改变(遗传密码的兼并性),亦称静止突变,第二种是错义突变,指的是碱基替换,密码子发生改变后,编码氨基酸亦发生改变,编码另一个氨基酸,第三种是无义突变,即碱基替换后,使编码氨基酸的密码子变成一个终止密码子。 基于上述的变化,常见的基因变异研究方法有如下几种 一、筛选性方法 有人将这类方法分为2类,根据电泳性质不同及其他包括化学修饰法等 1 RNase 法 该法是一种最早提出的检测DNA突变的方法口。其原理是RNase可以识别RNA:DNA或RNA:RNA杂交链中错误配对的碱基并将其切断。经聚丙烯酰胺凝胶电泳将正常链及被切断的含有突变点的链区分开来。杂交方法是将同位素或其它方法标记的正常野生型RNA 片段与相对应的待测DNA 片段混合,90"C

左右变性并在室温下复性形成杂交分子。当待测DNA 片段中存在碱基突变时,在该位点上二条链不能正常配对,便成为RNase的识别和切割位点 2 DGGE、CDGE、TGGE、TSGE法 梯度变性凝胶电泳(DGGE)原理是当双链DNA在梯度变性的聚丙烯酰胺凝胶中行进到与DNA变性温度(熔点温度)一致的凝胶变性浓度位臵时,DNA 发生解旋变性此时电泳速度迅速降低。而当解旋的DNA链中有一个碱基突变时,将会影响其电泳速度变化的程度,从而将正常与突变的DNA区别开。 CDGE(constant denatural gel electrophoresis)法通过预实验或理论计算预先精确确定待测DNA片段的熔点温度后采用单一变性浓度凝胶电泳,简化了DGGE 法的操作 类似于CDGE法,TSGE (temperature sweep gel electropnoresis)法则取消了温度梯度而代之以单一温度 这类方法的优点是:(1)检出率高,~100 (2)可用于分析突变——正常DNA 混合样品;(3)可以回收分离出的DNA 片段;(4)可以直接测定未经扩增的DNA 。这类方法的缺点也很多,如(1)分析片段较小,<500 bp;(2)需要制备昂贵的GC clamp(3)需要事先经过复杂的计算机处理计算熔点温度或预试验确定变性条件; (4)位于高度富含GC的片段中的突变可能漏检。鉴于以上不利因素,DGGE等一类方法有逐渐被SSCP(单链构象多态性)法取代的倾向。尽管如此,这类方法一经建立,应用十分方便,适于大规模样品分析 3 SSCP法 单链构象多态性(single strand conlotraation polymorphism,)是在非变性聚丙烯酰胺凝胶上,短的单链DNA或RNA分子依其碱基序列不同而形成不同构象,

关于基因检测方法

关于基因检测方法 一、Southern印迹法(Southern blot) 基本原理是:硝酸纤维膜或尼龙滤膜对单链DNA的吸附能力很强,当电泳后凝胶经过DNA 变性处理,覆以上述滤膜,再于其上方压上多层干燥的吸水纸,借助它对深盐溶液的上吸作用,凝胶上的单链DNA将转移到滤膜上。转移是原位的,即DNA片段的位置保持不变。转移结束后,经过80℃烘烤的DNA,将原位地固定于膜上。 当含有特定基因片段已原位转移到膜上后,即可与同位素标记了的探针进行杂交,并将杂交的信号显示出来。杂交通常在塑料袋中进行,袋内放置上述杂交滤膜,加入含有变性后探针的杂交溶液后,在一定温度下让单链探针DNA与固定于膜上的单链基因DNA分子按碱基到互补原理充分结合。结合是特异的,例如只有β珠蛋白基因DNA才能结合上β珠蛋白的探针。杂交后,洗去膜上的未组合的探针,将Ⅹ线胶片覆于膜上,在暗盒中日光进行放射自显影。结合了同位素标记探针的DNA片段所在部位将显示黑色的杂交带,基因的缺失或突变则可能导致带的缺失或位置改变。 二、聚合酶链反应 近年来,基因分析和基因工程技术有了革命性的突破,这主要归功于聚合酶链反应(polymerase chain reaction,PCR)的发展和应用。应用PCR技术可以使特定的基因或DNA 片段在短短的2-3小时内体外扩增数十万至百万倍。扩增的片段可以直接通过电泳观察,也可用于进一步的分析。这样,少量的单拷贝基因不需通过同位素提高其敏感性来观察,而通过扩增至百万倍后直接观察到,而且原先需要一、二周才能作出的诊断可以缩短至数小时。 三、扩增片段长度多态性 小卫星DNA和微卫星DNA的长度多态性可以通过PCR扩增后电泳来检出,并用于致病基因的连锁分析,这种诊断方法称为扩增片段长度多态性(amplified fragment length polymorphism,Amp-FLP)连锁分析法。PCR扩增后,产物即等位片段之间的差别有时只有几个核苷酸,故需用聚丙烯酰胺凝胶电泳分离鉴定。此法多用于突变性质不明的连锁分析. 四、等位基因的特异寡核苷酸探针诊断法 当基因的突变部位和性质已完全明了时,可以合成等基因特异的寡核苷酸探针(allele-specific oligonucleotide,ASO)用同位素或非同位素标记进行诊断。探针通常为长20bp左右的核苷酸。用于探测点突变时一般需要合成两种探针,与正常基因序列完全一致,能与之稳定地杂交,但不能与突变基因序列杂交;另一种与突变基因序列一致,能与突变基因序列稳定杂交,但不能与正常基因序列稳定杂交,这样,就可以把只有一个碱基发生了突变的基因区别开来. PCR可结合ASO,即PCR-ASO技术,即先将含有突变点的基因有关片段进行体外扩增,然后再与ASO探针作点杂交,这样大大简化了方法,节约了时间,而且只要极少量的基因组DNA就可进行。 五、单链构象多态性诊断法 单链构象多态性(signle strand conformation polymorphism,SSCP)是指单链DNA由于碱基序列的不同可引起构象差异,这种差异将造成相同或相近长度的单链DNA电泳迁移率不同,从而可用于DNA中单个碱基的替代、微小的缺失或手稿的检测。用SSCP法检查基因突变时,通常在疑有突变的DNA片段附近设计一对引物进行PCR扩增,然后将扩增物用甲酰胺等变性,并在聚丙烯酰胺凝胶中电泳,突变所引起的DNA构象差异将表现为电泳带位置的差异,从而可据之作出诊断。

相关文档