文档库 最新最全的文档下载
当前位置:文档库 › 一阶电路的暂态响应实验报告

一阶电路的暂态响应实验报告

一阶电路的暂态响应实验报告
一阶电路的暂态响应实验报告

信号与系统实验报告学院:电子信息与电气工程学院

班级: 13级电信<1>班

学号: 20131060104

姓名:李重阳

实验四一阶电路的暂态响应

一、实验目的

1、研究一阶电路零状态、零输入响应和全相应的的变化规律和特点。

2.学习用示波器测定电路时间常数的方法,了解时间参数对时间常数的影响。3.掌握微分电路与积分电路的基本概念和测试方法。

4、掌握一阶电路暂态响应的原理;

5、观测一阶电路的时间常数τ对电路暂态过程的影响。

二、一阶电路暂态响应概念和意义:

(一)、一阶电路暂态响应的感念和物理意义

1、RC一阶电路的零状态响应:

就是,在RC电路中,当电容上的电压u C=0时,电路处于零状态,当电源通过R向电容C充电,u C(t)称为零状态响应。当u C上升到所需要的时间称为时间常数。

2、RC一阶电路的零输入响应

当u C上的电压稳定后,使电容C通过R放电,Uc(t)称为

零输入响应。当u C下降到所需要的时间称为时间常数,。

本实验研究的暂态响应主要是指系统的零状态电压响应。一阶电路的零状态响应,是系统在无初始储能或状态为零情况下,仅由外加激励源引起的响应。

3、RL和RC电路的时间常数的物理意义是:

RL:电感的电流减小到原来的1/e需要的时间。

RC:电容的电压减小到原来的1/e需要的时间。RC电路中,若时间常数远大于方波周期,用示波器在C两端看到的将是幅值非常小的三角波,而R两端几乎就是方波。R或C增大,电路的响应时间延长。

4、微分电路和积分电路

在方波信号u

S

作用在电阻R、电容C串联电路中,当满足电路时间常数远

远小于方波周期T的条件时,电阻两端(输出)的电压U

R 与方波输入信号u

S

微分关系,该电路称为微分电路。

当满足电路时间常数远远大于方波周期T的条件时,电容C两端(输出)

的电压u

C 与方波输入信号u

S

呈积分关系,该电路称为积分电路。就是说: RC

电路中,从R两端得到的电压变化曲线是微分曲线,从C两端得到的电压变化曲

线是积分曲线。在RC串联电路中,从电阻上测出的

5、测量RC一阶电路时间常数

RC电路的充放电暂态过程很难观察,为了用普通示波器观察电路的暂态过程,需采周期性方波U

S

作为电路的激励信号,方波信号的周期为T,只要满足周期T>RC 5--8倍,便可在示波器的荧光屏上形成稳定的响应波形。

用示波器测定电路时间常数的方法:

方波发生器的输出端连接到电阻R、电容C串联电路上,用双踪示波器观察

电容电压u

C

,便可观察到稳定的指数曲线,在荧光屏上测得电容电压最大值,取与指数曲线交点对应时间t轴的x点,则根据时间t轴比例尺(扫描时间),就是该电路的时间常数。

当:τ=1/(RC)=0.0001(秒)。由于τ对应于C上电压升高到0.63倍电源电压时的时间,可以用这个电压值作为计时停止的信号。

根据一阶微分方程的求解得知:uc=U

m e^(-t/RC)=U

m

e^(-t/τ)。

方波的周期是T,对电容放电时间是T/2。如果充电时间足够长,uc接近Um,在

下半周期放电时可以看成从U

m

开始放电。即T/2>>(R*CS时间常数)时,uc(T/2)

<<U

m

,可看作放电基本完成。由于半个方波周期远远大于RC的时间常数,所以放电将会很快。当T=8τ(方波周期大于等于8倍的RC时间常数),T/2=4τ时,uc(4τ)=0.018U m。T≥8τ时误差小于2%。如果T<8τ,误差增大。当然理论上T是越大越好,但在误差允许范围内再大没有实际意义。

三、实验原理说明

含有L、C储能元件的电路通常用微分方程来描述,电路的阶数取决于微分方程的阶数。凡是用一阶微分方程描述的电路称为一阶电路。一阶电路由一个储能元件和电阻组成,有两种组合:RC电路和RL电路。图4-1和图4-2分别描述了RC电路与RL电路的基本连接示意图。

图4-1 RC 电路连接示意图

图4-2 RL 电路连接示意图

根据给定的初始条件和列写出的一阶微分方程以及激励信号,可以求得一阶

电路的零输入响应和零状态响应。当系统的激励信号为阶跃函数时,其零状态电压响应一般可表示为下列两种形式:

τt

e U t u -

=0)( (t ≥0) )1()(0τ

t

e U t u --= (t ≥0)

其中,τ为电路的时间常数。在RC 电路中,τ=RC ;在RL 电路中 τ=L/R 。零状态电流响应的形式与之相似。 四、实验内容与电路连接

信号源:

① J702置于“脉冲”,拨动开关K701选择“脉冲”;

② 按动S702按钮,使频率为2.5KHz ,调节电位器W701使输出幅度为2V ;

1. 一阶RC 电路的观测

实验电路连接图如图4-3(a )所示。

① 连接P702与P901, P702与P101。(P101为毫伏表信号输入插孔) ② 连接P902---P904

③ 将示波器连接在TP902上,观测输出波形 ④ 根据R 、C 计算出时间常数τ

⑤ 根据实际观测到的波形计算出实测的时间常数τ

⑥ 改变P902与P904间的连接:将:P902--P905; P903--P904; P903--P905(注:当连接点改在P903时,输出测量点应该在TP903) ⑦ 重复上面的实验过程,将结果填入表4-1中

C R

Uc (t )

Us (t ) R

Ur (t )

Us (t )

L

表4-1 一阶RC电路

连接点R(kΩ)C(pF)τ=RC(μs)实测τ值测量点P902--P904 10 2200 22 20 TP902 P902--P905 10 4700 47 40 TP903 P903--P904 20 2200 44 41.6 TP902 P903--P905 20 4700 94 160.4 TP903

2. 一阶RL电路的观测

实验电路连接图如图4-3(b)所示。

信号源:频率和幅度保持不变。

①连接P702--P906; P702--P101。

②连接P907--P908

③将示波器连接在TP907上,观测输出波形

④根据R、L计算出时间常数τ

⑤根据实际观测到的波形计算出实测的时间常数τ

⑥连接P907--P909,重复上面实验过程,将结果填表4-2

四、实验报告要求

1. 将实验测算出的时间常数分别填入表4-1与表4-2中,并与理论计算值进行比较。

2. 画出方波信号作用下RC电路、RL电路各状态下的响应电压的波形。

表4-2 一阶RL电路

连接点R(KΩ)L(mH)τ=L/R(μs)测τ值测量点

P907--P908 1 10 10 10 TP907

P907--P909 0.47 10 21 26 TP907

R90310K R90420K

C905

4700P

C904

2200P AGND

1

TP902

1

TP903

L90310M H

1

TP907

AGND

R9051K

R906470

P901

P902

P903P904P905

P906

P907P908

P909

1

GND

五、实测波形与测量数据

(一)、一阶RC 电路的观测

1、P902 连接P904 ;R=10K Ω C=2200 pF ,求:时间常数τ的值 (1)、根据电路中R 、C 值计算出时间常数τ,先将电阻和电容的值换算成基本的单位值

R903=10K==10000Ω

C904==2200 pF ==2.2*10 的-9次方pF

τ=10 x 10的-3次方x 2.2 x 10 -5次方==22*10 -6次方=22μs (2)、根据实际观测到的波形计算出实测的时间常数τ,

利用公式和波形计算U t 和τ的值)1()(0τ

t

e U t u --=,

先将输出电压置成U 0=2V

U 0 就是TP902的峰峰值,调节W701,使其为2V (纵向每格为1V ,调成2格)时间横轴设为每格0.1MS==100μs

图4-3(a ) RC 一阶电路实验连接图

图4-3(b ) RL 一阶电路实验连接图

令:公式里:t=τ已知是:e的倒数为 0.368

将e的倒数0.368和U0的值2V,代入公式,求得:U

==1.264V

t

值求τ值。

利用波形和U

t

将波形底部上升点与坐标原点0对齐如(图一)

(图1):实测TP902 RC电路状态下的响应波形。

(图2):实测TP902 RC电路 P902 连接P904 ;R=10KΩC=2200 pF

《波形向下移动 1.26格》

将波形向下拉1.26格(一大格是1V,小格是0.2V)参看(图2)

波形与横坐标交叉点到纵坐标的的间隔就是τ的值,这里τ=小格,(1大格分5小格是100μs,可见τ是100μs的5分之一,)即:τ=100*1/5=20μs

2、P902 连接P904 ;R=10KΩ C=4700 pF,求:时间常数τ的值计算方法同上(1)、根据电路中R、C值计算出时间常数τ

τ=10 x 10的-3次方 x 4.7 x 10 -5次方=47*10 -6次方=47μs

(2)、根据实际观测到的波形计算出实测的时间常数τ

(3)根据上面公式:U

=1.264V 仔细看示波器格数求出

t

(图3) TP902: 波形 R=10K C=4700P τ的值

τ= 2.5(小格)= 100μs x 1/2.5 =40μs

3、P903 连接P904 ;R=20KΩ C=2200 pF,求:时间常数τ的值

(1)、根据电路中R、C值计算出时间常数τ

τ=20 x 10的-3次方 x 2.2x 10 -5次方=44*10 -6次方=44μs

=1.264V (2)、根据实际观测到的波形计算出实测的时间常数τ已知U

t

(图4) TP902: 波形 R=20K C=2200P τ的值仔细看示波器格数求出τ=2.5(小格)=100μs x 1/2.5=40μs

4、P903 连接P905 ;R=20KΩC=4700 pF,求:时间常数τ的值

(1)、根据电路中R、C值计算出时间常数τ

τ=20 x 10的-3次方 x 4.7x 10 -5次方= 94*10 -6次方 = 94μs

=1.264V (2)、根据实际观测到的波形计算出实测的时间常数τ已知U

t

(图5) TP902: 波形 R=20K C=4700P τ的值仔细看示波器格数求出τ= 6.1(小格)= 100μs x 1/6.1 = 160.39μs

(二)、一阶RL电路的观测

P702 连接 P906 与 P101

1、根据电路中R、L值计算出时间常数τ

(1)、连接P907--P908 R=1 K L=10 MH

τ=L/R(μs) 1K=1000Ω 1H=10的-3次方τ= 10(MH)/ 1(K) = 10μs (2)、根据实际观测到的波形计算出实测的时间常数τ

计算U

t 值与RC电路公式一样 U

t

==1.264V

(图1) TP907: 波形 R=1K L=10MH τ的值

仔细看示波器格数求出

τ=0.5(小格)=100μs x 0.5/5 =10μs

2、根据电路中R、L值计算出时间常数τ

(1)、连接P907--P909, R=0.47K L=10 MH

τ=L/R(μs)=10(MH)/ 0.47(K)=21μs

(2)、根据实际观测到的波形计算出实测的时间常数τ

(图2) TP907: 波形 R=0.47K L=10MH τ的值仔细看示波器格数求出

τ=1.3(小格)=100μs x 1.3/5=26μs

一阶动态电路响应实验

一阶动态电路响应实验 一、实验目的 1. 学习示波器和函数信号发生器的使用方法。 2. 学习自拟实验方案,合理设计电路和正确选用元件、设备完成实验。 3. 研究RC电路的零输入响应和零状态响应。 4. 研究RC电路的方波响应。 二、实验环境 面包板、导线若干、示波器、100kΩ电阻、单刀双掷开关、5V电压源、10μF电容。 三、实验原理 动态电路的过渡过程是十分短暂的单次变化过程,要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 方波的前沿相当于给电路一个阶跃输入,其响应就是零状态;方

波的后沿相当于在电容具有初始值uC(0-)时把电源用短路置换,这时电路响应转换成零输入响应。 四、实验电路 五、波形图 六、数据记录 充电过程:最大充电电压Us=4.60V、充电时间△X=4.880s

Uc=0.632×Us=2.9072V、最接近该电压值时间△X=1.000s 放电过程:最大放电电压Us=4.60V、放电时间△X=4.560s Uc=0.368×Us=1.6928V、最接近该电压时间△X=3.560s 七、实验总结 更加熟悉在面包板上搭接试验电路以及示波器的使用,了解一阶电路的零状态响应和方波响应,学习在示波器上使用追踪坐标读取数据。 八、误差分析 1.可能没将光标置于波形最值点; 2.可能无法精确达到Uc值所在点,读取的△X不准确。

浙江大学实验报告:一阶RC电路的瞬态响应过程实验研究

三墩职业技术学院实验报告 课程名称:电子电路设计实验 指导老师: 成绩:__________________ 实验名称: 一阶RC 电路的瞬态响应过程实验研究 实验类型:探究类同组学生姓名:__ 一、实验目的 二、实验任务与要求 三、实验方案设计与实验参数计算(3.1 总体设计、3.2 各功能电路设计与计算、3.3完整的实验电路……) 四、主要仪器设备 五、实验步骤与过程 六、实验调试、实验数据记录 七、实验结果和分析处理 八、讨论、心得 一、实验目的 1、熟悉一阶RC 电路的零状态响应、零输入响应过程。 2、研究一阶RC 电路在零输入、阶跃激励情况下,响应的基本规律和特点。 3、学习用示波器观察分析RC 电路的响应。 4、从响应曲线中求RC 电路的时间常数。 二、实验理论基础 1、一阶RC 电路的零输入响应(放电过程) 零输入响应: 电路在无激励情况下,由储能元件的初始状态引起的响应,即电路初始状态不为零,输入为零所引起的电路响应。 (实际上是电容器C 的初始电压经电阻R 放电过程。) 在图1中,先让开关K 合于位置a ,使电容C 的初始电压值0)0(U u c =-,再将开关K 转到位置b 。 电容器开始放电,放电方程是 图1 ) 0(0≥=+t dt du RC u C C

可以得出电容器上的电压和电流随时间变化的规律: 式中τ=RC 为时间常数,其物理意义 是衰减到1/e (36.8%))0(u c 所需要的时间,反映了电路过渡过程的快慢程度。τ图2 图2 2电路的零状态响应(充电过程) 所谓零状态响应是指初始状态为零,而输入不为零所产生的电路响应。RC 关K 可以得出电压和电流随时间变化的规律: 式中τ=RC 为时间常数,其物理意义是由初始值上升至稳态值与初始值差值的63.2%处所需要的时间。同样可以从响应曲线中求出τ,如图3。 ) 0()0()(0≥-=-=- - - t e R U R e u t i t RC t C C τ ) (u t C ) 0()0()(0≥==- --t e U e u t u t RC t C C τ ()(0) t t S S RC C U U i t e e t R R τ--==≥()11(0) t t RC C S S u t U e U e t τ --????=-=-≥ ? ? ????

RC一阶电路的响应测试 实验报告

实验六RC一阶电路的响应测试 一、实验目的 1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用虚拟示波器观测波形。 二、原理说明 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图6-1(b)所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法 用示波器测量零输入响应的波形如图6-1(a)所示。 根据一阶微分方程的求解得知u c=U m e-t/RC=U m e-t/τ。当t=τ时,Uc(τ)=0.368U m。此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632 U m所对应的时间测得,如图6-1(c)所示。 (a) 零输入响应 (b) RC一阶电路(c) 零状态响应 图 6-1 4. 微分电路和积分电路是RC一阶电路中较典型的电路,它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC T时串联电路,在方波序列脉冲的重复激励下,当满足τ=RC<< 2(T为方波脉冲的重复周期),且由R两端的电压作为响应输出,这就是一个微分电路。因为此时 电路的输出信号电压与输入信号电压的微分成正比。如图6-2(a)

一阶动态电路的响应测试实验报告

一阶动态电路的响应测试实验报告 1.实验摘要 1、研究RC电路的零输入响应和零状态响应。用示波器观察响应过程。电路参数:R=100K、C=10uF、Vi=5V 2.从响应波形图中测量时间常数和电容的充放电时间 2.实验仪器 5V电源,100KΩ电阻,10uF电容,示波器,导线若干 2.实验原理 (1)RC电路的零输入响应和零状态响应 (i)电路中某时刻的电感电流和电容电压称为该时刻的电路状态。t=0时,电容电压uc(0)称为电路的初始状态。 (ii)在没有外加激励时,仅由t=0零时刻的非零初始状态引起的响应称为零输入响应,它取决于初始状态和电路特性(通过时间常数τ=RC来体现),这种响应时随时间按指数规律衰减的。 (iii)在零初始状态时仅由在t0时刻施加于电路的激励引起的响应称为零状态响应,它取决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。 (iiii)线性动态电路的完全响应为零输入响应和零状态响应之和动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方

波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的2.时间常数τ的测定方法: 用示波器测量零输入响应的波形,根据一阶微分方程的求解得知uc=Um*e-t/RC=Um*e-t/τ,当t=τ时,即t为电容放电时间,Uc(τ)=0.368Um。 此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632Um 所对应的时间测得,即电容充电的时间t. (2)测量电容充放电时间的电路图 如图所示,R=100KΩ,us=5V,c=10uF,单刀双掷开关A. 4实验步骤和数据记录 (i)按如图所示的电路图在连接好电路,测量电容C的两端电压变化,即一阶动态电路的响应测试。 (ii)用示波器测量电容两端的电压,示波器的测量模式调整为追踪。(iii)打开电源开关,将开关和电压源端相接触,使电容充电,用示

一阶电路的暂态响应

成绩 教师签字 通信工程学院 实验报告 实验题目: 实验三一介动态电路的暂态响应的研究 班级:通信工程专业 10 级 14 班 姓名一:曾旭龙学号: 52101409 姓名二:吴秀琼学号: 52101427 姓名三:陈光林学号: 52101407 实验日期: 2011 年 5 月 19 日

一阶电路的暂态响应的研究 曾旭龙吴秀琼陈光林徐峰 吉林大学通信工程学院通信工程系10级14 吉林大学通信工程学院电工电子实验中心 摘要:本文要通过进行一介RC电路对周期方波信号的响应的数据测量和分析,研究测量电路时间常数τ的方法,建立积分电路和微分电路的概念。 关键词:暂态响应电路时常数积分电路微分电路 0 引言电路的时常数τ是一阶电路的重要参数,测定电路时间常数是一阶电路暂态响应实验研究的重点和难点。因而研究一阶电路的暂态响应对于测量电路的时间常数有着十分重要的意义。 1 问题提出 2理论依据 2.1电容器的充电、放电 电容器是一种贮能元件,在带有电容器的电路中发生通断换接时,由于电容器贮能状态不能突变所以在电路中就产生了过渡过程。在直流电路中,电容器接通电源,在极板上积累电荷的过程称为充电;已充电的电容器通过电阻构成闭合回路使电荷中和消失的过程称为放电。 根据电路理论,在单一贮能元件组成的一阶电路中,过渡过程中的暂态电流与电压是按指数规律变化的。这一规律可以用下面的数字式表示,即

式中i c(0+)及U c(0+)是起始瞬间的电容电流及电压,i c(∞)及U c(∞)是电路稳定后的电容电流及电压。 图1电容器充放电电路 电容器充放电电路中电流、电压变化曲线分别如图3.4a.2(a)及图3.4a.2(b)所示。这曲线是由电路发生通断瞬间的起始状态向新的稳定状态过渡的指数曲线。其起始状态可根据换路定律确定,即在电路参数不变时,若电路发生换接,则电容器端电压不能突变,也就是在电路换接前后的瞬间是相等的,即 i c(0+)=i c (0_) 电路的时间常数τ,可以根据和计算,即τ=RC,τ用来表征过渡过程的长短。τ大过渡过程时间长,反之就短。若的单位为Ω,C 的单位为F,则τ的单位为s.τ可以从的变化曲线上求得。从曲线上任选

一阶电路和二阶电路的动态响应.

一阶电路和二阶电路的动态响应 一、实验目的 1、掌握一阶电路的动态响应特性测试方法 2、掌握Multisim 软件中函数发生器、示波器和波特图仪的使用方法 3、深刻理解和掌握零输入响应、零状态响应及完全响应 4、深刻理解欠阻尼、临界、过阻尼的意义 5、研究电路元件参数对二阶电路动态响应的影响 6、掌握Multisim 软件中的Transient Analysis 等仿真分析方法二、实验原理 1、一阶电路的动态响应 电路的全响应:u c (t=U 0e -t/RC +U s (1-e -t/RC (t>=0 (1零输入响应 u c (t=U 0e -t/RC (t>=0 输出波形单调下降。当t=τ=RC 时, u c (τ=U 0/e=0.368U 0,τ成为该电路的时间常数。 (2零状态响应 u c (t=U s (1-e -t/RC u(t 电容电压由零逐渐上升到U s ,电路时间常数τ=RC 决定上升的快慢。 2、用二阶微分方程描述的动态电路称为二阶电路。图所示的线性RLC 串联电路是一个典型的二阶电路。定义:衰减系数(阻尼系数L R 2= α 自由振荡角频率(固有频率LC 10=ω (1零输入响应

动态电路在没有外施激励时,由动态元件的初始储能引起的响应,称为零输入响应。 u L t m U 0 ① C L R 2>,响应是非振荡性的,称为过阻尼情况。 响应曲线如图所示②C L R 2 = ,响应临界振荡,称为临界阻尼情况。响应曲线如 ③C L R 2<,响应是振荡性的,称为欠阻尼情况。响应曲线如图 U 0 二阶电路的欠阻尼过程 ④当R =0时,响应是等幅振荡性的,称为无阻尼情况。响应曲线如图 t 二阶电路的无阻尼过程

RC一阶电路的响应测试实验报告

? 实验七 RC 一阶电路的响应测试 一、实验目的 1. 测定RC 一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用示波器观测波形。 二、原理说明 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图7-1(b )所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如图7-1(a)所示。 根据一阶微分方程的求解得知u c =U m e -t/RC =U m e -t/τ 。当t =τ时,Uc(τ)=0.368U m 。 此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632U m 所对应的时间测得,如图13-1(c)所示。 a) 零输入响应 (b) RC 一阶电路 (c) 零状态响应 图 7-1 4. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC 串联电路, 在方波序列脉冲的重复激励下, 当 满足τ=RC<< 2 T 时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输出,则该电路就是一个微分电路。因为此时电路的输出信号电压与输入信号电压的微分成正比。如图 0.368t t t t 0.6320 000c u u U m c u c u u U m U m U m

实验4 二阶电路的动态响应

二阶电路的动态响应 一、实验原理 RLC 串联二阶电路 用二阶微分方程描述的动态电路称为二阶电路。上图所示的线性RLC 串联电路是一个典型的二阶电路。可以用下述二阶线性常系数微分方程来描述: s 2 U 2=++c c c u dt du RC dt u d LC (4-1) 初始值为 C I C i dt t du U u L t c c 0 00)0()()0(== =-=-- 求解该微分方程,可以得到电容上的电压u c (t )。 再根据:dt du c t i c c =)( 可求得i c (t ),即回路电流i L (t )。 式(4-1)的特征方程为:01p p 2=++RC LC 特征值为:2 0222,11)2(2p ωαα-±-=-±-=LC L R L R (4-2) 定义:衰减系数(阻尼系数)L R 2= α 自由振荡角频率(固有频率)LC 10= ω 由式4-2 可知,RLC 串联电路的响应类型与元件参数有关。 1.零输入响应 动态电路在没有外施激励时,由动态元件的初始储能引起的响应,称为零输入响应。 电路如图4.2所示,设电容已经充电,其电压为U 0,电感的初始电流为0。 图4.2 RLC 串联零输入响应电路 图4.3 二阶电路的过阻尼过程 u L t m U 0

(1) C L R 2>,响应是非振荡性的,称为过阻尼情况。 电路响应为: ) () ()()()(2 1 2 1 120 121 20 t P t P t P t P C e e P P L U t i e P e P P P U t u ---=--= t ≥0 响应曲线如图4.3所示。可以看出:u C (t)由两个单调下降的指数函数组成, 为非振荡的过渡过程。整个放电过程中电流为正值, 且当2 11 2ln P P P P t m -=时,电流 有极大值。 (2)C L R 2=,响应临界振荡,称为临界阻尼情况。 电路响应为 t t c te L U t i e t U t u ααα--=+=00)()1()( t ≥0 响应曲线如图4.4所示。 图4.4 二阶电路的临界阻尼过程 (3) C L R 2 <,响应是振荡性的,称为欠阻尼情况。 电路响应为 t e L U t i t e U t u d t d d t d C ωωβωωωααsin )(),sin()(000 --= +== t ≥0 其中衰减振荡角频率 2 2 2 0d 2L R LC 1??? ??-= -=αωω , α ωβd arctan = 响应曲线如图4.5所示。

一阶动态响应(电路分析)

姓名:王硕

一、实验目的 1、研究一阶动态电路的零输入响应、零状态响应及完全响应的特点和规律。掌握测量一阶电路时间常数的方法。 2、理解积分和微分电路的概念,掌握积分、微分电路的设计和条件。 3、用multisim仿真软件设计电路参数,并观察输入输出波形。 二、实验原理 1、零输入响应和零状态响应波形的观察及时间常数τ的测量。 当电路无外加激励,仅有动态元件初始储能释放所引起的响应——零输入响应;当电路中动态元件的初始储能为零,仅有外加激励作用所产生的响应——零状态响应;在外加激励和动态元件的初始储能共同作用下,电路产生的响应——完全响应。 以一阶RC动态电路为例,观察电路的零输入和零状态响应波形,其仿真电路如图1(a)所示。 ( u i ( u o (a)(b) 图1 一阶RC动态电路 方波信号作为电路的激励加在输入端,只要方波信号的周期足够长,在方波作用期间或方波间隙期间,电路的暂态响应过程基本结束(τ5 2/≥ T)。故方波的正脉宽引起零状态响应,方波的负脉宽引起零输入响应,方波激励下的) (t u i 和) (t u o 的波形如图1(b)所 示。在)2/ 0(T t, ∈的零状态响应过程中,由于T << τ,故在2/ T t=时,电路已经达到 稳定状态,即电容电压 S o U t u= )(。由零状态响应方程 ) 1( )(/τt S o e U t u- - = 可知,当2/ ) ( S o U t u=时,计算可得τ 69 .0 1 = t。如能读出 1 t的值,则能测出该电路的时间常数τ。 2、RC积分电路 由RC组成的积分电路如图2(a)所示,激励) (t u i 为方波信号如图2(b)所示,输出电压) (t u o 取自电容两端。该电路的时间常数 2 T RC>> = τ(工程上称10倍以上关系为远远大于或远远小于关系。),故电容的充放电速度缓慢,在方波的下一个下降沿(或上升沿)

(电路分析)一阶电路的全响应

一阶电路的全响应 一阶电路的全响应 一、全响应 全响应 一阶电路在外加激励和动态元件的初始状态共同作用时产生的响应,称为一阶电路的全响应(complete response)。 图5.5-1(a)所示的一阶RC电路,直流电压源Us是外加激励,时开关S处于断开状态,电容的初始电压。时开关闭合,现讨论时电路响应的变化规律。 时,响应的初始值为 时,响应的稳态值为 用叠加定理计算全响应:开关闭合后,电容电压的全响应,等于初始状态U0单独作用时产生的零输入响应 和电压源Us单独作用时产生的零状态响应的代数和,如图5.5-1(b)、(c)所示。 图5.5-1(b)中,零输入响应为 图5.5-1(c)中,零状态响应为

根据叠加定理,图5.5-1(a)电路的全响应为 用表示全响应,表示响应的初始值,表示稳态值。 全响应的变化规律 1、当时,即初始值大于稳态值,则全响应由初始值开始按指数规律逐渐衰减到稳态值,这是动态元件C或L对电路放电。 2、当时,即初始值小于稳态值,则全响应由初始值开始按指数规律逐渐增加到稳态值,这是电路对动态元件C或L充电。 3、当时,即初始值等于稳态值,则全响应。电路换路后无过渡过程,直接进入稳态,动态元件C或L既不对电路放电,也不充电。

二、全响应的三要素计算方法 全响应的三要素 初始值 稳态值 时间常数 例5.5-1 图5.5-2(a)所示电路,已知C=5uF,t<0时开关S处于断开状态,电路处于稳态,t=0时开关S闭合,求时的电容电流。 解:欲求电容电流,只要求出电容电压即可。 1、确定初始状态。

作时刻的电路,如图5.5-2(b)所示,这时电路已处于稳态,电容相当于开路,则。由换路定则得初始状态 2、确定电容电压的稳态值。 作t→∞时的电路,如图5.5-2(c)所示,这时电路也处于稳态,电容也相当于开路,则3KΩ电阻两端的电压 则电容电压的稳态值为 3、求时间常数τ。 求从电容C两端看进去的戴维南等效电阻R的电路如图5.5-2(d)所示,这时将15V和5V电压源都视为短路,等效电阻为6KΩ和3KΩ电阻的并联,即R=6K∥3K=2KΩ 所以,时间常数为 4、求全响应。 电路换路后的电容电压为 电容电流为

二一阶电路的瞬态响应

实验二 一阶电路的瞬态响应 一 实验目的 1 用万用表观察时间常数τ较大的RC 串联电路接通直流电压的瞬态响应。熟悉用万 用表判别较大电容好坏的方法。 2 用示波器观察和测定RC 电路的阶跃响应和时间常数τ。 3 了解时间常数对响应波形的影响及积分、微分电路的特点。 二 原理说明 1 用万用表观察大时间常数的RC 串联电路接通直流电压的瞬态响应。 如上图所示,虚线框内为万用表的欧姆档等效电路,它由电池,中值电阻r 和电流表G 组成。当万用表黑、红表笔分别接电解电容的正、负极时,就构成了RC 串联电路接通直流电压的情况,而表头指针的偏转就反映了电路响应电流的大小(满度电流I=v/r )。当将电容的两个端点短路,即使电容的初始电压为零 0)0(=C V ,则电容两端的电压为 )1(/τt C e V V --= 电路中电流为 τ /t e r V i -= 其中rc =τ是这个电路的时间常数,若从下图所示响应电流随时间变化的曲线上,任 意选两点P (i 1,t 1)和Q (i 2, t 2) 则由 τ /11t e r V i -= τ/22t e r V i -= 得 τ/)(ln 122 1t t i i -= 于是,可得时间常数τ的关系式 ) /ln(211 2i i t t -= τ 若取 2/12i i = 则 7 .01 2t t -= τ 这样,只要从某点电流值i 1开始计时到i 1/2值所经历的时间除以0.7即为电路的时间常数τ。 图2-1 万用表的欧姆档检查电解点容等效电路 图2-2 点容器接通直流电压时响应 电流

当改变万用表欧姆档的档值时,其中值电阻值也随之改变,即电路的时间常数τ也随之改变,则瞬态响应所经历的时间也随之改变。当被测电容很小时,由于τ太小和表针的惰性,表针还未启动瞬态响应过程已经结束。所以,当电容量小于0.01uF 时,用万用表欧姆档还不能观察到电路的瞬态响应过程,且也只能在R ×10K 档(r 中=240K )观察到表针有摆动的现象,表针未偏转至满度值就返回。 利用上述原理就可用万用表来判别大于0.01uF 的电容器的好坏,若表针不摆动或偏转后不返回,则说明电容器开路或短路。若表针不返回至“∞”处,则说明电容器漏电。 2 积分电路和微分电路 如图所示为一阶RC 串联电路图。 )(t Vs 是周期为T 的方波信号, 设0)0(=C V 则 dt t V RC dt R t V C dt t i C t V R R C ???=== )(1 )(1)(1)( 当时间常数RC =τ很大,即τ》T 时,在方波的激励下,C V 上冲得的电压远小于R V 上的电压,即)(t V R 》)(t V C 因此 )()(t V t Vs R ≈ 所以 dt t V RC t V S C ? ≈ )(1 )( 上式表明,若将)(t V C 作为输出电压,则)(t V C 近似与输出电压)(t Vs 对时间的积分成正比。我们称此时的RC 电路为积分电路,波形如下 如果输出电压是电阻R 上的电压V R (t )则有 dt t dV RC t i R t V C R ) ()()(? =?= V S V 图2-3 一阶RC 串联实验电路图

一阶动态电路响应研究实验报告

一阶动态电路响应的研究 实验目的: 1.学习函数信号发生器和示波器的使用方法。 2.研究一阶动态电路的方波响应。 实验仪器设备清单: 1.示波器 1台 2.函数信号发生器 1台 3.数字万用表 1块 4. 1kΩ电阻X1 ;10kΩ电阻 X1 ;100nf电容X1 ;面包板;导线若干。 实验原理: 1.电容和电感的电压与电流的约束关系是通过导数和积分来表达的。积分电路和 微分电路时RC一阶电路中典型的电路。一个简单的RC串联电路,在方波序列 脉冲的重复激励下,由R两端的电压作为输出电压,则此时该电路为微分电路, 其输出信号电压与输入电压信号成正比。若在该电路中,由C两端的电压作为 响应输出,则该电路为积分电路。 2.电路中在没有外加激励时,仅有t=0时刻的非零初始状态引起的响应成为零输 入响应,其取决于初始状态和电路特性,这种响应随时间按指数规律衰减。在 零初始状态时仅有在t=0时刻施加于电路的激励所引起的响应成为零状态响应,其取决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。 线性动态电路的全响应为零输入响应和零状态响应之和。 实验电路图: 实验内容: 1.操作步骤、: (1).调节信号源,使信号源输出频率为1KHz,峰峰值为1.2VPP的方波信号。 (2).将示波器通道CH1与信号源的红色输出端相接,黑色端也相接,调示波器显示 屏控制单位,使波形清晰,亮度适宜,位置居中。 (3).调CH1垂直控制单元,使其灵敏度为0.2V,即在示波器上显示出的方波的幅值 在屏幕垂直方向上占6格。 (4).调CH2水平控制单元,使其水平扫描速率为0.2ms,表示屏幕水平方向每格为 0.2ms。 (5).按照实验原理的电路图接线,将1K电阻和10nf电容串联,将信号源输出线的 红色夹子,示波器CH1的红色夹子连电阻的一端,电容的另一端与信号源,示波器的黑色夹子连在一起,接着将CH2的输入探极红色夹子接在电容的非接地端,黑色夹子接在电容的接地端。

一阶电路和二阶电路的动态响应

实验四 一阶电路和二阶电路的动态响应 一、 实验目的 (1) 理解零输入响应、零状态响应和完全响应 (2) 理解欠阻尼、临界和过阻尼的意义和条件 二、 实验原理 用二阶微分方程描述的动态电路称为二阶电路。图所示的线性RLC 串联电路是一个典型的二阶电路。可以用下述二阶线性常系数微分方程来描述: s 2 U 2=++c c c u dt du RC dt u d LC 1. 零输入响应 动态电路在没有外施激励时,由动态元件的初始储能引起的响应,称为零输入响应。 电路如图6.2所示,设电容已经充电,其电压为U 0,电感的初始 电流为0。 (1) C L R 2 >,响应是非振荡性的,称为过阻尼情况。 电路响应为: 图6.2 RLC 串联零输入响应电路 图6.3 二阶电路的过阻尼过程 u L t m U 0

) () ()()()(2 1 2 1 120 121 20 t P t P t P t P C e e P P L U t i e P e P P P U t u ---= --= 响应曲线如图6.3所示。可以看出:u C (t)由两个单调下降的指数函数组成,为非振荡的过渡过程。整个放电过程中电流为正值, 且 当2 11 2ln P P P P t m -=时,电流有极大值。 (2)C L R 2 =,响应临界振荡,称为临界阻尼情况。 电路响应为 t t c te L U t i e t U t u ααα--=+=00)()1()( t ≥0 响应曲线如图6.4所示。 图6.4 二阶电路的临界阻尼过程 (3) C L R 2<,响应是振荡性的,称为欠阻尼情况。 电路响应为 t e L U t i t e U t u d t d d t d C ωωβωωωααsin )(),sin()(000 --= +==t ≥0 其中衰减振荡角频率 2 220d 2L R LC 1?? ? ??-= -=αωω , α ωβd arctan = 响应曲线如图6.5所示。

浙江大学实验报告:一阶RC电路的瞬态响应过程实验研究

三墩职业技术学院实验报告课程名称:电子电路设计实验指导老师:成绩:__________________ 实验名称:一阶RC电路的瞬态响应过程实验研究实验类型:探究类同组学生姓名:__ 一、实验目的二、实验任务与要求 三、实验方案设计与实验参数计算(3.1 总体设计、3.2 各功能电路设计与计算、 3.3完整的实验电路……) 六、实验调试、实验数据记录七、实验结果和分析处理 八、讨论、心得 一、实验目的 1、熟悉一阶RC电路的零状态响应、零输入响应过程。 2、研究一阶RC电路在零输入、阶跃激励情况下,响应的基本规律和特点。 3、学习用示波器观察分析RC电路的响应。 4、从响应曲线中求RC电路的时间常数。 二、实验理论基础 1、一阶RC电路的零输入响应(放电过程) 零输入响应:

电路在无激励情况下,由储能元件的初始状态引起的响应,即电路初始状态不为零,输入为零所引起的电路响应。 (实际 上是 电容器C 的 初始电压经电阻R 放电过程。) 在图1中,先让开关K 合于位置a ,使电容C 的初始电压值0)0(U u c =-,再将开关K 转到位置b 。 电容器开始放电,放电方程是 可以得出电容器上的电压和电流随时间变化的规律: 衰减到1/e (36.8%))0(u c 所需要的 式中τ=RC 为时间常数,其物理意义是 时间,反映了电路过渡过程的快慢程度。τ越大,暂态响应所持续的时间越长,即过渡过程的时间越长;反之,τ越小,过渡过程的时间越短。时间常数可以通过相 应的衰减曲线来反应,如图2。由于经过5τ时间后,已经衰减到初态的1%以 下,可以认为经过5τ时间,电容已经放电完毕。 图2 2、一阶RC 电路的零状态响应(充电过程) 所谓零状态响应是指初始状态为零,而输入不为零所产生的电路响应。一阶RC 电路在阶跃信号激励下的零状态响应实际上就是直流电源经电阻R 向C 充电的过程。在图1所示的一阶电路中,先让开关K 合于位置b ,当t = 0时,将开关K 转到位置a 。 电容器开始充电,充电方程为 图1 ) 0(0≥=+t dt du RC u C C ) 0()0()(0≥- =- =---t e R U R e u t i t RC t C C τ ) (u t C )0()0()(0≥==- - -t e U e u t u t RC t C C τ )(u t C 装 订

一阶动态电路的响应测试一

实验八 一阶动态电路的响应测试一 一、实验目的:测定RC 一阶电路的零输入响应、零状态响应及完全 响应;学习电路时间常数的测量方法。 二、实验原理及电路图 1、实验原理: 1) 电路中某时刻的电感电流和电容电压称为该时刻的电路状态。t=0时电感的初始电流iL (0)和电容电压uc (0)称为电路的初始状态。在没有外加激励时,仅由t=0零时刻的非零初始状态引起的响应称为零输入响应,它取决于初始状态和电路特性(通过时间常数τ=RC 来体现),这种响应时随时间按指数规律衰减的。在零初始状态时仅由在t0时刻施加于电路的激励引起的响应称为零状态响应,它取决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。 2)动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。 3) 时间常数τ的测定方法 零状态响应:)1()1(τt m RC t m c e U e U U ---=-=。当t =τ时,Uc(τ)=0.632Um 。此时所对应的时间就等于τ。

零输入响应:τt m RC t m c e U e U U --==。当t =τ时,Uc(τ)= 0.368Um 。此时所对应的时间就等于τ。 2、电路图 图1 三、实验环境: 面包板(SYB —130)、直流电源(IT6302),一个100k ?电阻、10uF 的电容、单刀双置开关、导线、Tek 示波器。 四、实验步骤: 1)在面包板上将电路搭建如图1所示,在直流电源面板上将输入电压设置好,分别为3V 、50Hz 。 2)观察示波器上的信号,将开关拨至另一端是信号会发生改变,当整个过程完成后,按run/stop 键,使得信号停止。 3)分别对对充放电过程进行2)操作,并用联动光标测量充放电时间,及其对应的时间常数τ,记录波形及数据。

一阶电路响应电路实验报告

一个简单的RC串联电路,在方波序列脉冲的重复激励下若满足t=RC< > T/2, 则该RC电路称为积分电路。因为此时电路的输出电压uc与输入电压ui的积分成正比。利用积分电路可以将方波转变成三角 波。 三. 实验设备 电阻,周期方波激励,电容 四. 实验内容及数据 4.1 调节示波器输出电压为5Vpp、f=2KHz的方波。

4.2 令R= 1KQ,C= 0.01μF,组成如图(4)所示的微分电路。在同样的方波激励信号作用下,观测并描绘响应的波形,测定时间常数τ。分别减小R或C的值,定性地观察对响应的影响。 4.2.1图像: 4.2.2测定时间常数τ: 由实验原理可知,当时,,对图像测量可知 由图像测量得τ=10.1

4.2.3.1减小R至500Ω: 由图像可知τ小于10,τ随着R减小而减小4.2.3.2 减小C至5nF: 由图像可知τ小于10,τ随着C减小而减小

4.3令R= 1KQ,C= 0.033μF,组成如图(5)所示的积分电路。观察并描绘响应的波形,测定时间常数τ。分别增大R或C的值,定性地观察对响应的影响。 4.3.1 图像: 4.3.2测定时间常数τ: 由实验原理可知,当时,,对图像测量可知 由图像测量得τ=32

4.3.3.1减小R至500Ω: 由图像可知τ小于32,τ随着R减小而减小4.3.3.2 减小C至15nF: 由图像可知τ小于32,τ随着C减小而减小

二阶电路的动态响应

实验三:二阶电路的动态响应【实验目的】 1.学习用实验的方法来研究二阶动态电路的响应。 2.研究电路元件参数对二阶电路动态响应的影响。 3.研究欠阻尼时,元件参数对α和固有频率的影响。 研究RLC串联电路所对应的二阶微分方程的解与元件参数的关系。 【实验原理】 用二阶微分方程描述的动态电路称为二阶电路。图6.1所示的线性RLC串联电路是一个典型的二阶电路。可以用下述二阶线性常系数微分方程来描述: s 2 U 2 = + + c c c u dt du RC dt u d LC(1)初始值为 C I C i dt t du U u L t c c ) 0( )( ) 0( = = = - = - - 求解该微分方程,可以得到电容上的电压u c(t)。 再根据: dt du c t i c c = )(可求得i c(t),即回路电流i L(t)。 式(1)的特征方程为:0 1 p p2= + +RC LC 特征值为:

2 0222,11)2(2p ωαα-±-=-±- =LC L R L R (2) 定义:衰减系数(阻尼系数)L R 2= α 自由振荡角频率(固有频率)LC 10=ω 由式2可知,RLC 串联电路的响应类型与元件参数有关。 1.零输入响应 动态电路在没有外施激励时,由动态元件的初始储能引起的响应,称为零输入响应。 设电容已经充电,其电压为U 0,电感的初始电流为0。 (1) C L R 2 >,响应是非振荡性的,称为过阻尼情况。 电路响应为: ) () ()()()(2 1 2 1 120 121 20 t P t P t P t P C e e P P L U t i e P e P P P U t u ---=--= 整个放电过程中电流为正值, 且当2 11 2ln P P P P t m -=时,电流有极大值。 (2)C L R 2 =,响应临界振荡,称为临界阻尼情况。 电路响应为 t t c te L U t i e t U t u ααα--=+=00)()1()( t ≥0 (3) C L R 2 <,响应是振荡性的,称为欠阻尼情况。 电路响应为

实验九实验报告(一)--一阶动态电路的响应测试

实验九 :一阶动态电路的响应测试(一) 一、实验目的: 1. 测定RC 一阶电路的零输入响应、零状态响应。 2. 学习电路时间常数的测量方法。 二、实验内容: 在面包板上搭建RC 电路,用开关控制零输入和零状态,用示波器观察其响应过程。 三、实验环境: 面包板一个,电路箱一个,单刀双掷开关一个,导线若干,电阻一个(100k Ω),DS1052E 示波器一台,电解电容一个(10μF )。 四、实验原理: 1.零输入与零状态: 电路中某时刻的电感电流和电容电压称为该时刻的电路状态。t=0时电感的初始电流 i L (0)和电容电压u c (0)称为电路的初始状态。 在没有外加激励时,仅由t=0零时刻的非零初始状态引起的响应称为零输入响应,它取决于初始状态和电路特性(通过时间常数τ=RC 来体现),这种响应时随时间按指数规律衰减的。 在零初始状态时仅由在t 0时刻施加于电路的激励引起的响应称为零状态响应,它取决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。 2. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如下图所示, 根据一阶微分方程的求解得知u c =U m e -t/RC =U m e -t/τ 。当t =τ时,Uc(τ)=0.368U m 。 此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632U m 所对应的时间测得τ. 零输入响应 零状态响应 3.RC 一阶响应电路图: VDD τ τ

4.仿真波形图: 五、实验数据: 实验波形图: 六、数据分析总结: 1.τ的测量: 根据u c=U m e-t/RC=U m e-t/τ: 充电过程:当t=τ时,u2=0.632u1; 放电过程:当t=τ时,u2=0.368u1; 可得:ΔU=2.93V

RC一阶电路的响应测试实验内容

实验五 RC一阶电路的响应测试 一、实验目的 1. 测定RC一阶电路的零输入响应、零状态响应及全响应。 2. 掌握有关微分电路和积分电路的概念。 3. 学会时间常数τ的测定方法。 4. 进一步学会用示波器观测波形。 二、原理说明 图5.1所示的矩形脉冲电压波u i可以看成是按照一定规律定时接通和关断的直流电压源U。若将此电压u i加在RC串联电路上(见图5.2),则会产生一系列的电容连续充电和放电的动态过程,在u i的上升沿为电容的充电过程,而在u i的下降沿为电容的放电过程。它们与矩形脉冲电压u i的脉冲宽度t w及RC串联电路的时间常数τ有十分密切的关系。当t w不变时,适当选取不同的参数,改变时间常数τ,会使电路特性发生质的变化。 图5.1 矩形脉冲电压波形图5.2 RC串联电路图 1. RC一阶电路的零状态响应 所有储能元件初始值为0的电路对于激励的响应称为零状态响应。电路的微分方程为:,其解为,式中,τ=RC为该电路的时间常数。 2. RC一阶电路的零输入响应 电路在无激励情况下,由储能元件的初始状态引起的响应称为零输入响应。电路达到稳态后,电容器经R放电,此时的电路响应为零输入响应。电路的微分方程为:,其解为。RC一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长(如图5.3所示),其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法 方法一:在已知电路参数的条件下,时间常数可以直接由公式计算得出,τ=RC。 方法二:对充电曲线(零状态响应),电容的端电压达到最大值的(约0.632)倍时所需要的时间即是时间常数τ。如图5.3(a)所示,用示波器观测响应波形,取上升曲线中波形幅值的0.632倍处所对应的时间轴的刻度,计算出电路的时间常数: 其中,扫描时间是示波器上X轴扫描速度开关“t/div”的大小。是X轴上O、P两点之间占有的格数。而对放电曲线(零输入响应),时间常数是电容的端电压下降到初值的,即约0.368倍时所需要的时间,如图5.3(b)所示。 (a) 零状态响应(b) 零输入响应 图5.3 时间常数τ的测定 方法三:利用时间常数的几何意义求解。在图5.4中,取电容电压u c的曲线上任意一点A,通过A点作切线AC,则图中的次切距

二阶电路的动态响应实验报告

二阶电路的动态响应实验报告 一、实验目的: 1. 学习用实验的方法来研究二阶动态电路的响应。 2. 研究电路元件参数对二阶电路动态响应的影响。 3. 研究欠阻尼时,元件参数对α和固有频率的影响。 4. 研究RLC 串联电路所对应的二阶微分方程的解与元件参数的关系。 二、实验原理: 图1.1 RLC 串联二阶电路 用二阶微分方程描述的动态电路称为二阶电路。图1.1所示的线性RLC 串联电路是一个典型的二阶电路。可以用下述二阶线性常系数微分方程来描述: s 2 U 2=++c c c u dt du RC dt u d LC (1-1) 初始值为 C I C i dt t du U u L t c c 0 00 )0()()0(== =-=-- 求解该微分方程,可以得到电容上的电压u c (t )。 再根据:dt du c t i c c =)( 可求得i c (t ),即回路电流i L (t )。 式(1-1)的特征方程为:01p p 2 =++RC LC 特征值为:2 0222,11)2(2p ωαα-±-=-±- =LC L R L R (1-2)

定义:衰减系数(阻尼系数)L R 2= α 自由振荡角频率(固有频率)LC 1 0= ω 由式1-2 可知,RLC 串联电路的响应类型与元件参数有关。 1. 零输入响应 动态电路在没有外施激励时,由动态元件的初始储能引起的响应,称为零输入响应。 电路如图1.2所示,设电容已经充电,其电压为U 0,电感的初始电流为0。 图1.2 RLC 串联零输入电路 (1) C L R 2 >,响应是非振荡性的,称为过阻尼情况。 电路响应为: ) () ()()()(2 1 2 1 120 121 20 t P t P t P t P C e e P P L U t i e P e P P P U t u ---= --= 图1.3 RLC 串联零输入瞬态分析 响应曲线如图1.3所示。可以看出:u C (t)由两个单调下降的指数函数组成,为非振荡的 过渡过程。整个放电过程中电流为正值, 且当2 11 2ln P P P P t m -=时,电流有极大值。 (2)C L R 2 =,响应临界振荡,称为临界阻尼情况。 电路响应为

相关文档
相关文档 最新文档