文档库 最新最全的文档下载
当前位置:文档库 › 大地测量技术

大地测量技术

大地测量技术
大地测量技术

浅谈大地测量技术

摘要:在现代生活中,无论是在建设方面还是管理方面,都会用到测量技术,随着社会经济的发展,技术难度会越来越大,而测量技术也会相应的随着提高。人们的生活水平也会随着测量技术的发展的得到改善。随着空间及卫星定位技术的迅猛增长,大地测量技术尤其是空间大地测量技术也得到了相应的发展。

关键词:测量技术空间大地测量技术

大地测量学与测量工程这一国家重点学科源于一级学科“测绘科学技术”下的两个二级学科大地测量学和工程测量学。大地测量学具有测绘学科的基础学科性质,工程测量学是测绘学科在国民经济和国防建设中的直接应用。大地测量学与工程学科就是这两个二级学科的基础理论和实际应用的相互结合与交融。

中国的测绘学科,包括大地测量与测量工程学科的发展源远流长。早在1941年我国中科院首批学部委员(院士)夏坚白先生就发表文章论述测量事业对于国防、土地整理和税收、交通、教育和文化等等的关系,他特别强调测量事业的发展与学术研究应有密切联系,呼吁在抗战胜利后,如果要复兴并建设新中国,抵御外来的侵略,则大家必须联合起来踏上边陲的长途,遍走高山峻岭,万里沙漠,一点一滴将我国的大好河山详尽地正确的测绘出来。同年,他发表了《天文,重力和大三角测量关系》的论文,以极其简练的语言论述了大地测量学科的主要内涵。他写到,地球的形状和大小,它的质量分布,以及大三角测量等,是大地测量学科研究对象的重

空间大地测量学试卷

空间大地测量学 1、试述VLBI原理及其应用。(VLBI,very long baseline interferometry)缩写甚长基线干涉测量技术。 简单来说,VLBI就是把几个小望远镜联合起来,达到一架大望远镜的观测效果。这是因为,虽然射电望远镜能“看到”光学望远镜无法看到的电磁辐射,从而进行远距离和异常天体的观测,但如果要达到足够清晰的分辨率,就得把望远镜的天线做成几百公里,甚至地球那么大。上世纪50年代,剑桥大学的天文学家马丁〃赖尔建成了第一台射电干涉仪,使不同望远镜接收到的电磁波可以叠加成像,在此基础上 ,VLBI得以发展。1974年,赖尔以此获得了诺贝尔奖。 原理:射电源辐射出的电磁波﹐通过地球大气到达地面﹐由基线两端的天线接收。由于地球自转﹐电磁波的波前到达两个天线的几何程差(除以光速就是时间延迟差)是不断改变的。两路信号相关的结果就得到干涉条纹。天线输出的信号﹐进行低噪声高频放大后﹐经变频相继转换为中频信号和视频信号。在要求较高的工作中﹐使用频率稳定度达10 的氢原子钟﹐控制本振系统﹐并提供精密的时间信号,由处理机对两个“数据流”作相关处理﹐用寻找最大相关幅度的方法﹐求出两路信号的相对时间延迟和干涉条纹率。如果进行多源多次观测﹐则从求出的延迟和延迟率可得到射电源位置和基线的距离﹐以及根据基线的变化推算出的极移和世界时等参数。参数的精度主要取决于延迟时间的测量精度。因为﹐理想的干涉条纹仅与两路信号几何程差产生的延迟有关﹐而实际测得的延迟还包含有传播介质(大气对流层﹑电离层等)﹑接收机﹑处理机以及钟的同步误差产生的随机

延迟﹐这就要作大气延迟和仪器延迟等项改正﹐改正的精度则关系到延迟的测量精度。目前延迟测量精度约为0.1毫微秒。 中国科学院的VLBI网是测轨系统的一个分系统,它目前由北京、上海、昆明和乌鲁木齐的四个望远镜以及位于上海的天文台的数据处理中心组成。这样一个网所构成的望远镜分辨率相当于口径为3000多公里的巨大的综合望远镜,测角精度可以达到百分之几角秒,甚至更高。 VLBI测轨分系统的具体任务是获得卫星的VLBI测量数据,包括时延、延迟率和卫星的角位置,并参与轨道的确定和预报。具体的任务,比如说完成卫星在24小时、48小时周期的调相轨道段的测轨任务。完成卫星在地月转移轨道段、月球捕获轨道段以及环月轨道段的测轨任务。并且还要参加调相轨道、地月转移轨道、月球捕获轨道段的准实时轨道的确定和预报。 VLBI测轨分系统从2007年10月27日起,即卫星24小时的调相轨道段的第一天正式实施对嫦娥一号卫星的测量任务。现在已经完成了24小时、48小时调相轨道、地月转移轨道段和月球捕获轨道段的第一天总共十天的测量任务。 其他应用 VLBI分系统的各测站数据处理中心设备工作正常,VLBI测量数据及时传输到北京的航天飞控中心,数据资料很好,满足了工程的要求,为嫦娥一号卫星的精确定轨作出了贡献。

现代大地测量

现代大地测量 题目:现代大地测量课程报告 姓名: 学号: 专业:大地测量学与测量工程

本学期通过对现代大地测量这门课程的学习,使我对经典大地测量学和现代大地测量学的发展有了一些了解,尤其是现代大地测量学的发展及在其领域的应用有了深刻的认识。 按照 F , R 赫尔默特(1980)的经典定义,大地测量学是“测定和描绘地球表面的科学”。这是赫尔默特对“Geodesy"这个词的定义,但从这个定义的内涵去理解,倒不如说它是测绘学的定义更为恰当一些。实际上"Geodesy"这个词曾经有人译成测地学。就大地测量来说,这一定义一直沿用了很长的时期,它包括测定地面点位置、地球重力场和海底表面。通常按照这一定义,大地测量学具有两大任务:一是科学任务,即测定地球形状参数(形状和大小)和外部重力场;另一是工程技术任务,即建立全球的或区域的(国家的)高精度天文大地控制网,为测绘全国范围的各种比例尺地形图服务。而传统大地测量技术和手段,由于其定位的平均极限精度只能是10-5-10-6,一般不能分辨地球的动态变化,只能以刚性均匀旋转地球假设为前提,所以在完成以上两大任务时,其成果具有静态性、相对性、局限性,这就大大限制了大地测量学深人地球科学和工程科学去扩展其科学和工程应用目标的能力。 1.现代大地测量学的特点: 1.长距离,大范围现代大地测量学所量测的范围和间距,已可以从原来的几十公里扩展到几千公里,不再受经典大地测量中“视线”长度的制约,现代大地测量学能提供协调一致的全球性大地测量数据,例如测定全球的板块运动,冰原和冰川的流动,洋流和海平面的变化等等,因此过去总在局部地域中进行的大地测量现在已扩展为洲际的、全球的和星际的。 2.高精度现代大地测量的量测精度相对于经典大地测量而言,已提高了2 到3个数量级。例如我国天文大地网是中国60年代大地测量的最高精度,其相对精度约为3ppm,而目前GPS定位的相对精度一般情况下都可以做到0.1ppm。 3.实时,快速经典大地测量的外业观测和内业数据处理是在有相当时间间隔内完成的两个不同的工序。而现代大地测量的这两个工序,几乎可以在同一时间段内完成,即实时或准实时地完成。例如对静态或动态目标的实时定位(导航),对形变的实时监测,可以准实时测定由于大气和海洋角动量的变化与地球自转的关系。

大地测量学笔记

第一章 1.大地测量学是通过在广大的地面上建立大地控制网,精确测定大地控制网点的坐标,研究测定地球形状、大小和地球重力场的理论、技术与方法的学科。 2.大地测量的基本任务 (1)技术任务:精确测定大地控制点的位置及其随时间的变化也就是它的运动速度场,建立精密的大地控制网,作为测图的控制,为国家经济建设和国防建设服务。 (2)科学任务:测定地球形状、大小和重力场,提供地球的数学模型,为地球及其相关科学服务。 3.大地测量的作用 (1)为地形测图与大型工程测量提供基本控制; (2)为城建和矿山工程测量提供起始数据; (3)为地球科学的研究提供信息; (4)在防灾、减灾和救灾中的作用; (5)发展空间技术和国防建设的重要保障。 4.大地测量学的主要研究内容 大地测量、椭球测量学、天文测量大地重力学、卫星大地测量学、惯性大地测量学 第二章 1.大地水准面:设想海洋处于静止平衡状态时,将它延伸到大陆下面且保持处处与铅垂线正交的包围整个地球的封闭的水准面. 特点:重力方向不规则变化:原因是地表起伏不平、地壳内部物质密度分布不均匀 大地水准面处处与铅垂线正交,所以大地水准面是一个无法用数学公式表示的不规则曲面。 2.参考椭球:把形状和大小与大地体相近,且两者之间相对位置确定的旋转椭球称为参考椭球。参考椭球面是测量计算的基准面,椭球面法线则是测量计算的基准线。另外,水准面是外业观测时的基准面,铅垂线是外业观测时的基准线 3.总地球椭球:从全球着眼,必须寻求一个和整个大地体最为接近、密合最好的椭球,这个椭球又称为总地球椭球或平均椭球。总地球椭球满足以下条件: (1)椭球质量等于地球质量,两者的旋转角速度相等。 (2)椭球体积与大地体体积相等,它的表面与大地水准面之间的差距平方和为最小。 (3)椭球中心与地心重合,椭球短轴与地球平自转轴重合,大地起始子午面与天文起始子午面平行。 大地水准面与椭球面在某一点上的高差称为大地水准面差距,用N表示。 4.垂线偏差:同一测站点上铅垂线与椭球面法线不会重合。两者之间的夹角u称为垂线偏差 5.常用的坐标系统: 天球坐标系地球坐标系天文坐标系大地坐标系空间大地直角坐标系地心坐标系 站心坐标系高斯平面直角坐标系 6.高斯投影的特点: (1)高斯投影是正形投影的一种,投影前后角度相等。 (2)中央子午线投影后为一直线,且长度不变。距中央子午线越远的子午线,投影后弯曲越大,长度变形越大。 (3)椭球面除中央子午线外其他子午线投影后均向中央子午线弯曲,并向两极收敛,对称于中央子午线呵赤道。 (4)在椭球面上对称于赤道的纬圈,投影后仍为对称的曲线,并与子午线的投影曲线相互垂直且凹向两极。 7.时间系统

测绘学基础知识要点与习题答案

《测绘学基础》知识要点与习题答案 Crriculum architecture & answers to exercise of Fundamentals of Geomatics 总学时数:测绘64;地信、规划48实验学时:12,计4次学分:6/4 课程性质:专业基础课先修课程:高等数学,专业概论,概率统计学 教学语言:双语教学考核方式:考试实习:3周计3学分 平时成绩: 20%(实验报告、提问、测验、课堂讨论及作业) 1.课程内容 测绘学基础是测绘科学与技术学科的平台基础课。该分支学科领域研究的主要内容是小区域控制测量、地形图测绘与基本测绘环节的工程与技术,即:应用各类测绘仪器进行各种空间地理数据的采集包括点位坐标与直线方位测定与测设、地形图数字化测绘等外业工作和运用测量误差与平差理论进行数据处理计算、计算机地图成图等内业工作。授课内容主要包括地球椭球与坐标系、地图分幅、空间点位平面坐标与高程及直线方位测定与测设、误差理论与直接平差、大比例尺地形图数字成图等基本理论与方法。 2.课程特色 测绘学基础为测绘学科主干课程,为学生进一步学习以“3S”为代表的大地测量学、摄影测量学、工程测量学等专业理论与技术奠定基础。同时,该课程本身也是测绘学的一门分支学科──地形测量学(Topographical Surveying)。该门课程具有理论、工程和技术并重、实践性强等特点,其教学水平和教学质量是衡量测绘学科教育水准的关键要素,实施多样化课堂教学,注重培养学生动手能力和创新能力,以达到国家级精品课的要求为建设目标。 3.课程体系 第一章绪论Chapter 1 Introductory 内容:⑴了解测绘学科的起源、发展沿革与分支学科的研究领域;⑵测绘学的任务与作用。 重点:大地测量学与地形测量学的研究领域和工作内容。 难点:无。 §1-1测绘学的定义DEFINITION OF GEOMATICS 研究测定和推算地面点的几何位置、地球形状及地球重力场,据此测量地球表面自然形态和人工设施的几何分布,并结合某些社会信息和自然信息的地球分布,编制全球和局部地区各种比例尺的地图和专题地图

我国大地测量技术的新进展

我国大地测量技术的新进展 摘要:我国是一个幅员辽阔的国家,其面积占据了亚洲的大部分地区,因此对 于土地的测量成为了一个必不可少的工作。其不仅能够为农业,工业的发展提供 便利,更能够让我国的战略部署得到参考,因此如何进行有效的大地测量是非常 重要的。本文就是针对了我国现有的大地测量技术进行探讨,从而得出,我国的 大地测量工作在那些地方可以开发全新的技术。 关键词:大地测量;数据处理;技术应用 随着科技的发展,当今的世界已经走向了信息化,数字化的时代,对于大地 的测量,也开启了科技化的时代。曾经的人工丈量已经完全不适用于当今的社会,而且人工测量存在着非常大的误差,因此科技测量,是当前最为主要的手段。不 得不说,在大地测量的新技术研发方面,我国是遥遥领先的。其主要原因为我国 幅员辽阔,比大部分国家都需要进行大地测量。 1当今大地测量学的特征 1.1多维度大地测量的建立和发展应用 在古代,大地测量主要是采取人工手工丈量的方式,这种丈量是二维的,只 能从单纯的长宽来进行大地测量。但是随着时代的发展,光学仪器为代表的测量 方式诞生,其测量方式就变成了三维的,能够通过长,宽,高,来进行测量,这 种测量相对准确,但是耗时太多,对人力的需求较大,依旧是一种难以大范围应 用的方式。但是先进,空间大地测量技术开启,在测量的时候,能够将所需要测 量的地点置于绝对的地球质心的三维绝对位置,这不仅提高了测量的精准度,也 让测量的速度大大增加,对于人力的需求逐渐减少。 1.2完成了动态测量的构建,不局限于静态的数据。 传统的大地测量,只能得出一个静态的数据,这个数据只能代表测量时一瞬 间的大地状态,而且能够参考的时间也较少,一些数据难以应用。就导致了原本 的大地测量技术存在着严重的缺陷,只能应用于一些不需要实时变更的计划中。 但是现今的大地测量技术,实现了对地球整体动态的检测,能够实时反映地球的 数据,这就让大地测量变得生动,其数据也从单纯的数据图表,变成了一个不断 变化的数据库,在任何的计划和应用中,都能起到实际作用,而不仅仅是单纯的 参考作用。这就是动态测量构建的具体意义。 1.3从相对到绝对,从局面到全面,大地测量不仅局限于单纯的相对指标,而是发展成为绝对指标的代名词。 在曾经,大地的测量因为科技的不够全面,导致了其测量的维度是有限的, 只能在一定的范围内得出可以相对参考的数据,这些数据通常用处不大,只能起 到一定的参考和指示的作用。因此,可以说,在曾经的时代,是不具备一个完善 的大地测量技术的。但是随着空间大地测量技术的开启,对于大地的测量就是多 维度的,是全面的,也是绝对嘚能够在空间之中,对地球的位置进行监控,从而 了解地球的多数指标,对于地球是一种全面的监控。尤其是在地球运行的演示中,空间大地测量技术,能够更好的还原出地球的本貌,让数据更加的生动形象。 2大地测量数据的融合作用 2.1参数选择的原因 在曾经的大地测量中,由于测量数据过于死板,就导致一些都要依靠参数的 建立。这些参数的建立还存在着数据的不够全面,而且其变化规律也不够直观明显。因此,在建立参数图表的同时,科研人员存在着一定得片面性,导致所建立

绝密-空间大地测量学复习

第一章概论 1.大地测量学的基本体系:几何大地测量学、物理大地测量学、空间大地测量学 空间大地测量学主要研究利用自然天体或人造天体来精确测定点的位置,确定地球的形状、大小、外部重力场,以及它们随时间的变化状况的一整套理论和方法。 2. 国家平面坐标系统实现过程主要工作 (1)国家平面控制网布设 (2)建立大地基准、确定全网起算数据 (3)控制网的起始方位角的求定 (4)控制网的起始边长的测定 (5)其它工作 3.传统大地测量常规方法的局限性 (1)测站间需保持通视:采用光电仪器,必须通视;需花费大量人力物力修建觇标;边长受限制;工作难度大、效率低。 (2)无法同时精确确定点的三维坐标:平面控制网和高程控制网是分别布设的;并且增加了工作量。 (3)观测受气候条件影响:雨天、黑夜、大雾、大风、能见度低时不宜测量。 (4)难以避免某些系统误差的影响:光学仪器的测量值会因为大气密度不同而受到不同的弯曲影响,地球引力由两极到赤道减小,大气密度变化也逐渐减小。 (5)难以建立地心坐标系:海洋区域无法布设大地控制网,陆地只能区域测量,建立区域参考椭球与区域大地水准面吻合;无法建立全球参考椭球。 4. 时代对大地测量提出的新要求 (1)要求提供更精确的地心坐标:空间技术和远程武器迅猛发展,要求地心坐标; (2)要求提供全球统一的坐标:全球化的航空、航海导航要求全球统一的坐标系统 (3)要求在长距离上进行高精度的测量:如研究全球性的地质构造运动、建立和维持全球的参考框架、不同坐标系间的联测等; (4)要求提供精确的(似)大地水准面差距:GNSS等空间定位技术逐步取代传统的经典大地测量技术成为布设全球性或区域性的大地控制网的主要手段;人们对高精度的、高分辨率的大地水准面差距N或高程异常的要求越来越迫切。 (5)要求高精度的高分辨率的地球重力场模型:精密定轨和轨道预报(尤其是低轨卫星)需要高精度的高分辨率的地球重力场模型来予以支持。 (6)要求出现一种全天候,更为快捷的、精确、简便的全新的大地测量方法。 5. 空间大地测量产生的可能性 (1)空间技术的发展:按需要设计卫星,并能精确控制姿态,精确测定卫星轨道并进行预报,为卫星定位技术的产生奠定了基础。 (2)计算机技术的发展:为大量资料的极其复杂的数学处理提供了可能性。 (3)现代电子技术,尤其是超大规模集成电路技术。 (4)其他技术:多路多址技术、编码技术、解码技术等通讯技术,信号和滤波理论;大气科学的发展。 6. 空间大地测量学 利用自然天体或人造天体来精确测定测点的位置,从而精确确定地球的形状,大小,外部重力场以及它们随时间的变化状况的一整套理论和方法(或一门科学)称为空间大地测量学。7. 空间大地测量的主要任务 一类是建立和维持各种坐标框架:

传统天文观测手段用于大地测量的研究

关于传统/天文观测手段用于大地测量的研 究的读书报告 姓名:闵翔 学号:2011206180011 指导老师:魏二虎教授 摘要 传统的大地测量由于不具有大范围,高精度,实时动态的特点,随着科学与技术的迅猛发展,为了弥补传统大地测量的缺陷,逐渐发展到空间大地测量。空间大地测量学的产生为提供更精确的地心坐标系,更高精度的地球重力场模型以及全天候,快捷,精确,简便的全新大地测量方法产生了可能。 关键字:传统大地测量学空间大地测量学地心坐标系CORSE CGCS2000 Abstract The traditional geodesy does not have the feature of extensiveness,high-precision,real time dynamics.With the rapidy development of science and technology,traditional geodesy gradually develops into spacial geodesy to make up the imperfection of itself.The generation of spacial geodesy affords the ability and possibility to make the more accurate geocentric coordinate system,the more accurate earthgravitymodel and new survey method with feature of whole day,quickly,precision,and easy. Keywords: traditional geodesy spacial geodesy geocentric coordinate system CORSE CGCS2000

现代大地测量数据库系统的研究与构建

现代大地测量数据库系统的研究与构建 发表时间:2019-09-12T17:19:25.077Z 来源:《基层建设》2019年第17期作者:赵冰[导读] 摘要:大地测量技术在测量过程当中需要一定的参考地点,该项技术主要是将地球椭球面作为参考点面位置进行。 黑龙江荟旺农业工程设计有限公司黑龙江哈尔滨 150090摘要:大地测量技术在测量过程当中需要一定的参考地点,该项技术主要是将地球椭球面作为参考点面位置进行。其中主要涉及到地球椭球大小、地面点以及几何位置等多个方面。测绘科学技术是大地测量学出现的基础与前提,该项技术可实现对测绘学科以及基础学科性质的全面融合。大地测量学与工程测量学的基础理论以及实践应用在大地测量学当中得到进一步的发挥。 关键词:大地测量;数据库;系统构建 1 实时数据分析 主数据库存储大地测量数据,包括三角测量数据、重力数据、水准测量数据、卫星导航数据,特别是国家定位卫星在时间站连续采样24分1秒(或50Hz)。真正集中存储、管理、应用和服务是现代大地数据服务的新功能。 2 数据实体建模分析 根据大地测量数据的内容特点,可归纳为观测数据类型、数据类型结果、抽象数据和辅助数据,以及四类模型分析数据实体,如图1所示。 图1数据建模分析 原始测量数据记录观测数据,包括卫星定位基站观测数据的连续运行、观测数据重力观测、基准点和观测点数据点、观测点数据点赤纬控制等,这些数据结构程度较低,文件化往往作为应用的粒度。通过计算得到的结果数据的数据观察,包括由时间序列、速度、高度测量、重力测量等得到的位置坐标,以及这些结果的高度数据结构,用于细粒度应用。 摘要数据描述GPS测点、基准点和焦点的特征和摘要信息,主要是一些不太规范的站点信息、点描述和描述性文档文件。 辅助数据显示汇总数据、数据结果、空间分布的观测数据,提供电子地图、行政区划、数据库设计、数据库字典等,可使用多种数据存储类型的公共援助信息数据库。 3 基于数据库DBFS技术的实时数据存储结构设计 实时观测数据的组织主要以中国连续卫星定位站的实时数据为基础。实时观测数据存储在作为基本单元的数据单元中,基于行政区域和站点的组织分类。 组织策略半结构化数据和非结构化方法由面向对象和关系代数表示,具有半固态的结构化非结构化属性,以确保复杂结构在本质上是整体连接的,以描述实体的目标。 存储在关系数据库中LOB文件以二进制模式,尽管它们是平行的,并发,平行,细粒度的访问控制、事务完整性控制、透明的压缩和加密、生命周期管理的支持,数据安全战略和其他优势,然而,与文件系统存储文件管理方法相比,它有相当大的缺点。具有大量非结构化文件数据的系统通常使用数据库系统和文件系统来存储和管理数据资源,从而牺牲数据库的优势来弥补数据库性能的不足。访问文件数据。OracleDBFS数据库技术克服了缺乏的弱点数据库LOB管理系统,提高存储机制,LOB数据访问和发布的文件系统的性能,甚至在某些情况下在一定程度上得到了增强,同时,支持应用程序现在arquivo访问数据。主动脉dbfs技术系统还增加了LOB数据文件系统应用程序接口,实现了数据库应用程序编程接口访问LOB数据引擎。在此基础上,现代大地测量数据库、实时定位卫星数据文件连续运行,利用带数据库的文件系统存储特定技术,支持DBFS应用,如图2所示。 图2是基于DBFS的实时数据存储结构在DBFS中,服务器是一个Oracle数据库,文件存储在表的SecureFilesLOBs字段中。一组PLSQL存储过程,提供访问文件系统的基本操作,如create,open,read,write,ls。DBFS目录允许每个数据库用户创建一个或多个文件系统,并且可供客户端使用。每个文件系统都有一个专有数据表,用于保证文件系统的内容。 OracleDBFS在文件和目录上创建默认的文件系统结构,并将数据存储在数据库基表中。DBFS与NFS非常相似,因为它提供与本地文件系统相同的共享网络文件系统,并且与NFS一样,由服务器和客户机组成,如图3所示。 图3基于DBFS实时数据访问机制 4 测量数据的可视化

第一章作业_传统、天文观测手段用于大地测量的研究

传统/天文观测手段用于大地测量的研究 摘要:随着生产力的迅猛发展、科学技术水平的不断提高,不少部门和领域对大地测 量有了更新的要求,而传统的大地测量由于不具有大范围、高精度、实时动态的特点 及其诸多的局限性,更高精度、更快捷、更简便的空间大地测量逐渐取代其而成为大 地测量的主要技术手段。 关键字:传统大地测量学;空间大地测量学;卫星重力测量;航空重力测量 1.传统大地测量的局限性 1.1 定位时要求测站间保持通视 在用传统大地测量技术进行观测时,要求观测仪器与照准目标间保持通视,而这种基本要求会引发如下一系列的问题:(1)需要花费大量的人力物力来修建觇标;(2)观测边长受到限制;(3)迁站困难。 1.2 无法同时精确测定点的三维坐标 采用传统的经典大地测量方法进行定位时,点的平面位置是以椭球面为基准面通过三角测量、导线测量、插网、插点等方法求得;而点的高程是通过水准测量的方法测量得到,由于二者观测路线迥异,受观测条件限制一般不可能同时测得平面坐标以及高程。 1.3 观测受气象条件的限制 用传统大地测量方法进行定位时,当遇大雾、大风、大雪的天气,都无法进行外业观测,不仅影响作业效率,而且会极大的影响测量精度。 1.4 难以避免某些系统误差的影响 由于地球形状并不是一个规则的球体,地球的引力场也并不均匀,采用传统的大地测量方式进行观测时,会受到诸如地球旁折光等一些因素的影响,导致测量结果中含有不可克服的系统误差,会极大的损害定位精度。 1.5 难以建立地心坐标系 仅靠传统的大地测量方法不能在海洋上布设控制网进行测量,受观测条件等限制也不能得到所有陆地表面的大地测量资料,在这种情况下得到的椭球定位一般无法使参考椭球体的中心与地球质心重合。 2.空间大地测量的产生及其可能性 2.1时代对大地测量提出的新要求 随着生产力迅猛发展、科学技术水平的不断提高,不少部门和领域对大地测量学提出了新的要求: (1)要求提供更精确的地心坐标; (2)要求提供全球统一的坐标系; (3)要求在长距离上进行高精度的测量; (4)要求提供精确的(似)大地水准面差距; (5)要求高精度、高分辨率的地球重力场模型; (6)要求出现一种全天候、更为快捷、精确、简便的全新的大地测量方法。

大地测量学知识点整理

第一章 大地测量学定义 广义:大地测量学是在一定的时间-空间参考系统中,测量和描绘地球及其他行星体的一门学科。 狭义:大地测量学是测量和描绘地球表面的科学。包含测定地球形状与大小,测定地面点几何位置,确定地球重力场,以及在地球上进行必须顾及地球曲率的那些测量工作。 大地测量学最基本的任务是测量和描绘地球并监测其变化,为人类活动提供关于地球等行星体的空间信息。 P1 P4 P6(了解几个阶段、了解展望) 大地测量学的地位和作用: 1、大地测量学在国民经济各项建设和社会发展中发挥着基础先行性的重要保证作用 2、大地测量学在防灾、减灾、救灾及环境监测、评价与保护中发挥着独具风貌的特殊作用 3、大地测量是发展空间技术和国防建设的重要保障 4、大地测量在当代地球科学研究中的地位显得越来越重要 5、大地测量学是测绘学科的各分支学科(其中包括大地测量、工程测量、海洋测量、矿山测量、航空摄影测量与遥感、地图学与地理信息系统等)的基础科学 现代大地测量学三个基本分支:几何大地测量学、物理大地测量学、空间大地测量学 第二章 开普勒三大行星运动定律: 1、行星轨道是一个椭圆,太阳位于椭圆的一个焦点上 2、行星运动中,与太阳连线哎单位时间内扫过的面积相等 3、行星绕轨道运动周期的平方与轨道长半轴的立方之比为常数 地轴方向相对于空间的变化(岁差和章动)(可出简答题) 地轴相对于地球本体内部结构的相对位置变化(极移) 历元:对于卫星系统或天文学,某一事件相应的时刻。 对于时间的描述,可采用一维的时间坐标轴,有时间原点、度量单位(尺度)两大要素,原点可根据需要进行指定,度量单位采用时刻和时间间隔两种形式。 任何一个周期运动,如果满足如下三项要求,就可以作为计量时间的方法: 1、运动是连续的 2、运动的周期具有足够的稳定性 3、运动是可观测的 多种时间系统 以地球自转运动为基础:恒星时和世界时 以地球公转运动为基础:历书时→太阳系质心力学时、地球质心力学时 以物质内部原子运动特征为基础:原子时 协调世界时(P23) 大地基准:建立大地基准就是求定旋转椭球的参数及其定向(椭球旋转轴平行于地球的旋转

常规大地测量基本技术与方法及国家大地控制网的建立

常规大地测量基本技术与方法 1、国家平面大地控制网建立的基本原理 大地测量学的基本任务之一,是在全国范围内建立高精度的大地测量控制网,以精密确定地面点的位置。确定地面点的位置,实质上是确定点位在某特定坐标系中的三维坐标,通常称其为三维大地测量。例如,全球卫星定位系统(GPS)就是直接求定地面点在地心坐标系中的三维坐标。传统的大地测量是把建立平面授制网和高程控制网分开进行的,分别以地球椭球面和大地水准面为参考面确定地面点的坐标和高程。因此,下面将分别进行介绍。 2、建立国家平面大地控制网的方法 2.1 常规大地测量法 2.1.1.三角测量法 1)网形 如下图所示,在地面上选定一系列点位1,2,…,使其构成三角形网状,观测的方向需通视,三角网的观测量是网中的全部(或大部分)方向值,由这些方向值可计算出三角形的各内角。 2)坐标计算原理 如果已知点1的坐标(2t,y1),又精密地测量了点l至点2的边长3,z和坐标方位角01z,就可用三角形正弦定理依次推算出三角网中其他所有边长,各边的坐标方位角及各点的坐标。这些三角形的顶点称为三角点,又称大地点。把这种测量和计算工作称为三角测量。 3)三角网的元素三角网的元素是指网中的方向(或角度)、边长、方位和坐标。根据其来源的不同,以分为三类。①起算元素:已知的坐标、边长和已知的方位角,也称起算数据。②观测元素:三角网中观测的所有方向(或角度)。②推算元素:由起算元素和观测元素的平差值推算的三角网中其他边长、坐标方位角和各点的坐标。 2.2.2.导线测量法 在地面上选定相邻点间互相通视的一系列控制点A、B、C…,连接成一条折线形状(如图),直接测定各边的边长和相互之间的角度。若已知A点的坐标(又d,y4)和一条边的方位角(例如AAJ边的方位角04“),就可以推算出所有其他控制点的坐标。这些控制点称为导线点,把这种测量和计算工作称为导线测量。

大地测量学基础思考题(遥感15级用,2016.11)

《大地测量学基础》(第二版)复习思考题 (供遥感院15级同学复习时参考,不作为期末考试出题依据) ══════════════════════════════════ 第1章思考题 1、什么是大地测量学?它的地位和作用体现在哪几个方面? 2、普通测量学和大地测量学有何区别和联系?现代大地测量学有何特征? 3、了解大地测量的发展过程。 4、为什么说现代大地测量是以空间测量技术为代表的? ══════════════════════════════════ 第2章思考题 1、掌握岁差、章动、极移的基本概念和相关术语。 2、什么是国际协议原点?它的作用是什么? 3、研究时间的重要性?时间的两个含义?作为时间基准的周期运动应满足哪三项要求? 4、什么是大地水准面和大地体,大地水准面有何特点? 5、什么是总地球椭球体和参考椭球体? 6、什么是高程异常和大地水准面差距? 7、掌握大地坐标系和天文坐标系的定义。 8、质心和参心空间直角坐标系是怎样定义的? 9、什么是椭球定位和定向?局部定位和地心定位?定向满足的两个平行条件? 10、什么是参考椭球一点定位和多点定位? 11、什么是大地原点及大地起算数据? 12、熟悉1954北京坐标系,1980年国家大地坐标系,WGS-84世界大地坐标系和CGCS200国家大地坐标系的基本情况。 13、掌握二维直角坐标变换的四参数公式和三维直角坐标变换的七参数公式及其公共点选取等相关概念。 ══════════════════════════════════

第3章思考题 1、什么是地球引力、离心力、重力?重力的单位是什么? 2、什么是重力位和重力等位面?重力等位面的性质有哪些? 3、什么是正常重力位?为什么要引入正常重力位? 的正常重力公式?并搞清各项的意义,高出椭球面H米的正 4、顾及α和2 常重力如何计算? 5、地球大地基准常数的意义? 6、什么是水准面的不平行性?对几何水准测量影响如何? 7、掌握正高、正常高、力高的定义、基准面及计算公式。正高、正常高和大地高的关系如何? 8、什么是高程基准面?是怎样确定的? 9、掌握正常位水准面不平行改正数的计算公式。 10、什么是水准原点,一般而言,我国通常采用哪两种高程基准,其原点高程值为多少? 11、什么是垂线偏差?垂线偏差分为哪两个分量?其计算公式如何? 12、计算大地方位角的拉普拉斯方程如何? ══════════════════════════════════ 第4章思考题 1、掌握椭球体上基本线和面的定义(法线、法截面和法截弧、子午面和子午圈、赤道面与赤道、平行圈、卯酉面和卯酉圈)。 2、掌握椭球的基本元素及辅助量的表达式及它们间的关系。 3、我国几种常用椭球的参数值(主要指a和α)? 4、掌握各种坐标系的定义及相互关系。 5、掌握子午曲率半径M、卯酉曲率半径N、任意法截弧曲率半径R A、平均曲率半径R的定义、性质和计算公式,在同一纬度处大小关系如何? 6、怎样计算椭球面上的子午圈弧长和平行圈弧长?以及它们的变化情况? 7、什么是相对法截弧?有何性质?什么是大地线?引入大地线的作用是什么?大地线和相对法截弧的位置关系怎样? 8、大地线在大地坐标系中的微分方程如何?什么是大地线克莱劳方程?它

绝密-空间大地测量学复习

第一章概论 1.测量学的基本体系:几何测量学、物理测量学、空间测量学 空间测量学主要研究利用自然天体或人造天体来精确测定点的位置,确定地球的形状、大小、外部重力场,以及它们随时间的变化状况的一整套理论和方法。 2. 国家平面坐标系统实现过程主要工作 (1)国家平面控制网布设 (2)建立基准、确定全网起算数据 (3)控制网的起始方位角的求定 (4)控制网的起始边长的测定 (5)其它工作 3.传统测量常规方法的局限性 (1)测站间需保持通视:采用光电仪器,必须通视;需花费大量人力物力修建觇标;边长受限制;工作难度大、效率低。 (2)无法同时精确确定点的三维坐标:平面控制网和高程控制网是分别布设的;并且增加了工作量。 (3)观测受气候条件影响:雨天、黑夜、大雾、大风、能见度低时不宜测量。 (4)难以避免某些系统误差的影响:光学仪器的测量值会因为大气密度不同而受到不同的弯曲影响,地球引力由两极到赤道减小,大气密度变化也逐渐减小。 (5)难以建立地心坐标系:海洋区域无法布设控制网,陆地只能区域测量,建立区域参考椭球与区域水准面吻合;无法建立全球参考椭球。 4. 时代对测量提出的新要求 (1)要求提供更精确的地心坐标:空间技术和远程武器迅猛发展,要求地心坐标; (2)要求提供全球统一的坐标:全球化的航空、航海导航要求全球统一的坐标系统 (3)要求在长距离上进行高精度的测量:如研究全球性的地质构造运动、建立和维持全球的参考框架、不同坐标系间的联测等; (4)要求提供精确的(似)水准面差距:GNSS等空间定位技术逐步取代传统的经典测量技术成为布设全球性或区域性的控制网的主要手段;人们对高精度的、高分辨率的水准面差距N或高程异常的要求越来越迫切。 (5)要求高精度的高分辨率的地球重力场模型:精密定轨和轨道预报(尤其是低轨卫星)需要高精度的高分辨率的地球重力场模型来予以支持。 (6)要求出现一种全天候,更为快捷的、精确、简便的全新的测量方法。 5. 空间测量产生的可能性 (1)空间技术的发展:按需要设计卫星,并能精确控制姿态,精确测定卫星轨道并进行预报,为卫星定位技术的产生奠定了基础。 (2)计算机技术的发展:为大量资料的极其复杂的数学处理提供了可能性。 (3)现代电子技术,尤其是超大规模集成电路技术。 (4)其他技术:多路多址技术、编码技术、解码技术等通讯技术,信号和滤波理论;大气科学的发展。 6. 空间测量学 利用自然天体或人造天体来精确测定测点的位置,从而精确确定地球的形状,大小,外部重力场以及它们随时间的变化状况的一整套理论和方法(或一门科学)称为空间测量学。 7. 空间测量的主要任务 一类是建立和维持各种坐标框架:

浅析GPS技术在大地测量中的应用

浅析GPS技术在大地测量中的应用 GPS定位技术由于其测量的准确性、快速性、便于移动性、方便快捷性在大地测量方面有广泛的应用。大地测量不仅是对物体所在空间的测量,其中还需要很多测量学的知识,而GPS定位技术即可解决这类问题。GPS定位技术在日常生活中也被广泛应用,为生活提供了很多便利。文章主要对GPS技术的简述、特点说明及其在大地测量方面的具体应用进行分析,仅供以后该方面研究提供参考。 标签:GPS技术;大地测量;特点;应用 大地测量包括确定地面点位、地球的宏观大小及测量地球重力场。内容包括三角测量、精密导线测量、卫星大地测量、重力测量和大地测量的有关计算等。一般在大地测量学的任务上是通过精密导线、三角测量等方法建立有关水平控制网,来提供水平的大地位置。近些年由于GPS技术测量的准确性、快速性、便于移动性、方便快捷性在大地测量方面有广泛的应用,且几乎可以代替传统的几何和物理测量法。 1 GPS技术的简述 GPS是英文Global Positioning System即全球定位系统的简称。GPS最初是由美国研制出的一种全天候、高精度的全球卫星定位导航系统,主要满足于全球所有地方的军事使用,可以准确的确定三维的位置、动态和时间等等。这使得卫星通信技术与导航结合起来,在很大程度上提高了全社会的信息交流水平,并且有效地推动了互联网经济的发展。 GPS系统的空间卫星部分由24颗卫星组成,其巧妙的布局保证了GPS定位的准确性。地面观测部分主要由三方面组成,有主控、地面天线处和监测站。主控站即起到主要控制调整作用,其位于美国的空军基地,是对整个地球表面监控系统的管理和技术中心。监测站则是采集主要数据,包括GPS卫星数据和监测站位置的环境数据,发送给主控站。用户部分主要为GPS接收机,主要作用是利用GPS卫星传来的信息来计算用户当时所在的三维位置和时间等。 2 GPS技术在大地测量中的特点 2.1 GPS技术测量的精准性 GPS定位系统最重要的特点就是精准性,且其可以根据不同的测量精度、不同的作业方式进行调整。在大地测量控制网中,各个测量点都可以直接从GPS 发出的讯号中获得三维定位的准确信息。在控制网中每个网点之间不会出现积累误差或逐点计算的情况。 2.2 仪器操作简单方便

大地测量学发展概况简述

大地测量学发展概况简述 摘要:本文主要介简述了大地测量学的发展简史,概述了大地测量学的基本任务,并简要阐述了现代大地测量学的特点,最后对我国大地测量的未来发展进行了简单的展望。 关键字:大地测量学现代大地测量学重力场 1 大地测量学的发展简史 大地测量学是地球科学中的一个分支,具有悠久的历史。公元前3世纪,亚历山大的埃拉托色尼利用在两地观测日影的方法,首次推算出地球子午圈的周长,也是弧度测量的初始形式。724年,中国唐代的南宫说等人在张遂的指导下在今河南省境内实测了一条长约300千米的子午弧,并测同一时刻南北两点的日影长度,推算出纬度1°的子午弧长。这是世界上第一次实测弧度测量。其他国家也相继进行过类似的工作。17世纪以前,由于工具简单,技术水平低,所得结果精度不高。 1617年荷兰的斯涅耳首创三角测量法,克服了直接丈量距离的困难。随后又有望远镜、水准器、测微器等的发明,测量仪器制造逐渐完善,精度提高,为大地测量学的发展奠定了技术基础。17世纪末,英国牛顿和荷兰惠更斯从力学观点研究地球形状,提出地球是两极略扁的椭球体。1735~1741年法国科学院派两支测量队分别在赤道附近的秘鲁和北极圈附近的拉普兰进行弧度测量,证实地球是两极略扁的椭球体。中国清代康熙年间为编制《皇舆全图》,实施了大规模天文大地测量。在这次测量中,发现高纬度的东北地区每度子午弧比低纬度的河北地区的要长,这个发现比法国早。1730年英国西森发明经纬仪,促进了三角测量的发展。 1743年法国克莱罗发表了《地球形状理论》,指出用重力测量精确求定地球扁率的方法。1806年法国的勒让德和1809年德国的高斯分别发表了最小二乘法理论,产生了测量平差法。1849年英国斯托克斯创立用重力测量成果研究水准面形状的理论。 1880年瑞典耶德林提出悬链线状基线尺测量方法,继而法国制成因瓦基线尺,使丈量距离的精度明显提高。19世纪末和20世纪30年代,先后出现了摆仪和重力仪,使重力点数量大量增加,为研究地球形状和地球重力场提供大量重力数据。 20世纪40年代,电磁波测距仪的发明,克服了量距的困难,使导线测量、三边测量得到重视和发展。1957年第一颗人造地球卫星发射成功后,产生了卫星大地测量学,使大地测量学发展到一个新阶段。20世纪70年代以后,随着空间技术、计算机技术和信息技术的飞跃发展,为大地测量学注入了新的内容,形成了现代大地测量。

VLBI空间大地测量技术原理简介与技术应用

VLBI空间大地测量技术原理简介与技术应用 摘要:深长基线干涉测量(VLBI)是重要的空间大地测量技术,本文主要简要介绍了VLBI的大地测量原理,以及VLBI在大地测量方面的一些应用。 关键词:VLBI 1.前言 空间大地测量在近20多年中获得了长足的发展,以VLBI、SLR、GPS、LLRDORIS 等为主要标志的空间测量技术大大推动了大地测量学的发展,也大大富了大地测量学,特别是空间大地测量学的研究内容。这些手段的应用将大加强大地测量控制网的强度和可靠性,尤其是在大尺度范围内,可大大改善度系统误差和其它系统误差的积累。VLBI极高的相对精度和分辨率,大大提高了如大地测量定位、参考框架的连接、地球自转和极移监测、估计地壳运动和绘制河外射电源图像等许多任务的精度水平。 2. VLBI大地测量原理 甚长基线干涉测量(Very Long Baseline Interferometry,VLBI )是本世纪六十年代末发展起来的一种全新的空间大地测量技术,它通过测定来自河外射电源的信号在两个接收天线之间的传播延时来精确求定地面点间的相对位置。VLBI 测量的几何原理如下图所示: 图2-1 VLBI几何原理图 射电源辐射出的电磁波通过地球大气到达地面,由基线两端的天线接收。由于地球自转,电磁波的波前到达两个天线的几何程差(除以光速就是时间延迟差)是不断改变的。两路信号相关的结果就得到干涉条纹。天线输出的信号进行低噪

声高频放大后,经变频相继转换为中频信号和视频信号。 由于两天线到某一射电源的距离不同,有一路程差L ,则射电信号的同一波前到达两天线的时间也不相同,有一时间延迟g τ根据图2-1的几何关系: g C L τ?= (1) 其中C 为真空中的光速。 若设_B 为天线1到天线2的基线矢量,K 为被观测的射电源方向的单位矢量,则有: ??? ???-=-K B C g 1τ (2) 其对时间的倒数即为延迟率: ??? ?????-=-K B t C g 1.τ (3) 式(2)就是VLBI 从纯几何关系出发推出的时间延迟(几何延迟)。而实际 上,由于基线矢量随着地球自转在不断变化,射电源与测站之间也不是理想的 真空,在实际观测值中不可被免地包含了其它成份,因此vLBI 观测到的延迟 和延迟率比(2)、(3)式复杂的多,它们可以表示为: ++++=p i c g τττττ (4) ++++=p i c g .....τττττ (5) 式中c τ为两测站时钟的同步误差,i τ为两测站由于放大器、馈源、混濒 器等的不同而引起的时间延迟,p τ为大气层、电离层、行星之间等离子体等 引起的传播介质延迟。上述公式中与天线有关的参数都是在地心天球坐标系中描述的但这些通常是在地球坐标系给出的,所以必须通过必要的坐标旋转将它们转

大地测量学基础知识

第一章 1.大地测量学的定义 大地测量学是在一定的时间-空间参考系统中,测量和描绘地球及其他行星体的一门学科。 2.大地测量学的基本体系 以三个基本分支为主所构成的基本体系。 几何大地测量学 物理大地测量学 空间大地测量学 3.大地测量学的基本任务 精确确定地面点位及其变化 研究地球重力场、地球形状和地球动力现象 4.大地测量学的基本内容 1、大地测量基础知识(基准面和基准线,坐标系统和时间系统,地球重力场等); 2、大地测量学的基本理论(地球椭球基本的理论,高斯投影的基本理论,大地坐标系统的建立与坐标系统的转换等); 3、大地测量基本技术与方法(经典的、现代的) 4、大地控制网的建立(包括国家大地控制网、工程控制网。形式有三角网、导线网、高程网、GPS网等); 5、大地测量数据处理(概算与平差计算)。 5.大地测量学的基本作用 1、为地形测图与大型工程测量提供基本控制; 2、为城建和矿山工程测量提供起始数据; 3、为地球科学的研究提供信息; 4、在防灾、减灾和救灾中的作用; 5、发展空间技术和国防建设的重要保障。 第二章 1.岁差章动极移 由于日、月等天体的影响,类似于旋转陀螺,地球的旋转轴在空间围绕黄极发生 ε=?,旋转周期为26000缓慢旋转,形成一个倒圆锥体,其锥角等于黄赤交角23.5 年,这种运动称为岁差。 月球绕地球旋转的轨道称为白道,由于白道对黄道有约5?的倾斜,使得月球引力产生的大小和方向不断变化,从而导致地球旋转轴在岁差的基础上叠加18.6年的短周期运动,振幅为9.21'',这种现象称为章动。 地球自转轴存在相对于地球体自身内部结构的相对位置变化,从而导致极点在地球表面上的位置随时间而变化,这种现象称为极移。 2.恒星时太阳时原子时 以春分点作为基本参考点,由春分点周日视运动确定的时间,称为恒星时。 以真太阳作为基本参考点,由其周日视运动确定的时间,称为真太阳时。 原子时是一种以原子谐振信号周期为标准,并对它进行连续计数的时标。原子时的基本单位是原子时秒, 3.协调世界时 为保证时间与季节的协调一致,便于日常使用,建立以原子时秒长为计量单位、

相关文档
相关文档 最新文档