文档库 最新最全的文档下载
当前位置:文档库 › 高速滚动轴承保持架自由振动特性研究

高速滚动轴承保持架自由振动特性研究

高速滚动轴承保持架自由振动特性研究
高速滚动轴承保持架自由振动特性研究

 收稿日期:2000203202 作者简介:周延泽(1964-),男,河北海兴人,在职博士生,100083,北京.

高速滚动轴承保持架自由振动特性研究

周延泽 王春洁 陆 震

(北京航空航天大学机械工程及自动化学院)

摘 要:通过对航空发动机主轴承保持架自由振动的计算分析,表明:保持

架不存在小于751.12H z 的固有频率;在整体按圆环的规律振动的同时,过梁和侧梁存在弯曲、剪切等局部振型;由于保持架的转动,存在不相等且与转动速度相关的前后行波频率,保持架可能共振的频率数目增多,而保持架又受到多种周期性的干扰,高速转动时更易激发共振,造成破坏,因此在设计中必须对保持架的振动问题给予重视.

关 键 词:滚动轴承;保持架;自由振动中图分类号:TH 133.33+4文献标识码:A 文章编号:100125965(2001)0520596204

保持架作为滚动轴承的组成元件,将滚动体沿圆周均匀地分开.在一般用途的轴承中,由于转速较低,保持架都能够满足工作要求.但是在航空发动机主轴承中,由于工作条件苛刻,转速高,对保持架也提出了较高的要求,特别是其动力特性直接影响到滚动轴承的性能和寿命.空军某机型主轴球轴承就曾多次发生过因保持架疲劳断裂造成的轴承失效,因此在设计中需要对保持架的动力学性能进行较为精确的计算和估计.国外在这方面的研究主要关注的是保持架的运动与不稳定性问题

[1]~[4]

,国内的研究比较少,对于其振动方

面的研究则鲜见报道.

航空发动机主轴承保持架一般为整体结构,为增大轴承承载能力和减轻重量,滚动体较多,滚动体间的距离较小,因而保持架结构柔性较大易变形;由于沿圆周方向质量不均匀,变形沿周向也不均匀;高速旋转的保持架类似于圆环,有圆环平面内的振动,同时有在垂直于环的平面内弯曲与扭转振动;由于采用套圈导引,因此变形受到限制,为约束振动,在振动分析中必须考虑相应的约束条件;激发振动的因素很多,其中球、套圈对保持架的冲击碰撞是直接因素,且规律比较复杂.保持架的各种振动将引起动应力,从而影响到其疲劳寿命,为此有必要对其振动特性进行研究.本文用有限元法对保持架在自由状态下的自由振动特性进行了研究.

1 保持架的自由振动

1.1 计算模型

以某航空发动机主轴球轴承为例进行计算分析.轴承参数为:内孔直径90mm ,滚动体数14,滚

动体直径22.225mm ,保持架材料为青铜合金,弹性模量E =1.05×1011Pa ,泊松比0.33.

有限元动力分析程序很多,本文采用Alg or (有限元计算程序)程序计算.考虑到保持架的形状及局部振型,有限元模型网格划分较密,共分为1008个8节点三维块单元,2296个节点.保持架在工作过程中,由外圈引导转动,计算中取自由边界条件.

本文计算了其前50阶自由振动的频率及相应的振动模态,由此可以研究其共振、变形及应力状态.

1.2 自由振动模态

保持架是圆环类零件,其振动具有环类零件振动[5]的特征,将计算结果进行归纳,其振动模态主要有以下几类.

1)环平面内的弯曲振动,即环平面内保持架沿圆周方向规则变形,如图1所示为周向波数n 分别为2,3,4时的模态.表1是计算得到的部分面内弯曲振动频率.因为保持架在圆环平面内的弯曲刚度较小,所以振动频率较低,因而在实际应用中也比较容易被激发,研究也最多.这种弯曲振

 

2001年10月第27卷第5期北京航空航天大学学报

Journal of Beijing University of Aeronautics and Astronautics October 2001V ol.27 N o 15

动将在保持架横截面内产生交变的弯曲应力

. a n =2 b n =3 c n =4

图1 面内的弯曲振动

2)面外扭转振动,如图2所示是计算得到的

保持架整体倾斜和伞形振动两种模态及其频率f .整体倾斜将对过梁产生剪切作用,

梁截面承受剪应力,而伞形振动则对侧梁产生拉压作用,梁截面承受循环正应力.

a 整体倾斜,f =5

675.8H z b 伞形振动,f =7829.9H z

图2 面外扭转振动

3)沿圆周方向的弯曲振动与扭转振动的耦合.如图3所示为频率较低的周向波数分别为2,

3,4时的模态,部分振动频率列在表2,这种模态是环横断面扭转与母线轴向振动的耦合振动.由于扭转作用,在保持架的横截面上产生径向剪切,而母线沿轴向位移的弯曲会产生轴向剪切和弯曲应力,这两种剪切使侧梁截面上的应力状态变得复杂;兜孔的存在又消弱了其周围的刚度和强度,剪切对兜孔侧梁处的强度可能有较大影响,同时其振动频率也比较低,最低频率仅高于面内弯曲,在低于5075.1H z 的频段内,这种模态与面内弯曲振动交替出现,也比较容易激发,应给予足够重视.

a n =2

b n =3

c n =4

图3 弯扭耦合振动

表1 面内振动频率

周向波数n 23

456

7

频率f /H z

751.12

2101.90

3960.50

6244.40

8831.80

10985.00

12638.00

表2 面外弯曲扭转耦合振动

周向波数n 2345

频率f /H z

1121.7

5277.0

3018.9

6318.7

5075.1

8021.6

6939.3

10252.0

4)周向伸缩与侧梁、过梁弯曲耦合振动.周向伸缩也是圆环类零件振动的基本模态之一,但是对于保持架来说,由于其结构特点,在整体上周向伸缩的同时伴随着侧梁和过梁的局部弯曲.图4所示是其中3种模态从两个方向观察的形状及其对应的频率,其中图4a 为沿圆周均匀伸缩.

a f =6594.3H z

b f =9654.3H z

c f =11481.0H z

图4 伸缩与梁弯曲耦合振动

从图4中可以看出,伴随着周向的伸缩,侧梁和过梁发生弯曲.周向伸缩和梁的弯曲变形叠加使侧梁截面上的正应力加大,过梁的弯曲则产生对称交变应力.这种振动的频率较高,由此引起的

变形对于侧梁和过梁均有影响.

5)保持架两端面发生相对转动.这种振动中,保持架两端面相对转动,使其母线在垂直于半径的面扭转,如图5所示.振动变形将对过梁产生剪切,同时侧梁有弯曲,如果这种振动被激发,影响最大的是过梁的强度.

f =9123.0H z

图5 两端面相对扭转振动

1.3 结果分析

从以上计算结果可以看出,保持架自由振动

具有以下特性:

7

95第5期 周延泽等:高速滚动轴承保持架自由振动特性研究

1)由于保持架的结构特点,兜孔减弱了其刚度和强度,特别是航空发动机主轴承,设计中追求体积小,重量轻,过梁和侧梁结构尺寸均较小,使保持架在整体上按圆环振动的同时,尚有局部振型———侧梁、过梁的弯曲与剪切.

2)保持架的各种振型中,变形引起的应力对保持架侧梁和过梁影响最大,不同变形的共同作用,使侧梁和过梁截面上应力状态复杂化,既有正应力,也有剪应力.如果产生共振,由振动应力造成的疲劳裂纹,可能首先从侧梁与过梁的位置开始,因此保持架的破坏一般发生在过梁和侧梁处.

3)保持架所承受的各种外载荷,一般对侧梁的作用较大,但振动变形对过梁和侧梁都有影响,个别模态如1.2节中第4)、5)类振动模态中过梁的局部弯曲和扭剪,主要作用在过梁截面上,反复作用可能导致过梁断裂,这可能是常见的过梁疲劳失效的重要原因之一.

4)除接近0的频率外,小于751.12H z的范围内该保持架没有固有频率,因此在低频段不会发生共振,故低速运转的轴承一般较少发生保持架破坏.

2 保持架的行波共振分析

2.1 保持架的行波振动

圆环类零件振动中,任一节径(线)不动的沿周向振动波,总可以分解为两个频率和原振动频率相等,振幅为原振幅一半,运动方向相反的行波,分别称为前行波和后行波.因此,不论观察到的振动波是否运动,此类零件的振动都具有行波振动的性质.如果零件是转动的,则行波频率还需考虑转动频率的影响[6].如果转动矢量与变形方向一致,则前、后行波的角频率为

ω

f,b=

ω±nΩ(1)其中,ω为保持架的静角频;Ω为保持架的转速.

如果转动矢量与变形方向不一致,还要考虑转动引起的科氏力的影响,如面内弯曲振动,在静止坐标系中观察,前、后行波角频率分别为

ω

f,b=

ωd±n

2-1

n2+1

nΩ(2)其中,转动的圆环的固有角频率为ω2d=ω2+ BΩ2,B=

n2(n2-1)2

(n2+1)

,为动频系数.

保持架是圆环类零件,其振动也必然可以分解为前、后行波,具有行波振动的性质;特别是保持架的工作状态是转动,除个别模态外,转动矢量与变形方向都不一致,转动时的固有频率与静止时的固有频率会略有不同,同时前、后行波的频率也各不相等,而且动频及前、后行波频率是随着保持架转动速度的不同而变化的.表3是表1中所列保持架静频在其转速为581.5rad/s时的动频及前、后行波频率.

表3 面内振动频率HZ

振动频率f

周向波数n

234567静频751.122101.903960.506244.408831.8010985.0012638.00动频759.292113.603973.956258.998847.4111002.5912653.29前行波870.342335.724300.586686.139372.6811624.5113275.21后行波648.231891.493647.315831.858322.1410380.6712031.37

2.2 共振分析

由于保持架的转动,其前、后行波频率以及固有频率各不相等,而且前、后行波振动都可能被单独激发,因此外加激励频率与前行波或后行波频率相等时,都将激发共振,这使得可能激发保持架共振的频率数目大大高于静止的或没有行波振动的零件,从而增大了共振的可能性;前、后行波频率随保持架的转速而变化,轴承的工作转速不同,将会有不同的前、后行波频率;在工作过程中,保持架与轴承其它零件间的作用是复杂的,且具有周期性,可能存在多种频率的相互作用,特别是影响球与保持架碰撞的因素很多,一周中可能有多次碰撞冲击,这些都是可能引发各种频率振动的潜在激励源.

综上所述,行波振动的存在、发动机的复杂多变的工况、滚动轴承内部零件对保持架的作用,使保持架发生共振的概率大大高于固定不动或没有行波振动的零件.共振及其产生的交变应力直接影响保持架的工作稳定性与强度,是导致保持架失效的重要原因,进而影响滚动轴承的工作性能和寿命,必须在设计时就引起关注.

3 结 论

1)所计算的保持架在小于751.12H z的范围

895北京航空航天大学学报 2001年

内没有固有频率,因此在低频段不会发生共振,故低速运转的轴承一般较少发生保持架破坏.

2)由于航空发动机主轴承保持架的结构特点,其振动在整体上具有环振动的特点,同时存在过梁和侧梁的局部振型,这些变形使过梁和侧梁截面上的应力状态复杂化,是影响保持架强度和寿命的重要因素.

3)外界激励频率与前、后行波频率相等时都会激发共振,转动的保持架的前、后行波频率不等,且与工作转速相关,使可能引起保持架共振的频率数目大大增加,更易引发共振.

4)滚道、球等对保持架的作用规律是复杂的,如球/保持架间的互相作用在一周内可能多次,具有很大的不确定性和一定的周期性,是保持架振动的潜在的激励源.因此,高速运转的航空发动机主轴承在设计和实验中,必须考虑保持架的振动对其性能和强度的影响,以提高滚动轴承的

设计质量.

参 考 文 献

[1]K annel J W ,Bupara S S.A sim plified m odel of cage m otion in angu 2

lar contact bearings operating in the EH D lubrication regime [J ].T ransactions of the AS ME:Journal of Lubrication T echnology ,1978,100(3):395~402.

[2]K ingsbury E ,W alker R.M otions of an unstable retainer in an instru 2

ment ball bearing[J ].T ransactions of the AS ME:Journal of T ribolo 2gy ,1994,116(2):202~208.

[3]M eeks C R ,Ng K O.The dynamics of ball bearing separators in ball

bearings (Part I ):Analysis[J ].AS LE T ransactions ,1985,28(3):277~287.

[4]M eeks C R.The dynamics of ball bearing separators in ball bearing

(Part II ):Results of optimization study [J ].AS LE T ransactions ,1985,28(3):288~295.

[5]铁摩辛柯S ,杨D H ,小韦孚W.工程中的振动问题[M].胡人

礼译.北京:人民铁道出版社,1978.

[6]晏砺堂,朱梓根,李其汉,等.高速旋转机械振动[M].北京:

国防工业出版社,1994.

On the Free Vibration of H igh 2Speed Ball Bearing Retainer

ZH OU Y an 2ze W ANG Chun 2jie LU Zhen

(Beijing University of Aeronautics and Astronautics ,School of M echanical Engineering and Automation )

Abstract :As a basic com ponent of mainshaft ball bearing in aero 2engine ,retainer vibration plays an im portant role in the strength and stability of the retainer and the bearing performance.With finite element method ,the free vibration performance of the retainer is examined.The results show that :1)Apart from rigid 2body m otion ,there is

no natural frequency less than 751.12H z for the examined retainer.2)With the retainer vibrating like a ring as a whole ,it has s ome local vibration m odes of side and across beams.3)The rotation of the retainer makes its natural frequency ,front 2and back 2m oving vibration frequencies unequal with each other ,which makes its res onance being excited easier.

K ey words :antifriction bearings ;retainers ;free vibration

9

95第5期 周延泽等:高速滚动轴承保持架自由振动特性研究

滚动轴承故障诊断分析

滚动轴承故障诊断分析 学院名称:机械与汽车工程学院专业班级: 学生姓名: 学生学号: 指导教师姓名:

摘要 滚动轴承故障诊断 本文对滚动轴承的故障形式、故障原因、常用诊断方法等诊断基础和滚动轴承故障的振动机理作了研究,并建立了相应的滚动轴承典型故障(外圈损伤、内圈损伤、滚动体损伤)的理论模型,给出了一些滚动轴承故障诊断常见实例。通过对滚动轴承故障振动机理的研究可以帮助我们了解滚动轴承故障的本质和特征。本文对特征参数的提取,理论推导,和过程都进行了详细的阐述, 关键词:滚动轴承;故障诊断;特征参数;特征; ABSTRACT : The Rolling fault diagnosis In the thesis ,the fault types,diagnostic methods an d vibration principle of rolling bearing are discussed.the thesis sets up a series of academic m odels of faulty rolling bearings and lists some sym ptom parameters which often used in fault diagnosis of rolling bearings . the study of vibration prin ciple of rolling bearings can help us to know the essence and feature of rolling bearings.In this pa

齿轮箱的故障类型及振动机理改

第2章齿轮箱的故障和振动信号 2.1齿轮箱故障的主要形式 齿轮箱系统是包含齿轮、轴承、传动轴及箱体等结构的复杂系统。其中主要故障发生在齿轮、轴承和传动轴上。在齿轮箱的诊断中,一般只给出是否产生故障及产生故障的位置,根据振动信号的特点,一般常见的典型故障形式有齿轮失效、轴和轴系失效、箱体共振和轴承疲劳脱落和点蚀等几种【5】。 在这些常见故障中,齿轮和滚动轴承的故障占齿轮箱故障的80%左右【4】。因此,对齿轮和滚动轴承的故障类型和振动机理进行剖析,对于识别齿轮箱故障类型有重要的意义。 2.1.1齿轮的故障类型及振动机理 (1)齿轮的故障类型齿轮的故障类型大致可分为以下两种类型: 1)由制造误差和装配误差引起的故障。具体的故障包括齿轮偏心、齿距偏差、齿形误差、轴线不对中、齿面一段接触等故障。齿轮制造时造成的主要缺陷有:偏心、齿距偏差和齿形误差等。齿轮装配不当,也会造成齿轮的工作性能恶化。当齿轮的这些误差较严重时,会引起齿轮传动中忽快忽慢的转动,啮合时产生冲击引起较大的振动和噪声等【5】。 2)运行中产生的故障齿轮除上述故障外,其在本身运行过程中也会形成许多常见的故障,例如断齿、齿根疲劳裂纹、齿面磨损、点蚀剥落、严重交合等等。齿轮预定寿命内不影响使用的磨损成文正常磨损,如果因使用不当、用材不当、接触面存在硬颗粒以及润滑油不足等原因引发早期磨损,将导致齿轮形变、重量损失、齿厚变薄、噪声增大等后果,甚至会导致齿轮失效。其中若润滑油不足,还会导致齿面胶合,胶合一旦发生,齿面状况变差,功耗增大,从而使得振动信号变强。 (2)齿轮的振动机理一对啮合齿轮,可以看作一个具有质量、弹簧和阻尼的振动系统,其力学模型如图2-1所示。 图2-1齿轮对的力学模型 其振动方程为【4】: M r X+CX+K t X=K t E1+K t E2(t)2-1式中 X——为沿作用线上齿轮的相对位移 K(t)——齿轮啮合刚度 M r——齿轮副的等效质量

滚动轴承的振动机理与信号特征

滚动轴承的振动机理与信号特征 滚动轴承的振动可由外部振源引起,也可由轴承本身的结构特点及缺陷引起。此外,润滑剂在轴承运转时产生的流体动力也可以是振动(噪声)源。上述振源施加于轴承零件及附近的结构件上时都会激励起振动。 一、滚动轴承振动的基本参数 1.滚动轴承的典型结构 滚动轴承的典型结构如图1所示,它由内圈、外圈、滚动体和保持架四部分组成。 图1 滚动轴承的典型结构 图示滚动轴承的几何参数主要有: 轴承节径D:轴承滚动体中心所在的圆的直径 滚动体直径d:滚动体的平均直径 内圈滚道半径r1:内圈滚道的平均半径 外圈滚道半径r2:外圈滚道的平均半径 接触角α:滚动体受力方向与内外滚道垂直线的夹角 滚动体个数Z:滚珠或滚珠的数目 2.滚动轴承的特征频率 为分析轴承各部运动参数,先做如下假设:

(1)滚道与滚动体之间无相对滑动; (2)承受径向、轴向载荷时各部分无变形; (3)内圈滚道回转频率为fi; (4)外圈滚道回转频率为fO; (5)保持架回转频率(即滚动体公转频率为fc)。 参见图1,则滚动轴承工作时各点的转动速度如下: 内滑道上一点的速度为:V i=2πr1f i=πf i(D-dcosa) 外滑道上一点的速度为:V O=2πr2f O=πf O(D+dcosa) 保持架上一点的速度为:V c=1/2(V i+V O)=πf c D 由此可得保持架的旋转频率(即滚动体的公转频率)为: 从固定在保持架上的动坐标系来看,滚动体与内圈作无滑动滚动,它的回转频率之比与d/2r1成反比。由此可得滚动体相对于保持架的回转频率(即滚动体的自转频率,滚动体通过内滚道或外滚道的频率)fbc 根据滚动轴承的实际工作情况,定义滚动轴承内、外圈的相对转动频率为 一般情况下,滚动轴承外圈固定,内圈旋转,即: 同时考虑到滚动轴承有Z个滚动体,则滚动轴承的特征频率如下:滚动体在外圈滚道上的通过频率zfoc为:

滚动轴承的振动信号特征分析报告

南昌航空大学实验报告 课程名称:数字信号处理 实验名称:滚动轴承的振动信号特征分析实验时间: 2013年5月14日 班级: 100421 学号: 10042134 姓名:吴涌涛 成绩:

滚动轴承的振动信号特征分析 一、实验目的 利用《数字信号处理》课程中学习的序列运算、周期信号知识、DFT 知识,对给定的正常轴承数据、内圈故障轴承数据、外圈故障轴承数据、滚珠故障轴承数据进行时域特征或频域特征提取和分析,找出能区分四种状态(滚动轴承的外圈故障、内圈故障、滚珠故障和正常状态)的特征。 二、实验原理 振动机理分析:机械在运动时,由于旋转件的不平衡、负载的不均匀、结构刚度的各向异性、间隙、润滑不良、支撑松动等因素,总是伴随着各种振动。 振动的幅值、频率和相位是振动的三个基本参数,称为振动三要素。 幅值:幅值是振动强度的标志,它可以用峰值、有效值、平均值等方法来表示。 频率:不同的频率成分反映系统内不同的振源。通过频谱分析可以确定主要频率成分及其幅值大小,从而寻找振源,采取相应的措施。 相位:振动信号的相位信息十分重要,如利用相位关系确定共振点、测量振型、旋转件动平衡、有源振动控制、降噪等。对于复杂振动的波形分析,各谐波的相位关系是不可缺少的。 在振动测量时,应合理选择测量参数,如振动位移是研究强度和变形的重要依据;振动加速度与作用力或载荷成正比,是研究动力强度和疲劳的重要依据;振动速度决定了噪声的高低,人对机械振动的敏感程度在很大频率范围内是由速度决定的。速度又与能量和功率有关,并决定动量的大小。 提取振动信号的幅域、时域、频域、时频域特征,根据特征进行故

障有无、故障类型和故障程度三个层次的判断。 三、 实验内容 Step1、使用importdata ()函数导入振动数据。 Step2、把大量数据分割成周期为单元的数据,分割方法为: 设振动信号为{x k }(k =1,2,3,…,n )采样频率为f s ,传动轴的转动速率为V r 。 采样间隔为: 1 s t f ?= (1) 旋转频率为: 60 r r V f = (2) 传动轴的转动周期为: 1 r T f = (3) 由式(1)和(3)可推出振动信号一个周期内采样点数N : 1 1s r r s f f T N t f f = ==? (4) 由式(2)可得到传动轴的转动基频f r =29.95Hz ,再由式(3)可得到一个周期内采样点数N=400.67,取N =400。 Step3、提取振动信号的特征,分析方法包括: 1、时域统计分析指标(波形指标(Shape Factor)、峰值指标(Crest Factor)、脉冲指标(Impulse Factor)、裕度指标(Clearance Factor)、峭度指标(KurtosisValue) )等,相关计算公式如下: (1)波形指标: P f X WK X = (5) 其中,P X 为峰值,X 为均值。p X 计算公式如下:

电机滚动轴承的故障分析判断方法

电机滚动轴承的故障分析判断方法 轴承在机械中主要是起支撑及减少摩擦的作用,因此轴承的精度、噪声等都直接关系到机械的使用及寿命。转动轴承在设备中的应用非常广泛,转动轴承状态好坏直接影响旋转设备的运行状态,尤其在连续性大型生产企业,大量应用于大型旋转设备重要部位。因此实际生产中作好转动轴承状态监测与故障诊断是搞好设备维修与治理的重要环节。我们经过长期实践与摸索,积累了一些转动轴承实际故障诊断的实用技巧。本文将主要对转动轴承常见的故障诊断并做出分析。 一、转动轴承故障诊断的方式及要点 转动轴承的早期故障是滚子和滚道剥落、凹坑、破裂、腐蚀和杂物嵌进。产生的原因包括搬运粗心,安装不当、不对中、轴承倾斜、轴承选型不正确、润滑不足或密封失效、负载分歧适以及制造缺陷。根据经验,对转动轴承进行状态监测和故障诊断的实用方法是振动分析。振动分析对于转动轴承的诊断是将由加速度传感器获得的加速度信号,经过1kHz的高通滤波器往除低频信号后,对其进行包络处理,将调制信号移至低频,最后进行频谱分析,以便找出信号的特征频率。 根据转动轴承的结构特点、使用条件不同,它所引起的振动是频率在1kHz以上,数千赫乃至数十千赫的高频振动(固有振动),通常情况下是同时包含了上述两种振动成分。因此检测转动轴承振动速度和加速度信号时应同时覆盖或分别覆盖上述两个频带,必要时可以采用滤波器取出需要的频率成分。考虑到转动轴承多用于中小型机械,其结构通常比较轻薄,因此传感器的尺寸和重量都应尽可能地小,以免对被测对象造成影响,改变其振动频率和振幅大小。 转动轴承的振动属于高频振动,对于高频振动的丈量,传感器的固定采用手持式方法显然分歧适,一般也不推荐磁性座固定,建议采用钢制螺栓固定,这样不仅谐振频率高,可以满足要求,而且定点性也好,对于衰减较大的高频振动,可以避免每次丈量的偏差,使数据具有可比性。 实用中需留意选择测点的位置和采集方法。要想真实正确反映转动轴承振动状态,必须留意采集的信号要正确真实,因此要在离轴承最近的地方安排测点,在电机自由端一般有后风扇罩,其测点选择在风扇罩固定螺丝处有较好监测效果。另外必须留意对振动信号进行多次采集和分析、综合进行比较,才能得到正确结论。 1转动轴承故障的频谱和波形特征 (1)径向振动在轴承故障特征频率及其低倍频处有波峰,若有多个同类型故障(内滚道、外滚道等),则在故障特征频率的低倍频处有较大的峰值; (2)内滚道故障特征频率有边带,边带间隔为l倍频的倍数; (3)转动体特征频率处的边带,边带间隔为保持架故障特征频率; (4)在加速度频谱的中高区域若有峰群忽然生出,表明有疲惫故障; (5)径向诊断时域波形有垂直复冲击迹象(有轴向负载时,轴向振动波形与径向相同,或者其波峰系数大于5,表明故障产生了高频冲击现象)。 2转动轴承的故障诊断方法 转动轴承的振动信号分析故障诊断方法分为简易诊断和精密诊断两种。简易诊断的目的是初步判定被列为诊断对象的转动轴承是否出现了故障;精密诊断的目的是要判定在简易诊断中被以为是出现故障轴承的故障种别及原因。由于转动轴承自身的特点,一旦损坏普通维修很难修复,大多采用更换的维修方式进行处理;而精密诊断的主要作用是理论研究和在特

滚动轴承故障机理分析 (DEMO)

滚动轴承故障的机理分析 一、轴承产生振动机理 由于滚动轴承的内、外圈和滚动体都是弹性体,构成振动系统或以子系统的形式耦合在整个系统中。内、外圈和滚动体都有自己的振动特征----固有频率和振型。所以从轴承的振源不同,滚动轴承的振动可分为非轴承故障性振动和轴承故障性振动。使用同步平均处理拾得的振动信号来寻找轴承故障几乎是不可能的,因为轴承信息中的基频是非同步的。滚动轴承有损伤时,其振动波形往往是调幅波。相当于载波的是轴承各部件及传感器本身以其固有频率振动的高频成分,起调制作用的是与损伤有关的低频成分。 冲击振动从分析的角度来看可以分为两种类型。第一种是直接分析由于滚动体通过工作面上的缺陷、产生反复冲击而形成1kHz以下的低频振动,或称为轴承的通过振动,它是滚动轴承的重要特征信息之一。但是由于这一频带中的噪声干扰很大,所以不容易捕捉到早期诊断信息。第二类是分析由于冲击而激起的轴承零件的固有振动。实际应用中可以利用的固有振动有三种: 1)轴承内、外圈一阶径向固有振动,其频带范围一般在1—8kHz之间。 2)轴承零件其他固有振动,其频率范围多在20一60kHz之间。 3)加速度传感器的一阶固有频率,其频率中心通常选择在10一25kHz附近。 1、非轴承故障性振动 非轴承故障性振动主要有安装不当或制造误差引起的偏心,转子或转轴不平衡引起的振动,这类振动往往被用来作为对转子故障进行诊断的信息。在滑动轴承和高速旋转机械中更是如此。 2、滚动轴承结构引起的振动 对于水平轴旋转时,每个钢珠通过轴的正下方时,轴就会略为向上升起。这样就产生了回转轴端部的上下运动。这种运动也称为滚动元件的通过振动。 3、轴承故障性振动 轴承故障性振动主要由下列各种原因引起: 1)由于载荷过大引起内、外圈和滚动体变形过大导致的旋转轴中心随滚动体位置变化所引起的振动----传输振动。还有因安装不准确或滚动体大小不一致引起的振动。一般情况下,这样的振动其频率较低(≤1KHz)。 2)由于润滑脂的润滑性能不良引起的非线性振动。

滚动轴承故障振动分析

Detecting rolling element bearing faults with vibration analysis https://www.wendangku.net/doc/7d5440954.html, https://www.wendangku.net/doc/7d5440954.html, Detecting rolling element bearing faults is the highest priority for most vibration analysts. Detecting the fault at the earliest opportunity should be the priority, however in reality most analysts do not detect the fault in the first or even the second stage of failure. This article is going to help you to detect faults at stage one so that you can truly be in control of your maintenance program. In this article I will describe the four stages of bearing failure and how to understand and successfully utilize the airborne ultrasound, Shock Pulse, Spike Energy, PeakVue, enveloping/demodulation, time waveform analysis and spectral analysis methods. I will also explain why you should not rely on trending overall level readings. Reducing bearing faults No article of this nature can be complete without a discussion of the reasons why bearings fail in the first place. Your first priority should be to minimize the causes of bearing failure. If you can do that successfully, then you will not need to rely on the vibration analysis techniques as much. That is not to say that I want to put vibration analyst’s out of work, or that you should even consider downsizing your vibration monitoring program (because there will always be bearing failures and other mechanical faults) – the point is that the path to equipment reliability does not begin with vibration analysis. The fact is that if you properly purchase, transport, store, install, and lubricate your bearings, and you operate machines that are balanced, aligned and operating well away from natural frequencies, your bearings will last longer. You may not have control over many of these factors, but if you are involved in vibration analysis then there are two things you can definitely do: look for the presence of conditions that will cause bearings to have a reduced life, and perform root cause analysis when you detect bearing damage. I opened this article by pointing out that the detection of rolling element bearing faults is the highest priority for most vibration analysts. The sad truth is that for too many analysts it is the only priority. Unbalance, misalignment, soft foot, and resonance often have a much lower priority. Although these faults conditions appear first on most wall charts, they can be the trickiest to diagnose. Phase analysis is a powerful, yet

滚动轴承振动原理

讲义: 一.轴承振动的原理 二.影响静音轴承的原因 三.车间生产如何控制(注意哪些细节) 前言 随着高科技的发展,机械产品越来越向精密延伸。轴承行业也在逐步地革新换代,同时用户对轴承的使用也越来越向“静音”高要求。于是静音轴承成为了行业商场上的“紧俏品”,也成为了同行竞争的分档线。 一、轴承振动的原理 我们知道轴承的结构主要由4大件组成:内外圈、保持架、钢球,加上润滑剂就是5大件了。在轴承运转的过程中,这几大件相互之间形成的摩擦副有:外圈与保持架、内圈与保持架、滚动体与保持架、内、外圈与滚动体,结构是封闭式的摩擦副还存在密封圈(或防尘盖)与内外圈、油脂与机械物质等的摩擦。以上这些摩擦副最终形成了轴承运转时发出的声音,这种本能固有的声音行业上称做轴承的“基础噪音”。测振时这种声音一般表现的比较平稳、轻微、柔和,这与我们攻关的低噪音有所不同。轴承运转的过程中,由于轴承滚道工作面、滚动体、润滑不良等缺陷的影响,在加速度测振仪上,这些缺陷经过传感器而产生的振动脉冲更大地激起轴承本身固有频率振动,从而产生出人耳听起来不舒服的异常音。 下面我讲一下影响低噪音轴承的因素。

二、影响静音轴承的因素 1.产品结构的影响 从最近几年轴承结构的不断更新来看,以消除噪音为目的来改进产品结构的还不少,比如:内外滚道的优化设计、宽边保持架的采用、钢球的球形偏差改进等等。实际拆套中发现钢球往往有“猫眼”的,其实是保持架结构不合理导致。我计算过6308、6309、6311目前所用的保持架结构,6309、6311的在实际受力的情况下比理论受力结构变形量增大了()mm,这样运转时钢球必然撞击保持架,则易产生磨痕,影响低噪音控制。 2.零件缺陷的影响 (1). 钢球缺陷的影响 在轴承几大件中,钢球对成品轴承的振动影响最大。钢球的球形偏差及表面磕碰伤直接影响成品轴承的振动,因此严格控制钢球的球形偏差及表面磕碰伤,能够降低轴承的低频振动。目前钢球厂家在钢球的加工过程中提高研磨盘的加工质量,控制研磨盘的沟形偏差,并选用优质精研液,以降低钢球表面粗糙度。钢球的表面质量在测振仪上声音放大器一般表现为“嚓嚓沙沙”的锯齿音,在BVT型测振仪上比较明显,同时拆套后会发现钢球表面有划伤、麻点等缺陷,经打硬度此类钢球硬度一般都低于62.5HRC。实验表明如果钢球硬度在63.9HRC的没有锯齿音,钢球硬度在62.9HRC的锯齿音会减少40%,硬度在61.4HRC时一定有锯齿音。在测振时,钢球缺陷在S0910型上波形一般表现为幅值很大的尖峰脉冲,在BVT型声音一般为“嗡

毕业设计开题报告-轴承振动信号检测

毕业设计 (论文)开题报告机电与信息工程学院测控技术与仪器专业课题名称:小型刮板输送机减速器轴承振动信号检测 毕业设计(论文)起止时间: 2012年 2 月20 日~ 6 月9 日(共 14周)学生姓名:学号: 指导教师: 报告日期: 2012.2.15

说明: 1.本报告必须由承担毕业设计(论文)课题任务的学生在开学的第2周末之前独立撰写完成,并交指 导教师审阅。 2.每个毕业设计(论文)课题撰写本报告一份,作为指导教师、系主任审查学生能否承担该毕业设计 (论文)课题任务的依据,并接受学院的抽查。 3.开题报告采用B5纸型,双面打印。

1.本课题所涉及的问题在国内(外)的研究现状综述 振动监测这一名词国外早在50多年前就已经提出,但由于当时测试技术和振动监测诊断故障特征知识的不足,所以这项技术在20世纪70年代前都未有明显发展。国内提出振动监测也有30多年的历史,由于国内设备机组振动的特殊性,因而在振动监测故障诊断方法、故障机理的研究方面,具有独特的见解。经过50多年的现场故障诊断的实践,在机组振动故障特征方面积累了丰富的知识和经验,对其中许多故障的生成和产生振动的机理,都作了长期、深入的研究。纠正了传统的误解。在诊断思维模式方面,提出了正向推理,彻底扭转了振动监测故障原因难以查明的局面。目前若采用正向推理,诊断机组振动故障准确率一般都可达80%以上。 振动监测故障诊断就目前来分,可分为在线诊断和离线诊断。前者是对运行状态下的机组振动故障原因作出出线条的诊断,以便运行人员作出纠正性操作,防止事故扩大。因此,在线诊断在诊断时间上要求相对比较紧迫,目前采用计算机实现,故又称为自动专家诊断系统。系统的核心是专家经验,但是如何将分撒的专家经验进行系统化和条理化,变成计算机的语言,是目前国内外许多专家正在研究的一个技术问题,因此不能将这种诊断系统误解为能完全替代振动专家。即使到来,也是诊断专家设计和制造诊断系统,为缺乏振动知识和经验的运行人员服务,而不是诊断系统替代振动专家。 振动监测离线诊断是为了消除振动故障而进行的诊断,这种诊断在时间要求上不那么紧迫,可以将振动信号、数据拿出现成,进行仔细的分析、讨论或模拟实验,因此称它为振动监测离线诊断。离线诊断在故障诊断深入程度上要比在线诊断具体的多,因此难度也较大。

滚动轴承振动机理

一、数控机床滚动轴承的特点与故障 在数控机床上主轴轴承常用滚动轴承和滑动轴承。滚动轴承摩擦阻力小,可以预紧,润滑维护简单,能在一定转速范围和载荷变动范围下稳定的运动。数控机床最常用的滑动轴承是静压滑动轴承。静压滑动轴承的油膜压强是由液压缸从外界供给的,与主轴的转速无关。它的刚度大,回转精度高。但静压轴承需要一套液压装置,成本较高,一般用于重型或高精度数控机床。滚动轴承由专业化工厂生产,选购维修方便。数控主轴组件在可能的条件下,尽量使用滚动轴承。特别是大多数立式主轴和主轴装在套简内能够作轴向移动的主轴,用滚动轴承可以用润滑脂润滑避免漏油。在数控机床上使用的滚动轴承主要有:球轴承,滚珠轴承,圆锥滚子轴承三大类。箱式直线轴承 滚动轴承的损伤和破坏形式主要有:磨损、疲劳、断裂、腐蚀、压痕和胶合。可将这六种失效形式归类成三种类型的故障:表面皱裂、表面剥落和轴承烧损。 1 表面皱裂是由于轴承使用时间较长,磨损后滚动面全周慢慢劣化的异常形态。此时轴承的振动与正常轴承振动具有相同的特点。唯一区别是此时振动幅度变大了。 2 表面剥落是由疲劳、裂纹、压痕、胶合等失效形式造成滚动面的异常形态。它们所引起的振动为冲击振动,振动信号中含有轴承的传输振动和轴承构件的固有振动。可以通过查找这些固有振动中是否出现某一构件运行特征频率来判断轴承的故障。 3 烧损是由于轴承润滑状态恶化等原因造成的。在到达烧伤程度的过程中,轴承的振动值急速增大。润滑不良,载荷过大,冲击载荷,和转速过高是造成滚动轴承故障的主要原因。其中润滑不良是主要原因。数控机床由于本身的结构特点和切削工艺特点,其轴承受到的损坏也与普通机床不太一样。在数控机床中,数控机床主轴的转动速度和进给轴的进给速度都是受数控系统的监控,很少出现转速过高的现象,所以转速过高不会成为数控机床轴承的故障原因。数控机床的轴承一般采用强制润滑和油脂封入润滑,使用强制润滑的轴承不存在润滑不良的问题:采用油脂封入式润滑的轴承,才会因没有得到定期的保养而产生润滑不良的问题。因此,润滑不良的原因也不是数控机床轴承故障最主要原因。在加工中,数控机床可能会出现由于切削用量过大而产生的轴承所受载荷过大的现象。以及刀具以高速切入工件,造成对主轴轴承的瞬间冲击载荷的现象也是经常发生的。经过上面的分析,我们可以得到这样的结论,载荷过大,冲击载荷和润滑不良是造成数控机床轴承故障的主要原因。由此而产生的故障主要是表面剥落和烧损。这两者中发生概率最大的就是表面剥落。 如前所述,表面剥落的故障判断可以通过查找由故障产生的冲击振动中是否出现了某一构件运行特征频率。滚动轴承有四个组成构件,内环、外环、滚动体及保持架。其故障也都是这四个构件的损伤及破坏引起的,包括:内滚道故障,外滚道故障,滚动体故障,保持架碰外环故障和保持架碰内环故障。据统计在滚动轴承的故障中,90%的故障来自于外环和内环故障。 二、滚动轴承的振动按产生机理 滚动轴承的振动按产生机理又分为三种类型: 1 轴承结构的固有振动。包括将内环看作是弹性体而引起的固有振动:将外环看作是刚性体而引起的固有振动:将滚动体看作刚体而引起的固有振动。 2 强迫振动。由轴承零件制造或装配误差而引起的振动。如:内外环波纹度、滚动体直径差等制造误差。 3 冲击振动。内外环或滚动体表面上存在划痕、毛刺、锈斑、点蚀、剥落、凹坑等缺陷,或有灰尘,润滑,油污等情况存在时,会激励起轴承脉冲型振动,振动的周期与转速成反比。振幅和与缺陷的尺寸大

滚动轴承的检验标准

滚动轴承的检验标准 一.轴承质量检测振动标准 1.振动加速度国家标准(俗称Z标) 该标准制定比较早,以测量轴承旋转时的振动加速度值,来判定轴承的质量等级,分为Z1、Z2、Z3由低到高三个质量等级。目前国内轴承制造厂家仍然在使用,以振动加速度值来衡量轴承的优劣,仅仅简单地反映了INA轴承的疲劳寿命。 2.振动速度标准(俗称V标) 由于原振动加速度标准还没有废除,所以该标准是以机械工业部颁标准出现的,是参考欧洲标准结合我国实际情况和需要制定的,以检测轴承振动速度来划分轴承的质量等级(等同于国家标准)。分为V、V1、V2、V3、V4五个质量等级。各种球轴承质量等级从低到高为V、V1、V2、V3、V4;辊子轴承(圆柱、圆锥)质量等级从低到高为V、V1、V2、V3四个质量等级。它是以检测轴承不同频率段(低频、中频、高频)的振动速度来反映轴承的质量。可以大体分析出轴承是否存在几何尺寸问题(如钢圈椭圆)、滚道/滚动体的质量问题,保持架的质量问题,比以振动加速度来考察轴承质量有了显著地进步。目前国内出口欧洲的轴承、我国军方和航天工业均按照该标准进行轴承质量检测,同时检测欧洲INA进口轴承质量和分辨假冒进口轴承提供了可行的手段。 目前轴承质量检测存在两个标准并行的局面,而“Z标”质量等级很高的轴承,以“V标”检测时未必有好的质量表现,两者之间没有任何对应关系。这在轴承的质量检测中是要特别注意的。 二.以振动测量仪检测在用轴承 INA进口轴承在运行中,ISO2372标准虽然是以振动速度来判断振动是否超标,但在现场实际中要特别关注轴承加速度值的变化,轴承的损坏过程大多是初期表现为疲劳损伤,这点一般可以表现为明显的加速度升高,随着疲劳的发展,逐渐出现振动速度和位移的升高,预示着轴承出现了疲劳破坏。特别对于轴承进行检测时,要细心关注振动值是否出现不稳定地摆动(建议使用模拟量的指针式仪器,可以观察的非常明显),如果出现摆动,预示着出现了不稳定的振动信号,加速度也大,特别是速度同时增大,极有可能存在轴承“耍套”故障。 对于新设备,检测验收时,虽然振动很小,符合国家标准,但在轴承部位出现小幅度的振动摆动现象,排除轴承配合问题(耍套)后,极有可能是轴承几何尺寸存在问题,如轴承钢圈椭圆,滚动体经过椭圆长轴位置时,可能由于间隙减小造成滚动体瞬间卡死,后续滚动体继续挤压,使滚动体产生滑动摩擦,每一个滚动体都会在此出现滑动摩擦,造成不稳定信号出现。这个问题在检测山西220KW新电机中遇到,解体探察,检测轴承,证明判断完全正确。 特别提示:在检查滚动轴承时,一定不要忽略轴承加速度值的变化。加速度更能够早期预报滚动轴承的故障。 三.国内轴承质量检测分析参考

第七章 滚动轴承的故障机理与诊断

第七章滚动轴承的故障机理与诊断 第一节滚动轴承故障的主要形式与原因 滚动轴承在运转过程中可能会由于各种原因引起损坏,如装配不当、润滑不良、水分或异物侵入、腐蚀和过载等都可能导致轴承过早损坏。即使在安装、润滑、和使用维护都正常德情况下,经过一段时间运转,轴承也会出现疲劳剥落和磨损而不能正常工作。总之,滚动轴承的故障原因是十分复杂的滚动轴承的主要故障形式与原因如下: 1.疲劳剥落 滚动轴承的内外滚道和滚动体表面既承受载荷有相对滚动,由于交变载荷的作用,首先在表面下一定深度处形成裂纹,继而扩展到接触表面使表层发生剥落坑,最后发展到大片剥落,这种现象就是疲劳剥落。疲劳剥落会造成运转时的冲击载荷、振动和噪声加剧。通常情况下,疲劳剥落往往是滚动轴承失效的主要原因,一般所说的轴承寿命就是指轴承的疲劳寿命,轴承的寿命试验就是疲劳试验。试验规程规定,在滚道或滚动体上出现面积为0.5mm2的疲劳剥落坑就认为轴承寿命终结。滚动轴承的疲劳寿命分散性很大,同一批轴承中,其最高寿命与最低寿命可以相差几十倍乃至上百倍,这从另一角度说明了滚动轴承故障监测的重要性。 2.磨损 由于尘埃、异物的侵入,滚道和滚动体相对运动时会引起表面磨损,润滑不良也会加剧磨损,磨损的结果使轴承游隙增大,表面粗糙度增加,降低了轴承运转精度,因而也降低了机器的运动精度,振动及噪声也随之增大。对于精密机械轴承,往往是磨损量限制了轴承的寿命。 此外,还有一种微振磨损。在轴承不旋转的情况下,由于振动的作用,滚动体和滚道接触面间有微小的、反复的相对滑动而产生磨损,在滚道表面上形成振纹状的磨痕。 3.塑性变形 当轴承受到过大的冲击载荷或静载荷时,或因热变形引起额外的载荷,或有硬度很高的异物侵入时都会在滚道表面上形成凹痕或划痕。这将使轴承在运转过程中产生剧烈的振动和噪声。而且一旦有了压痕,压痕引起的冲击载荷会进一步引起附近表面的剥落。 4.锈蚀 锈蚀是滚动轴承最严重的问题之一,高精度轴承可能会由于表面锈蚀导致精度丧失而不能继续工作。水分或酸、碱性物质直接侵人会引起轴承锈蚀。当轴承停止工作后,轴承温度下降达到露点,空气中水分凝结成水滴附在轴承表面上也会引起锈蚀。此外,当轴承内部

滚动轴承振动信号特性分析

西南交通大学 本科毕业设计(论文) 滚动轴承振动信号特性分析 年级:2010级 学号:20107151 姓名:刘元是 专业:机械制造工艺及其设备 指导老师:曾祥光 2014年 6月

院系机械工程系专业机械设计制造及其自动化(机械制造)年级 2010级姓名刘元是 题目滚动轴承振动信号特性分析 指导教师 评语 指导教师 (签章) 评阅人 评语 评阅人 (签章) 成绩 答辩委员会主任 (签章) 年月日

毕业设计(论文)任务书 班级 2010机制1班学生姓名刘元是学号 20107151 发题日期:2014年 2月 24日完成日期: 6月 20日 题目滚动轴承振动信号特性分析 1、本论文的目的、意义:滚动轴承的优点众多,因此滚动轴承在工程实践中得到充分的应用。但是滚动轴承有时的工作条件十分恶劣并且在机械设备中承载载荷、传递载荷。滚动轴承损坏尤其是突然损坏不仅会导致机械设备的故障失效,甚至可能造成更为严重或许是灾难性的事故。本论文主要针对滚动轴承振动信号进行研究,在对滚动轴承结构有一定了解的基础上,重点研究滚动轴承振动信号特点,并基于滚动轴承振动实测信号进行分析验证,掌握常见的信号谱分析方法,并尝试对滚动轴承零件故障进行分析。 2、学生应完成的任务(1)基于滚动轴承振动信号进行常见分析的分析方法,如时域分析、FFT分析、功率谱分析研究所实测振动信号,并得出相应结论。(2)利用小波或其它信号分析方法研究所实测振动信号,并得出相应结论。(3)利用MATLAB编制信号分析GUI,实现计算信号特征参数及实现简单的信号分析功能。(4)完成毕业论文。

3、论文各部分内容及时间分配:(共 16 周) 第一部分了解滚动轴承的功能、构成 (2周) 第二部分了解滚动轴承常见的失效形式(2周) 第三部分基于实测滚动轴承振动信号利用功率谱等方法分析其特性 (4周) 第四部分利用典型时频分析方法分析滚动轴承振动信号特性并编GUI(6周) 第五部分论文撰写(2周) 评阅及答辩(2周) 备注(1)CNKI关于滚动轴承故障分析的论文.(2)功率谱分析、小波分析、希尔伯特-黄变换有关书籍(3)matlab编程方面的书籍 指导教师:年月日 审批人:年月日

轴承振动测量原理

滚动轴承振动、噪声和异音测试系统技术研究 杭州轴承试验研究中心(浙江,杭州,310022) 李兴林陈芳华沈云同张燕辽张永恩 摘要:本文论述了滚动轴承(以下简称轴承)振动、噪声和异音测试系统技术(BVT+BANT),介绍了我中心根据此技术研制的BVT系列轴承振动(速度)测量仪和BANT系列轴承异音测量仪。该测试系统1985年经原机械工业部鉴定,其主要性能指标达到国外同类仪器的先进水平。该测试系统自问世以来,经过近二十年的推广,已有近二千台套被一千余家国内外用户采用,深受用户好评。广泛适用于轴承生产企业对轴承振动的检测以及家电、电机、机床、冶金、纺织、石化等轴承用户对轴承产品的验收,也适合大专院校和科研单位对轴承振动的分析与研究。本文同时介绍了由我中心制定的相关技术标准。 1.引言 随着家电等行业对轴承振动、噪声和异音要求的不断提高,对轴承振动、噪声和异音的控制、检测以及评定已成为各轴承及轴承用户企业越来越关注的问题。本文结合BVT系列轴承振动(速度)测量仪和BANT系列轴承异音测量仪来着重讨论轴承振动、噪声和异音测试的有关技术问题。 2. 轴承振动与噪声测试 2.1轴承振动与噪声的概念 轴承在运转过程中,除轴承零件间的一些固有的、由功能所要求的运动以外的其他一切偏离理想位置的运动均称为轴承振动。 当滚动轴承的振动传播到辐射表面,振动能量转换成压力波,经空气介质再传播出去即为声辐射。其中20—20000Hz部分为人耳可接收到的声辐射,即为滚动轴承噪声。 滚动轴承噪声测量应在特殊的消音室内进行,消音室的背景噪声较低,可以把轴承噪声和环境噪声区分开来,但其建造成本高,且不能在现场测试。滚动轴承的振动是产生噪声的主要根源,与噪声表现为强相关特征,因此一般用振动测量代替噪声测量。 2.2 BVT系列轴承振动(速度)测量仪测试原理 被测轴承的内圈端面紧靠芯轴轴肩,并以某一恒定的规定转速旋转,外圈不转并承受一定的径向或轴向载荷,用传感器测头摄取滚道中心截面与外圈外圆柱面相交线上的轴承外圈振动(速度)分量,将该径向振动(速度)分量转变成电信号并将该电信号输入到测量放大系统,对其进行信号处理并同步显示轴承低、中、高三个频段的径向振动速度均方根值(μm/s)。 2.3BVT系列轴承振动(速度)测量仪主要技术参数及性能特点 BVT系列轴承振动(速度)测量仪主要技术参数见表1,它与国内原先使用的轴承振动测量仪相比具有以下特点: ⑴速度型传感器谐振频率大于13kHz,能满足50Hz—10000Hz频段测试的要求。 ⑵液体动静压主轴旋转精度高,启动温度低,隔振效果好,能满足生产现场使用。 ⑶测量电箱采用模块化设计生产,维修方便。 ⑷设有预置定值电路,可对轴承进行快速筛选。 ⑸带有扬声器,可对轴承噪声进行监听,同时可外接示波器,对振动异音波形进行监视。 ⑹自带校准电路,对测量放大器进行校准。

滚动轴承的振动机理与信号特征(1)

滚动轴承的振动机理与信号特征(1) https://www.wendangku.net/doc/7d5440954.html, 中国设备管理网(2005-06-13)文章来源:中国设备管理网 滚动轴承的振动可由外部振源引起,也可由轴承本身的结构特点及缺陷引起。此外,润滑剂在轴承运转时产生的流体动力也可以是振动(噪声)源。上述振源施加于轴承零件及附近的结构件上时都会激励起振动。 一、滚动轴承振动的基本参数 1.滚动轴承的典型结构 滚动轴承的典型结构如图1所示,它由内圈、外圈、滚动体和保持架四部分组成。 图1 滚动轴承的典型结构 图示滚动轴承的几何参数主要有: 轴承节径D:轴承滚动体中心所在的圆的直径 滚动体直径d:滚动体的平均直径 内圈滚道半径r1:内圈滚道的平均半径 外圈滚道半径r2:外圈滚道的平均半径 接触角α:滚动体受力方向与内外滚道垂直线的夹角 滚动体个数Z:滚珠或滚珠的数目 2.滚动轴承的特征频率 为分析轴承各部运动参数,先做如下假设:

(1)滚道与滚动体之间无相对滑动; (2)承受径向、轴向载荷时各部分无变形; (3)内圈滚道回转频率为fi; (4)外圈滚道回转频率为fO; (5)保持架回转频率(即滚动体公转频率为fc)。 参见图1,则滚动轴承工作时各点的转动速度如下: 内滑道上一点的速度为:V i=2πr1f i=πf i(D-dcosa) 外滑道上一点的速度为:V O=2πr2f O=πf O(D+dcosa) 保持架上一点的速度为:V c=1/2(V i+V O)=πf c D 由此可得保持架的旋转频率(即滚动体的公转频率)为: 从固定在保持架上的动坐标系来看,滚动体与内圈作无滑动滚动,它的回转频率之比与d/2r1成反比。由此可得滚动体相对于保持架的回转频率(即滚动体的自转频率,滚动体通过内滚道或外滚道的频率)fbc 根据滚动轴承的实际工作情况,定义滚动轴承内、外圈的相对转动频率为 一般情况下,滚动轴承外圈固定,内圈旋转,即: 同时考虑到滚动轴承有Z个滚动体,则滚动轴承的特征频率如下:滚动体在外圈滚道上的通过频率zfoc为:

滑动轴承振动原因、机理详解

滑动轴承振动原因、机理详解 滑动轴承就是通常说的平面轴承,其形式简单,接触面积大,如果润滑保持良好,抗磨性能会很好,轴承寿命也会很长。 滑动轴承的承载能力大,回转精度高,润滑膜具有抗冲击作用,因此在工程上获得广泛的应用。 本文分享了滑动轴承振动故障的原因,振动机理,振动方法等。 ①滑动轴承根据承受载荷的方向不同可分为:推力滑动轴承和径向滑动轴承; ②根据润滑油膜形成原理不同分为:动压滑动轴承和静压滑动轴承; ③根据结构形式不同可分为:整体式滑动轴承和剖分滑动轴承。 滑动轴承故障形成原因 1)轴瓦设计、安装不当; 2)超速、超载运行或在润滑油中含有杂质; 3)在高温、高速、高载荷的运行情况下,轴颈与轴瓦材料发生热膨胀,轴承间隙消失,金属之间直接接触; 4)在交变载荷的作用下,轴承表面产生往复作用的拉应力、压应力以及剪切应力,从而在轴承表面产生细微裂纹,在不断的运行状态下,最后形成疲劳破坏; 5)在较大振幅下长期运行造成的脱胎; 6)联轴器不对中、运行操作不当等原因造成的次同步不稳定等等。 滑动轴承振动故障类型 滑动轴承振动故障有多种表现形式,其中包括轴瓦配合间隙过大;油膜涡动和油膜振荡、摩擦;以及常见的轴瓦磨损、烧瓦、疲劳产生的脱胎裂纹等故障。 滑动轴承故障振动机理 引起滑动轴承振动的原因很多,大部分都是由于其它机械问题引起,如转子不平衡、不对中、刚度问题等。滑动轴承本身引起的振动,主要由配合间隙不当造成的刚度降低,以及设计、安装不当引起的油膜问题。 油膜涡动 油膜涡动是由径向滑动轴承油膜力所产生的一种涡动。当转子轴颈在滑动轴承中稳定运转时,轴承的油膜力R与载荷W相互平衡,转子轴心处于某一平衡位置O1。若转子受到扰动离开平衡位置移动到O2点,变化后的油膜力R′与载荷W的合力F不再为零、共线。合力F可分解成径向与切向上的二个分力,径向分力Fr与轴颈的位移方向相反,力图把轴颈推回到原平衡位置O1处,是一种弹性恢复力;而切向分力Fu与轴颈位移方向相垂直,它推动轴颈绕平衡位置O1继续旋绕,即产生涡动,这种涡动就称为油膜涡动,Fu 称涡动力。 如果轴颈受到的涡动力小于油膜阻尼力,则轴心涡动所形成的轴心轨迹是收敛的,涡动会减小; 如果涡动力等于油膜阻尼力,则轴心轨迹不再扩大并成为封闭图形,涡动是稳定的; 如果涡动力超过阻尼力,则轴心轨迹是发散的,涡动是不稳定的。 涡动的转向与转子旋转方向相同时,为正进动;反之,为反进动。 理论推算表明,油膜涡动的旋转频率Ω等于转子旋转频率ω的一半,即Ω=ω/2,因此油膜涡动理论上又称为半速涡动。实际中,油膜涡动的振动频率约为0.42~0.48转速频率,即Ω=(0.42~0.48)ω。 油膜振荡

齿轮的振动机理

齿轮的振动机理 一、齿轮的力学模型分析 如图1所示为齿轮副的力学模型,其中齿轮具有一定的质量,轮齿可看作是弹簧,所以若以一对齿轮作为研究对象,则该齿轮副可以看作一个振动系统,其振动方程为 式中x—沿作用线上齿轮的相对位移; c —齿轮啮合阻尼; k(t)—齿轮啮合刚度; T1,T2—作用于齿轮上的扭矩; r2—齿轮的节圆半径; i—齿轮副的传动比; e(t)—由于轮齿变形和误差及故障而造成的个齿轮在作用线方向上的相对位移; m r—换算质量。 图1 齿轮副力学模型 m r=m1m2/(m1+m2)(1-2) 若忽略齿面摩擦力的影响,则(T2-iT1)/r2=0,将e(t)分解为两部分: e(t)=e1+e2(t)(1-3) e1为齿轮受载后的平均静弹性变形;e2(t)为由于齿轮误差和故障造成的两个齿轮间的相对位移,故也可称为故障函数。这样式(1-1)可简化为

(1-4) 由式(1-4)可知,齿轮的振动为自激振动。该公式的左侧代表齿轮副本身的振动特征,右侧为激振函数。由激振函数可以看出,齿轮的振动来源于两部分:一部分为k(t)e1,它与齿轮的误差和故障无关,所以称为常规振动;另一部分为k(t)e2(t) ,它取决于齿轮的综合刚度和故障函数,这一部分可以较好地解释齿轮信号中边频的存在以及与故障的关系。 式(1-4)中的齿轮啮合刚度k(t)为周期性的变量,由此可见齿轮的振动主要是由k(t)的这种周期变化引起的。 k(t)的变化可用两点来说明:一是随着啮合点位置的变化,参加啮合的单一轮齿的刚度发生了变化,二是参加啮合的齿数在变化。例如对于重合系数在1-2之间的渐开线直齿轮,在节点附近是单齿啮合,在节线两侧某部位开始至齿顶、齿根区段为双齿啮合(图2)。显然,在双齿啮合时,整个齿轮的载荷由两个齿分担,故此时齿轮的啮合刚度就较大;同理,单齿啮合时啮合刚度较小。 图2 齿面受载变化图3 啮合刚度变化曲线 从一个轮齿开始进入啮合到下一个轮齿进入啮合,齿轮的啮合刚度就变化一次。由此可计算出齿轮的啮合周期和啮合频率。总的来说,齿轮的啮合刚度变化规律取决于齿轮的重合系数和齿轮的类型。直齿轮的刚度变化较为陡峭,而斜齿轮或人字齿轮刚度变化较为平缓,较接近正弦波(图3)。 若齿轮副主动轮转速为n1、齿数为Z1;从动轮转速为n2、齿数为Z2,则齿轮啮合刚度的变化频率(即啮合频率)为 (1-5)无论齿轮处于正常或异常状态下,这一振动成分总是存在的。但两种状态下振

相关文档
相关文档 最新文档