文档库 最新最全的文档下载
当前位置:文档库 › 第二章 稀溶液的依数性

第二章 稀溶液的依数性

第二章 稀溶液的依数性
第二章 稀溶液的依数性

第二章
首 页 基本要求
稀溶液的依数性
重点难点 讲授学时 内容提要
1
基本要求
[TOP]
1.1 掌握稀溶液渗透压力的概念、渗透现象发生的条件和方向、van’t Hoff 方程式。 1.2 熟悉稀溶液下列依数性 溶液的蒸气压下降、溶液的沸点升高、溶液的凝固点下降,熟悉稀溶液几
种依数性之间的换算,会利用稀溶液依数性计算溶质的相对分子质量。 1.3 了解渗透压力在医学上的意义,明确电解质溶液的依数性、渗透浓度、等渗、高渗和低渗等概念。 2 重点难点 [TOP]
2.1 重点 渗透压及其在医学中的应用。 2.2 难点 拉乌尔定律;凝固点下降. 3 讲授学时 建议 4 学时 [TOP]
4
内容提要
[TOP]
第一节
第二节
第三节
4.1 第一节 溶液的蒸气压下降 4.1.1 蒸气压 在物理化学中将研究系统中物理性质和化学性质相同的均匀部分称为“相”, 相与相之间有界面, 同一物质不同相之间可以互相转化,即发生相变。在一定温度下,将水放进密闭容器,一部分水分子将 逸出表面成为水蒸气分子,称为蒸发;同时,也有一部分水蒸气分子撞击水面而成为液态的水分子,称 为凝结。当蒸发速度与凝结速度相等时,气相和液相处于平衡状态: H2O (l) H2O (g)
式中 l 代表液相,g 代表气相。与液相处于平衡的蒸气所具有的压力称为水的饱和蒸气压,简称蒸 气压,单位为 kPa。
1

蒸气压与物质本性有关。在同一温度下,蒸气压大的物质称为易挥发物质。本章述及的溶质都视为 难挥发性物质,即忽略其蒸气压。 蒸气压与温度有关,同一种物质,温度愈高,蒸气压也就愈大。 相变的方向是由蒸气压大的向小的转变。0℃时液相水与固相水(冰)的蒸气压均为 0.610 6kPa,所 以两相共存。若为-5℃,冰的蒸气压为 0.401 3kPa,小于液相水的蒸气压(0.421 3 kPa) ,水就自发转变 为冰。 4.1.2 溶液的蒸气压下降 若在水中加入一种难挥发的非电解质溶质,使成稀溶液(≤0.2mol·Kg-1),此时,原来表面为纯水分 子所占据的部分液面被溶质分子所占据,而溶质分子几乎不会挥发,故单位时间内从表面逸出的水分子 数减少。当蒸发与凝结重新达平衡时,溶液的蒸气压低于同温度下纯水的蒸气压,亦即溶液的蒸气压下 降。 拉乌尔(Raoult FM)研究得出了一定温度下难挥发性非电解质稀溶液的蒸气压下降值(?p)与溶液质量 摩尔浓度关系的著名的拉乌尔定律:
?p = K ? b B
(2.1)
式中,Δp 为难挥发性非电解稀溶液的蒸气压下降值; bB 为溶液的质量摩尔浓度;K 为比例常数。 上式表明:在一定温度下,难挥发性非电解质稀溶液的蒸气压下降(Δp)与溶液的质量摩尔浓度成 正比,而与溶质的种类和本性无关。如相同质量摩尔浓度的尿素溶液、葡萄糖溶液、蔗糖溶液,这三者 的蒸气压降低值应该是相等的。 4.2 第二节 溶液的沸点升高和凝固点降低 4.2.1 溶液的沸点升高 溶液的蒸气压与外界压力相等时的温度称为溶液的沸点。正常沸点指外压为 101.3kPa 时的沸点。 如在 101.3 kPa 下水的沸点为 100℃。而在稀溶液中,由于加入难挥发性溶质,致使溶液的蒸气压下降。 从图 2-1 中可见,在 Tb0 时溶液的蒸气压和外界的大气压(101.3kPa)并不相等,只有在大于 Tb0 的某一 温度 Tb 时才能相等。换言之,溶液的沸点要比纯溶剂的沸点高。很明显,其升高的数值与溶液的蒸气压 下降多少有关,而蒸气压降低又与溶液的质量摩尔浓度成正比,可见沸点升高也应和溶液的质量摩尔浓 度成正比。即 [TOP]
?Tb = Tb ? Tb0 = K b ? bB
(2.2)
式中,ΔTb 为沸点升高数值;bB 为溶液的质量摩尔浓度;Kb 为溶剂的质量摩尔沸点升高常数,它是 溶剂的特征常数,随溶剂的不同而不同。
2

4.2.2 溶液的凝固点降低 物质的凝固点是指在某外压时, 其液相和固相的蒸气压相等并能共存的温度。 如在 101.3kPa 外压时, 纯水和冰在 0℃时的蒸气压均为 0.611 kPa, 0℃即为水的凝固点。 而溶液的凝固点通常是指溶液中纯固态 溶剂开始析出时的温度,对于水溶液而言,就是指水开始变成冰析出时的温度。与稀溶液中沸点升高的 原因相似,水和冰的蒸气压曲线只有在 0℃以下的某一温度 Tf 时才能相交,也即在 0℃以下才是溶液的 凝固点,显然 Tf < Tf0 ,溶液的凝固点降低了。由于溶液的凝固点降低也是溶液的蒸气压降低所引起的, 因此凝固点的降低也与溶液的质量摩尔浓度 bB 成正比。即
?Tf = Tf0 ? Tf = K f bB
(2.3)
式中,?Tf 为凝固点降低数值;Kf 为溶剂的质量摩尔凝固点降低常数,也是溶剂的特征常数,随溶 剂的不同而不同。 应当注意,Kb,Kf 分别是稀溶液的ΔTb、ΔTf 与 bB 的比值,不能机械地将 Kb 和 Kf 理解成质量摩尔浓 度为 1mol·Kg 时的沸点升高ΔTb 和凝固点降低ΔTf,因 1 mol·Kg 的溶液已不是稀溶液,溶剂化作用 及溶质粒子之间的作用力已不可忽视,ΔTb,ΔTf 与 bB 之间已不成正比。 溶质的相对分子质量可通过溶液的沸点升高及凝固点降低方法进行测定。在实际工作中,常用凝固 点降低法,这是因为:①对同一溶剂来说,Kf 总是大于 Kb,所以凝固点降低法测定时的灵敏度高;②用 沸点升高法测定相对分子质量时,往往会因实验温度较高引起溶剂挥发,使溶液变浓而引起误差;③某 些生物样品在沸点时易被破坏。 4.3 溶液的渗透压力 [TOP]
-1 -1
4.3.1 渗透现象和渗透压力 如将蔗糖溶液和水用理想半透膜(只允许水通过而不允许溶质通过的薄膜)隔开,并使膜内溶液的液 面和膜外水的液面相平,不久,即可见膜内液面升高。我们把溶剂透过半透膜进入溶液的自发过程称为 渗透。 产生渗透现象的原因是:单位体积内纯溶剂中的溶剂分子数大于溶液中的溶剂分子数,在单位时间 内,由纯溶剂通过半透膜进入溶液的溶剂分子数比由溶液中进入纯溶剂的多,而溶质分子不能通过半透 膜,致使溶液的液面升高。液面升至一定高度后,膜内的静水压力增大,而使膜内外水分子向相反方向 扩散的速度相等,这时膜内液面不再升高,体系处于渗透平衡状态。如果膜两侧为浓度不等的两个溶液, 也能发生渗透现象。溶剂(水)渗透的方向为:从稀溶液向浓溶液渗透。 为了阻止渗透的进行,即保持膜内外液面相平,必须在膜内溶液一侧施加一额外压力,通常习惯上
3

用额外施加的压力表示溶液渗透压力。渗透压力用符号 Π 表示,单位为 kPa。 产生渗透现象的必备条件为:①有半透膜存在;②半透膜两侧单位体积内溶剂分子数不等。 4.3.2 溶液的渗透压力与浓度及温度的关系 van’t Hoff 指出:“稀溶液的渗透压力与溶液的物质的量浓度和温度的关系同理想气体方程一致”。即
ΠV = nRT
(2.4) (2.5)
Π=
n RT = c B RT V
-1
式中,Π是溶液的渗透压力,V 是溶液体积,n 是 t 溶质的物质的量,cB 是溶液的物质的量浓度,R 是理 想气体常数(为 8.314J· (K·mol) ) 。van’t Hoff 定律说明,在一定温度下,稀溶液的渗透压力只 决定于单位体积溶液中所含溶质粒子数,而与溶质的本性无关。因此,渗透压力也是稀溶液的一种依数 性。 应该注意,该定律数学表达式虽与理想气体方程式相似,但溶液渗透压力与气体压力本质上不相 同。 对于稀溶液,cB≈bB,所以
Π = R T bB
(2.6)
常用渗透压力法来测定高分子物质的相对分子质量。 4.3.3 渗透压力在医学上的意义 (一) 电解质溶液的依数性 强电解质在溶液中完全解离成相应的正、负离子。相对纯水而言,溶液中任何质点(分子、离子) 均可产生渗透压力,一个 Na 和一个葡萄糖分子在产生渗透压力的作用上是相等的。所以,对于强电解 质溶液,其依数性公式为 ΔTb = i Kb bB ΔTf = i Kf bB (2.7) (2.8) (2.9)
+
Π = iR T bB
这里 i 为校正因子,即 1“分子”电解质解离出的离子个数,如 NaCl、CaSO4 i =2,MgCl2、Na2SO4 i = 3。 (二) 渗透浓度 能产生渗透压力的物质(分子、离子)统称为渗透活性物质,医学上用渗透浓度表示渗透活性物质 的总浓度,单位为 mmol·L ,符号为 cos,它表示单位体积溶液中所含渗透活性物质的总质点数。 (三)体液渗透压力的测定 (略) (四)等渗、高渗和低渗溶液
4
-1

渗透压的高低是相对的。 医学上以血浆的渗透压力作为比较标准:渗透压力与血浆渗透压力(280~320mmol·L-1)相等的溶液 称为等渗溶液,cos>320 mmol·L-1 的溶液称为高渗溶液,cos<280 mmol·L-1 的溶液称为低渗溶液。生理盐 水(9g·L-1 NaCl 溶液)和 50g·L-1 葡萄糖溶液都是等渗溶液。 若将红细胞置于低渗溶液中,由于细胞膜是半透膜,因此低渗溶液中的水分将进入红细胞,最后细 胞膜破裂,导致溶血;反之,将红细胞放入高渗溶液中,红细胞中的水分将进入高渗溶液,致使细胞皱 缩,这种现象称为胞浆分离;而如放入等渗溶液,红细胞正常形态不发生变化。 (五)晶体渗透压力和胶体渗透压力 高分子物质(如蛋白质)产生的渗透压力称为胶体渗透压力,小分子物质(如无机盐类、葡萄糖等) 产生的渗透压力称为晶体渗透压力。由于小分子物质产生的质点数远大于大分子物质的质点数,故晶体 渗透压力大于胶体的渗透压力。胶体渗透压力对于调节血浆和细胞间液之间水的转移起重要作用,而晶 体渗透压力对于调节细胞间液和细胞内液之间的水的转移起重要的作用。 对于难挥发的非电解质稀溶液来说,质量摩尔浓度与物质的量浓度近乎相等,故稀溶液的 4 个依数 性可以互相联系起来,可以互相换算。即:
bB =
Π ? p ? Tb ? Tf = = ≈ K Kb Kf RT
5

习题参考 第二章 稀溶液的依数性

第二章 稀溶液的依数性 首 页 难题解析 学生自测题 学生自测答案 章后习题答案 难题解析 [TOP] 例 2-1 已知异戊烷C 5H 12的摩尔质量M = 72.15 g·mol -1,在20.3℃的蒸气压为77.31 kPa 。现将一 难挥发性非电解质0.0697g 溶于0.891g 异戊烷中,测得该溶液的蒸气压降低了2.32 kPa 。 (1)试求出异戊烷为溶剂时Raoult 定律中的常数K ; (2)求加入的溶质的摩尔质量。 解 (1)A A B A B B A B B M m n n n n n n X =≈+= K = p 0M A 对于异戊烷有 K = p 0M A = 77.31 kPa×72.15 g·mol -1 =5578 kPa·g·mol -1 = 5.578 kPa·kg·mol -1 (2)A B B B Δm M m K Kb p == 例2-2 一种体液的凝固点是-0.50℃,求其沸点及此溶液在0℃时的渗透压力(已知水的K f =1.86 K·kg·mol -1,K b =0.512K·kg·mol -1)。 解 稀溶液的四个依数性是通过溶液的质量摩尔浓度相互关连的,即 因此,只要知道四个依数性中的任一个,即可通过b B 计算其他的三个依数性。 故其沸点为100+0.138 = 100.138℃ 0℃时的渗透压力 RT b cRT B ≈=∏ = 0.269mol·L -1×8.31J·K -1·mol -1×273K = 0. 269mol·L -1×8.31kPa·L·K -1·mol -1×273K = 610 kPa 例2-3 按溶液的凝固点由高到低的顺序排列下列溶液: ① 0.100mol·kg -1的葡萄糖溶液 ② 0.100mol·kg -1的NaCl 溶液 ③ 0.100mol·kg -1的尿素溶液 ④ 0.100mol·kg -1的萘的苯溶液 解 这里要考虑多种因素:溶剂的凝固点、溶剂的摩尔凝固点降低常数、溶液的质量摩尔浓度、溶

稀溶液的依数性练习题

稀溶液的依数性练习题

稀溶液依数性 一、判断题 1、水的液-汽两相平衡线,是水的蒸气压曲线。() 2、在t℃时,液体A较液体B有较高的蒸气压,由此可以合理推断A比B有较低的正常沸点。() 3、一个溶液所有组分的摩尔分数总和为1。() 4、0.1 mol·kg-1甘油的水溶液和0.1 mol·kg-1甘油的乙醇溶液,应有相同的沸点升高。() 5、质量分数0.01的蔗糖水溶液和质量分数0.01的果糖水溶液有相同的渗透压。() 6、K b的物理意义可以认为就是1 mol·kg-1溶液的沸点升高值。() 7、纯溶剂通过半透膜向溶液渗透的压力叫作渗透压。() 8、溶液的蒸汽压与溶液的体积有关,体积愈多,蒸汽压愈大。() 9、通常指的沸点是蒸汽压等于外界压力时液体的温度。() 10、0.1 mol·kg-1甘油的水溶液和0.1 mol·kg-1蔗糖水溶液,有相同的渗透压。() 二、选择题 1、处于恒温条件下的一封闭容器中有两个杯子,A杯为纯水,B杯为蔗糖溶液。防止总够长时间后则发现()。A.A杯水减少,B杯水满后不再变化B.B杯

水减少,A杯水满后不再变化 C.A杯变成空杯,B杯水满后溢出D.B杯水干并有蔗糖晶体,A杯水满后溢出 2、不挥发的溶质溶于水形成溶液之后,将使其()。A.熔点高于0℃B.熔点低于0℃C.熔点仍为0℃D.熔点升降与加入物质分子量有关 3、不挥发的溶质溶于水后会引起()。 A.沸点升降B.熔点升降C.蒸气压升高D.蒸气压下降 4、16克I2溶于100克乙醇(C2H5OH)所配成的溶液,其密度为0.899 g·mL-1,碘溶液的b值和c值那个大()。A.b>c B.b<c C.b=c D.不能确定 5、在稀溶液的凝固点降低公式中的b所代表的是溶液的()。 A.溶质的质量摩尔浓度B.溶质的摩尔分数C.溶剂的摩尔分数D.溶液的(物质的量)浓度6、质量摩尔浓度的定义是在何物质中所含溶质的量(mol)()。 A.1L溶液中B.1000g溶液中C.1000g溶剂中D.1L溶剂中所含溶质的量(mol) 7、在质量分数为0.80的甲醇水溶液中,甲醇的摩尔分数接近于()

无机化学第三章溶液的依数性

无机化学溶液的依数性 第三章稀溶液的依数性§本章摘 要§1. 溶液的饱和蒸气压下降问题的提出饱和蒸气压 拉乌尔定律 2. 沸点升高和凝固点下降 沸点和凝固点饱和蒸气压图公式应用 3. 渗透压 渗透现象渗透压渗透压公式 §1 溶液的饱和蒸气压下降 一问题的提出 水自动转移到糖水中去, 为什么? 这种转移, 只能通过蒸 气来进行. 因此, 要研究蒸气 的行为, 才能弄清楚问题的 实质. 二饱和蒸气压 1. 纯溶剂的饱和蒸气压(P0)

液体气体 在密闭容器中, 在纯溶剂的单位表面上, 单位时间里, 有N0个分子蒸发到上方空间中。随着上方空间里溶剂分子个数的增加, 密度的增加, 分子凝聚, 回到液相的机会增加. 当密度达到一定数值时, 凝聚的分子的个数也达到N0个。这时起, 上方空间的蒸气密度不再改变, 保持恒定。 此时, 蒸气的压强也不再改变, 称为该温度下的饱和蒸汽压, 用P0表示。 达到平衡. 当蒸气压小于P0时, 平衡右移, 继续气化; 若蒸气压大于P0时, 平衡左移, 气体液化. 譬如, 改变上方的空间体积, 即可使平衡发生移动。 2.溶液的饱和蒸气压 (P) 当溶液中溶有难挥发的溶质时, 则有部分溶液表面被这种溶质分子所占据, 如图示: 于是, 在溶液中, 单位表面在单位时间内蒸发的溶

剂分子的数目N要小于N0。凝聚分子的个数当然与 蒸气密度有关. 当凝聚的分子数目达到N, 实现平衡 时, 蒸气压已不会改变. 这时, 平衡状态下的饱和蒸气 压为:P < P0对溶液来讲, 蒸气压大于P, 液化;蒸 气压小于P, 气化。 3. 解释实验现象 过程开始时, H2O 和糖水均以蒸发为主; 当蒸气压等于P 时, 糖水与上方蒸气达到平衡, 而P0 > P, 即H2O 并未平衡, 继续蒸发, 以致于蒸气压大于P. H2O 分子开始凝聚到糖水中, 使得蒸气压不能达到P0. 于是, H2O 分子从H2O 中蒸出而凝聚入糖水. 出现了本节开始提出的实验现象. 变化的根本原因是溶液的饱和蒸气压下降。 三拉乌尔定律(Laoult, 法国) 1. 溶液的浓度 每溶液中含溶质的摩尔数, 为摩尔浓度. 这种浓度使用方便, 唯一不足, 是和温度有关。若用每Kg 溶剂中含溶质的摩尔数, 则称为质量摩尔浓度, 经常用m 表示。

稀溶液的依数性练习题

稀溶液的依数性练习题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

稀溶液依数性 一、判断题 1、水的液-汽两相平衡线,是水的蒸气压曲线。() 2、在t℃时,液体A较液体B有较高的蒸气压,由此可以合理推断A比B有较低的正常沸点。() 3、一个溶液所有组分的摩尔分数总和为1。() 4、 mol·kg-1甘油的水溶液和 mol·kg-1甘油的乙醇溶液,应有相同的沸点升高。() 5、质量分数的蔗糖水溶液和质量分数的果糖水溶液有相同的渗透压。() 6、K b的物理意义可以认为就是1 mol·kg-1溶液的沸点升高值。() 7、纯溶剂通过半透膜向溶液渗透的压力叫作渗透压。() 8、溶液的蒸汽压与溶液的体积有关,体积愈多,蒸汽压愈大。() 9、通常指的沸点是蒸汽压等于外界压力时液体的温度。() 10、 mol·kg-1甘油的水溶液和 mol·kg-1蔗糖水溶液,有相同的渗透压。() 二、选择题 1、处于恒温条件下的一封闭容器中有两个杯子,A杯为纯水,B杯为蔗糖溶液。防止总够长时间后则发现()。 A.A杯水减少,B杯水满后不再变化 B.B杯水减少,A杯水满后不再变化 C.A杯变成空杯,B杯水满后溢出 D.B杯水干并有蔗糖晶体,A杯水满后溢出 2、不挥发的溶质溶于水形成溶液之后,将使其()。 A.熔点高于0℃ B.熔点低于0℃ C.熔点仍为0℃ D.熔点升降与加入物质分子量有关 3、不挥发的溶质溶于水后会引起()。 A.沸点升降 B.熔点升降 C.蒸气压升高 D.蒸气压下降

4、16克I2溶于100克乙醇(C2H5OH)所配成的溶液,其密度为0.899 g·mL-1,碘溶液的b值和c值那个大()。 A.b>c B.b<c C.b=c D.不能确定 5、在稀溶液的凝固点降低公式中的b所代表的是溶液的()。 A.溶质的质量摩尔浓度 B.溶质的摩尔分数 C.溶剂的摩尔分数 D.溶液的(物质的量)浓度 6、质量摩尔浓度的定义是在何物质中所含溶质的量(mol)()。 A.1L溶液中 B.1000g溶液中 C.1000g溶剂中 D.1L溶剂中所含溶质的量(mol) 7、在质量分数为的甲醇水溶液中,甲醇的摩尔分数接近于() A. B.0.5 C. D. 8、质量分数为×10-3的NaCl溶液产生的渗透压接近于()。 A.质量分数为×10-3蔗糖(C12H22O11)溶液 B.质量分数为×10-3葡萄糖(C6H12O6)溶液C. mol·L-1蔗糖溶液 D. mol·L-1葡萄糖溶液 9、下列水溶液渗透压最大的是()。 A. mol·L-1 C12H22O11 B. mol·L-1 C2H5OH C. mol·L-1 KCl D. mol·L-1 K2SO4 10、今有果糖(C6H12O6)(Ⅰ)葡萄糖(C6H12O6)(Ⅱ)蔗糖(C12H22O11)(Ⅲ)三溶液,质量分数为,则三者渗透压(π)大小的关系是()。 A.πⅠ=πⅡ=πⅢ B.πⅠ=πⅡ>πⅢ C.πⅠ>πⅡ>πⅢ D.πⅠ=πⅡ<πⅢ 11、将A(蔗糖C12H22O11)及B(葡萄糖C6H12O6)各称出10克,分别溶入100克水中,成为A、B两溶液,用半透膜将两溶液分开后,发现()。 A.A中水渗入B B.B中水渗入A C.没有渗透现象 D.无法判断

稀溶液的依数性

稀溶液的依数性正文非挥发性溶质溶解在溶剂中后,其稀溶液的蒸气压下 降、沸点升高、冰点降低、渗透压等值只与溶质的分子数有关而与溶质的种类无关,这四种性质称为稀溶液的依数性。 蒸气压下降拉乌尔定律描述了非挥发性溶质溶解在溶剂中所引起的溶剂蒸气压下降: Δp A=p┱x B (1) 式中Δp A为溶剂的蒸气压下降值;p┱为纯溶剂的蒸气压;x B为溶质的摩尔分数。式(1)说明蒸气压下降只与溶质的摩尔分数有关,与溶质的种类无关。 沸点升高液体蒸气压等于外界压力时的温度称为沸点,外压为1大气压时的沸点称为正常沸点。图1绘出溶液和纯溶剂的蒸气压曲线,在溶剂的沸 点T下,溶剂的蒸气压为b,溶液的蒸气压为c。欲使溶液的蒸气压达到b,必须将温度升高到T b,T b与T之差称为稀溶液的沸点升高: (2) (3) 式中ΔT b为沸点升高值;m2为溶质的浓度;K b为沸点升高常数;R为气体常数; T为溶剂的正常沸点;T b为溶液的沸点;Μ1为溶剂的相对分子量;为溶剂的摩尔气化热。式 (3)说明沸点升高常数只是决定于溶剂的常数,因此, 当溶剂一定时沸点升高只与溶质物质的量有关,而与其他性质无关。 1871年 F. -M. 拉乌尔从实验中发现沸点升高关系,1886年J.H.范托夫从热力学角度导出式(2),1889年E.O.贝克曼设计了更精确的实验加以证实。 冰点降低冰点是固态纯组分1与溶液中的组分1达到两相平衡时的温度,即固态纯组分1的蒸气压与液态纯组分的蒸气压相等时的温度。图2绘出溶剂、溶液、纯固体的蒸气压曲线,溶剂与纯固体的蒸气压曲线在a点相交,对应的冰点为T懤;溶液与纯固体的蒸气压曲线在b点相交,对应的冰点为T f,二者之差称为冰点降低: ΔT f=T懤-T f=K f m2(4) (5) 式中ΔT f为冰点降低值;T懤表示溶剂的冰点;T f为溶液的冰点;m2为溶质的浓 度;K f为冰点降低常数;R为气体常数;Μ1为溶剂的相对分子量;为1摩尔的溶剂由固态转变为液态的熔化热。式(5)说明K f只与溶剂的种类有关,因此,冰

稀溶液的依数性练习题资料

稀溶液依数性一、判断题 1、水的液-汽两相平衡线,是水的蒸气压曲线。() 2、在t℃时,液体A较液体B有较高的蒸气压,由此可以合理推断A比B有较低的正常沸点。() 3、一个溶液所有组分的摩尔分数总和为1。() -1-1甘油的乙醇溶液,应有相同的沸点升高。()甘油的水溶液和0.1 mol·kg 4、0.1 mol·kg5、质量分数0.01的蔗糖水溶液和质量分数0.01的果糖水溶液有相同的渗透压。() -1溶液的沸点升高值。()的物理意义可以认为就是1 mol·kg 6、K b7、纯溶剂通过半透膜向溶液渗透的压力叫作渗透压。() 8、溶液的蒸汽压与溶液的体积有关,体积愈多,蒸汽压愈大。() 9、通常指的沸点是蒸汽压等于外界压力时液体的温度。() -1-1蔗糖水溶液,有相同的渗透压。()甘油的水溶液和0.1 mol·kg10、0.1 mol·kg二、选择题 1、处于恒温条件下的一封闭容器中有两个杯子,A杯为纯水,B杯为蔗糖溶液。防止总够长时间后则发现()。 A.A杯水减少,B杯水满后不再变化B.B杯水减少,A杯水满后不再变化 C.A杯变成空杯,B杯水满后溢出D.B杯水干并有蔗糖晶体,A杯水满后溢出2、不挥发的溶质溶于水形成溶液之后,将使其()。 A.熔点高于0℃B.熔点低于0℃C.熔点仍为0℃D.熔点升降与加入物质分子量有关 3、不挥发的溶质溶于水后会引起()。 A.沸点升降B.熔点升降C.蒸气压升高D.蒸气压下降 -1,碘溶液的b值和·mLc值那个大100I溶于克乙醇(CHOH)所配成的溶液,其密度为0.899 g4、16克522()。 A.b>c B.b<c C.b=c D.不能确定 5、在稀溶液的凝固点降低公式中的b所代表的是溶液的()。 A.溶质的质量摩尔浓度B.溶质的摩尔分数C.溶剂的摩尔分数D.溶液的(物质的量)浓度 6、质量摩尔浓度的定义是在何物质中所含溶质的量(mol)()。 A.1L溶液中B.1000g溶液中C.1000g溶剂中D.1L溶剂中所含溶质的量(mol) 7、在质量分数为0.80的甲醇水溶液中,甲醇的摩尔分数接近于() A.0.3 B.0.5 C.0.9 D.0.7 3-的NaCl溶液产生的渗透压接近于()、质量分数为5.8×10。833--葡萄糖(CHO)溶液)溶液B.质量分数为5.8×10OA.质量分数为5.8×10蔗糖(CH662211121211--葡萄糖溶液·L D.C.0.2 mol·L0.1 mol蔗糖溶液 9、下列水溶液渗透压最大的是()。 11--CHOH L B.0.1 mol·A.0.1 mol·LO CH5211122211--KSO D.0.1 mol·LC.0.1 mol·L KCl 4210、今有果糖(CHO)(Ⅰ)葡萄糖(CHO)(Ⅱ)蔗糖(CHO)(Ⅲ)三溶液,质量分数为0.01,11661261212226则三者渗透压(π)大小的关系是()。 A.π=π=πB.π=π>πC.π>π>πD.π=π<πⅢⅡⅢⅡⅢⅠⅠⅠⅢⅡⅡⅠ11、将A (蔗糖CHO)及B(葡萄糖CHO)各称出10克,分别溶入100克水中,成为A、B两溶液,6111212226

稀溶液的依数性练习题

稀溶液的依数性练习 题 Revised on November 25, 2020

稀溶液依数性 一、判断题 1、水的液-汽两相平衡线,是水的蒸气压曲线。() 2、在t℃时,液体A较液体B有较高的蒸气压,由此可以合理推断A比B有较低的正常沸点。() 3、一个溶液所有组分的摩尔分数总和为1。() 4、 mol·kg-1甘油的水溶液和 mol·kg-1甘油的乙醇溶液,应有相同的沸点升高。() 5、质量分数的蔗糖水溶液和质量分数的果糖水溶液有相同的渗透压。() 6、K b的物理意义可以认为就是1 mol·kg-1溶液的沸点升高值。() 7、纯溶剂通过半透膜向溶液渗透的压力叫作渗透压。() 8、溶液的蒸汽压与溶液的体积有关,体积愈多,蒸汽压愈大。() 9、通常指的沸点是蒸汽压等于外界压力时液体的温度。() 10、 mol·kg-1甘油的水溶液和 mol·kg-1蔗糖水溶液,有相同的渗透压。() 二、选择题 1、处于恒温条件下的一封闭容器中有两个杯子,A杯为纯水,B杯为蔗糖溶液。防止总够长时间后则发现()。 A.A杯水减少,B杯水满后不再变化 B.B杯水减少,A杯水满后不再变化 C.A杯变成空杯,B杯水满后溢出 D.B杯水干并有蔗糖晶体,A杯水满后溢出 2、不挥发的溶质溶于水形成溶液之后,将使其()。 A.熔点高于0℃ B.熔点低于0℃ C.熔点仍为0℃ D.熔点升降与加入物质分子量有关 3、不挥发的溶质溶于水后会引起()。 A.沸点升降 B.熔点升降 C.蒸气压升高 D.蒸气压下降

4、16克I2溶于100克乙醇(C2H5OH)所配成的溶液,其密度为0.899 g·mL-1,碘溶液的b值和c值那个大()。 A.b>c B.b<c C.b=c D.不能确定 5、在稀溶液的凝固点降低公式中的b所代表的是溶液的()。 A.溶质的质量摩尔浓度 B.溶质的摩尔分数 C.溶剂的摩尔分数 D.溶液的(物质的量)浓度 6、质量摩尔浓度的定义是在何物质中所含溶质的量(mol)()。 A.1L溶液中 B.1000g溶液中 C.1000g溶剂中 D.1L溶剂中所含溶质的量(mol) 7、在质量分数为的甲醇水溶液中,甲醇的摩尔分数接近于() A. B.0.5 C. D. 8、质量分数为×10-3的NaCl溶液产生的渗透压接近于()。 A.质量分数为×10-3蔗糖(C12H22O11)溶液 B.质量分数为×10-3葡萄糖(C6H12O6)溶液C. mol·L-1蔗糖溶液 D. mol·L-1葡萄糖溶液 9、下列水溶液渗透压最大的是()。 A. mol·L-1 C12H22O11 B. mol·L-1 C2H5OH C. mol·L-1 KCl D. mol·L-1 K2SO4 10、今有果糖(C6H12O6)(Ⅰ)葡萄糖(C6H12O6)(Ⅱ)蔗糖(C12H22O11)(Ⅲ)三溶液,质量分数为,则三者渗透压(π)大小的关系是()。 A.πⅠ=πⅡ=πⅢ B.πⅠ=πⅡ>πⅢ C.πⅠ>πⅡ>πⅢ D.πⅠ=πⅡ<πⅢ 11、将A(蔗糖C12H22O11)及B(葡萄糖C6H12O6)各称出10克,分别溶入100克水中,成为A、B两溶液,用半透膜将两溶液分开后,发现()。 A.A中水渗入B B.B中水渗入A C.没有渗透现象 D.无法判断

第二章 稀溶液依数性习题解析

第一章 稀溶液依数性习题解析 1. 一杯糖水和一杯等量的纯水同时放置,那杯水蒸发得快,为什么? 答:在相同温度下,糖水溶液的蒸气压低于纯水,即纯水易于挥发,所以蒸发得快。 2. 冬天,室外水池结冰时,腌菜缸里的水为什么不结冰? 答:腌菜缸里是盐的水溶液,溶液的凝固点比纯水低,冬天室外水池结冰时温度为0℃,此时的温度还不到溶液的凝固点,所以腌菜缸里的水不结冰。 3. 0.01mol ·kg -1葡萄糖(C 6H 1206)、盐(NaCl )水及蔗糖(C 12H 22O 11)溶液的沸点相同吗? 答:不相同,盐(NaCl )水的沸点高。 4. 在20℃时水的饱和蒸气压为2.34 kPa 。若于100g 水中溶有10.0 g 蔗糖(C 12H 22O 11 ,相对分子质量M r= 342),求此溶液的蒸气压。 解;先求溶液中溶剂的摩尔分数: 995.03420.1002.1810002.181001 11 =?+??=---m ol g g m ol g g m ol g g A χ 根据拉乌尔定律可求出溶液的蒸气压 p = p 0 x = 2.34kPa ×0.995 = 2.33kPa 5. 甲溶液由1.68 g 蔗糖(C 12H 22O 11,M r=342)和20.00 g 水组成,乙溶液由2.45 g M r=690 的某非电解质和20.00 g 水组成。 (1) 在相同温度下,哪份溶液的蒸气压高? (2) 将两份溶液放入同一个恒温密闭的钟罩里,时间足够长,两份溶液浓度会不会发生变化,为什么? (3)当达到系统蒸气压平衡时,转移的水的质量是多少? 答:(1)先比较两份溶液中的水的摩尔分数 甲溶液:996.034268.102.180.2002.180.201 11 =?+??=---m ol g g m ol g g m ol g g A χ

大学实验化学 稀薄溶液的依数性

大学实验化学 稀薄溶液的依数性 难题解析 [TOP] 例2-1 已知异戊烷C 5H 12的摩尔质量M (C 5H 12) = 72.15 g·mol -1,在20.3℃的蒸气压为77.31 kPa 。现将一难挥发性非电解质0.0697g 溶于0.891g 异戊烷中,测得该溶液的蒸气压降低了2.32 kPa 。 (1)试求出异戊烷为溶剂时Raoult 定律中的常数K ; (2)求加入的溶质的摩尔质量。 分析 Raoult 定律中的常数K = p 0M A ,注意p 0是溶剂异戊烷的蒸气压。 解 (1) A A B A B B A B B M m n n n n n n x =≈+= B B A 0A A B 0 B 0ΔKb b M p M m n p x p p ==== K = p 0M A 对于异戊烷有 K = p 0M A = 77.31 kPa×72.15 g·mol -1 =5578 kPa·g·mol -1 = 5.578 kPa·kg·mol -1 (2)A B B B Δm M m K Kb p == 11 A B B mol g 188kg 1000 0.891kPa 32.2g 0697.0mol kg kPa 578.5Δ--?=???=?=m p m K M 例2-2 一种体液的凝固点是-0.50℃,求其沸点及此溶液在0℃时的渗透压力(已知水的K f =1.86 K·kg·mol -1,K b =0.512K·kg·mol -1)。 分析 稀薄溶液的四个依数性是通过溶液的质量摩尔浓度相互关连的,即 RT K T K T K p b ∏≈===f f b b B ΔΔΔ 因此,只要知道四个依数性中的任一个,即可通过b B 计算其他的三个依数性。 解 B f f b K T =?

习题参考第二章稀溶液的依数性

第二章 稀溶液的依数性 难题解析 例 2-1 已知异戊烷C 5H 12的摩尔质量M = g·mol -1,在℃的蒸气压为 kPa 。现将一难挥发性非电 解质溶于异戊烷中,测得该溶液的蒸气压降低了 kPa 。 (1)试求出异戊烷为溶剂时Raoult 定律中的常数K ; (2)求加入的溶质的摩尔质量。 解 (1)A A B A B B A B B M m n n n n n n X =≈+= B B A 0A A B 0 B 0ΔKb b M p M m n p x p p ==== K = p 0M A 对于异戊烷有 K = p 0M A = kPa× g·mol -1 =5578 kPa·g·mol -1 = kPa·kg·mol -1 (2)A B B B Δm M m K Kb p == 11A B B mol g 188kg 1000 0.891kPa 32.2g 0697.0mol kg kPa 578.5Δ--?=???=?=m p m K M 例2-2 一种体液的凝固点是℃,求其沸点及此溶液在0℃时的渗透压力(已知水的K f = K·kg·mol -1,K b =·kg·mol -1)。 解 稀溶液的四个依数性是通过溶液的质量摩尔浓度相互关连的,即 RT K T K T K p b ∏≈===f f b b B ΔΔΔ 因此,只要知道四个依数性中的任一个,即可通过b B 计算其他的三个依数性。 B f f b K T =?

11-f f B kg mol 269.0mol kg K 86.1K 500.0Δ-?=??==k T b K 138.0kg mol 269.0mol kg K 512.0Δ-1-1B b b =????==b k T 故其沸点为100+ = ℃ 0℃时的渗透压力 RT b cRT B ≈=∏ = ·L -1×·K -1·mol -1×273K = 0. 269mol·L -1×·L·K -1·mol -1×273K = 610 kPa 例2-3 按溶液的凝固点由高到低的顺序排列下列溶液: ① ·kg -1的葡萄糖溶液 ② ·kg -1的NaCl 溶液 ③ ·kg -1的尿素溶液 ④ ·kg -1的萘的苯溶液 解 这里要考虑多种因素:溶剂的凝固点、溶剂的摩尔凝固点降低常数、溶液的质量摩尔浓度、溶质是电解质还是非电解质。 ①②③的溶剂为水,T f 0 = 0 ℃,K f = K·kg·mol –1。 ΔT f (葡萄糖)= ΔT f (尿素)= mol·kg -1× K·kg·mol –1 = T f (葡萄糖)= T f (尿素)= - ℃ 。 ④的溶剂为苯,T f 0 = ℃,K f = K·kg·mol –1。 ΔT f (萘)= mol·kg -1× K·kg·mol –1 = K T f (萘)= – = ℃ 。 ②为强电解质溶液,其他为非电解质溶液。 ΔT f (NaCl )= 2× mol·kg -1× K·kg·mol –1 = K T f (NaCl )= - ℃ 。 综合以上因素,凝固点由高到低的顺序为 ④>① = ③>② 。 学生自测题 一、判断题(对的打√,错的打×,共10分) 1.由于乙醇比水易挥发,故在相同温度下乙醇的蒸气压大于水的蒸气压。 ( )

化学综述 -稀薄溶液的依数性在生活上的应用

稀薄溶液的依数性在生活上的应用 姓名:龙康班级:16级12班学号:201650589 摘要:以非挥发性溶质形成的稀溶液,其饱和蒸气压下降、沸点升高、凝固点下降、渗透压等性质只与溶质的分子数量有关而与其种类无关,这些性质称为稀溶液依数性。当溶质是电解质或非电解质溶液浓度大时,依数性性质将发生偏离。 关键词:稀溶液、依数性、蒸汽压力下降、凝固点降低、沸点升高、渗透压。 前言:稀薄溶液的依数性描述了稀溶液性质比起所对应纯溶剂性质的一类特殊变化,是多组分系统中化学势随组分数而表现出来的自身变化规律。在讨论稀溶液依数性时,要牢牢把握形成稀溶液的溶质和溶质本性是不能发生改变的,即溶质分子在形成溶液后不能形成聚合物或水解物。稀溶液依数性非常贴切人们的生产和生活实践,可以解释我们身边的很多自然现象和自然规律。 1.溶液的蒸汽压力下降 1.在密闭条件中,在一定温度下,与液体或固体处于相平衡的蒸气所具有的压力称为饱和蒸气压。 2.溶液中部分液面或多或少地被难挥发性的溶质分子占据,导致溶剂的表面积相对减少,所以单位时间内逸出液面的溶质分子数目相对比纯溶液要少,液相与气相间的平衡向左移动,H2O(g)<===>H2O(l),导致溶剂的蒸汽压力下降。 3.同一物质在不同温度下有不同的蒸气压,并随着温度的升高而增大。

不同液体饱和蒸汽压不同,溶剂的饱和蒸汽压大于溶液的饱和蒸汽压;对于同一物质,固态的饱和蒸汽压小于液态的饱和蒸汽压. 4.要想降低饱和蒸汽压,可以采用下面的方法:1)降低温度;2)改变液相组成,如加入高沸点、低挥发度物质、溶质等;3)改变气相组成,如通入惰性气体. 5.蒸汽压力与物质本性有关。不同的物质,蒸汽压力不同。 蒸汽压力与温度有关。同一种物质,温度愈高,蒸汽压力愈大。 例如:在液体沸点会随着外压降低而降低,如在高海拔地区,水烧开后达不到100℃,高海拔地区可以用水蒸饭但不能用水煮饭,除非用高压锅等等. 2.溶液的沸点升高 1.沸点是液体沸腾时候的温度,也就是液体的饱和蒸气压与外界压强相等时的温度。液体浓度越高,沸点越高。不同液体的沸点是不同的。沸点随外界压力变化而改变,压力低,沸点也低。 2.在相同的大气压下,液体不同沸点亦不相同。这是因为饱和汽压和液体种类有关。在一定的温度下,各种液体的饱和汽压亦一定。例如,乙醚在20℃时饱和气压为5865.2帕(44厘米汞柱)低于大气压,温度稍有升高,使乙醚的饱和汽压与大气压强相等,将乙醚加热到35℃即可沸腾。液体中若含有杂质,则对液体的沸点亦有影响。液体中含有溶质后它的沸点要比纯净的液体高,这是由于存在溶质后,液体分子之间的引力增加了,液体不易汽化,饱和汽压也较小。要使饱

稀溶液依数性在生活上的应用

稀溶液依数性在生活上的应用姓名:李国立班级:临床四班学号:201650196 摘要:本文从目前对稀溶液依数性规律的应用研究出发,稀溶液依数性是指稀溶液中依赖溶质数量的物理性质.以非挥发性溶质形成的稀溶液,其饱和蒸气压下降、沸点升高、凝固点降低、渗透压等性质只与溶质的分子数量有关而与其种类无关,这些性质称为稀溶液依数性.稀溶液依数性非常贴近人们的生产和生活实践,可以解释我们身边的很多自然现象和生活规律.本文分析了依数性在人们生活与生产实践中的应用实例。 关键词:依数性; 应用实例,蒸汽压下降,沸点升高,凝固点降低,渗透压力 前言 在现实生活中稀溶液依数性的应用十分广泛,其饱和蒸气压下降、沸点升高、凝固点降低、渗透压等性质不断的被人们应用在生活生产以及医学上,对人类产生很大影响,有着极大的意义,目前人类对这些性质的利用正在探索的路上。 1蒸汽压力下降 1.1原理 在一定温度条件下,稀溶液的蒸汽压比纯溶剂饱和蒸汽压低,这种现象叫蒸气压下降.蒸气压下降可由稀溶液的拉乌尔定律轻易证明,在一定温度条件下,依据拉乌尔定律: pA = p* A xA ,由于xA + xB = 1 ,则有:Δp = p* A -pA = p* A ·xB,( 1)式中,Δp 表示蒸气压下降,p* A 和pA 分别表示纯溶剂的饱和蒸汽压和相同温度条件下的稀溶液的蒸汽压,xA 和xB 分别为稀溶液中溶剂和溶质的摩尔分数.所以( 1) 式表明了稀溶液的蒸气压下降值只与溶液中溶质的数量有关而与溶质的种类无关的特性. 1.2应用 可以用蒸汽压下降性质来解释糖水比纯水蒸发要慢的原因。

2 沸点升高 2.1原理 沸点是液体的饱和蒸汽压等于外压时的平衡温度,当外压为101.325KPa 时的沸点称为正常沸点.在一定外压条件下,当溶液中含有不挥发性溶质时,溶液的沸点会比纯溶剂的沸点高,这种现象叫沸点升高.用ΔTb 表示沸点升高值,则有: ΔTb = Tb -T* b = kb·xB,( 2) 式中,T* b 和Tb 分别表示相同外压条件下的纯溶剂和稀溶液的沸点,kb 为沸点升高系数,由热力学推导可得kb = RMA ( T* b ) 2 ΔvapH* m,A ,它是仅与纯溶剂的沸点T* b 、溶剂的摩尔质量MA 以及溶剂的摩尔蒸发焓ΔvapH* m,A 有关的物理量.若水为溶剂,其值为0.52 K·kg·mol -1.因此,当外压为pex =101.325kPa 时,Tb >T* b 。 2.2应用 在钢铁冶炼工业中,通过观测钢水的沸点来确定其他组分的含量在钢铁工业生产中,技术员为了配比一定比率的固溶体需要不断的取样测定,不仅重复劳动、工作量大,而且高温作业采样会有很大的潜在危险,于是技术员通过观测安装在熔炉中温度测量仪测定每一个状态时的沸点,就可以确定即时合金中的其他金属的含量,对合金生产起到关键的调控作用.这就依据依数性的沸点上升原理,在纯铁水中加入另一种金属后沸点会升高,不同的组分含量就对应相应的沸点,通过沸点的变化值就可计算出在某一沸点时另一种金属的含量,对钢铁合金的调节既方便又简捷. 3 凝固点降低 3.1原理 在一定外压条件下,固体溶剂与稀溶液达成两相平衡时的温度称为稀溶液的凝固点.在稀溶液中与只析出固态纯溶剂成相平衡时,稀溶液的凝固点比相同压力下纯溶剂的凝固点要低,这种现象叫凝固点下降.用ΔTf 表示凝固点降低值,则有: ΔTf = T* f -Tf = kf·xB,( 3) 式中,T* f 和Tf 分别表示相同外压条件下的纯溶剂和稀溶液的凝固点,kf 为凝固点降低系数,同样可由热力学推导得出kf = RMA ( T* f ) 2 ΔfusH* m,A ,它亦是仅与纯溶剂的凝固点T* f 、溶剂的摩尔质量MA 以及溶剂的摩尔熔化焓ΔfusH* m,A 有关的物理量.若水为溶剂,其值为1.86 K·kg·mol -1.当外压为pex =101.325kPa 时,Tf <T* f . 3.2应用 3.2.1在冬春季节,冰雪天的道路上通过泼洒工业食盐可以加速除冰融雪 每逢冬春季节,道路被冰雪覆盖时,路政工作人员就在冰雪上泼洒工业食盐,来加速冰雪融化,从而使道路畅通.这就根据依数性的凝固点降低原理,冰雪可以认为是固态纯水,在冰雪中撒一些食盐,食盐溶解在水中后形成稀溶液,由于稀溶液的凝固点要低一些,依据相平衡条件,随着白天温度稍稍回升,就可以使平衡向稀溶液方向移动,冰雪就会加速溶解变成液体,从而达到除冰融雪的目的.同样基于凝固点降低的原理,在冬季,汽车的散热器里通常加入丙三醇( 俗称甘油) 、建筑工地上经常给水泥浆料中添加工业盐等,都是通过降低凝固点来预防冻伤。

第二章 稀薄溶液的依数性(大纲)

第二章
1 基本要求 [TOP]
稀薄溶液的依数性
1.1 掌握稀溶液的蒸气压下降、沸点升高、凝固点降低概念及计算;渗透压力的概念及渗透浓度的计算。 1.2 熟悉稀溶液依数性之间的换算,利用依数性计算溶质的相对分子质量;电解质溶液的依数性。 1.3 了解稀溶液的蒸气压下降、沸点升高、凝固点降低的原因;渗透压力在医学上的意义。 2 重点难点 [TOP]
2.1 重点 渗透压及其在医学中的应用。 2.2 难点 拉乌尔定律;凝固点下降. 3 讲授学时 建议 4 学时 [TOP]
4
内容提要
[TOP]
第一节
第二节
第三节
4.1 第一节 溶液的蒸气压下降 4.1.1 溶液的蒸气压 物理化学将系统中物理性质和化学性质相同的均匀部分称为“相”,相与相之间有界面,同一物质不 同相之间可相互转化,即相变。水分子逸出水表面成为水蒸气分子,称为蒸发;水蒸气分子撞击水面而 成为液态水分子,称为凝结。密闭容器中,当水的蒸发速度与凝结速度相等时,气相和液相处于平衡状 态: H2O (l) H2O (g)
式中 l 代表液相,g 代表气相。与液相处于平衡的蒸气所具有的压力称为水的饱和蒸气压,简称蒸气压, 单位为 kPa。 蒸气压与物质本性有关:不同的物质,蒸汽压不同。 蒸气压与温度有关:温度不同,同一液体的蒸汽压亦不相同。温度愈高,蒸气压也就愈大。 相变方向是蒸气压由大向小转变。0℃时水与冰的蒸气压均为 0.610 6kPa,两相共存。若为-5℃,冰
1

的蒸气压为 0.401 3kPa,小于水的蒸气压(0.421 3 kPa) ,水就自发转变为冰。 4.1.2 溶液的蒸气压下降—Raoult 定律 水中加入难挥发的非电解质,使成稀薄溶液(≤0.2mol·Kg-1) ,原为水分子占据的部分液面被溶质分 子占据,而溶质分子几乎不会挥发,故单位时间内表面逸出的水分子数减少。当蒸发与凝结重新达平衡 时,溶液的蒸气压低于同温度下纯水的蒸气压,即溶液的蒸气压下降。 著名的 Raoult 定律得出难挥发 性非电解质稀薄溶液的蒸气压下降与溶液质量摩尔浓度关系:
? p = K ? bB
(2.1) 式中,Δp 为难挥发性非电解稀薄溶液的蒸气压下降值; bB 为溶液的质量摩尔浓度;K 为比例常数。 上式表明: 在一定温度下, 难挥发性非电解质稀薄溶液的蒸气压下降(?p)与溶液的质量摩尔浓度成 正比,而与溶质的种类和本性无关。如相同质量摩尔浓度的尿素溶液、葡萄糖溶液、蔗糖溶液,这三者 的蒸气压降低值应该是相等的。 4.2 第二节 溶液的沸点升高和凝固点降低 4.2.1 溶液的沸点升高 溶液的蒸气压与外界压力相等时的温度称为溶液的沸点。 正常沸点 Tb0 指外压为 101.3kPa 时的沸点。 如水的正常沸点为 100℃ 。 在稀薄溶液中,由于难挥发性溶质的加入,使溶液蒸气压下降,或者说在 Tb0 时溶液的蒸气压小于 外压(101.3kPa) ,只有在大于 Tb0 的某一温度 Tb 时二者才能相等。换言之,溶液的沸点要比纯溶剂的沸 点高。很明显,沸点升高值与溶液的蒸气压下降有关,而蒸气压降低又与溶液的质量摩尔浓度成正比, 因此沸点升高也应与溶液的质量摩尔浓度成正比。即 [TOP]
?Tb = Tb ? Tb0 = K b ? bB
(2.2) 式中,ΔTb 为沸点升高值;Tb 为溶液的沸点,Tb 为纯溶剂的沸点,bB 为溶液的质量摩尔浓度;Kb 为溶剂 的质量摩尔沸点升高常数,它随溶剂的不同而不同。 4.2.2 溶液的凝固点降低 物质的凝固点是指在某外压时,其液相和固相的蒸气压相等并共存的温度。如在 101.3kPa 外压时, 纯水和冰在 0℃时的蒸气压均为 0.611 kPa, 0℃为水的凝固点。 而溶液的凝固点通常指溶液中纯固态溶剂 开始析出时的温度,对于水溶液而言,是指水开始变成冰析出时的温度。与沸点升高原因相似,稀薄溶
2
0

依数性习题及解析

《稀溶液依数性》作业解析参考 1. 血红蛋白是存在于红细胞中的一种蛋白,它将氧气从肺运输到人体细胞。其中亚铁占血红蛋白的 0.33% (质量分数),若取1.0 g 血红蛋白溶于水中配制成100 mL 溶液,20oC 时测得其渗透压力为367 Pa ,则 1个血红蛋白分子中含有几个Fe 2+? A. 1 B. 2 C. 3 D. 4 【D 】根据范特霍夫公式:cRT Π=,可以逐级推导出求算溶质摩尔质量的公式 RT V M m RT V n RT c ΠB B B B === )mol g (1064.6100.010367)20273(314.80.1143B B --??=??+??== ∴V ΠRT m M 即血红蛋白的相对分子质量为6.64×104。 由于Fe 2+在其中的质量分数为0.33%,所以Fe 2+在其中的质量约为 m (Fe 2+) = 6.64×104×0.33% = 219.12 所以每个血红蛋白分子中Fe 2+离子的个数为: )(491.356 12.219个≈= 2. 现欲较准确地测定尿素的相对分子质量,下列方法中常常采用 A. 蒸气压下降法 B. 沸点升高法 C. 凝固点下降法 D. 渗透压力法 【C 】一般而言,高分子化合物常用渗透压法测其相对分子质量,而小分子化合物常用凝固点降低法测其相对分子质量,尿素的相对分子质量为60,所以最好用凝固点降低法。 3. 新分离的人体红细胞放入渗透浓度为300mmol ·L -1的Na 2SO 4溶液中,其形态维持正常状态。 A. 正确 B. 错误 【A 】题中所给出的浓度就是Na 2SO 4溶液的渗透浓度,因此无需再乘以校正因子了,所以这是一个等渗溶液。 4. 将临床上的两种等渗溶液以任意体积比混合(不发生化学反应),所得溶液仍然是等渗溶液。 A. 正确 B. 错误 【A 】将两个溶液混合,混合溶液的渗透浓度应为

稀溶液的依数性练习题

稀溶液依数性 一、判断题 1、水的液-汽两相平衡线,是水的蒸气压曲线。() 2、在t℃时,液体A较液体B有较高的蒸气压,由此可以合理推断A比B有较低的正常沸点。() 3、一个溶液所有组分的摩尔分数总和为1。() 4、0.1 mol·kg-1甘油的水溶液和0.1 mol·kg-1甘油的乙醇溶液,应有相同的沸点升高。() 5、质量分数0.01的蔗糖水溶液和质量分数0.01的果糖水溶液有相同的渗透压。() 6、K b的物理意义可以认为就是1 mol·kg-1溶液的沸点升高值。() 7、纯溶剂通过半透膜向溶液渗透的压力叫作渗透压。() 8、溶液的蒸汽压与溶液的体积有关,体积愈多,蒸汽压愈大。() 9、通常指的沸点是蒸汽压等于外界压力时液体的温度。() 10、0.1 mol·kg-1甘油的水溶液和0.1 mol·kg-1蔗糖水溶液,有相同的渗透压。() 二、选择题 1、处于恒温条件下的一封闭容器中有两个杯子,A杯为纯水,B杯为蔗糖溶液。防止总够长时间后则发现()。A.A杯水减少,B杯水满后不再变化B.B杯水减少,A杯水满后不再变化 C.A杯变成空杯,B杯水满后溢出D.B杯水干并有蔗糖晶体,A杯水满后溢出 2、不挥发的溶质溶于水形成溶液之后,将使其()。 A.熔点高于0℃B.熔点低于0℃C.熔点仍为0℃D.熔点升降与加入物质分子量有关 3、不挥发的溶质溶于水后会引起()。 A.沸点升降B.熔点升降C.蒸气压升高D.蒸气压下降 4、16克I2溶于100克乙醇(C2H5OH)所配成的溶液,其密度为0.899 g·mL-1,碘溶液的b值和c值那个大()。 A.b>c B.b<c C.b=c D.不能确定 5、在稀溶液的凝固点降低公式中的b所代表的是溶液的()。 A.溶质的质量摩尔浓度B.溶质的摩尔分数C.溶剂的摩尔分数D.溶液的(物质的量)浓度6、质量摩尔浓度的定义是在何物质中所含溶质的量(mol)()。 A.1L溶液中B.1000g溶液中C.1000g溶剂中D.1L溶剂中所含溶质的量(mol) 7、在质量分数为0.80的甲醇水溶液中,甲醇的摩尔分数接近于() A.0.3 B.0.5 C.0.9 D.0.7 8、质量分数为5.8×10-3的NaCl溶液产生的渗透压接近于()。 A.质量分数为5.8×10-3蔗糖(C12H22O11)溶液B.质量分数为5.8×10-3葡萄糖(C6H12O6)溶液C.0.2 mol·L-1蔗糖溶液D.0.1 mol·L-1葡萄糖溶液 9、下列水溶液渗透压最大的是()。 A.0.1 mol·L-1 C12H22O11B.0.1 mol·L-1 C2H5OH C.0.1 mol·L-1 KCl D.0.1 mol·L-1 K2SO4 10、今有果糖(C6H12O6)(Ⅰ)葡萄糖(C6H12O6)(Ⅱ)蔗糖(C12H22O11)(Ⅲ)三溶液,质量分数为0.01,则三者渗透压(π)大小的关系是()。 A.πⅠ=πⅡ=πⅢB.πⅠ=πⅡ>πⅢC.πⅠ>πⅡ>πⅢD.πⅠ=πⅡ<πⅢ 11、将A(蔗糖C12H22O11)及B(葡萄糖C6H12O6)各称出10克,分别溶入100克水中,成为A、B两溶液,用半透膜将两溶液分开后,发现()。 A.A中水渗入B B.B中水渗入A C.没有渗透现象D.无法判断 12、在体积相等的三个箱子中,分别放有不等量乙醚的烧杯:A箱杯中乙醚最少,过一段时间乙醚完全挥发了;B箱杯中乙醚中量,蒸发后剩下少量;C箱杯中乙醚最多,蒸发后剩余一半。三个箱子中乙醚蒸气压的关系是()。 A.p A=p B=p C B.p A<p B<p C C.p A<p B,p B=p C D.p A=p B,p B<p C

第二章 稀液的依数性

首页
第二章
基本要求
稀溶液的依数性
重点难点
讲授学时
内容提要
1 基本要求 [TOP]
1.1 掌握稀溶液渗透压力的概念、渗透现象发生的条件和方向、van’t Hoff 方程式。 1.2 熟悉稀溶液下列依数性 溶液的蒸气压下降、溶液的沸点升高、溶液的凝固点下降,熟悉稀溶液几 种依数性之间的换算,会利用稀溶液依数性计算溶质的相对分子质量。 1.3 了解渗透压力在医学上的意义,明确电解质溶液的依数性、渗透浓度、等渗、高渗和低渗等概念。
2 重点难点 2.1 重点
[TOP]
渗透压及其在医学中的应用。
2.2 难点 拉乌尔定律;凝固点下降.
3 讲授学时 [TOP] 建议 4 学时
4 内容提要 [TOP] 第一节 第二节 第三节
4.1 第一节 溶液的蒸气压下降
4.1.1 蒸气压 在物理化学中将研究系统中物理性质和化学性质相同的均匀部分称为“相”, 相与相之间有界面,
同一物质不同相之间可以互相转化,即发生相变。在一定温度下,将水放进密闭容器,一部分水分子将 逸出表面成为水蒸气分子,称为蒸发;同时,也有一部分水蒸气分子撞击水面而成为液态的水分子,称 为凝结。当蒸发速度与凝结速度相等时,气相和液相处于平衡状态:
H2O (l)
H2O (g)
式中 l 代表液相,g 代表气相。与液相处于平衡的蒸气所具有的压力称为水的饱和蒸气压,简称蒸
气压,单位为 kPa。

蒸气压与物质本性有关。在同一温度下,蒸气压大的物质称为易挥发物质。本章述及的溶质都视为 难挥发性物质,即忽略其蒸气压。
蒸气压与温度有关,同一种物质,温度愈高,蒸气压也就愈大。 相变的方向是由蒸气压大的向小的转变。0℃时液相水与固相水(冰)的蒸气压均为 0.610 6kPa,所 以两相共存。若为-5℃,冰的蒸气压为 0.401 3kPa,小于液相水的蒸气压(0.421 3 kPa),水就自发转变 为冰。 4.1.2 溶液的蒸气压下降 若在水中加入一种难挥发的非电解质溶质,使成稀溶液(≤0.2mol·Kg-1),此时,原来表面为纯水分 子所占据的部分液面被溶质分子所占据,而溶质分子几乎不会挥发,故单位时间内从表面逸出的水分子 数减少。当蒸发与凝结重新达平衡时,溶液的蒸气压低于同温度下纯水的蒸气压,亦即溶液的蒸气压下 降。 拉乌尔(Raoult FM)研究得出了一定温度下难挥发性非电解质稀溶液的蒸气压下降值(Δp)与溶液质量 摩尔浓度关系的著名的拉乌尔定律:
p K bB
(2.1)
式中,Δp 为难挥发性非电解稀溶液的蒸气压下降值; bB 为溶液的质量摩尔浓度;K 为比例常数。 上式表明:在一定温度下,难挥发性非电解质稀溶液的蒸气压下降(Δp)与溶液的质量摩尔浓度成
正比,而与溶质的种类和本性无关。如相同质量摩尔浓度的尿素溶液、葡萄糖溶液、蔗糖溶液,这三者 的蒸气压降低值应该是相等的。
4.2 第二节 溶液的沸点升高和凝固点降低 [TOP]
4.2.1 溶液的沸点升高 溶液的蒸气压与外界压力相等时的温度称为溶液的沸点。正常沸点指外压为 101.3kPa 时的沸点。
如在 101.3 kPa 下水的沸点为 100℃。而在稀溶液中,由于加入难挥发性溶质,致使溶液的蒸气压下降。
从图 2-1 中可见,在 Tb0 时溶液的蒸气压和外界的大气压(101.3kPa)并不相等,只有在大于 Tb0 的某一 温度 Tb 时才能相等。换言之,溶液的沸点要比纯溶剂的沸点高。很明显,其升高的数值与溶液的蒸气压 下降多少有关,而蒸气压降低又与溶液的质量摩尔浓度成正比,可见沸点升高也应和溶液的质量摩尔浓 度成正比。即
ΔTb Tb Tb0 K b bB
(2.2)
式中,ΔTb 为沸点升高数值;bB 为溶液的质量摩尔浓度;Kb 为溶剂的质量摩尔沸点升高常数,它是
溶剂的特征常数,随溶剂的不同而不同。

相关文档
相关文档 最新文档