文档库 最新最全的文档下载
当前位置:文档库 › 生态学笔记

生态学笔记

生态学笔记
生态学笔记

生态学的定义

生态学的形成与发展

生态学与其他学科的关系

一.生态学的定义

1.生态学(ecology)是研究生物与周围环境和无机环境相互关系及机理的科学。(E.Haeckel,1866)

它包括4个层次的内容:

生态学的定义还有很多:

生态学是研究生物(包括动物和植物)怎样生活和它们为什么按照自己的生活方式生活的科学。(埃尔顿,1927)

生态学是研究有机体的分布和多度的科学。(Andrenathes,1954)

生态学是研究生态系统的结构与功能的科学。(E.P.Odum,1956)

生态学是研究生命系统之间相互作用及其机理的科学。(马世骏,1980)

生态学是综合研究有机体、物理环境与人类社会的科学。(E.P.Odum,1997)

二.生态学的形成与发展

理论上:概念上的提出—→论著的出版—→学科的形成。

时间上:萌芽时期—→近代发展:4大学派的形成—→现代发展:生态系统、人类生存环境的研究。

实验技术上:描述—→定性—→定量—→模拟。

(1)生态学萌发阶段(时期)

公元16世纪以前:

在我国:公元前1200年《尔雅》一书;

公元前200年《管子》“地员篇”;

公元前100年前后,农历确立了24节气,同时《禽经》一书(鸟类生态)问世;

《本草纲目》。

在欧洲:公元前285年也有类似著作问世。

(2)近代生态学阶段(公元17世纪—19世纪末)

建立时期:

17世纪后生态学作为一门科学开始成长。

1792年德国植物学家C.L.Willdenow出版了《草学基础》;

1807年德国A.Humbodt出版《植物地理学知识》提出“植物群落”“外貌”等概念;

1798年T.Malthus《人口论》的发表;

1859年达尔文的《物种起源》;

1866年Haeckel在他的著作《普通生物形态学》中首先提出ecology一词,并首次提出了生态学定义。

1895年E.Warming发表了他的划时代著作《以植物生态地理为基础的植物分布学》(1909年经改写成《植物生态学》)。

(2)近代生态学阶段(公元17世纪—19世纪末)

巩固时期(20世纪初至20世纪50年代):

(1)动植物生态学并行发展,著作与教科书出版。

代表作:C.Cowels(1910)发表的《生态学》;

F.E.Chements(1907)发表的《生态学及生理学》;

前苏联苏卡切夫的《植物群落学》(1908)、《生物地理群落学与植物群落学》(1945);

A.G.Tamsley(1911)发表的《英国的植被类型》等;

R.N.Chapman(1931)的《动物生态学》;

中国费鸿年(1937)的《动物生态学》;

特别是W.C.Alle(1949)等的《动物生态学原理》出版,被认为是动物生态进入成熟期的重要标志。

(2)近代生态学阶段(公元17世纪—19世纪末)

巩固时期(20世纪初至20世纪50年代):

(2)学派的形成:主要有

①北欧学派:以注重群落结构分析为特点。代表人物:G.E.Du Rietz

②法瑞学派:注重群落生态外貌,强调特征种的作用。代表人物是J.Braum-Blanquet

③英美学派:以动态和数量生态为特点。代表人物是Clements和Tansley

④俄国学派(前苏联学派):植物(群落)与地学结合。代表人物:B.H.Cykayeb (三)现代生态学阶段(20世纪60年代至现在)

以人类生存环境为中心。

三.生态学与其他学科的关系

深入到自然科学和社会(人文)科学中,形成各自的分支学科。

渗入到人类社会各种活动甚至思维和意识中。

参考书目、杂志:

李博主编.生态学,北京:高等教育出版社,2000.

孙儒泳.动物生态学原理,北京师范大学出版社,1992.

Richard.B等(中译本),保护生物学概论,湖南科技出版社,1996。

R.E.Richlefs等,Ecology, NewYork,1990.

Manuel.c.Molle,Ecology:concepts and applications, Mcgraw-Hill Companies. Inc, (生态学:概念与应用,科学出版社,影印版,2001)

《生态学报》,《植物生态学报》,《Ecology》,《Journal of Ecology》。

第二章生物与环境

环境概述生态因子

生态因子对生物的生态作用

一.环境概述

二.生态因子

1、定义:生态因子(ecological factors)是指环境中对生物生长、发育、生殖、行为和分布有直接或间接作用的环境要素。

2. 生态因子作用的一般特征(一般规律)

(1)综合作用;

(2)主导因子作用;

(3)直接作用和间接作用;

(4)阶段性作用;

(5)可调节(补偿)作用但不可代替性;

(6)限制性作用—耐度限制及耐度限制的调节。

限制因子(limiting factor):

①限制生物生存和繁殖的关键性因子。

②在众多生态因子中,任何接近或超过某种生物的耐受性极限,而且阻止其生长、繁殖或扩散甚至生存的因素。最小因素定律(law of minimum):

能够影响生物的无数因子中,总有一个因素限制生物的生长、生存或繁殖。

耐性定律(law of tolerance):

耐性(tolerance):①指生物能够忍受外界极端条件的能力;②指单个有机体或种群能够生存的某一生态因子的范围。

又称shelford 耐性定律。任何一个生态因子在数量或质量上的不足或过多,即当其接近或达到某种生物的耐受性限制时,而使该种生物衰退或不能生存。

2. 生态因子作用的一般特征(一般规律)

耐性限度(the limits of tolerance):

每个种只能在环境条件一定范围内生存和繁殖。也即生物种在其生存范围内,对任一生态因子的需求总有其上限与下限,两者之间的距离就是该种对该因子的耐性限度。

生物种的耐性曲线(见图例):

耐性限制用曲线表示,称为耐性曲线(tolerance curve)。广幅分布生物与狭幅分布生物分布耐性曲线。

耐度限制的调节通过下列主要方式:

新环境适应:驯化培育

休眠——“逃避”限制

生理节律变化和其他周期性补偿变化

调节的目的是对恶劣环境的克服,通过这些方式,使体内生理、行为达到平衡,而抵抗恶劣环境。

三.生态因子对生物的生态作用

三.生态因子对生物的生态作用

(1)光强的作用:生长发育、形态建构作用。典型例子—植物黄化现象(eitiolation phenomenon)。

(2)光质的作用:光合作用影响

红、橙光能对叶绿素有促进,绿光不被植物吸收称“生理无效辐射”。红光有利于糖的合成,蓝光有利于蛋白质的合成。

光对动物生殖、体色变化、迁徙、毛羽更换、生长发育有影响。

紫外光与动物维生素D产生关系密切,过强有致死作用,波长360nm即开始有杀菌作用,在340nm~240nm的辐射条件下,可使细菌、真菌、线虫的卵和病毒等停止活动。200~300nm 的辐射下,杀菌力强,能杀灭空气中、水面和各种物体边面的微生物,这对于抑制自然界的传染病病原体是极为重要的。

三.生态因子对生物的生态作用

(3)光周期现象—生物对光的生态反应与适应

定义:生物对昼夜光暗循环格局的反应所表现出的现象称之为光周期现象。

生物和许多周期现象是受日照长短控制的,光周期是生命活动的定时器和启动器。

表1 不同纬度地区的日照时间单位:h

三.生态因子对生物的生态作用

(3)光周期现象—生物对光的生态反应与适应

植物的光周期现象:

长日照植物、短日照植物、中日照植物、日照中植物。(不同光照时间对开花的作用而定)动物的光周期现象:

鸟类的光周期现象最为明显,它的迁徙是由日照长短变化所引起的;鸟类及某些兽类的生殖也与日照长短有关,如雪貂、野兔和刺猬等都是随着春天日照长度增加而开始生殖(称为长日照兽类);绵羊、山羊和鹿等总随着秋天短日照的到来而进入生殖期(称短日照兽类)。三.生态因子对生物的生态作用

(1)温度与生物生长发育

生长:“三基点”——最低、最适、最高温度。

发育:植物的春化作用(某些植物要经过一个“低温“阶段才能开花结果)。

(2)生物对极端温度的适应

对低温适应——在形态、生理和行为方面的表现

中国南北方几种兽类颅骨长度的比较:

三.生态因子对生物的生态作用

说明了生活在高纬度地区的恒温动物其身体往往比生活在低纬度地区的同类个体大。个体大的动物,其单位体重散热量相对减少(贝格曼Begman定律)(表)。

阿伦(Allen)规律:恒温动物身体的突出部分为四肢、尾巴、外身等在低温环境中有变小的趋势。

在生理方面,生活在低温环境中的植物通过减少细胞中的水分和增加细胞中的糖类、脂肪等物质来降低植物的冰点,增加抗寒能力。动物对低温的适应主要表现在代谢率与温度关系中的热中性区宽,下临界点温度以下的曲线率小等几个方面(图)。

(3)物候节律:

物候又称物候现象(phenological phenomenon),是指生物的生命活动对季节变化的反应现象。物候学(pheology)则是指研究生物与气候周期变化相互关系的科学。

三.生态因子对生物的生态作用

(1)水因子对生物生长发育的作用:

水分不足,使植物萎蔫;使动物滞育或休眠。某些动物的周期性繁殖与降水季节密切相关,如澳洲鹦鹉遇到干旱年份,就停止繁殖;而某些龙脑香科植物遇到干旱年份却产生“爆发性开花结果”。

(2)生物对水因子的适应

三.生态因子对生物的生态作用

(2)生物对水因子的适应

植物依其对水分需求划分为水生植物、陆生植物两大类型。各类型下又分别划分为沉水植物、浮水植物、挺水植物、湿生植物、旱生植物和中生植物等。(图解)

陆生动物对水因子的适应

形态结构上的适应:以各种不同形态结构,使体内水分平衡。

行为上的适应:沙漠动物昼伏夜出;迁徙等。

生理上的适应:“沙漠之舟”骆驼可以17天喝水,身体脱水达体重的27%,仍然照常行走。它不仅具有贮水的胃,驼峰中还储藏丰富的脂肪,有消耗过程中产生大量水分;其血液中具有特殊的脂肪和蛋白质,不易脱水。

三.生态因子对生物的生态作用

(1)氧的生态作用;

(2)氮的生态作用;

(3)CO2的生态作用(对动植物个体潜在的影响);

①使植物气孔开度减少,减少蒸腾,提高水分利用。

②CO2 浓度相对提高,使C3植物光合作用不断增加(C4植物达到饱和点后则不随CO2 浓度提高,光合作用增加)。

③CO2 能促进植物的生长——植物生长速率随全球CO2 浓度的提高而增加。

④高浓度的CO2 能改变植物形态结构——幼苗分枝增多,叶面积指数加大等。

三.生态因子对生物的生态作用

(4)大气污染与植物;

①大气主要污染物对植物的危害(影响)

二氧化硫(SO2 )对植物的影响:伤害阈值为0.25~0.55ppm,2~8小时;典型症状——叶片脉间呈不规则的点状、条状或块状坏死区。

氟化氢(HF)对植物的影响:伤害阈值>40ppm;典型症状——叶尖和叶缘坏死。

臭氧(O3)对植物的影响:伤害阈值0.05~0.15ppm 0.5~8小时;典型症状——叶面上出现密集的细小斑点。

乙烯对植物的影响:伤害阈值10~100ppb;典型症状——“偏上生长”致使叶片、花、果脱落。

②植物对大气的净化作用

吸收CO2,放出O2 :造林绿化与人类维系呼吸;

吸收有毒气体:吸收二氧化硫(SO2 )及氟化氢(HF)最优;

驱菌杀菌作用:有些植物分泌杀菌素,如1ha松柏林24小时分泌34kg杀菌素;

阻滞粉尘:针叶林阻粉尘量32~34吨/年,阔叶林68吨/年;

吸收放射性物质:吸收中子γ-射线。

三.生态因子对生物的生态作用

(4)大气污染与植物;

③大气污染监测——指示植物

a.作为指示植物的基本条件:

能够综合反映大气污染对生态系统影响的强度;

能够较早地发现污染(对大气污染敏感);

能够同时检测多种大气污染物;

能够反映出一个地区的污染历史(基本年轮的化学分析)。

b.常见(用)的指示植物:地衣最敏感,0.015~0.105ppm二氧化硫下无法生存(但反应慢)。

④大气污染的植物监测

形态及生长量观测:IA=Wo/Wm;

群落生活力调查(见《城市生态学》——孟德政等译,1986);

现场盆栽定点监测;

生理生化指标测定——光合作用,呼吸作用,气孔开放度,细胞膜透性,叶液PH值变化,植物体内酶体变化等。

三.生态因子对生物的生态作用

(1)土壤化学性质与植物的关系

①PH值 <3 或 >9对根系严重伤害②矿质营养元素与植物

(2)植物的盐害和抗盐性

植物的抗盐方式:

排除盐分——泌盐植物;稀盐植物(稀释盐分);

富集盐分;拒绝吸收

(3)植物对土壤适应的生态类型

对PH值的适应——嗜酸性植物、嗜酸—耐碱植物、嗜碱—耐酸植物、嗜碱植物。

钙土植物、盐生植物、抗盐植物

(4)土壤污染的植物监测

土壤污染——重金属污染、如汞、镉、砷、化学农药污染等。

监测:植物群落调查,蔬菜及作物调查,实验分析

第三章种群

种群的基本特征种群的增长与调节种群生活史

一、种群的基本特征

1、种群的定义(population)

种群是占据特定空间(地理位置)的同种有机体的集合群。

种群是占据某一地区的某个种的个体总和(Friederich,1930)

某一特定时间占据某一特定空间的一群同种有机体(Merrile,1981)

种群是物种在自然界中存在的基本单位,又是生物群落的基本组成单位。种群是一种特殊组合,具有独特性质、结构、机能,有自动调节大小的能力。

种群生态学(population ecology)——研究同种生物个体群数量动态、特性分化及其发生发展的科学。(种群生物学population biology)

一、种群的基本特征

1、种群的定义(population)

种群生态学历史发展概况及主要代表作:

J.L.Harper, 1977,Population Biology of Plant.Academic press,London and New York.J.W.Silvertown,1982.Introduction to plant population ecology.Longman London and New York.

③王伯荪等,1995,植物种群学.广州:广东高等教育出版社.

2.种群的基本特征

(1)分布格局(distribution pattern)——种群内个体空间分布方式或配置特点。(图) 均匀分布(uniform distribution)

随机分布 (random distribution)

集群分布 (contagious distribution)

种群分布格局最简易的判断方法,通过公式

S2=Σ(x-m)2/n-1计算

其中:n—调查时样方数 m—每个样方中个体平均数

x—样方中的个体总数 S2 —方差(分散度)

根据S2 的值可判断:

当S2=0即S2 当S2= m时为随机分布

当S2>m 时为集群分布

2.种群的基本特征

(2)年龄结构(age structure)——种群内不同年龄的个体数量分布情况。根据年龄结构划分三种种群类型:增长型、稳定型、衰退型。(见图)

增长型种群(increasing population)——年龄结构成典型金字塔型,表示种群有大量幼体,老龄个体小,出生率大于死亡率。

稳定型种群(stable population)——出生率与死亡率大致平衡,种群稳定。

下降(衰退)种群(declining population)——倒金字塔型。种群中幼体减少,老体比例增大,死亡率大于出生率。

种群(特别是优势种)年龄结构,直接关系着其本身及其所在群落的发展趋势,是种群及其所在群落的动态趋势的主要指标。测定种群的年龄结构,便可分析它的自然动态,推知它及其所在群落的历史,预测它们的未来。

2.种群的基本特征

(3)性比(sex ration)——性比是种群中雄性个体和雌性个体数目的比例。

受精卵的♂/♀大致是50:50,这叫第一性比。

由于种种原因,♂/♀比继续变化,到个体成熟时为正的♂/♀比例叫第二性比。

最后还有充分成熟的个体性比,叫第三性比。

性比对种群配偶关系及繁殖潜力有很大的影响。

2.种群的基本特征

(4)生命表(life table)——是指列举同生群在特定年龄中个体的死亡和存活比率的一张清单。

同生群(cohort)——同时出生的个体种群。

类型:图解生命表(diagrammatic life table)——以图解来表示生物一个世代的历程。常规生命表(conventional life table)

动态生命表(dynamic life table)——真实记录生物个体存活情况。

静态生命表(static life table) —记录某一特定时间获得的各龄级个体数情况而编制成的。

作用(意义):

综合记录了生物体生命过程的重要数据;

系统表示出种群完整生命过程;

研究种群数量动态必不可少的方法。

二.种群的增长与调节

1.种群增长的模型

(1)马尔萨斯(Malthus)方程:又称指数增长模型。

Nt=N0ert 指数增长;ln Nt =ln N0trt 对数增长

(2)逻辑斯蒂增长(Logistic growth)模型:是比利时学者Verhulst 1838年创立的。逻辑斯蒂增长模型是指种群在有限环境下,受环境制约且与密度相关的增长方式。

Nt=k/1+(1- Nt/k)e-rt

(3)Leslie—Lefkorich矩阵模型:

nt+1=Mtnt

Mt是m、p、i的距阵,nt 和nt+1 分别是在t和t+1时种群各阶段个体数的列向量,从中计算λ值。当λ=1,表示种群稳定;当λ>1,表示种群正在增长;λ<1,种群趋向衰退。2.种群大小的调节(population regulation)

种群大小的调节是指种群大小的控制或者是指种群大小所表现的作用限度。

调节种群大小的因素

非密度相关——外界(物理)因素,如降水、温度、土壤状况等。

密度相关(密度依赖)——内部的生物因素。

自疏(self thinning)与-3/2定律:

自疏——指同种植物因种群密度而引起种群个体死亡而密度减少的过程。

–3/2定律——植物种群自疏过程中,其个体平均重量与种群密度成-3/2直线斜率的变化。 W=Cd-3/2 logw=logc-3/2logd

W~平均单株重量 C~为常数 d~种群密度

(植物个体重量与密度说:密度降低,重量增大)

3. 人类种群的增长与调节

(1)世界及我国人口的增长趋势(见图)

(2)我国人口的调节

我国目前人口增长的特点:

面临建国以来的第三次出生高峰;

人口老化趋势出现;

人口的科学文化素质较低。

我国人口的调节:

总方针——控制人口的增长,提高人口的素质;

目标——2000前力争把中国平均人口自然增长率控制在12.5‰内,期望下世纪中叶稳定在15~16亿;

措施——坚持优生优育,计划生育;扫除青壮年文盲,实行九年制义务教育。

三、种群生活史

(一)种群在其生活史中表现的特征

(二)繁殖格局(reproduction patterns)

(三)繁殖策略(reproduction stratagem)

(四)性选择(sexual selection)

三、种群生活史

(一)种群在其生活史中表现的特征

1.生活史的定义—个生物从出生到生物所经历的全部过程称为生活史(life history)或生活周期(life cycle)。

2.表现的主要特征

个体大小:是生物的遗传特征,与生活周期长短有很好相关性。

生长与发育速度:呈“S”形生长曲线,包括停滞期、指数期、静止期。

2.表现的主要特征

繁殖:指有机体生产出与自己相似后代的现象,是生物形成新个体的所有方式的总称。包括:有性生殖(sexual reproduction):是指通过两性细胞核的结合形成新个体的繁殖方式。

无性生殖(asexual reproduction):

孢子生殖(spore reproduction)是指生殖细胞即孢子不经过有性过程而直接发育成新个体的繁殖方式。

营养繁殖(vegetative reproduction)

繁殖与物种的生存和发展关系极密切,它是生活史中的核心问题。

2.表现的主要特征

扩散:指生物个体或繁殖体从一个生境转移到另一个生境中。

①植物的扩散(繁殖体的传播):

扩散形式——水力、动物(包括人)、风力。各自有特殊的适应性。

②动物扩散(主动扩散)扩散形式——迁出、迁入、迁移

迁出(emigration)——分离出去而不再归来的单方向移动。

迁入(immigration)——进入的单方向移动。

迁移(migration)——周期性的离开和返回。(回游、迁徙)

③动植物扩散的生物学与生态学意义

可以使种群内和种群间的个体得以交换,防止长期近亲繁殖而产生不良的后果;

可以补充或维持在正常分布区以外的暂时性分布区域的种群数量;

扩大种群分布区。

(二)繁殖格局(reproduction patterns)

1、一次繁殖和多次繁殖

在生活史中,只繁殖一次即死亡的生物称为一次繁殖生物(semelparity)。一生中能够繁殖多次的生物称为多次繁殖生物(iteroparity)。

2、生活年限与繁殖

植物可划分为一年生、二年生和多年生三种类型的生活年限;动物也分别划分为短命型、中等寿命型和长寿型三种类型的生活年限。

有机体的生活年限(life-span)或寿命(lifetime)既具遗传性,也具有较大的生态可塑性,通常前者为生理寿命,后者为实际寿命或生态寿命。

短命型可视为提前繁殖,长寿型视为延迟繁殖。

繁殖格局是自然选择的结果,。它主要视生境条件决定的。

(三)繁殖策略(reproduction seratagem)

繁殖策略是表示生物对它所处生存条件的不同适应方式。

MacArthur(1962)提出的r-K选择的生活史策略。

1.r-选择——有利于增大内禀增长率的选择称为r-选择。r-选择的物种称为r-策略者(r-strategistis)。

r-策略者是新生境的开拓者,但存活要靠机会,所以在一定意义上它们是“机会主义者”,很容易出现“突然的爆发和猛烈的破产”

2.k-选择——有利于竞争能力增加的选择称为k-选择。k-选择的物种称为k-策略者(K-strategistis)。

k-策略者是稳定环境的维护者,在一定意义上,它们是保守主义者,当生存环境发生灾变时,很难迅速恢复,如果再有竞争者抑制,就可能趋向灭绝。

3.r-选择和k-选择的相关特征(见表)

在动物中,大分类动物间比较时,昆虫可视为r-选择,脊椎动物为k-选择;在分类单位之内比较时,体形大,生育力低,对幼小个体有良好保护的为典型的k-选择,体形小,生育力高,对幼小个体怃育时间短的,为典型的r-选择。

在植物中,一年生植物如农田杂草,原生和次生裸地的先锋草种属于r-选择,大多数森林树种属于k-选择。

生物种群的繁殖策略也是自然选择的结果。

(四)性选择(sexual selection)

1.植物的选择受精

选择受精(selective fertilization)是指具有特定遗传基础的精核与卵细胞优先受精的现象。

选择受精主要表现为生理生化和遗传上的特征,包括自交不亲和性、远缘杂交、不亲和性、多个花粉精核间的竞争等现象。

植物的选择受精的生物学意义:

(1)可保证最适应的两性细胞的高度融合,从而增强后代的存活能力;

(2)限制异种之间的自由交配,使种间生殖隔离,从而保证各个种的相对稳定性。

(四)性选择(sexual selection)

2.动物的性选择

(1)动物性选择形式:动物的性选择形式多种多样,主要以异性的外表和行为作为选择的依据。通常表现为修饰(ornamentation)、色泽(coloration)、求偶行为等方面,形成明显的雌雄二形(sexual dimorphism)现象。

在动物中,绝大多数物种是由雄性作出求偶行为,往往表现在颜色修饰和声音上有许多差异(特别是鸟类),有的做出各种各样动作,显示自己的魅力。

(2)雌性动物的婚配选择:精心选择那些携带最好基因型的雄性个体交配,来获得高质量的后代,提高其繁殖成效。为此,雌性动物往往对雄性个体有敏锐的洞察力,特别对色彩和声音有较高的鉴别力。此外,对雄性的体态、行为特征(如争斗、给饵等)等也有一定的鉴别力,从中择优选择,才能保证后代健康。

第四章生物群落(1)

一.生物群落的特征二.生态位三.生物群落内的种间关系四.生物群落的演替五.生物群落的分类

六.生物群落主要类型及其分布

一.生物群落的特征

1、定义:生物群落(biotic community)是指在一定地段或一定生境里各生物种群相互联系和相互影响所构成的组合结构单元。

植物群落(plant community, phytocoenosium, phytocommunity)是指由一些植物在一定生境条件下所构成的一个相互影响、互为关联的总体。

植被( Vegetation)是指地球表面的一层活的植物覆盖。

2、生物群落的基本特征

(1) 群落中的所有物种在生态上有相关性

植物群落中的种类成分组成——调查方法:标准样地法(确定最小面积)、点—四分法(中点象限法)(见另图)。

各物种的相关:竞争、共生、附生、腐生、他感等。

(2) 群落与环境不可分割性

(3) 群落中各物种的重要性有各异性

植物群落中物种的数量特征:

单一数量特征

综合(数量)特征

▲单一数量特征:*密度(Density)——D=N/S*多度(Abundance)——指种类的丰富程度

M=F/A×100% F—样地内该种的个体数 A—所有个体数*频度(Frequency)——指群落中某种植物出现的样方百分比F=∑S/N×100% “F”也称频度系数

Raunkier植物频度定律:共分5级

A(1~20%)、B(21~40%)、C(41~50%)、D(51~80%)、E(81~100%)

A>B>C<=>D

▲综合(数量)特征:

*存在度(presence):指一种植物在一个群落中出现的程度

P=n/N n——某种植物出现的群落数 N——同一类型群落总数

*恒有度(Constance):在一定面积内物种的存在度

*确限度(fidelity):一种植物在一个群丛中的集中程度:

具体分5个确限度等级:奇偶种、随偶种、适宜种、偏宜种、专有种或确限种。

*优势度(dominance):表示某种植物在群落中所占的优势程度。由多度、频度、显著度和立木级比例综合评定。

确限度等级:

奇偶种(stranger)——偶然发现或入侵的或残遗的种;

随偶种(indifferent)——对任何群落都没有显著的亲缘;

适宜种(preferent)——在若干群落中发现,但在其中一个群落中成为优势种或生长最好的种;

偏宜种(selective)——特别在某一群落中出现,但也在其他群落中偶尔出现的种;

专有种或确限种(exclusive)——完全或几乎只出现在某一群落中的种。

优势度(dominance)

重要值(importance value)(IV):以综合数值表示植物物种在群落中的相对重要值。

重要值=相对多度+相对频度+相对显著度

(IV) RD% RF% RP%

相对多度=某个种的个体数/所有种的个体数×100%

相对频度=某个种的频度/所有种的频度×100%

相对显著度=某个种的胸截面积/所有种的胸截面积×100%

(4) 群落有其空间和时间上的结构

空间结构——分层(地上分层、地下分层)。森林群落空间结构地上成层(分层)现象用剖面图解表示。分:乔木层(一般三层)、灌木层、草本层、地被层。(图)

时间结构(季节性周期变化)——指那些与季节性气候变化相关联的明显周期现象。主要表现在:

叶子的生长变化:新叶生长、变叶期、落叶期;

开花和结实

(5)群落结构的松散性和边界模糊性

二.生态位

1.生态位(niche)的概念

Grinnell(1917)最早使用这个术语,指出生态位是“每个物种由自身结构上和功能上的限制而被约束在其内的最后分布单位”。

Elton(1927)认为“生态位是说物种在生物环境中的位置及它的食物和敌害关系”。Hutchinson(1957)定义生态位是“一种生物和它的非生物与生物环境全部相互作用的总和。Whittaker(1975)的概念较科学及明确。

“生态位是指每个物种在群落中的时间和空间的位置及其机能关系。或者说群落内一个种与其他种的相关的位置”。

2.生态位理论的基本要点

(1) 生态位宽度(广度)(niche breadth,niche width)。定义:

一个有机体单位(物种)利用的各种各样不同资源的综合的幅度。

一种生物或生物类群所表现出来的资源利用的多样性。

可利用的少生态位宽度增加,促使生态位泛化(generalagation)资源丰富,可选择性大生态位宽度减少,促使生态位特化 (specialigation)

2.生态位理论的基本要点

(2) 生态位重叠(niche overlap)

定义:不同物种的生态位之间的重叠现象。或是说两个或更多的物种对资源位和资源状态共同利用。

生态位重叠是竞争的必要条件但并非绝对条件,而决定于资源状态。

丰富,供应充足,生态位重叠也不发生种间竞争。

资源贫乏,供应不足,生态位稍有重叠,即发生激烈的种间竞争。

2.生态位理论的基本要点

(3) 生态位分离(niche separtion)

定义:两个物种在资源系列上利用资源的分离程度。

又称竞争排斥原理(competive exclusion priciple)或高斯(Gause,1934)原理:如果许多物种占据一个特定的环境,他们要共同生活下去,必然要存在某种生态学差别(具有不同的生态位),否则它们不能在相同的生态位内永久地共存。

(4) 生态位移动(niche drift)

定义:种群对资源谱利用的变动。这是环境胁迫或者竞争的结果。

3.用生态位理论解释自然生物群落:

(1) 一个稳定的群落中占据了相同生态位的两个物种,其中一个终究要灭亡;

(2)一个稳定的生物群落中,由于各种群在群落中具有各自的生态位,种群间能避免直接的竞争,从而保证了群落的稳定。

(3)群落是一个相互起作用,生态位分化的种群系统。这些种群在它们对群落的时间、空间和

资源利用方面,以及相互作用的可能类型方面,都趋于互相补充而不是直接竞争。大家配合共同生活,更有效地利用环境资源,从而保证了群落在一个较长时间有较高的生长力,具有更大的稳定性。

(4)竞争可以导致多样性而不是灭绝,竞争在塑造生物群落的物种构成中发挥着主要作用。竞争排斥在自然开放系统中,很可能是例外而不是规律,因为,物种常常能够转换它们的功能生态位去避免竞争的有害效应。

三.生物群落内的种间关系

1、互利共生(互惠共生)(mutualisum)

两种生物或两种中的一种,由于不能独立生存而共同生活在一起,或一种生活于另一种体内,互相依赖,各获得一定利益的现象

2、寄生(parasitum)——某一物种的个体居住于另一种物种个体的体内或

体表从中吸取营养而生活的现象。

3、腐生(saprophytic)——一些生物有机体只利用腐朽有机物生存的现象。

4、竞争

5、他感

三.生物群落内的种间关系

4、竞争(competition)——同种或异种的两个或更多个个体间发生对于环境资源和空间争夺,从而产生的一种生存斗争现象。

种间竞争——近缘种围绕着共同的资源(食饵、空间等)而斗争,其结果是一方或双方种群的生长、生存、分布和增殖都受到不良影响。

种内竞争——种群内各个个体间为争夺资源与空间所产生的生存斗争现象。

竞争是对抗性的。其结果:排斥、淘汰、抑制、共存,导致多样性,而不是灭绝。

决定竞争胜负的因素:

种间竞争——种的生态习性、生活型、生态幅度状况等

种内竞争——个体的生长状况,体积小(强弱),年龄大小状况等。

三.生物群落内的种间关系

5、他感(化感,他感化学作用)(allelopathy)

⑴定义:由生物体分泌到体外的化学物质对别种或本种其他个体发生影响的现象。

⑵他感作用的主要类型

植物与微生物间的他感

植物间的他感:他感与自毒

植物与草食者间的他感作用

植物与动物(人类)的他感作用

⑶一些植物他感作用的具体途径

水淋溶、根分泌、挥发物、残体分解、不同植物具体途径不同(见表):

表:已被证实的10种植物的他感作用途径

(4) 他感作用的几个问题

他感作用对象作用部位差异性问题:他感对不同植物有不同的作用(敏感度不一样)。例如对柠檬桉水抽提物和挥发油对萝卜等6种受体种子发芽和幼苗生长的影响,其中6种受体对水抽提物抑制敏感性由强到弱的顺序是:萝卜>玉米>水稻>柱花草>黄瓜>豆角。对挥发物的敏感顺序是:萝卜>柱花草>玉米>水稻>黄瓜>豆角。

表现出低促高抑现象。例如,柠檬桉挥发油在0.005%低浓度下对萝卜幼苗生长起促进作用,当浓度超过0.08%又表现出显著的抑制作用。

他感作用与环境因子关系:不同月份(季节)水抽提物的他感作用不同;各月份水抽提物的

他感作用与降水量明显相关。

(5) 他感作用的机理

①生物体化学生理活性物质(他感作用物)的作用。如木麻黄的他感作用有5个黄酮衍生物和一个阿魏酸衍生物;螃蜞菊的地上部分他感作用物有2个倍半萜内酯类化合物;茶树他感作用及自毒作用的主要物质是茶多酚及咖啡因。

②他感作用物主要是对细胞、亚细胞结构的影响。如使细胞壁变宽、弯曲;高尔基体变形,内质网和核糖体数量减少;致使整个细胞液泡化。

(6) 他感作用在群落中的作用(要深入探讨此关系)

对种群在群落中形成——干扰邻近植物的生长,保持种群地位。

在群落演替中的作用——“自毒”使本身衰退,加速更新演替;干扰邻近及入侵物种,保持自身优势地位,保持群落的正常运作。

(7) 他感作用在农林业中的作用

防止经济作物“自毒”衰退,保持高产。

“以草治草”、“以草治虫”,并合成他感化学活性物质,选择新一代无污染农药。

生态学笔记——第三章群落生态学

群落生态学(community ecology)是研究生物群落与环境相互关系及其规律的学科,是生态学的一个重要分之科学。

第一节群落的概念和基本特征

一.群落的概念

(一)群落的定义

群落(生物群落,biotic community)棗指一定时间内居住在一定空间范围内的生物种群的集合。它包括植物、动物和微生物等各个物种的种群,共同组成生态系统中有生命的部分。

生物群落=植物群落 + 动物群落+ 微生物群落

生物群落上述的三个部分,从目前来看,植物群落学研究得最多,也最深入,群落学的一些基本原理多半是在植物群落学研究中获得的。植物群落学(phytocoenology)也叫地植物学(geobotany)、植物社会学(phytosociology)或植被生态学(ecology of vegetation),它主要研究植物群落的结构、功能、形成、发展以及与所处环境的相互关系。目前已形成比较完整的理论体系。

动物群落学的研究较植物群落困难,起步也相对较晚,但对近代群落生态学作出重要贡献的一些原理,如中度干扰说对形成群落结构的意义,竞争压力对物种多样性的影响,形成群落结构和功能基础的物种之间的相互关系等许多重要生态学原理,多数是由动物学家研究开始,并与动物群落学的进展分不开。最有效的群落生态学研究,应该是动物、植物和微生物群落的有机结合。

(二)群落的性质

关于群落的性质,长期以来一直存在着两种对立的观点。争论的焦点在于群落到底是一个有组织的系统,还是一个纯自然的个体集合。

①“有机体”学派认为:沿着环境梯度或连续环境的群落组成了一种不连续的变化,因此生物群落是间断分开的。法国的Braun-Blanquet、美国的Clements和英国的Tansley等支持上述观点。

②“个体”学派则认为:在连续环境下的群落组成是逐渐变化的,因而不同群落类型只能是任意认定的。前苏联的Ramensky、美国Gleason的和法国的Lenoble等支持上述观点。

虽然现代生态学的研究,群落存既在着连续性的一面,也有间断性的一面。如果采取生境梯度的分析的方法,即排序的方法来研究连续群变化,虽然在不少情况下,表明群落并不

是分离的、有明显边界的实体,而是在空间和时间上连续的一个系列。但事实上,如果排序的结果构成若干点集的话,则可达到群落分类的目的;如果分类允许重叠的话,则又可反映群落的连续性。这一事实反映了群落的连续性和间断性之间并不一定要相互排斥,关键在于研究者从什么角度和尺度看待这个问题。

(三)群落与生态系统

群落和生态系统究竟是生态学中两个不同层次的研究对象,还是同一层次的研究对象。这个问题,目前还存在着不同的看法,大多数学者认为应该把两者分开来讨论,如Odum(1983)和Smith(1980)等人,但也有不少学者把它们作为同一个问题来讨论,如Kreb(1985)和Whittaker(1970)等。

但我们认为,群落和生态系统这两个概念是有明显区别的,各具独立含义。群落是指多种生物种群有机结合的整体,而生态系统的概念是包括群落和无机环境。生态系统强调的是功能,即物质循环和能量流动。但谈到群落生态学和生态系统生态学时,确实是很难区分。群落生态学的研究内容是生物群落和环境相互关系及其规律,这恰恰也是生态系统生态学所要研究的内容。随着生态学的发展,群落生态学与生态系统生态学必将有机的结合,成为一个比较完整的,统一的生态学分支。

(四)群落结构的松散性和边界的模糊性

同一群落类型之间或同一群落的不同地点,群落的物种组成、分布状况和层次的划分都有很大的差异,这种差异通常只能进行定性描述,在量的方面很难找到一个统一的规律,人们视这种情况为群落结构的松散性。

在自然条件下,群落的边界有的明显,如水生群落与陆生群落之间的边界,可以清楚的加以区分;有的边界则不明显,而处在连续的变化中,如草甸草原和典型草原的过渡带,典型草原和荒漠草原的过渡带等。多数情况下,不同群落之间存在着过渡带,被称为群落交错区(ecotone)。

(五)群落的命名

对于群落的分类和命名,常见的有以下一些方法:

1. 根据群落中的优势种来命名:如马尾松林群落,木荷林群落。

2. 根据群落所占的自然生境来命名:如岩壁植被。

3. 根据优势种的主要生活型来命名:如亚热带常绿阔叶林群落,草甸沼泽群落。

4. 根据群落中的特征种来命名:如木荷群丛

5. 根据群落动态来进行分类和命名。

二. 群落的基本特征

(一)、群落的物种组成

1.群落的物种组成

任何生物群落都是由一定的生物种类组成的,调查群落中的物种组成是研究群落特征的第一步。为了掌握群落中物种的组成,通常,我们选择群落中各物种分布较均匀的地方,圈定一定的面积大小,登记这一面积中的所有的物种,然后按照一定的顺序成倍扩大面积,登记新增加的种类。开始时,面积扩大,物种随之迅速增加,但逐渐扩大面积后,物种增加的比例减少,最后,面积再增大,种类却很少增加。将两者的比例关系,绘制一张种类-面积曲线图。曲线最初陡峭上升,而后水平延伸,开始延伸的一点所示的面积,即为群落的最小面积。所谓群落最小面积,也就是说至少要求这样大的空间,才能包括组成群落的大多数物种。群落最小面积能够表现群落结构的主要特征。植物群落的最小面积比较容易确定,用上述方法即可求得。但动物群落的最小面积较难确定,常采用间接指标(如根据大熊猫的粪便、觅食量等指标)加以统计分析,确定其最小面积。

群落最小面积,可以反映群落结构特征。组成群落的物种越丰富,群落的最小面积越大。

如西双版纳热带雨林,由于环境条件优越,群落结构复杂,物种多样性十分丰富,其最小群面积可达2500㎡,群落内主要高等植物在130左右;而东北小兴安岭红松林群落,最小面积为400㎡,主要高等植物仅40中左右。

在搞清楚群落物种组成的基础上,还必须对各物种的科、属关系和区系地理成分加以分析。这对判定群落的特征、性质和来源有很重要的意义。

2.组成种类的性质分析

在植物群落研究中,常根据物种在群落中的作用而进行分类。

(1)优势种和建群种

优势种(dominant species)棗对群落的结构和群落环境的形成有明显控制作用的植物成为优势种。

建群种(constructive species)棗优势层中的优势种称为建群种。

在森林群落中,乔木层中的优势种既是优势种,又是建群种;而灌木层中优势种就不是建群种,原因是灌木层在森林群落中不是优势层。

(2)亚优势种(subdominant species)

指个体数量与作用都次于优势种,但在决定群落环境方面仍起着一定作用的种类。

(3)伴生种(companion species)

伴生种为群落成见种类,它与优势种相伴存在,但不起主要作用。

(4)偶见种(rare species)

偶见种是那些在群落中出现频率很低的种类,多半是由于群落本生稀少的缘故。

(二)群落的数量特征

1.物种丰富度(species richness)

物种丰富度是指群落所包含的物种数目,是研究群落首先应该了解的问题。

2.多度与密度

群落内各物种的个体数量即多度。

几种常用的多度等级

Drude Clements Braun-Blanquet

Soc. 极多 Dominant 优势 D 5 非常多

Cop3 很多Cop. Cop2 多Cop1 尚多 Abundant 丰盛 A Frequent 常见 F 4 多3 较多2 较少

Sp. 少 Occasional 偶见 O

Sol. 稀少 Rare 稀少 r 1 少

Un. 个别 Very rare 很少 Vr + 很少

密度是指单位面积上的生物个体数,用公式表示:

D(密度)=N(样地内某物种的个体数)/S(样地面积)

3.频度

频度是指某物种在样本总体中的出现率。

F(频度)=ni(某物种出现的样本数)/N(样本总数)×100%

4.盖度

是植物群落学的一个术语。植物枝叶所覆盖的土地面积叫投影盖度简称盖度。它是一个重要的植物群落学指标。盖度可以用百分比表示,也可用等级单位表示。

植物基部着生面积称为基部盖度,草本植物的基部盖度以离地0.03米处的草丛断面积计算,树种的基部盖度以某一树种的胸高(离地1.3米)断面积与样地内全部断面积之比来计算,这种基部盖度又称显著度(dominance),有人称之为优势度。

5.优势度与重要值

优势度是确定物种在群落中生态重要性的指标,优势度大的种就是群落中的优势种。确定植物优势度时,指标主要是种的盖度和密度。动物一般以个体数或相对多度来表示。

森林群落中Curtis等(1951)提出用重要值来表示每一个物种的相对重要性。

I(重要值)=[相对密度(%)+相对频度(%)+相对显著度(%)]/300 (三)群落的综合特征

1、存在度(presence)和恒有度(constancy)

在同一类型的群落中,某一种生物所存在的群落数即为存在度。各个群落中的物种,可按其出现的次数比率划分出存在度等级。通常20%为一级,共分五级。存在度大的种类愈多,则各群落的相似程度愈大。

某物种在各个具有相同面积的群落出现的次数称为恒有度。恒有度可以避免由于取样面积不等而造成的参差不齐。

2、确限度

用以表示某一个种局限于某一类型植物群落的程度。Braun-Blanquet根据植物种类对群落类型的确限程度,归并为5个确限度等级。

特征种:确限度5 确限种,只见于或几乎只见于某一群落类型的物种;

确限度4 偏宜种,最常见于某一群落,但也偶见于其他群落的物种;

确限度3 适宜种,在若干群落中能或多或少丰盛地生长,但在某一群落中占优势或多度大的种。

伴随种:确限度2 不固定在某一群落内的种。

偶见种:确限度1 少见及偶见而从别的群落迁入的种,或过去群落残遗下来的种。

确限度愈大的种就是最好的特征种,它能作为一定群落类型如群丛的标志。

3、群落相似性系数

群落系数指各样方单位共有种的百分率,其计算方法很多,目前不下十几种。Jaccard 相似性系数是目前最为基础和常用相似性系数之一,其公式为:

群落系数=c/(a+b-c)

式中a为样方A的物种数, b为样方 B的物种数, c为样方 A和 B中的共有种数。

4、关联系数

第二节群落的结构与物种多样性

一.群落的结构

(一)群落的外貌和生活型

1. 群落外貌

群落外貌(physiognomy)是指生物群落的外部形态或表相而言。它是群落中生物与生物间,生物与环境相互作用的综合反映。陆地生物群落的外貌主要取决于植被的特征,水生生物群落的外貌主要取决于水的深度和水流特征。陆地生物群落的外貌是由组成群落的植物种类形态及其生活型(life form)所决定的。

2. 生活型类型

目前广泛采用的是丹麦植物学家Raunkiaer提出的系统,他是按休眠芽或复苏芽所处的位置高低和保护方式,把高等植物划分为五个生活型,在各类群之下,根据植物体的高度,芽有无芽鳞保护,落叶或常绿,茎的特点等特征,再细分为若干较小的类型。下面就Raunkiaer 的生活型分类系统加以简介:

①高位芽植物(Phanerophytes)休眠芽位于距地面25㎝以上,又可根据高度分为四个亚类,即大高位芽植物(高度﹥30米),中高位芽植物(8-30米),小高位芽植物(2-8米)与矮高位芽植物(25厘米~2米)。

②地上芽植物(chamaephytes)更新芽位于土壤表面之上,25㎝之下,多为半灌木或草本

植物。

③地面芽植物(Hemicryptophytes)更新芽位于近地面土层内,冬季地上部分全部枯死,多为多年生草本植物。

④隐芽植物(Cryptophytes)更新芽位于较深土层中或水中,多为鳞茎类、块茎类和根茎类多年生草本植物或水生植物。

一年生植物(Therophytes)以种子越冬。

⑤Raunkiaer生活型被认为是进化过程中对气候条件适应的结果,因此它们的组成可反映某地区的生物气候和环境的状况。

从表上可知,每一类植物群落都是由几种生活型的植物所组成,但其中有一类生活型占优势,生活型与环境关系密切, 高位芽植物占优势是温暖、潮湿气候地区群落的特征,如热带雨林群落;地面芽植物占优势的群落,反映了该地区具有较长的严寒季节,如温带针叶林、落叶林群落;地上芽植物占优势,反映了该地区环境比较湿冷,如长白山寒温带暗针叶林;一年生植物占优势则是干旱气候的荒漠和草原地区群落的特征,如东北温带草原。

表我国几种群落类型的生活型组成

群落类型 Ph. Ch. H. Cr. T.

西双版纳热带雨林 94.7 5.3 0 0 0

鼎湖山南亚热带常绿阔叶林 84.5 5.4 4.1 4.1 0

浙江中亚热带常绿阔叶林 76.7 1.0 13.1 7.8 2

秦岭北坡温带落叶阔叶林 52.0 5.0 38.0 3.7 1.3

长白山寒温带暗针叶林 25.4 4.4 39.8 26.4 3.2

东北温带草原 3.6 2.0 41.1 19.0 33.4

(二)群落的垂直结构

群落的垂直结构,主要指群落的分层现象。陆地群落的分层与光的利用有关。森林群落从上往下,依次可划分为乔木层、灌木层、草本层和地被层等层次。

乔木层

陆地植物群落灌木层

草本层

地被层

在层次划分时,将不同高度的乔木幼苗划入实际所逗留的层中。

群落中,有一些植物,如藤本植物和附、寄生植物,它们并不形成独立的层次,而是分别依附于各层次直立的植物体上,称为层间植物。在作具体研究时,往往把它们归入实际依附的层次中。

水热条件越优越,群落的垂直结构越复杂,动物的种类也就越多。如热带雨林的垂直成层结构,比亚热带常绿阔叶林、温带落叶阔叶林和寒温带针叶林要复杂的多,其群落中动物的物种多样性也远比上述三种群落要丰富的多。。

群落中动物的分层现象也很普遍。动物之所以有分层现象,主要与食物有关,因为群落不同层次提供不同的食物,其次还与不同层次的微气候条件有关。如森林中的鸟类,往往有不同的栖息空间,如森林的中层栖息着山雀、啄木鸟等,而林冠层则栖息着柳莺、交嘴和戴菊等。大多数鸟类虽然可同时利用几个不同的层次,但每一种鸟却有一个自己最喜好的层次。

水生群落中,生态要求不同的各种生物呈现出明显的分层现象,它们的分层主要取决于水中的透光情况、水温和溶解氧的含量等。水生群落按垂直方向,一般可分为:

漂浮动物(neuston)

浮游动物(plankton)

水生生物群落游泳动物(nekton)

底栖动物(benthos)

附底动物(epifauna)

底内动物(infauna)

(三) 水平结构

群落的水平格局,其形成主要与构成群落的成员的分布状况有关。大多数群落,各物种常形成相当高密度集团的斑块状(patch)镶嵌。导致这种水平方向上的复杂的镶嵌性(mosaicism)主要原因有以下几方面:

图陆地生物群落中水平格局的主要决定因素(Smith, 1980)

(四)群落的时间格局

光、温度和湿度等许多环境因子有明显的时间节律(如昼夜节律、季节节律),受这些因子的影响,群落的组成与结构也随时间序列发生有规律的变化。这就是群落的的时间格局。

植物群落表现最明显的就是季相,如温带草原外貌一年四季的变化。

动物群落时间格局主要表现为:

1. 群落中动物的季节变化。如鸟类的迁徙;变温动物的休眠和苏醒;鱼类的回游等等。

2. 群落的昼夜变化。如群落中昆虫、鸟类等种类的昼夜变化。

(五)群落交错区与边缘效应

群落交错区(ecotone)又称生态交错区或生态过渡带,是两个或多个群落之间(或生态地带之间)的过渡区域。如森林和草原之间的森林草原过渡带,水生群落和陆地群落之间的湿地过渡带。

群落交错区是一个交叉地带或种群竞争的紧张地带,发育完好的群落交错区,可包含相邻两个群落共有的物种以及群落交错区特有的物种,在这里,群落中物种的数目及一些种群的密度往往比相邻的群落大。群落交错区种的数目及一些种的密度有增大的趋势,这种现象称为边缘效应。但值得注意的是,群落交错区物种的密度的增加并非是个普遍的规律,事实上,许多物种的出现恰恰相反,例如在森林边缘交错区,树木的密度明显地比群落里要小。

(六) 影响群落结构的因素

1.生物因素:

竞争:如果竞争的结果引起种间的生态位的分化,将使群落中物种多样性增加。

捕食:如果捕食者喜食的是群落中的优势种,则捕食可以提高多样性,如捕食者喜食的是竞争上占劣势的种类,则捕食会降低多样性。

2.干扰:在陆地生物群落中,干扰往往会使群落形成断层(gap),断层对于群落物种多样性的维持和持续发展,起了一个很重要的作用。不同程度的干扰,对群落的物种多样性的影响是不同的,Conell等提出的中等干扰说(intermediate disturbance hypothesis)认为,群落在中等程度的干扰水平能维持高多样性。其理由是:①在一次干扰后少数先锋种入侵断层,如果干扰频繁,则先锋种不能发展到演替中期,使多样性较低;②如果干扰间隔时间长,使演替能够发展到顶级期,则多样性也不很高;③只有在中等程度的干扰,才能使群落多样性维持最高水平,它允许更多物种入侵和定居。

3.空间异质性:

环境的空间异质性:环境的空间异质性愈高,群落多样性也愈高。

植物群落的空间异质性:植物群落的层次和结构越复杂,群落多样性也就越高。如森林群落的层次越多,越复杂,群落中鸟类的多样性就会越多。

二.群落的物种多样性

(一)物种多样性定义

物种多样性是群落生物组成结构的重要指标,它不仅可以反映群落组织化水平,而且可以通过结构与功能的关系间接反映群落功能的特征。

生物群落多样性研究始于本世纪初叶,当时的工作主要集中于群落中物种面积关系的探讨和物种多度关系的研究。1943年,Williams在研究鳞翅目昆虫物种多样性时,首次提出了“多样性指数”的概念,之后大量有关群落物种多样性的概念、原理、及测度方法的论文和专著被发表,形成了大量的物种多样性指数,一度给群落多样性的测度造成了一定混乱。自70年代以后,Whittaker(1972)、Pielou(1975)、Washington(1984)和Magurran(1988)等对生物群落多样性测度方法进行了比较全面的综述,对这一领域的发展起到了积极的推动作用。从目前来看,生物群落的物种多样性指数可分为α多样性指数、β多样性指数和γ多样性指数三类。下面我们就群落的α和β多样性指数的测定方法予以介绍。

(二)多样性的测度方法

1.α多样性指数

它包含两方面的含义:①群落所含物种的多寡,即物种丰富度;②群落中各个种的相对密度,即物种均匀度。

(1)物种丰富度指数

a. Gleason(1922)指数

D=S/lnA

式中A为单位面积,S为群落中的物种数目。

b. Margalef(1951,1957,1958)指数

D=(S-1)/lnN

式中S为群落中的总数目,N为观察到的个体总数。

(2)Simpson指数

D=1-ΣPi2

式中Pi种的个体数占群落中总个体数的比例。

(3)种间相遇机率(PIE)指数

D=N(N-1)/ΣNi(Ni-1)

式中Ni为种i的个体数,N为所在群落的所有物种的个体数之和。

(4)Shannon-wiener指数

H’=-ΣPilnPi 式中Pi=Ni/N 。

(5)Pielou均匀度指数

E=H/Hmax

式中H为实际观察的物种多样性指数,Hmax为最大的物种多样性指数,Hmax=LnS(S 为群落中的总物种数)

(6)举例说明

例如,设有A,B,C,三个群落,各有两个物种组成,其中各种个体数组成如下:物种甲物种乙

群落A 100(1.0) 0(0)

群落B 50(0.5) 50(0.5)

群落C 99(0.99) 1(0.01)

请计算它的物种多样性指数。

Simpson指数:

Dc=1-ΣPi2=1-Σ(Ni/N)2=1-[(99/100)2+(1/100)2]=0.0198

DB=1-[(50/100)2+(50/100)2]=0.5000

Shannon-wiener指数:

HC=-ΣNi/N ln Ni/N i=-(0.99×ln0.99+0.01×ln0.01)=0.056

HB=-(0.50×ln0.50+0.50×ln0.50)=0.69

Pielou均匀度指数:

Hmax=lnS=ln2=0.69

EA= H/Hmax=-[(1.0×ln1.0)+0]/0.69=0

EB=-(0.50×ln0.50+0.50×ln0.50)/0.69=0.69/0.69=1

EC=0.056/0.69=0.081

从上面的计算可以看出,群落的物种多样性指数与以下两个因素有关:

①种类数目,即丰富度;②种类中个体分配上的均匀性

2.β多样性指数

β多样性可以定义为沿着环境梯度的变化物种替代的程度。不同群落或某环境梯度上不同点之间的共有种越少,β多样性越大。精确地测定β多样性具有重要的意义。这是因为:①它可以指示生境被物种隔离的程度;②β多样性的测定值可以用来比较不同地段的生境多样性;③β多样性与α多样性一起构成了总体多样性或一定地段的生物异质性。

(1)Whittaker指数(βw)

βw=S/mα-1

式中:S为所研究系统中记录的物种总数;mα为各样方或样本的平均物种数。

(2)Cody指数(βc)

βc=[g(H)+l(H)]/2

式中:g(H)是沿生境梯度H增加的物种数目; l(H)是沿生境梯度H失去的物种数目,即在上一个梯度中存在而在下一个梯度中没有的物种数目。

(3)Wilson Shmida指数(βT)

βT=[g(H)+l(H)]/2α

该式是将Cody指数与Whittaker指数结合形成的。式中变量含义与上述两式相同。

3.γ多样性指数

生态学经典习题

光质对植物的作用有哪些方面?

生理有效辐射中,红橙光属于长波光,蓝紫光属于短波光。红橙光是被叶绿素吸收最多的部分,具有最大的光合活性,红光还能促进叶绿素的形成。蓝紫光也能被叶绿素所吸收。红光有利于碳水化合物的形成。蓝光有利于蛋白质的合成。蓝紫光和青光对植物伸长生长及幼芽形成有很大作用,能抑制植物的伸长而使其形成矮态,能促进花青素等植物色素的形成。红光影响植物开花、茎的伸长和种子萌发。红外线和红光是地表热量的基本来源,他们对植物的影响主要是间接地以热效应反映出来。

何谓生物的光周期现象?

由于分布在地球各地的动植物长期生活在具有一定昼夜变化格局的环境中,借助于自然选择和进化而形成了各类生物所特有的对日照长度变化的反应方式,这就是在生物中普遍存在的光周期现象。例如植物在一定光照条件下的开花、落叶和休眠以及动物的迁移、生殖、冬眠、筑巢和换毛换羽等。日照长度的变化对动植物都有重要的生态作用。

哪些因素可能导致植物的生理干旱?

1)大气或土壤中水分缺乏,使植物无法得到足够的水分。

景观生态学考试重点复习课程

景观生态学考试重点

景观生态学期末复习资料 第一章 1、景观: 概念:狭义——在几十千米至几百千米范围内,由不同类型生态系统所组成的、具有重复性格局的异质性地理单元。 广义——包括出现在从微观到宏观不同尺度上的具有异质性或斑块性的空间单元。 美学概念: 地理学概念: 生态学概念: 2、景观有哪些基本特征?如何理解景观和景观要素之间联系与区别? 基本特征:空间异质性、功能一致性、地域性、可辨识性、可重复性等 ①相互作用的生态系统的异质性镶嵌;②地貌、植被、土地利用和人类居住格局的特别结构;③生态系统以上区域以下的组织层次;④综合人类活动与土地的区域系统;⑤一种风景,其美学价值由文化所决定;⑥遥感图像中的像元排列。 景观要素是景观的构成基本单元,强调的是均质性,而景观则强调异质性。在一定条件下其地位可以相互转化,二者的关系体现了景观现象的尺度效应。 景观景观要素 相同点都具有等级结构特征,可在不用的问题或等级尺度上处于不同的地位

整体景观的组成成分 不同点空间实体的整体性组成景观的空间单元的均质性 异质性地域单元从属性地域单元 1、景观生态学 概念:以景观为对象,重点研究其结构、功能、变化及其科学规划和有效管理的一门宏观生态学科。 研究对象和内容: ①景观结构:即景观组成单元的类型、多样性及其空间关系; ②景观功能:即景观结构与生态学过程的相互作用,或景观结构单元之间的相互作用; ③景观动态:即指景观在结构和功能方面随时间的变化; ④景观规划和管理。 第二章 景观生态学 基本理论:系统论、等级系统理论、空间异质性理论、时空尺度、渗透理论、复合种群理论等。 基本原理:系统整体性原理、尺度性原理、结构镶嵌原理、文化性原理、多重价值原理等。 第三章

《封闭的循环》读书笔记

《封闭的循环》读书笔记 传统科学思想上的细分和专业化,促使人们习惯于仅仅从一个学科/一个角度去看待问题,习惯于把现实中非常复杂的关联的体系简化为单一的独立的问题。这样思考的结果,在科学上是日益严重的与现实脱离,变成了为了科学而科学;在现实中,则是问题非但没有被科学解决,反而在科学的干扰下产生了更糟糕的结果。 同样,科学上的简单化,促使我们在对自然的利用时,仅仅想到了某些个领域,甚至我们根本上就把自然给简化了,认识不到自然是一个复杂的庞大系统。人类对自然的破坏,远远不是认识不到,或者人性自私的结果,除了这些外,还与我们根本上的思维方式密切相关。现在,我们必须接受一种复杂性/系统性的思考,要认识到自然的许多方面,是非常复杂而且相互关联的,当我们对自然的每一次改变时都必须从众多的角度/从连续的环节,去思考它们的结果。 01. 我们习惯于考虑单一的事件,而生物圈却是循环的。 要了解生物圈是很难的,因为在现代人的观念中,这是一个外国的奇怪现象。我们已经变得习惯于考虑那些独特的单一的事件,每个事件都出于唯一的单个的原因。但是在生物圈里,每个结果都有一个原因:一种动物的粪便成为土壤细菌的食粮;细菌所分泌出来的东西滋养了植物;植物则养育了动物。这种生态循环是很难与技术时代的人类经验相适应的。 02. 太阳进入到了地球的生命循环系统中 地球上的各种生命系统在它最初出现的形式中都有一个固有的致命的错误:它所需要的能量从消耗一种不能再生的资源,即有机物质的地质化学贮藏物中得来的。这个错误已经不能矫正了,生命自我孕育的增长一直在消耗着地球原有的“有机浓雾”。生命一直在毁灭着它自己得以幸存的条件。 03. 我们是那样久的忽略了对复杂过程的思考。 在科学界里,我们中间很少有人准备好去处理这种程度的复杂性。我们在现代科学的熏陶下,所思考的是极其简单的。面对着复杂到像环境及其广大的活的居民群体一样复杂的形势,我们就有可能程度不一地,企图在思想上把它简化成一组个别存在的单一的事物,希望它们的总和并多少都能说明整体的形象。环境危机的存在警告我们,这种希望是渺茫的。 04. 生态学法则:每一种事物都与别的事物相关。 有很多法则对我们现在所认识的生态圈已经是很明显的了,它们可以组成一种通俗的“生态学法则”。生态学的第一条法则:每一种事物都与别的事物相关。这一切都是由于生态系统的一个简单的事实所引起的---每个事物都是与别的事物相联系的,这个体系是因其活动的自我补偿的特性而赖以稳定的。 05. 生态学法则:一切事物都必然要有其去向。 生态学的第二个法则:一切事物都必然有其去向。当然,这仅仅是对一个物理学的基本法则---物质不灭定律的有点通俗的重述。这个法则所强调的是,在自然界中是无所谓“废物”这种东西的。在自然系统中,由一种有机物所排泻出来的被当做废物的那种东西都会被另一种有机物当做食物而吸收。 06. 生态学法则:自然界所懂得的是最好的。 生态学的第三条法则:自然界所懂得的是最好的。 根据我的经验,这条原则会遇到激烈的反对,因为它与一种根深蒂固的思想相矛盾。这个思想认为人类是无以伦比的。现代技术的最普遍的特点之一,被认为是它可以按照预想去“改造自然”这些都是优越于那些人在自然中可利用的东西的。坦白地说,任何在自然系统中主要是因人为而引起的变化,对那个系统都有可能是有害的。这个原因归结于这样一个事实,即在生物体中实际发现的化学物质的多样性,要比可能有的多样性受到更为广泛的限制。

生态学考试笔记

生态学考试笔记 2009-09-03 00:15:49| 分类:默认分类|字号订阅 1.生态学:研究生物与生物,生物与环境之间的关系。 2.生态学的研究方法:野外的实验的理论的。 3.环境:指某一特定生物体或者生物群体周围一切的总和,包括空间及直接或间接影响该生物体或生物群体生存的各种因素。 4.生态因子:是环境要素中对生物起作用的因子,如光照、温度、水分、氧气、二氧化碳、食物和其他生物。 5.生境:所有生态因子构成生物的生态环境,特定生物体或群体的栖息地的生态环境之一。 6.生态因子作用特征: ①综合作用:环境中的每个生态因子不是孤立的、单独存在,总是与其他因子相互联系、相互影响、相互制约的。 ②主导因子作用:对生物起作用的交合因子并非等价的,其中有一个是起决定性作用的。 ③阶段性作用:由于生态因子的规律变化导致生物生长发育出阶段性,在不同发育阶段,生物需要不同的生态因子或生态因子的不同强度。 ④不可替代性和补偿性作用:对生物作用的诸多生态因子虽然非等价,但都很重要一个都不能缺少,不能由另一个因子来代替。但在一定条件下,当某以因子的数量不足,可依靠相近的加强得以补偿,而获得相似的生态效应。 ⑤直接作用和间接作用。生态因子对生物的从行为、生长、繁殖和分布的可以是直接的,也可以是间接的,有时还要经过几个中间因子。 7.生物与环境的相互作用: 生物与环境的关系是相互的和辩证的。 ①环境对生物的作用:环境对生物的作用是多方面的,可影响生物的生长、发育、繁殖和行为;影响生物的生育力和死亡率,导致种群数量的改变;某些生态因子能够限制生物的分布区域。例如热带植物不能在北半球的北方生长,主要要低温

景观生态学(终极版)

1.叙述景观生态学的主要内容及目前的研究重点。 主要内容: (1)景观生态学是研究空间的异质性和格局 a)定量地描述不同尺度下的景观格局形成的物理、生物过程和干扰过程; b)空间异质性如何影响到个体、种群和群落的空间分布; c)景观结构和功能随时间变化; d)人类对景观变化的影响以及如何管理景观。 (2)景观生态学是对空间异质性的研究和管理 a)景观镶嵌体的空间结构和组成; b)景观要素之间的相互关系(如能流、物流); c)景观结构和功能随时间的变化; d)景观结构和功能的优化和管理。 目前研究的重点: ①干扰对景观格局和过程的影响和干扰在景观中的传播和扩散。 ②景观格局与景观过程的关系或景观格局的生态学和环境效应。 ③小尺度实验研究及其尺度外推。 ④景观动态模拟预测模型和景观规划设计辅助决策以及多尺度空间耦合模型。 ⑤景观格局优化。 ⑥景观的多重价值和作为社会经济发展规划与决策基础的景观社会经济研究。 ⑦人类在景观中的作用和景观规划设计。 热点地区:①流域系统;②湿地;③文化景观;④城乡过渡带;⑤滨海地区;⑥乡村景观 2.试比较美国景观生态学派与西欧景观生态学派的特点。(必考) 欧洲和北美在起源和发展上均有着显著的不同。一般而言,欧洲学派更具人文性和整体论的特点;北美学派更注重于以生物为中心的生态学内容和还原论为基础的方法论。 具体的主要体现于两个方面: 首先,景观生态学在欧洲学派中是一门应用性很强的学科,它与规划、管理和政府有着密切的和明确的关系;北美学派虽也有应用的方面,但它更大的兴趣在于景观格局和功能等基本问题上,并不是都结合到任何具体的应用方面。 其次,欧洲学派主要侧重于人类占优势的景观;而北美学派同时对研究原始状态的景观也有着浓厚的兴趣。 当然除此之外,他们之间也存在一些共同点,如北美景观生态学派同样意识到了人类对景观的作用和影响;欧洲学派也没有放弃对空间格局的重视。 3.为什么要研究景观格局?研究景观格局的主要方法有哪些? 景观格局一般指景观的空间格局(Spatial pattern),是大小、形状、属性不一的景观空间单元(斑块)在空间上的分布与组合规律。 研究意义: a)从看似无序的景观斑块镶嵌中,发现潜在的有意义的规律性,最终目的是为了确定产生和控制景观格局的因子和机制, 探讨格局效应。 b)确定产生和控制空间格局的因子及其作用机制; c)比较不同景观镶嵌体的特征和它们的变化; d)探讨空间格局的尺度性质; e)确定景观格局和功能过程的相互关系; f)为景观的合理管理提供有价值的资料。 研究方法: a)用于景观要素特征分析的景观空间格局指数

《普通生态学》教学大纲

《普通生态学》教学大纲 课程编号:01432450 课程名称:普通生态学学分/学时:2/32 课程层次:全校文化素质教育修读类型:选修考核方式:期末考试80%,平 时成绩20%。 开课学期:春季/秋季适用专业:全校各专业 教学目的:生态学是研究生物与环境相互关系的科学。随着人口的增加和工业、技术的进步,人类正以前所未有的规模和强度影响环境,环境问题的出现,诸如世界上出现的能源耗费、资源枯竭、人口膨胀、粮食短缺、环境退化、生态平衡失调等六大基本问题的解决,都依赖于生态学理论的指导。本课程从个体、种群、群落、生态系统、景观等各个层次了解生物与环境之间的关系,结合不同学科专业介绍环境保护、自然资源开发利用、可持续发展为重点的应用生态学内容,并对生态学各个研究方向的近代研究进展作简要介绍。教学中预期达到以下目标: 1. 建立生物与环境是相互依存、协同进化的概念,对现代生态学的新进展,新成就有基本了解。 2. 人类作用是造成环境破坏的最主要的原因,在未来社会经济发展过程中,保护环境,保护资源是可持续发展的重要保证。 教学基本要求:系统讲授教学大纲规定的内容,突出重点、难点,内容力求新颖;在课堂讲解课程内容的同时,充分利用现代化教学设备,播放相关的多媒体教学软件,提高学生对生态学基本概念的理解。 课程基本内容及学时分配: 第一章绪论(2学时) 本章的重点与难点:本章主要介绍生态学的研究对象、内容、范围、方法以及生态学的最新发展趋势。使学生了解学习生态学,不仅要掌握生物与环境相互作用的一般原理,更要关注人类活动下生态过程的变化以及对人类生存的影响。 第一节地球上的生命 第二节生态学的形成及发展 思考题: 1、试述生态学的定义、研究对象与范围。 2、试述生态学的发展过程。 第二章生物与环境(2学时)

景观生态学重点

Adobe Acrobat 7.0 Professional 景观生态学重点及参考答案 (特此感谢雷威、朱虹、汪峰、邓朝松、郑永锴总结参考答案,鼓掌!!!!) 1.名词解释 ①景观:在较大、中度尺度以及具有空间异质性的较小尺度的区域,都可视为景观;是一定的地表可见景象的综合;具美学方面的特征。 ④景观结构成分:在生态学性质和地理学中性质各异,而形态特征和空间分布特征相似的景观要素。 ⑦景观连接度:景观中各功能上和生态过程上的联系。一方面取决于景观元素的空间分布特征,另一方面还要通过斑块之间生物种迁徙或其他生态过程进展的顺利程度来反映。 ①干扰斑块:由于局部干扰而形成的斑块。 ④残存斑块:大面积干扰后残存下来的局部未受干扰的自然或般自然斑块。 ⑥边缘效应:景观单元边缘部分由于受外围影响而表现出与中心部分显著不同的生态学特征的现象。 ⑦景观孔隙度:单位面积的斑块数目。 ④生态交错带:指相邻生态系统之间的过渡区。 ⑤景观边界:指在特定时空尺度下,相对均质的景观之间所存在的异质性过渡区域。 ①景观格局:景观要素在景观空间内的配置和组合形式,是景观结构和景观生态过程相互作用的结果。 ①景观生态安全格局:景观中存在某种潜在的生态系统空间格局,它由景观中的某些关键的局部,其所处方位和空间联系共同构成。 ①景观异质性:由景观要素的多样性和景观要素的空间相互关系共同决定的景观要素属性的变异程度。 ⑦空间异质性:由景观要素的数量和比例、形状、空间分布及景观要素之间的空间邻接关系所决定的空间不均匀性。 ③时间异质性:作为空间某一点不同时间景观结构和组分变化的量

变。 ④景观破碎化:景观中景观要素斑块的平均面积减小、斑块数量增加的变化。 ⑤景观多样性:特定区域中景观要素及其空间结构类型、格局、过程的变异性和复杂性。④中继站:在链路上某一地点,传输设备的集合。 ⑨景观生态流:物质、能量、物种和信息在景观中毗邻的生态系统之间的流动或运动。 ③景观阻力: ①干扰:阻断原有生物系统生态过程的非连续性事件。 ④中度干扰假说:中等程度的干扰频率能维持较高的物种多样性。 ①景观变化:景观变化的速率有快有慢,规模有大有小,总是一个渐进的过程。②景观稳定性⑥破碎化⑨转移矩阵 ①群丛 1.简答题 ③景观生态学形成与发展的理论基础主要有哪些? 答1)德国生物学和地理学家定义景观为:将地球圈、生物圈和智慧圈的人类建筑综合在一起的,供人类生存的总体空间可见体。 2)荷兰景观生态学家普遍认为,景观是由生物、非生物和人类活动的相互作用产生和维持的,作为地球表面可识别的一部分,包括其部分形态与功能关系的综合体。 3)美国景观生态学家和法国地理学家认为,景观是指由一组类似方式重复出现的、相互作用的生态系统所组成的异质性陆地区域,其空间尺度在数千米到数十千米范围。 4)①环境资源斑块的特性是什么? 答:1)由于自然环境资源的空间分布格局具有相对稳定性,环境资源斑块的持续时间较长,即斑块寿命较长,周转速率很低 2)斑块与木底之间的生态交错区可能很宽,常形成逐步变化的梯度⑦斑块边缘对能量、养分、物种有何影响? 答:1)能量流动或物质交换随着边缘的增加而增加。 2)大型斑块有利于敏感物种生存,为大型脊椎动物提供核心生境躲

新版中山大学生态学考研经验考研参考书考研真题

在我决定考研的那一刻正面临着我人生中的灰暗时期,那时发生的事对当时的我来讲是一个重大的打击,我甚至一再怀疑自己可不可以继续走下去,而就是那个时候我决定考研,让自己进入一个新的阶段,新的人生方向。那个时刻,很大意义上是想要转移自己的注意力,不再让自己纠结于一件耗费心力和情绪的事情。 而如今,已相隔一年的时间,虽然这一年相当漫长,但在整个人生道路上不过是短短的一个线段。 就在短短的一年中我发现一切都在不知不觉中发生了变化。曾经让自己大为恼火,让自己费尽心力和心绪的事情现如今不过是弹指的一抹灰尘。而之所以会有这样的心境变化,我认为,是因为,在备考的这段时间内,我的全身心进入了一个全然自我,不被外界所干扰的心境,日复一日年复一年的做着同样枯燥、琐碎、乏味的事情。 这不正是一种修行吗,若说在初期,只是把自己当作机器一样用以逃避现实生活的灾难的话,但在后期就是真的在这过程中慢慢发生了变化,不知不觉中进入到了忘记自身的状态里。 所以我就终于明白,佛家坐定,参禅为什么会叫作修行了。本来无一物,何处惹尘埃。 所以经过这一年我不仅在心智上更加成熟,而且也成功上岸。正如我预期的那样,我开始进入一个新的阶段,有了新的人生方向。 在此,只是想要把我这一年备考过程中的积累的种种干货和经验记录下来,也希望各位看到后能够有所帮助,只不过考研毕竟是大工程,所以本篇内容会比较长,希望大家可以耐心看完,文章结尾会附上我的学习资料供大家下载。

初试科目: (101)思想政治理论 (201)英语一 (602)高等数学(B)或(662)生物化学(一) (863)细胞生物学或(864)生态学(一)或(865)遗传学 参考书目: 1.《高等数学》(上下册)第五版,同济大学应用数学系著,高等教育出版社 2.《概率统计讲义》(第二版),陈家鼎著,高等教育出版社 3.《生态学》,李博,高等教育出版社,2000; 4.《普通生态学》,孙儒泳、李博、诸葛阳等,高等教育出版社,2001; 先聊聊英语 单词部分:我个人认为不背的单词再怎么看视频也没用,背单词没捷径。你想又懒又快捷的提升单词量,没门。(仅供个人选择)我建议用木糖英语单词闪电版,一天200个,用艾宾浩斯曲线一个月能记完,每天记单词需要1小时(还是蛮痛苦的,但总比看真题时啥也看不懂要舒服多)。好处在于是剔除了初高中的简单词,只剩下考研的必考词,能迅速让你上手真题。背单词要一直从3-4月份持续到考研前几天,第一遍记完必须要在暑假前。 阅读完形部分:木糖英语真题手译就挺好用的,不需要做真题以外的任何阅读题。因为真题就是最贴近实战的练习题了,还记得近十年的真题我是刷了大概有四五遍。 不过,我建议从05年的开始抠真题,需要一个单词都不放过,因为考研英

农业生态学复习笔记

农业生态学复习笔记 第一章绪论 (1)生态学概念:研究生物与其环境相互关系的科学 (2)经典生态学[重点]:个体,种群,生态系统,群落,景观,生物圈 (3)农业生态学概念:农业生态学是用生态学和系统论的原理和方法 , 将农业生物与其自然环境作为一个整体 , 研究其中的相互联系、协同演变、调节控制和持续发展规律的科学 (4)农业生态学研究对象:农业生态学的研究对象主要是农业生态系统,即研究农业生物之间以及农业生物与环境之间的相互关系及调控途径。 第二章农业生态系统 (1)系统的概念:农业生态学的研究对象主要是农业生态系统,即研究农业生物之间以及农业生物与环境之间的相互关系及调控途径。构成条件:①由一些要素组成;②要素之间相互联系、相互作用、相互制约;③要素之间通过相互作用,产生跟各个组成成分不同的新功能,即整体功能。基本特征:系统组分的整体性,系统结构的有序性,系统功能的整合性(2)生态系统的概念:是指在一定的的时间和空间范围内,生物与生物、生物与非生物环境之间通过物质循环、能量流动和信息传递相互作用、相互依存而构成的一个生态学功能单位。基本特征:一个完整的生态系统主要由四部分构成:初级生产者、消费者、分解者和非生物物质【重点】;生态系统是一个有生命的开放式的功能系统;一个生态系统占据一定的空间并随时间发生演变;生态系统内部保持有一定的平衡关系。 (3)生态系统的功能:四个信息——营养信息,化学信息,物理信息,行为信息。 (4)生态系统的结构的概念[重点]:指生态系统中组成成分及其在时间、空间上的分布和各组分间的能量、物质、信息流的方式和特点。三种结构:物种结构、时空结构和营养结构。 (5)农业生态系统的概念:指在人类的积极参与下,利用农业生物与非生物环境之间以及农业生物种群之间的相互关系,通过合理的生态结构和高效生态机能,进行能量转化和物质循环,并按人类社会需要进行物质生产的综合体。组成:1. 生物组分(经人工驯化的农业生物,最重要的调节者与主体消费者——人类),2.环境组分(自然环境组分,人工环境组分)。基本结构:组分结构,时空结构(时间结构,空间结构),营养结构。基本功能[重点]:1.能量流——农业生态系统的主要能量来源包括太阳能、自然辅助能、人工辅助能。2.物质流。3.信息流。4.价值流。 (6)农业生态系统与自然生态系统的区别[重点]:1. 生物构成方面:(1)农业生态系统中的生物是经人工驯化培育的农业生物以及与之相关的生物,而自然生态系统中的生物是特定环境下经生物种群间、生物与环境间长期相互适应形成的自然生物群落(2)农业生态系统的生物种类结构单一,物种多样性低于自然生态系统。2.环境条件方面农业生态系统的环境条件受到人类的调控与改造,以便农业生物能够更加高效地转化出人类所需的各种农副产品3.结构与功能方面农业生态系统的结构组成既包含了自然生态系统的组分又包含了社会经济因素的组分。4. 稳定机制方面自然生态系统物种多样性十分丰富,生物之间、生物与环境之建立了复杂的食物链与食物网,形成了自然的自我调节稳定机制,保证自然生态系统相对稳定发展农业生态系统因生物种类减少,食物链结构变短,自然调节的稳定机制被削弱,系统的自我稳定性下降。 5. 生产力特点农业生态系统具有较高的生产力和较高的光能利用率。 6.开放程度方面两者均是开放性的系统,但农业生 态系统要高于自然生态系统。7.能流特征方面因农业生态系统是一个具有大量输入与输出的开放系统,系统内自我维持的能量很少。8.养分循环方面农业生态系统养分循环的特点:具有较高的养分输出率与输入率,养分库存量较低,但流量大、周转快; 9. 服从规律方面农业生态系统的存在与发展同时受到自然与社会经济规律即双重规律的支配。10.运行的“目标”方面自然生态系统运行的“目标”是自然资源的最大限度生物利用,并使生物现存量达到最大;农业生态系统运行“目标”是使农业生产在有限的自然与社会条件制约下,最大限度的满足人类的生存和持续发展的需要。 第三章农业生态系统的能量流动 (1)农业生态系统能量的来源:太阳能,自然辅助能,人工辅助能。 (2)食物链与食物网的概念:1.食物链(food chain):生产者所固定的能量和物质,通过一系列取食和被食的关系而在生态系统中传递,各种生物按其取食和被食关系而排列的链状顺序。2.食物网(food web):生态系统中的食物链彼此交错连接,形成一个网状结构。类型:草牧食物链,腐生食物链,寄生食物链,混合食物链。 (4)营养级的概念:食物链上能量和物质被暂时储存和停留的位置亦即每一种生物所处的位置(环节)称为营养级。 (5)生态系统中的能量通过各个营养级逐级减少的原因[重点]:①各营养级消费者不可能百分之百地利用前一营养级的

景观生态学考试复习重点

景观生态学复习重点 第一章绪论 景观:是一个由不同土地单元镶嵌组成,具有明显视觉特征的地理实体;它处于生态系统之上,大地理区域之下的中间尺度;兼具经济、生态和文化的多重价值。 第二章景观生态学的理论基础 1.等级理论 任何系统都属于一定的等级,并具有一定的时间和空间尺度。等级结构是一个由若干单元组成的有序系统,对于任何等级的生物系统,它们都是由低一等级水平上的组分(亚系统)组成。同时本身又是高一等级水平上的组成成分。 2.岛屿生物地理学理论:(“物种-面积”关系、均衡理论、聚合种群理论) (1)“物种—面积”关系:S = CAz (S:物种丰富度;A:物种存在的空间面积;C:物种的分布密度;z:一个统计指数,理论值为0.263,通常为0.18-0.35) (2)均衡理论:岛屿物种数目的多少,应当由“新物种”向区域中的迁入和“老物种” 的消亡或迁出之间的动态变化所决定,它们遵循着一种动态均衡的规律。当迁入率和灭绝率相等时,岛屿物种数达到动态的平衡状态,即物种的数目相对稳定。 (3)聚合种群理论:指在斑块生境中,空间上具有一定的距离,但彼此间通过扩散个体相互联系在一起的许多小种群或局部种群的集合,一般也称为一个种群的种群。 3.复合种群持续生存的必要条件 ①离散的局部繁殖种群。 ②所有的亚种群均有绝灭的风险。即使是最大的亚种群也有绝灭的可能。 ③亚种群有重建的可能。重建率随斑块间距离的增大而锐减,也与物种的迁移能力有关。 ④局域动态的非同步性。 4.渗透理论(临界阈现象,渗透阈值0.5928) (1)临界阈现象:某一事件或过程在影响因子或环境条件到达某一阈值而发生的从一种状态过渡到另一种截然不同状态的过程。 (2)渗透阈值0.5928 5.源-汇系统理论(“源”种群与“汇”种群,源斑块与汇斑块) (1)所谓“源”种群是那些在条件较好的斑块生境中生存并具有较高增长率的局部种群。(2)所谓“汇”种群是指那些在条件较差的斑块生境中生存并具有负的种群增长率的局部种群。 (3)包含源种群的生境视为源斑块,而将汇种群所占据的生境作为汇斑块。物种总是从源斑块向汇斑块迁移。 6.尺度的定义和表达 (1)定义:指在所研究的生态系统的面积大小(空间尺度),或者指所研究的生态系统动态的时间间隔(即时间尺度)。 (2)表达:粒度和幅度 第三章景观结构 1.斑块(概念,起源)

吴相钰陈阅增普通生物学第4版复习笔记及详解word精品

吴相钰陈阅增普通生物学第4版复习笔记及详解 吴相钰《陈阅增普通生物学》(第4版)笔记和典型题(含考研真题)详解 来源:才聪学习网/考研教材 内容简介 本书是吴相钰《陈阅增普通生物学》(第4版)教材的学习辅导书,主要包括以下内容: 1 ?整理名校笔记,浓缩内容精华。在参考了国内外名校名师讲授该教材的 课堂笔记基础上,复习笔记部分对该章的重难点进行了整理,因此,本书的内容几乎浓缩了该教材的知识精华。 2 ?典型题详解,巩固重点难点。该部分选取并解答各章节相关知识的常见典型题,可以帮助学员巩固所学知识点。 3 .挑选考研真题,总结出题思路。本书挑选了部分名校的相关考研真题,总结出题思路,有利于强化对重要知识点的理解。 本书提供电子书及打印版,方便对照复习。 目录

第1章绪论:生物界与生物学 1.1复习笔记 1.2典型题详解 1.3考研真题详解 第1篇细胞 第2章生命的化学基础 2.1复习笔记 22典型题详解 2.3考研真题详解 第3章细胞结构与细胞通讯 3.1复习笔记 3.2典型题详解 3.3考研真题详解 第4早细胞代谢 4.1复习笔记 4.2典型题详解 4.3考研真题详解 氏代 细胞的分裂和分化 f— 第5早 5.1复习笔记 5.2典型题详解 5.3考研真题详解

第2篇动物的形态与功能 第6章脊椎动物的结构与功能 6.1 复习笔记 6.2 典型题详解 6.3 考研真题详解 第7章营养与消化 7.1 复习笔记 7.2 典型题详解 7.3 考研真题详解 第8章血液与循环 8.1复习笔记 8.2典型题详解 8.3考研真题详解 第9章气体交换与呼吸 9.1复习笔记 9.2典型题详解 第10章内环境的控制 10.1复习笔记 10.2典型题详解 10.3考研真题详解 第11章免疫系统与免疫功能

普通生态学重点

生态学重点 名词解释(10空10') 1、环境:是指某一特定生物体或生物群体以外的空间,以及直接、间接影响该生物体或生物群体生存的一切事物的总和,由许多环境要素构成。 2、环境因子:生物体外部的全部环境要素。 3、单体生物:个体清楚,基本保持一致的体形,每一个体来源于一个受精卵。个体的形态和发育都可以预测。如鸟类、兽类、昆虫等。 4、构件生物:由一个合子发育成一套构件,然后发育成更多的构件,形成分支结构。由这些构件组成个体。发育的形式和时间是不可预测,如水稻、浮萍、树木等。 5、同资源集(种)团:生物群落中,以同一方式利用共同资源的物种集合,即占据相似生态位的物种集合。 6、内禀增长能力:① 在种群不受限制的条件下,即能够排除不利的天气条件,提供理想的 食物条件,排除捕食者和疾病,我们能够观察到种群的最大增长能力(rm )。mm最大的瞬 时增长率,即内禀增长率或内禀增长能力。 ②在没有任何环境因素(食物、领地和其他生物)限制的条件下,又种群内在因素决定 的稳定的最大增殖速度称为种群的内禀增长率(intrinsic growth rate ),记作rm。) 7、生物群落:在同一时间聚集在同一地域或生境中的各种生物种群有规律的集合。 8、生态系统:指在一定的空间内,生物成分和非生物成分通过物质循环和能量流动互相作用、互相依存而构成的一个生态学功能单位,这个生态学功能单位称生态系统。 9、生态交错区:①不同的群落之间交错的不同群落中物种共存的地区就称为生态交错区。 ②生态交错区又称群落交错区或生态过渡带,是两个或多个生态地带之间(或群落之间) 的过渡区域。 10、边缘效应:① 群落交错区种的数目及一些种的密度增大的趋势称为边缘效应。 ②指缀块边缘部分由于受外围影响而表现出与缀块中心部分不同的生态学特征的现象。 11、次级生产:初级生产以外的生态系统生产,即消费者利用初级生产的产品进行新陈代谢, 经过同化作用形成异养生物自身的物质,称为次级生产(secondary production),或第二性 生产。 12、生物量:①某一特定观察时刻,某一空间范围内,现有有机体的量。用单位面积或体积的个体数量、重量(狭义的生物量)或含能量来表示,因此它是一种现存量。 ②单位空间内,积存的有机物质的量。 13、优势种:对群落的结构和群落环境的形成有明显控制作用的物种称为优势种,它通常指的是那些个体数量多,生物量高,生活能力较强,即优势度较大的物种。 14、关键种:生物群落中,处于较高营养级的少数物种,其取食活动对群落的结构产生巨大的影响,称关键种。/指的是其消失或削弱能引起整个群落和生态系统发生根本性的变化的物种,它是优势种或建群种中的一部分。 15、生态价:生态每种生物对一种生态因子都有一个生态学上的最低点和一个最高点,最高点和最低点之间的范围称为生态幅或生态价。 16、初级生产:生态系统中绿色植物通过光合作用,吸收和固定太阳能,从无机物合成、转 化成复杂的有机物。由于这种生产过程是生态系统能量贮存的基础阶段,因此,绿色植物的 这种生产过程称为初级生产(primary productio n),或第一性生产。 17、适应:① 生物对环境压力的调整过程。 ②生物所具有的有助于生存和生殖的任何遗传特征。

陈阅增普通生物学笔记

普通生物学笔记(陈阅增) 普通生物学讲课文本 绪论 思考题:1.生物的分界系统有哪些?2.生物的基本特征是什么?3.什么是动物学?4.什么是细胞学说?其意义是什么?5.学习和研究动物学有哪些方法? 一、生物分界:物质世界是由生物和非生物二部分组成。 非生物界:所有无生命的物质,如:空气、阳光、岩石、土壤、水等。 生物界:一切有生命的生物。 非生物界组成了生物生存的环境。生物和它所居住的环境共同组成了生物圈。 生物的形式多样,种类繁多,各种生物在形态结构、生活习性及对环境的适应方式等方面有着千差万别,变化无穷,共同组成了五彩缤纷而又生机勃勃的生物界。 最小的生物为病毒,如细小病毒只有20nm纳米,它是一种只有1600对核苷酸的单一DNA链的二十面体,没有蛋白膜。最大的有20-30m长的蓝鲸,重达100多吨。 (一)生物的基本特征 1.除病毒以外的一切生物都是由细胞组成。构成生物体的基本单位是细胞。 2.生物都有新陈代谢作用。 同化作用或称合成代谢:是指生物体把从食物中摄取的养料加以改造,转换成自身的组成物质,并把能量储藏起来的过程。 异化作用或称分解代谢:是指生物体将自身的组成物质进行分解,并释放出能量和排出废物的过程。 3.生物都有有生长、发育和繁殖的现象。 任何生物体在其一生中都要经过从小到大的生长过程。在生长过程中,生物的形态结构和生理机能都要经过一系列的变化,才能从幼体长成与亲代相似的

个体,然后逐渐衰老死亡。这种转变过程总称为发育。当生物体生长到一定阶段就能产生后代,使个体数目增多,种族得以绵延。这种现象称为繁殖。 4.生物都有遗传和变异的特性:生物在繁殖时,通常都产生与自身相似的后代,这就是遗传。但两者之间不会完全一样,这种不同就是变异。生物具有遗传性才能保持物种的相对稳定和生物类型间的区别。生物的变异性才能导致物种的变化发展。 (二)动物的基本特征:动物自身不能将无机物合成有机物,只能通过摄取食物从外界获得自身建设所需的营养。这种营养方式称为异养。 (三)生物的分界:地球上生活着的生物约有200万种,但每年还有许多新种被发现,估计生物的总数可达2000万种以上。对这么庞大的生物类群,必须将它们分门别类进行系统的整理,这就是分类学的任务。 1.二界分类:公元前300多年,古希腊亚里士多德将生物分为二界:植物界、动物界。 2.三界分类:1886年德国生物学家海克尔(E.Haeckel)提出三界分类法: 原生生物界:单细胞动物、细菌、真菌、多细胞藻类;植物界;动物界。 3.四界分类:由美国人科帕兰(Copeland)提出。 原核生物界:包括蓝藻和细菌、放线菌、立克次氏体、螺旋体、支原体等多种微生物。 原生生物界:包括原生动物和单细胞的藻类。动物界。植物界。 4.五界分类:1959年美国学者魏泰克(Whitaker)提出五界分类法: 原核生物界:细菌、立克次体、支原体、蓝藻。特点:环状DNA位于细胞质中,不具成形的细胞核,细胞器无膜,为原核生物。细胞进行无丝分裂。 原生生物界:单细胞的原生动物、藻类。特点:细胞核具核膜的单细胞生物,细胞内有膜结构的细胞器。细胞进行有丝分裂。

专插本生态学笔记

一、生态学及其发展 一.生态学的定义 1.生态学(ecology)是研究生物与周围环境和无机环境相互关系及机理的科学。(E.Haeckel,1866) 它包括4个层次的内容: 生态学的定义还有很多: 生态学是研究生物(包括动物和植物)怎样生活和它们为什么按照自己的生活方式生活的科学。(埃尔顿,1927) 生态学是研究有机体的分布和多度的科学。(Andrenathes,1954) 生态学是研究生态系统的结构与功能的科学。(E.P.Odum,1956) 生态学是研究生命系统之间相互作用及其机理的科学。(马世骏,1980) 生态学是综合研究有机体、物理环境与人类社会的科学。(E.P.Odum,1997) 二.生态学的研究对象 由于生态学研究对象的复杂性,它已经发展成为一个庞大的学科体系,根据研究对象的层次及研究性质等,可以将研究对象划分为以下大小不同的组织层次: 生物系统的层次:基因系统——细胞系统——器官系统——有机体系统——种群系统——群落系统——生态系统 以上层次也是现代生物学研究对象的不同层次。 随着科学技术的发展和人类认识水平的提高, 生态学所研究的内容已向宏观和微观两个方面发展 在微观方面,向器官、细胞、细胞器、分子水平发展,出现了分子生态学、化学生态学等微观生态学分支;在宏观方面,由个体、种群、群落和生态系统水平, 向景观和生物圈方向发展, 出现了景观生态学和全球生态学。传统生态学属于宏观生物学的范畴,普通生态学的研究对象通常包括以下几个层次: ⑴个体(有机体)——经典生态学研究的最低层次。 按其研究的大部分问题来说,当前个体生态学应属于“生理生态学”的范畴,这是生理学与生态学交界的边缘学科。近代该范畴的研究更偏重于:个体从环境中获得资源和资源分配给维持、生殖、修复、保卫……等方面的进化和适应对策上。 另有“生态生理学”:偏重于对各种环境条件的生理适应及机制上。但更多的学者将两者视为同义。 个体生态学在上世纪六十年代以前是植物生态学的主体之一。 ⑵种群(population)——是在同一时期内占有一定空间的同种生物个

普通生态学复习资料

普通生态学复习资料 这份资料基于本人上课所做的笔记以及最后一节课上朱明德老师所给的重点和 本人的理解整理而成,并不是一份十分全面的复习参考资料,仅供参考。千万 不要过分依赖此复习资料,平时认真听课、勤做笔记、善于思考才是取得高分 的不二法门! 生态学:生态学是研究有机体及其周围环境相互作用关系,以及与社会、经济、人类相互作用关系的一门生物学分支学科。 生态学有方法论和层次观。 生态学的4个组织层次:个体、种群、群落、生态系统。 生态学的5个研究方法:野外考察、实验室分析、模拟实验、网络分析、多方 面整合。 生物圈:是指地球上的全部生物和一切适合于生物栖息的场所,它包括岩石圈 的上层、全部水圈和大气圈的下层。 环境:是指某一特定生物体或生物群体周围一切的总和,包括空间及直接或间 接影响该生物体或生物群体生存的各种因素。 大环境:大环境是指地区环境、地球环境和宇宙环境。 大气候:大环境中的气候称为大气候,是指离地面1.5m以上的气候,是由大范围因素所决定。 小环境:是指对生物有直接影响的邻接环境,即指小范围内的特定栖息地。 生态因子:是指环境要素中对生物起作用的因子,如光照、温度、水分、氧气、二氧化碳、食物和其他生物等。 生境:所有生态因子构成生物的生态环境,特定生物体或群体的栖息地的生态 环境称为生境。 生态因子的作用特征: ○1综合作用:环境中的每个生态因子不是孤立的、单独的存在,总是与其他因子相互联系、相互影响、相互制约的。因此,任何一个因子的变化,都会不同 程度地引起其他因子的变化,导致生态因子的综合作用。 ○2主导因子作用:对生物起作用的众多因子并非等价的,其中有一个是起决定性作用的,它的改变会引起其他生态因子发生变化,使生物的生长发育发生变化,这个因子称主导因子。

景观生态学知识点

1、景观的美学概念,景观与英语中的风景(scenery)一词相当,与汉语中的“风景”、“景色”、“景致”的含义一致。都是视觉美学意义上的概念。 2、景观的地理学概念,地理学上将景观作为地球表面气候、土壤、地貌、生物各种成分的综合体,具有地表可见景象的综合与某个特定区域综合体的双重含义。 3、景观的生态学概念,景观是指由一组以类似方式重复出现的、相互作用的生态系统所组成的异质性区域。 4、景观的这三方面的含义有历史上的联系,从直观的美学观,到地理上的综合观,又到景观生态学上异质地域观逐步发展而来的。 5、对于园林规划设计工作者而言,首先应注意景观的美学价值,地理景观特征;其次,要重视景观格局形成的生态原因,科学深入的认识规划区的生态特征,在园林规划设计中,不仅要注意观赏上的美学要求,也要充分考虑到景观结构在生态学上的合理性。 景观地理学概念——洪堡德 景观生态学创始人——特罗尔 景观的基本特征 1、景观是由异质性的土地单元组成的镶嵌体,即生态系统的聚合。 2、景观由相互作用和相互影响的生态系统组成 3、景观是处于生态系统之上、区域之下的中等尺度的空间实体 4、景观具有一定自然和文化特征 5、具有一定的气候和地貌特征 6、与一定的干扰状况的聚合相对应 渗透理论用以描述胶体和玻璃类物质的物理特性,并逐渐成为研究流体在聚合材料媒介中运动的理论基础 斑块的类型环境资源斑块、干扰斑块、残存斑块、引入斑块 按廊道的结构和性质划分线状廊道带状廊道河流廊道 廊道的功能资源功能通道功能屏障功能、防护功能美学功能 廊道的双重性质 1、廊道将景观不同部分隔离开。 2、廊道又将景观不同部分连接起来,这两方面的性质是矛盾的 基质的判定标准 1、相对面积通常基质的面积超过现存的任何其他景观要素类型的总面积,或者说基质的面积应占总面积的50%以上,在异质性很强的镶嵌景观中,可能任何一种要素的面积都在50%以下,这时就应考虑其他判别标准。 2、连通性假如景观的某一要素连接的较为完好,并环绕所有其他现存景观要素时,可以认为这一要素是基质。因此,基质是景观中连通性最好的景观要素。 3、动态控制当相对面积和连通性两个因素难以对景观基质进行判别时,考察某种景观对当地生态环境的控制作用尤为重要。动态控制是一个功能指标,即景观要素对景观动态的控制程度。 孔隙度是景观内具有闭合边界的斑块密度的量度,指单位面积上具有闭合边界的斑块数目景观边界是在特定时空尺度下相对均质的景观要素之间所存在的异质性过渡区域。 景观边界的特征异质性动态性宏观性尺度性 生态交错带是相邻生态系统之间的过渡带,往往也是尺度较大的不同景观类型之间的边界地带,如沙漠边缘、海陆交错带、山地与平原的交错地带等。

中国人民大学生态学考研 招生人数 参考书 报录比 复试分数线 考研真题 考研经验 招生简章 大纲 考研笔记

爱考机构 考研-保研-考博高端辅导第一品牌https://www.wendangku.net/doc/7116677828.html,

环境学院生态学专业招生目录 专业方向科目一科目二科目三科目四复试笔试科 目 备注 020106- 人口、资源与环境经济学00-无 101-思想 政治理论 201英 语一 303-数 学三 802-经济 学综合 环境政策与 环境管理,外 语 经济学综 合含政治 经济学、微 观经济学、 宏观经济 学。 070503- 地图学与地理信息系统00-无 101-思想 政治理论 201英 语一 614-地 理信息 系统 830-遥感 概论 地理空间信 息技术综合, 外语 0713Z1- 生态学00-无 101-思想 政治理论 201英 语一或 202俄 语或 203日 语 615-生 态学 831-普通 生物学 基础生态学, 外语 083001- 环境科学00-无 101-思想 政治理论 201英 语一或 202俄 语或 203日 语 302-数 学二 832-环境 科学与工 程综合 环境科学综 合(无机化学 或环境管 理),外语 科目四含 三部分内 容:环境微 生物学,有 机化学,环 境规划与 管理。适合 于环境、化 学、化工、 生物等相 关学科的 考生报考。 083002- 环境工程00-无 101-思想 政治理论 201英 语一或 202俄 语或 203日 语 302-数 学二 832-环境 科学与工 程综合 环境工程学 综合(含水处 理工程、固体 废弃物处理 处置、环境 学),外语 科目四含 三部分内 容:环境微 生物学,有 机化学,环 境规划与 管理。适合 于环境、化 学、化工、

生物等相 关学科的 考生报考。0830J1- 环境政策与管理00-无 101-思想 政治理论 201英 语一 302-数 学二 832-环境 科学与工 程综合 公共管理与 环境政策(含 公共管理学、 环境政策理 论与方法), 外语 科目四含 三部分内 容:环境微 生物学,有 机化学,环 境规划与 管理。适合 于环境、化 学、化工、 生物等相 关学科的 考生报考。 1203Z1- 自然资源管理00-无 101-思想 政治理论 201英 语一 303-数 学三 834-经济 学(宏观、 微观) 资源环境管 理综合,外语 资源环境 管理综合 含资源环 境法规政 策分析、产 业资源环 境政策。 环境学院生态学专业简介 本专业属于生态学一级学科硕士点。主要的研究方向包括生态科学、生态经济与管理、生态工程与技术等。学科专业与我国创建资源节约型、环境友好型的生态文明社会的形势紧密结合,以生态学基本理论为基础,着重开展生态学、经济学、管理学、环境科学与工程等自然科学与人文社会科学的多学科综合研究。本学科同政府主管部门、国际组织和学术机构建立了紧密合作联系,建立了可供教学与实践的实验室和多个实习基地,具备完整的人才培养条件。毕业的研究生主要到与生态、环境保护相关部门从事科研、教学和行政管理等工作,或赴国内外知名大学与科研机构继续深造。 本专业现有博士生导师2人、硕士生导师4人,都具有博士学位,多人有出国留学或进修的经历。 1.专业概况 生态学专业系理学——生物学(一级学科)下设的二级学科,学制3年。生态学硕士点于2003年批准建立,2004年开始招生。是中国人民大学新建的理工科学科,也是中国人民大学目前唯一一个生物学学科。特聘我国著名生态学专家、中国科学院工程院士李文华研究员为本学科的学术带头人。 专业主要针对区域生态学、植被生态学、生态系统管理等领域,应用现代生态学原理和方法,结合国际及国内生态学研究的前沿与热点问题,在区域生态和生态系统管理等领域,开展广泛的自然科学与人文社会科学多学科综合交叉研究。不断充实、完善生态学基本理论和实践内容,研究我国重大生态环境建设与保护理论,解决实践中存在的问题。 目前,本专业共承担各类研究项目30余项,其中973二级课题1项,国家科技支撑项目子专题1项,财政部林业行业重大专项子专题1项,国家自然科学基金面上项目1项,教育部重点项目2项,国家林业局项目1项、中国环科院项目1项。出版教材1部,专著5部,发表论文100余篇。

相关文档