文档库 最新最全的文档下载
当前位置:文档库 › (整理)实验六移位寄存器的设计.

(整理)实验六移位寄存器的设计.

(整理)实验六移位寄存器的设计.
(整理)实验六移位寄存器的设计.

实验六移位寄存器的设计

一、实验目的

1、掌握中规模4位双向移位寄存器逻辑功能及使用方法。

2、熟悉移位寄存器的应用—实现数据的串行、并行转换和构成环形计数器。

二、实验预习要求

1、复习有关寄存器及串行、并行转换器有关内容。

2、查阅CC40194、CC4011及CC4068 逻辑线路。熟悉其逻辑功能及引脚排列。

3、在对CC40194进行送数后,若要使输出端改成另外的数码,是否一定要使寄存器清零?

4、使寄存器清零,除采用R C输入低电平外,可否采用右移或左移的方法?可否使用并行送数法?若可行,如何进行操作?

5、若进行循环左移,图6-4接线应如何改接?

6、画出用两片CC40194构成的七位左移串 /并行转换器线路。

7、画出用两片CC40194构成的七位左移并 /串行转换器线路。

三、实验设备及器件

1、+5V直流电源

2、单次脉冲源

3、逻辑电平开关

4、逻辑电平显示器

5、CC40194×2(74LS194)CC4011(74LS00) CC4068(74LS30)

四、设计方法与参考资料

1、移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。

本实验选用的4位双向通用移位寄存器,型号为CC40194或74LS194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图6-1所示。

其中D0、D1、D2、D3为并行输入端;Q0、Q1、Q2、Q3为并行输出端;S R为右移串行输

C为直接无条件清零端;

入端,S L为左移串行输入端;S1、S0为操作模式控制端;R

精品文档

精品文档

图6-1 CC40194的逻辑符号及引脚功能

CP 为时钟脉冲输入端。

CC40194有5种不同操作模式:即并行送数寄存,右移(方向由Q 0→Q 3),左移(方向由Q 3→Q 0),保持及清零。

S 1、S 0和R C 端的控制作用如表6-1。

2、移位寄存器应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累

加器;可用作数据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。本实验研究移位寄存器用作环形计数器和数据的串、并行转换。

(1) 环形计数器

把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位,

如图6-2所示,把输出端 Q 3 和右移串行输入端S R 相连接,设初始状态Q 0Q 1Q 2Q 3=1000,则在时钟脉冲作用下Q 0Q 1Q 2Q 3将依次变为0100→0010→0001→1000→……,如表6-2所示,可见它是一个具有四个有效状态的计数器,这种类型的计数器通常称为环形计数器。图6-2 电路可以由各个输出端输出在时间上有先后顺序的脉冲,因此也可作为顺序脉冲发生器。 表6-2

图6-2 环形计数器

如果将输出Q O与左移串行输入端S L相连接,即可达左移循环移位。

(2)实现数据串、并行转换

①串行/并行转换器

串行/并行转换是指串行输入的数码,经转换电路之后变换成并行输出。

图6-3是用二片CC40194(74LS194)四位双向移位寄存器组成的七位串/并行数据转换电路。

图6-3 七位串行/ 并行转换器

电路中S0端接高电平1,S1受Q7控制,二片寄存器连接成串行输入右移工作模式。Q7是转换结束标志。当Q7=1时,S1为0,使之成为S1S0=01的串入右移工作方式,当Q7=0时,S1=1,有S1S0=10,则串行送数结束,标志着串行输入的数据已转换成并行输出了。

串行/并行转换的具体过程如下:

转换前,R C端加低电平,使1、2两片寄存器的内容清0,此时S1S0=11,寄存器执行并行输入工作方式。当第一个CP脉冲到来后,寄存器的输出状态Q0~Q7为01111111,与此同时S1S0变为01,转换电路变为执行串入右移工作方式,串行输入数据由1片的S R端加入。随着CP脉冲的依次加入,输出状态的变化可列成表6-3所示。

由表6-3可见,右移操作七次之后,Q7变为0,S1S0又变为11,说明串行输入结束。这时,串行输入的数码已经转换成了并行输出了。

当再来一个CP脉冲时,电路又重新执行一次并行输入,为第二组串行数码转换作好了准备。

②并行/串行转换器

并行/串行转换器是指并行输入的数码经转换电路之后,换成串行输出。

图6-4是用两片CC40194(74LS194)组成的七位并行/串行转换电路,它比图6-3多了两只与非门G1和G2,电路工作方式同样为右移。

精品文档

实验六 存储过程和触发器

实验六存储过程和触发器(2学时) 1.实验目的 (1)掌握通过SQL Server管理平台和Transact-SQL语句CREATE PROCEDURE创建存储过程的方法和步骤。 (2)掌握使用Transact-SQL语句EXECUTE执行存储过程的方法。 (3)掌握通过SQL Server管理平台和Transact-SQL语句CREATE TRIGGER创建触发器的方法和步骤。 (4)掌握引发触发器的方法。 (5)掌握事务、命名事务的创建方法,了解不同类型的事务的处理情况。 2.实验内容 (1)输入以下T-SQL代码,创建一个利用流控制语句的存储过程letters_print,该存储过程能够显示26个小写字母。 CREATE PROCEDURE letters_print AS DECLARE @count int SET @count=0 WHILE @count<26 BEGIN PRINT CHAR(ASCII('a')+ @count) SET @count=@count +1 END 使用EXECUTE命令执行letters_print存储过程。 (2)输入以下代码,创建存储过程stu_info,执行时通过输入姓名,可以查询该姓名对应的学生的各科成绩。 CREATE PROCEDURE stu_info @name varchar(40) AS SELECT a.no,name,cno,grade FROM Student a INNER JOIN grade b ON a.no= b.sno WHERE name= @name 使用EXECUTE命令执行存储过程stu_info,其参数值为“马东”。 如果存储过程stu_info执行时没有提供参数,要求能按默认值查询(设姓名为“刘卫平”),如何修改该过程的定义? (3)使用student_db数据库中的Student表、course表、grade表。 ①创建一个存储过程stu_grade,查询学号为0001的学生的姓名、课程名称、

数字电路实验6移位寄存器的应用

实验报告 课程名称:数字电路实验第 6 次实验实验名称:移位寄存器的应用 实验时间:2012 年 5 月7 日 实验地点:组号 学号: 姓名: 指导教师:评定成绩:

《数字电路与系统设计》实验指导书 1 实验六移位寄存器应用 一、实验目的: 1.了解寄存器的基本结构。 2.掌握74LS194移位寄存器的逻辑功能。 3.学习中规模移位寄存器的应用。 二、实验仪器: 三、实验原理: 数据的存储和移动是数字信号的一种常见运作,能实现这种动作的是数据寄存器和移位寄存器,它们同计数器一样也是数字电路中不可缺少的基本逻辑器件。数据寄存器有两类结构,一类是由多个钟控D锁存器组成的,另一类是由多个钟控D触发器组成的。数据寄存器的数据的输入和输出都是并行的。移位寄存器的结构也是由多个触发器级联的,其数据不仅可以存储,还可以左移或右移。移位寄存器的数据的输入和输出都有串行和并行之分,数据的动作受公共时钟信号的控制,也就是同步工作的。 4位双向移位寄存器74LS194A为TTL双极型数字集成逻辑电路,外形为双列直插,它具有清除、左移、右移、并行送数和保持等多种功能,是一种功能比较全的中规模移位寄存器,图6-1是引脚排列图,逻辑符号如图6-2所示,74LS194A的功能表见表6-1。

《数字电路与系统设计》实验指导书 2 移位寄存器的最直接应用是数据的串/并转换,图6-3和图6-4就是简单的实例。在图6-3中M1M0=01,表示数据可以右移,首先清零端输入一个负脉冲,使Q1Q2Q3Q4=0,在单脉冲CP的作用下,右移输入端D R依次串入数据,4个CP后就可在4个输出端Q1Q2Q3Q4得到并行数据。在图6-4中首先M1M0=11,在单脉冲CP的作用下,4位数据并行输入到移存器,然后使M1M0=10,表示数据可以左移,左移输入端D L=1时,在单脉冲CP的作用下,数据依次从Q1端输出,空缺位被1(D L)填补。4个CP 后,原4位并入的数据全被移出,这时候Q1Q2Q3Q4=1111。

8位移位寄存器的电路设计与版图实现

8位移位寄存器的电路设计与版图实现 摘要 电子设计自动化,缩写为EDA,主要是以计算机为主要工具,而Tanner EDA则是一种在计算机windows平台上完成集成电路设计的一种软件,基本包括S-Edit,T-Spice,W-Edit,L-Edit与LVS等子软件,其S-Edit以及L-Edit为常用软件,前者主要实现电路设计,后者主要针对的是已知电路的版图绘制,而T-Spice主要可实现电路图及版图的仿真,可以用Tanner EDA实现电路的设计布局以及版图实现等一系列完整过程。本文用Tanner EDA工具主要设计的是8位移位寄存器,移位寄存器主要是用来实现数据的并行和串行之间的转换以及对数据进行运算或专业处理的工具,主要结构构成是触发器,触发器是具有储存功能的,可以用来储存多进制代码,一般N 位寄存器就是由N个触发器构成,移位寄存器工作原理主要是数据在其脉冲的作用下实现左移或者右移的效果,输入输出的方式表现为串行及并行自由组合,本设计就是在Tanner EDA的软件平台上进行对8位移位寄存器的电路设计仿真,再根据电路图在专门的L-Edit 平台上完成此电路的版图实现,直至完成的结果和预期结果保持一致。 关键词:Tanner EDA;L-Edit;移位寄存器,S-Edit

8 bits shift register circuit design and layout Abstract Electronic design automation,referred to as EDA,it is based on computers as the main tool,and Tanner EDA is a kind of software that complete the integrated circuit design on Windows platforms.Its Sub-Softwares include S-Edit,T-Spice,W-Edit,L-Edit and LVS and so on.S-Edit and L-Edit are commonly used software,S-Edit is primarily designed to achieve circuit,the latter is aimed primarily known circuit layout drawing,T-Spice can achieve schematic and layout simulation.We can achieve layout of the circuit design and a series of complete process layout used Tanner EDA tools.In this paper, Tanner EDA tools are mainly designed an 8-bit shift register.The shift register is mainly used for data conversion between parallel and serial, and the data processing tool operation or professional,its main structure is the trigger composition,flip-flop is a storage function,it can be used to store more hexadecimal code,In general N-bits register is composed of N trigger.Working principle of the shift register data under the action of the pulse, mainly the effect of the shift to the left or right,input and output of the way of serial and parallel free combination.This design is in Tanner on the EDA software platform to 8 bits shift register circuit design and simulation,then according to the circuit diagram on special L - Edit platform to complete the circuit layout implementation,until the finish is consistent with the results and expected results. Keywords:Tanner EDA;L-Edit;Shift register,S-Edit

实验六 MySql存储过程

实验六MySql存储过程 一、实验目的 1、熟悉MySql的存储过程 二、实验内容 1、建立一张学生表,属性有学号、姓名、年龄三个字段。 2、建立一个存储过程,实现学生的全查询 3、分别用IN 和OUT实现姓名的调用 4、声明一个变量,把变量加1,再把变量加入到学生表的学号字段中。 5、建立一个存储过程,外部调用这个存储过程,当外部传入的值是0时,则在学生表中插入一个学号是17的学生,如果是1时,则在学生表中插入一个学号是18的学生,如果都不是,则在学生表中插入一个学号是19的学生. 6、建立一个存储过程,做一个循环语句,循环插入5个学生。(至少用三种循环的存储过程方法) 三、试验结果截图 1.建立一张学生表,属性有学号、姓名、年龄三个字段。 2.建立一个存储过程,实现学生的全查询

3.分别用IN 和OUT实现姓名的调用 4.声明一个变量,把变量加1,再把变量加入到学生表的学号字段中。

5.建立一个存储过程,外部调用这个存储过程,当外部传入的值是0时,则在学生表中插入一个学号是17的学生,如果是1时,则在学生表中插入一个学号是18的学生,如果都不是,则在学生表中插入一个学号是19的学生.

6建立一个存储过程,做一个循环语句,循环插入5个学生。(至少用三种循环的存储过程方法) 所有代码: 1. create table stu( stuno int, stuna varchar(20), stuage int ); insert into stu values(001,'zhangsan',22);

insert into stu values(002,'lisi',23); insert into stu values(003,'wangwu',23); insert into stu values(004,'maliu',24); insert into stu values(005,'zhaoqi',25); insert into stu values(006,'gaoba',23); insert into stu values(007,'ddddd',22); insert into stu values(008,'ttttt',21); 2. create procedure select_all() select * from stu; 3. delimiter // create procedure searchno( in no int, out na varchar(20), out age int ) begin select stuna from stu where stuno=no into na; select stuage from stu where stuno=no into age; end // delimiter ; call searchno(n,@na,@age); select @na,@age; 4. delimiter // create procedure noupdate( in n int) begin update stu set stuno=stuno+n; end // delimiter ; 5. delimiter // create procedure addstu( in sno int ) begin case sno when 0 then insert into stu values(17,'no17',20); when 1 then insert into stu values(18,'no18',20); else insert into stu values(19,'no19',20); end case; end //

移位寄存器及其应用

移位寄存器及其应用 一、实验目的 1、掌握移位寄存器CC40194的逻辑功能与使用方法, 2、了解移位寄存器的使用—实现数据的串行,并行转换和构成环形计数器; 3、进一步掌握用示波器观察多个波形时序关系的方法。 二、实验仪器及材料 1. 数电实验箱、 双踪示波器、 数字万用表。 2. 元件:CC40194两片、 74HC125两片, 74LS20一片。 三、实验原理 1、移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下 依次左移或右移。既能左移又能右移的称为双向移位寄存器,只需要改变左右移的控制信号便可实现双向移位要求。根据寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。本实验选用的4位双向通用移位寄存器,型号为74LS194或CC40194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图所示: 2、移位寄存器应用很广,可构成移位寄存器型计数器、顺序脉冲发生器和串行累加器;可用作数 据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。 (1)环形计数器 把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位,如下图所示

(2)实现数据串、并转换 1、串行/并行转换器串行/并行转换是指串行输入的数据,经过转换电路之后变成并行输出。下面是用两片74LS194构成的七位串行/并行转换电路。 2、并行/串行转换是指并行输入的数据,经过转换电路之后变成串行输出。对于中规模的集成移位寄存器,其位数往往以4 位居多,当所需要的位数多于4位时,可以把几片集成移位寄存器用级连的方法来扩展位数。 四、实验内容 1、按照以下实验电路图测试移位寄存器CC40194的逻辑功能。Q0~Q3接LED 显示,CP 接手动单次脉冲或1Hz 正方波,M1、M0接数据开关 实验得到的逻辑功能表为 2、参照上图组装移位寄存器。Q0~Q3接LED 显示,选单次手动脉冲或1Hz 正方波作为CP 输入,观察数据的循环过程。将CP 改为1kHz 的正方波,用示波器观察并记录CP 、Q0~Q3的波形。 电路图如下 输入为1kHz 及输出端Q 0、Q 1 Q 2 Q 3波形的波形图: (3)设计下图所示的串行移位器,然后组装、测试电路的逻辑功能,三态门74HC125的输

EDA课程设计——移位寄存器的设计与实现

河南科技大学 课程设计说明书 课程名称 EDA技术与应用 题目移位寄存器的设计与实现 学院 班级 学生姓名 指导教师 日期

EDA技术课程设计任务书 班级:姓名:学号: 设计题目:移位寄存器的设计与实现 一、设计目的 进一步巩固理论知识,培养所学理论知识在实际中的应用能力;掌握EDA设计的一般方法;熟悉一种EDA软件,掌握一般EDA系统的调试方法;利用EDA软件设计一个电子技术综合问题,培养VHDL编程、书写技术报告的能力。为以后进行工程实际问题的研究打下设计基础。 二、设计任务 根据计算机组成原理中移位寄存器的相关知识,利用VHDL语言设计了三种不同的寄存器:双向移位寄存器、串入串出(SISO)移位寄存器、串入并出(SIPO)移位寄存器。 三、设计要求 (1)通过对相应文献的收集、分析以及总结,给出相应课题的背景、意义及现状研究分析。 (2)通过课题设计,掌握计算机组成原理的分析方法和设计方法。 (3)学习按要求编写课程设计报告书,能正确阐述设计和实验结果。 (4)学生应抱着严谨认真的态度积极投入到课程设计过程中,认真查阅相应文献以及实现,给出个人分析、设计以及实现。 四、设计时间安排 查找相关资料(1天)、设计并绘制系统原理图(2天)、编写VHDL程序(2天)、调试(2天)、编写设计报告(2天)和答辩(1天)。 五、主要参考文献 [1] 江国强编著. EDA技术与实用(第三版). 北京:电子工业出版社,2011. [2] 曹昕燕,周凤臣.EDA技术实验与课程设计.北京:清华大学出版社,2006.5 [3] 阎石主编.数字电子技术基础.北京:高等教育出版社,2003. [4] Mark Zwolinski. Digital System Design with VHDL.北京:电子工业出版社,2008 [5] Alan B. Marcovitz Introduction to logic Design.北京:电子工业出版社,2003 指导教师签字:年月日

数据库实验报告六_存储过程

HUNAN UNIVERSITY 数据库 实验报告 学生姓名 学生学号 专业班级 指导老师 2017 年5月24日

SELECT COUNT(*)INTO more90 FROM sc WHERE cno = countcno AND grade >= 90; /*将结果存入新表sumScore中*/ create table sumScore( scorestage char(10), number smallint); insert into sumScore values('x<60', less60); insert into sumScore values('60<=x<70', b60a70); insert into sumScore values('70<=x<80', b70a80); insert into sumScore values('80<=x<90', b80a90); insert into sumScore values('x>=90', more90); END$$ call sumScore(); /*调用上述存储过程*/ 首先创建存储过程,然后再调用存储过程。结果如下: (上述结果图截自Navicat软件) 可以看到,在stuinfo中新建了一个基本表sumscore,表中内容是数学课程成绩的各分数段的人数。 2、统计任意一门课的平均成绩。 代码如下: DELIMITER $$ CREATE PROCEDURE `scoreAvg`() BEGIN declare curname char(40) default null; /*临时存放课程名*/ declare curcno char(4) default null; /*临时存放课程号*/ declare curavg float; /*临时存放平均成绩*/ declare mycursor cursor for /*定义游标*/ select cno, cname from course;

实验六移位寄存器的设计

实验六移位寄存器的设计 一、实验目的 1、掌握中规模4位双向移位寄存器逻辑功能及使用方法。 2、熟悉移位寄存器的应用—实现数据的串行、并行转换和构成环形计数器。 二、实验预习要求 1、复习有关寄存器及串行、并行转换器有关内容。 2、查阅CC40194、CC4011及CC4068 逻辑线路。熟悉其逻辑功能及引脚排列。 3、在对CC40194进行送数后,若要使输出端改成另外的数码,是否一定要使寄存器清零? 4、使寄存器清零,除采用R C输入低电平外,可否采用右移或左移的方法?可否使用并行送数法?若可行,如何进行操作? 5、若进行循环左移,图6-4接线应如何改接? 6、画出用两片CC40194构成的七位左移串 /并行转换器线路。 7、画出用两片CC40194构成的七位左移并 /串行转换器线路。 三、实验设备及器件 1、+5V直流电源 2、单次脉冲源 3、逻辑电平开关 4、逻辑电平显示器 5、CC40194×2(74LS194)CC4011(74LS00) CC4068(74LS30) 四、设计方法与参考资料 1、移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。 本实验选用的4位双向通用移位寄存器,型号为CC40194或74LS194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图6-1所示。 其中D0、D1、D2、D3为并行输入端;Q0、Q1、Q2、Q3为并行输出端;S R为右移串行输 C为直接无条件清零端; 入端,S L为左移串行输入端;S1、S0为操作模式控制端;R

实验十七、移位寄存器74164的逻辑功能测 试

实验十七、移位寄存器74164的逻辑功能测 试 一、实验目的 1、掌握中规模8位移位寄存器逻辑功能。 2、认识74LS164及其引脚封装。 二、实验预习要求 1、复习有关寄存器的内容。 2、查阅74LS164及逻辑电路,熟悉其逻辑功能及引脚排 列。 三、实验设备 1、+5V直流电源 2、单次脉冲源 3、逻辑电平开关 4、DM74LS164 四、实验原理 1、移位寄存器是一个具有移位功能的寄存器,是指寄存器中锁存的代码能够在移位脉冲的作用下一次左移和右移。既能左移又能右移称为双向移位寄存器,只需要改变左、右移的控制信号可实现双向移位要求。根据移位寄存器取存信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。 本实验选用的8位移位寄存器,型号可为74LS164,其逻辑符号及引脚排列如图所示。 其中A、B为串行输入端;

CLR为异步清零端; QH—QA为输入端; CLK为移位脉冲输入端; 74164是一种串行输入、并行输出的器件,时钟高电平有效,没有时钟使能端,该器件用低电平复位 图1 74LS164的逻辑符号及引脚功能表其中QAO、QBO、QHO为在暂稳态输入条件建立之前QA、QB和QH相应的电平;QAN、QGN为在最近的时钟上升沿转换前QA或QG的电平,表示移一位。 移位寄存器应用很广,可构成移位寄存器型计数器;属虚脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换位并行数据,或把并行数据转换位串行数据等。 五、实验内容 1、测试74LS164的逻辑功能 按图所示接线,A、B、CLK分别接至逻辑电平显示输入端。QA—QH分别接至逻辑电平显示输出端。14脚接+5V电源、7脚接地。

实验6 存储过程创建与应用

学院:信息工程学院 专业:计算机科学与技术姓名:蔡启林 学号:201013432

实验六存储过程创建与应用 一、实验目的 使学生理解存储过程的概念,掌握创建存储过程的使用、执行存储过程和查看、修改、删除存储过程的方法。 二、实验内容 (1)利用企业管理器创建存储过程student_grade,要求实现如下功能:查询“学生-课程”数据库中每个学生各门功课的成绩,其中包括每个学生的sno,sname,cname,grade。 (2)利用查询分析器创建名为proc_exp的存储过程,要求实现如下功能:从sc表中查询某一学生考试平均成绩。 (3)修改存储过程proc_exp,要求实现如下功能:输入学生学号,根据该学生所选课程的平均成绩显示提示信息,即如果平均成绩在60分以上,显示“此学生综合成绩合格,成绩为XX分”,否则显示“此学生总和成绩不合格,成绩为XX分”。 (4)创建名为proc_add的存储过程,要求实现如下功能:向sc表中添加学生成绩记录。调用proc_add,向sc表中添加学生成绩记录。 (5)调用存储过程proc_exp,输入学生学号,显示学生综合成绩是否合格。 (6)删除刚刚创建的proc_add和proc_exp两个存储过程。 三、实验过程 要求个人填写(要求有文字描述和适当的图片辅助说明) (1)

查询执行结果为: (2) 查询执行结果为:

(3) 查询执行结果为: (4)

查询执行结果为: (5)

(6) 四、实验总结 要求个人填写(实验中发现的问题和解决的办法) 通过这次试验我更加深刻的理解了存储过程的概念,SQL Sever中的存储过程与其他编程语言中的函数类似,就像是函数的调用,包含执行各种数据库操作的语句,并且可以调用其他的存储过程,接受输入参数并以输出参数的格式向调用过程或批处理返回多个值,向调用过程或批处理返回状态值,以指明成功或失败,把实现一些功能的语句封装起来,需要使用的时候进行调用,效率很高使用起来方便。创建存储过程有一定的设计规则,实验课中涉及的规则比较少,比较简单,有些复杂的规则还需在练习中遇到问题才能认识到。存储过程的相关语句有创建create procedure,修改alter procedure,执行execute,删除drop procedure等等,大体的框架掌握了之后,主要就是写T-SQL语句以实现相应的功能。在创建的时候要注意输入和输出参数,我在定义的时候忘记了out导致错误。仔细检查改过错误后就解决了这个问题,这次实验让我了解了使用存储过程的好处,让我再以后的数据库学习中更好的熟练掌握这门课。

(整理)实验-寄存器.

实验十一移位寄存器及其应用 一、实验目的: 1、熟悉中规模4位双向移位寄存器的逻辑功能并掌握其使用方法; 2、熟悉移位寄存器的应用典例一——构成串行累加器和环形计数器。 二、实验原理: 1、移位寄存器是一种具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。既能左移又能右移的移位寄存器称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位。根据存取信息的方式不同移位寄存器可分为:串入串出、串入并出、并入串出、并入并出四种形式。 本实验选用的4位双向通用移位寄存器,型号为74LS194或CC40194,两者功能相同, S L为左移串行输入端;S1、S0为操作模式控制端;CR为异步清零端;CP为时钟脉冲输入端。 74LS194有5种不同操作模式:并行送数寄存,右移(方向由Q3至Q0),左移(方向由Q0至Q3),保持及清零。S1、S0和CR 端的控制作用如表11-1所示。表11-1

2、移位寄存器的应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。本实验主要研究移位寄存器用作环形计数器和串行累加器的线路连接及其原理。 (1)环形计数器 把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位,如图11-2所示,把输出端Q3和右移串行输入端S R相连接,设初始状态Q3Q2Q1Q0=1000,则在时钟脉冲的作用下Q3Q2Q1Q0将依次变为0100、0010、0001、1000-----,可见它是一个具有四个有效状态的计数器,这种类型的计数器通常称为环形计数器。图11-2电路可以由各个输出端输出在时间上有先后顺序的脉冲,因此也可作为顺序脉冲发生器。 (2)串行累加器 累加器是由移位寄存器和全加器组成的一种求和电路,它的功能是将本身寄存的数和另一个输入的数相加,并存放在累加器中。 图11-2 图11-3是由两个右向移位寄存器、一个全加器和一个进位触发器组成的串行累加器。 设开始时,被加数A=A N-1.....A O和加数B=B N-1......B O已分别存入N+1位累加数移位寄存器和加数移位寄存器。再设进位触发器D已被清零。 在第一个CP脉冲到来之前,全加器各输入、输出端的情况为:A N=A0,B N=B0,C N-1=0,S N=A0+B0+0=S0,C N=C0。 当第一个CP脉冲到来后,S0存入累加和移位寄存器的最高位,C0存入进位触发器D端,且两个移位寄存器中的内容都向右移动一位。全加器输出为S N=A1+B1+C0=S1,C N=C1。

6实验六 存储过程

实验六存储过程 一、实验目的 (1)掌握T-SQL流控制语句。 (2)掌握创建存储过程的方法。 (3)掌握存储过程的执行方法。 (4)掌握存储过程的管理和维护。 二、实验内容 1、创建简单存储过程 (1)创建一个名为stu_pr的存储过程,该存储过程能查询出051班学生的所有资料,包括学生的基本信息、学生的选课信息(含未选课同学的信息)。要求在创建存储过程前请判断该存储过程是否已创建,若已创建则先删除,并给出“已删除!”信息,否则就给出“不存在,可创建!”的信息。 if exists(select*from sysobjects where name='stu_pr'and type='P') begin drop procedure stu_pr print'已删除!' end else print'不存在,可创建!' create procedure stu_pr as select distinct*from Student s left join SC on s.Sno=SC.Sno left join Course c on https://www.wendangku.net/doc/7e12278602.html,o=https://www.wendangku.net/doc/7e12278602.html,o where Classno='051'

执行: exec stu_pr 2、创建带参数的存储过程 (1)创建一个名为stu_proc1的存储过程,查询某系、某姓名的学生的学号、姓名、年龄,选修课程名、成绩。系名和姓名在调用该存储过程时输入,其默认值分别为“%”与“林%”。执行该存储过程,用多种参数加以测试。 if exists(select*from sysobjects where name='stu_proc1'and type='P') begin drop procedure stu_proc1 print'已删除!' end else print'不存在,可创建!'

实验七移位寄存器及其应用

实验七移位寄存器及其应用 一、实验目的 1、掌握中规模4位双向移位寄存器逻辑功能及使用方法。 2、熟悉移位寄存器的应用—实现数据的串行、并行转换和构成环形计数器。 二、实验原理 1、移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。 本实验选用的4位双向通用移位寄存器,型号为CC40194或74LS194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图7-1所示。 图7-1 CC40194的逻辑符号及引脚功能 其中D0、D1、D2、D3为并行输入端;Q0、Q1、Q2、Q3为并行输出端;S R为右移串 C为直接无条件清零端;行输入端,S L为左移串行输入端;S1、S0为操作模式控制端;R CP为时钟脉冲输入端。 CC40194有5种不同操作模式:即并行送数寄存,右移(方向由Q0→Q3),左移(方向由Q3→Q0),保持及清零。 S1、S0和R C端的控制作用如表7-1。

2、移位寄存器应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。本实验研究移位寄存器用作环形计数器和数据的串、并行转换。 (1)环形计数器 把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位, 如图7-2所示,把输出端Q3和右移串行输入端S R 相连接,设初始状态Q0Q1Q2Q3=1000,则在时钟脉冲作用下Q0Q1Q2Q3将依次变为0100→0010→0001→1000→……,如表7-2所示,可见它是一个具有四个有效状态的计数器,这种类型的计数器通常称为环形计数器。图7-2 电路可以由各个输出端输出在时间上有先后顺序的脉冲,因此也可作为顺序脉冲发生器。 图7-2 环形计数器 如果将输出Q O与左移串行输入端S L相连接,即可达左移循环移位。 (2)实现数据串、并行转换 ①串行/并行转换器 串行/并行转换是指串行输入的数码,经转换电路之后变换成并行输出。 图7-3是用二片CC40194(74LS194)四位双向移位寄存器组成的七位串/并行数据转换电路。

实验6 数据库实验——存储过程和触发器

实验6 存储过程与触发器 一、实验目的 1、加深与巩固对存储过程与触发器概念的理解。 2、掌握触发器的简单应用。 3、掌握存储过程的简单应用。 二、实验内容 一)存储过程: 1、创建一存储过程,求l+2+3+…+n,并打印结果。 CREATE PROCEDURE addresult AS DECLARE @n int=10,/*最后一个数*/ @i int=0, @result int=0 /*结果*/ BEGIN WHILE(@i<=@n) BEGIN SET @result=@result+@i SET @i=@i+1 END PRINT'1+2+3+、、、+n的结果就是:' PRINT @result RETURN(@result) END GO 2.调用上面的addresult存储过程,打印l十2+3+…+10的结果。EXEC addresult

3、修改上述存储过程为addresult1,使得@n为输入参数,其具体值由用户调用此存储过程时指定。 CREATE PROCEDURE addresult1 @n int=10 /*最后一个数*/ AS DECLARE @i int=0, @result int=0 /*结果*/ BEGIN WHILE(@i<=@n) BEGIN SET @result=@result+@i SET @i=@i+1 END PRINT'1+2+3+、、、+n的结果就是:' PRINT @result RETURN(@result) END GO 4、调用上面修改后的addresult1存储过程,打印l+2+3+…+100的结果。 EXEC addresult1 100 5.修改上述存储过程为addresult2,将@n参数设定默认值为10,并改设@sum为输出参数,让主程序能够接收计算结果。

最新实验6-移位寄存器功能测试及应用-(实验报告要求)

实验六 移位寄存器功能测试及应用 --实验报告要求 一. 实验目的(0.5分) 1. 熟悉寄存器、移位寄存器的电路结构和工作原理。 2. 掌握中规模4位双向移位寄存器逻辑功能及使用方法。 3. 熟悉移位寄存器的应用。 二. 实验电路 D0、D1 、D2 、D3为并行输入端;Q0、Q1、Q2、Q3为并行输出端;SR 为右移串行输入端,SL 为左移串行输入端;S1、S0 为操作模式控制端;R C 为直接无条件清零端;CP 为时钟脉冲输入端。 三 图2 CC40194/74LS194 逻辑功能测试 图1 CC40194/74LS194的逻辑符号及引脚功能 图3 环形计数器

四. 实验原理(0.5分) 1.移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。 本实验选用的4位双向通用移位寄存器,型号为CC40194或74LS194,两者功能相同,可互换使用。 74LS194有5种不同操作模式:即并行送数寄存,右移(方向由Q0-->Q3),左移(方向由Q3→Q0),保持及清零。 2.移位寄存器应用很广,可构成移位寄存器型计数器:顺序脉冲发生器;串行累加器;可用数据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。本实验研究移位寄存器用作环形计数器和数据的串、并行转换。 (1)环行计数器 把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位。 (2)实现数据、并行转换器 a)串行∕并行转换器 串行∕并行转换器是指串行输入的数码,经转换电路之后变换成并行输出。 b)并行∕串行转换器 并行∕串行转换器是指并行输入的数码经转换电路之后,换成串行输出。 五. 实验内容与步骤(共1分) 1. 2.测试74LS194的逻辑功能(0.5分) (1)在实验箱上选取一个16P插座,按定位标记插好74LS194集成块。 (2)将实验挂箱上+5V直流电源接40194的16脚,地接8脚。S1、S0、SL、SR、D0、D1、D2、D3分别接至逻辑电平开关的输出插口;Q0、Q1、Q2、Q3接至发光二极管。CP端接单次脉冲源。 (3)改变不同的输入状态,逐个送入单次脉冲,观察寄存器输出状态,记录之。 a)清除:令=0,其它输入均为任意态,这时寄存器输出Q0、 Q1、 Q2 、Q3应均为0。清除后,至=1。 b)送数:令=S1=S0=1 ,送入任意4位二进制数,如D0、D1、D2、D3=1010,加CP脉冲,观察CP=0、CP由1→0、CP=1三种情况下寄存器输出状态的变化,观察寄存输出状态变化是否发生在CP脉冲的上升沿。 (c)右移:清零后,令=1, S1=0 S0=1,由右移输入端S R送入二进制数码如0100,由CP端连续加4个脉冲,观察输出情况,记录之。 (d)左移:先清零或予至,再令=1 S1=1,S0=0,由左移输入端S L送入二进制数码

实验六 存储过程和触发器

实验六存储过程和触发器 电子信息科学与技术罗滨志(120802010051) 一、实验目的 (1)理解存储过程和触发器的功能和特点; (2)学会使用Transact-SQL编写存储过程和触发器的方法; (3)学会如何使用管理平台创建存储过程和触发器; (4)掌握存储过程的创建、执行与删除; (5)掌握触发器的创建、修改和删除操作; (6)理解可以使用存储过程和触发器来维护数据完整性。 二、实验准备 (1)了解存储过程的基本概念和类型。 (2)了解创建存储过程的Transact —SQL语句的基本语法。 (3)了解查看、执行、修改和删除存储过程的基本语法。 (4)了解触发器的基本概念和类型。 (5)了解创建触发器的Transact —SQL语句基本用法。 (6)了解查看、修改和删除触发器的Transact —SQL语句的用法。 三、实验内容和步骤 1.创建存储过程stu_info,执行时通过输入姓名,可以查询该姓名对应的学生的各科成绩。SQL语句 create proc stu_info@sname varchar(20) as select grade from sc,student where student.sno=sc.sno and sname=@sname go 如图所示:

2. 使用studentsdb数据库中的student表,course表、sc表。 (1)创建一个存储过程stu_score,查询学号为2012001的学生的姓名,课程名称,分数。SQL语句 create proc stu_score@sno varchar(20) as select sname,cname,grade from sc,student,course where student.sno=sc.sno and https://www.wendangku.net/doc/7e12278602.html,o=https://www.wendangku.net/doc/7e12278602.html,o and student.sno=@sno go 如图所示:

计数器和移位寄存器设计仿真实验报告

实验四典型时序电路的功能测试与综合仿真报告 张智博 一.74LS290构成的24位计数器 方法:第一片74290的Q3与第二片的INB相连,R01,R02相连,INA,R91,R92悬空构成24位计数器。50Hz,5v方波电压源提供时钟信号,用白炽灯显示输出信号。 实验电路: 实验现象:

输出由000000变为000001,000010,000011,000100,001000,001001,001010,001011,001100,010001,010000,010010,010011,010100,011000,011001,011010,011011,011100,100000,100001,100010,100011,100100,最终又回到000000,实现一次进位。 二.74LS161构成的24位计数器 方法:运用多次置零法 用两片74LS161构成了24位计数器,两片计数器的时钟信号都由方波电压源提供,第一片芯片的Q3和第二片芯片的Q0通过与非门,构成两个74LS161的LOAD信号,第一片的CO接第二片的ENT,其他ENT和ENP接Vcc(5v)。输出接白炽灯。 电路图:

实验现象:以下为1—24的计数过程

三.74LS194构成的8位双向移位寄存器 方法:通过两片194级联,控制MA,MB 的值,来控制左右移动 实验电路由两片74LS194芯片构成。两个Ma 接在一起,两个Mb 接在一起,第一片的

Dr,第二片的Dl,分别通过开关接到Vcc(5v)上。第一片的Q3接到第二片的Dr,第二片的Q0接到第一片的Dl。8个输出端分别接白炽灯。 实验电路: 实验现象: 右移: 接通Ma,Dr后,D0到D7全部为0,白炽灯从00000000变为,,,,,,,,实现右移功能。

电子线路基础数字电路实验6 移位寄存器

实验六移位寄存器 一、实验目的 1、掌握中规模4位双向移位寄存器逻辑功能及使用方法。 2、熟悉移位寄存器的应用—实现数据的串行、并行转换和构成环形计数器。 二、实验原理 1、移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。 本实验选用的4位双向通用移位寄存器,型号为CC40194或74LS194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图9—1所示。 图9—1 CC40194的逻辑符号及引脚功能 其中D0、D1、D2、D3为并行输入端; Q0、Q1、Q2、Q3为并行输出端;SR为右移串行输入端,SL为左移串行输入端;S1、S0为操作模式控制端;C R为直接 无条件清零端;CP为时钟脉冲输入端。 CC40194有5种不同操作模式:即并行送数寄存,右移(方向由Q0~Q3),左移(方向由Q3~Q0),保持及清零。 S1、S0和C R端的控制作用如表9—l。 表9—l

2、移位寄存器应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。本实验研究移位寄存器用作环形计数器和数据的串、并行转换。(1)环形计数器 把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位,如图9—2所示,把输出端Q3和右移串行输入端S R相连接,设初始状态Q0Q1Q2Q3=1000,则在时钟脉冲作用下Q0Q1Q2Q3将依次变为0100→0010→0001→1000→……,如表9—2所示,可见它是一个具有四个有效状态的计数器,这种类型的计数器通常称为环形计数器。图9—2电路可以由各个输出端输出在时间上有先后顺序的脉冲。因此也可作为顺序脉冲发生器。 图9—2环形计数器表9—2 如果将输出作与左移串行输入临,相连接,即可达左移循环移位。 (2)实现数据串、并行转换 ①串行/并行转换器 串行/并行转换是指串行输入的数码,经转换电路之后变换成并行输出。图9—3是用二片CC40194(74LS194)四位双向移位寄存器组成的七位申/并行数据转换电路。 图9—3 七位串行/并行转换器 电路中S0端接高电平1,S1受Q7控制,二片寄存器连接成串行输入右移工作模式。Q7是转换结束标志。当Q7=1时,S1为0,使之成为S1S0=01的串入右移工作方式,当Q7=0时,S1=1, S1S0=10则串行送数结束,标志着串行输入的数据已转换成并行输出了。’ 串行/并行转换的具体过程如下: 转换前,C R端加低电平,使1、2两片寄存器的内容清0,此时S1 S0=11,

相关文档
相关文档 最新文档