文档库 最新最全的文档下载
当前位置:文档库 › 非接触式测温仪

非接触式测温仪

非接触式测温仪
非接触式测温仪

自动化仪表大作业

课题名称:非接触式测温仪

班级:

姓名:

一、方案选择

随着现代科学技术的发展,传统的接触式测温方式以不能满足现代一些领域的测温需求,对非接触、远距离测温技术的需求越来越大。本红外测温仪设计的出发点也正是基于此。

非接触式红外测温也叫辐射测温,一般使用热电型或光电探测器作为检测元件。此温度测量系统比较简单,可以实现大面积的测温,也可以是被测物体上某一点的温度测量;可以是便携式,也可以是固定式,并且使用方便;它的制造工艺简单,成木较低,测温时不接触被测物体,具有响应时间短、不干扰被测温场、使用寿命长、操作方便等一系列优点,但利用红外辐射测量温度,也必然受到物体发射率、测温距离、烟尘和水蒸气等外界因素的影响,其测量误差较大。

在这种温度测量技术中红外温度传感器的选择是非常重要的,而且不仅在点温度测量中要使用红外温度传感器,大面积温度测量也可使用红外温度传感器。本设计正是采用红外温度传感器这种温度测量技术,它具有温度分辨率高、响应速度快、不扰动被测目标温度分布场、测量精度高和稳定性好等优点;另外红外温度传感器的种类较多,发展非常快,技术比较成熟,这也是本设计采用红外温度传感器设计非接触温度测量仪的主要原因之一。

二、系统设计原理

远红外测温系统由以下几部分组成:远红外透镜及滤光系统、测试装置、A/D转换器、微处理机(单片机)和终端显示组成。结合红外测温的工作原理及实际操作的需要,进行了相关参数的计算和论证,在确定方案可行的情况下,最后得出远红外测温仪系统的原理框图如图2.2所示。远红外测温仪系统是集信号采集、数据处理、误差分析、输出显示及危险报警为一体的多功能、智能化的测温系统。而信号采集系统中最重要的是用滤光片收集远红外区域内(8~14um)的光谱,使红外测温的波长范围相对缩小,精度有所提高。因此,远红外测温仪在工业系统温度的测量上有更好的应用。随着现代技术的发展,红外测温仪的设计也越来越先进、品种越来越繁多、功能越来越齐全、价格不断的趋于稳定。

具体操作:将远红外测温仪对准被测的物体,按触发器启动单片机,并在仪器的LED上读出温度数据,保证测温距离和光斑尺寸之比。使用远红外测温仪时还必须注意:1、只测量表面温度,红外测温仪不能测量内部温度。2、不能透过

玻璃进行测温,玻璃有很特殊的反射和透过特性,不允许精确红外温度读数。但可通过红外窗口测温。红外测温仪最好不用于光亮的或抛光的金属表面的测温(不锈钢、铝等)。3、定位热点,要发现热点,仪器瞄准目标,然后在目标上作上下扫描运动,直至确定热点。4、环境温度,如果将红外测温仪突然暴露在环境温差为20度或更高的情况下,允许仪器在20分钟内调节到新的环境温度。

系统结构框图

三、远红外测温仪的硬件设计

(1)远红外测温仪的一般组成

远红外探测器一般由光学系统、敏感元件、前置放大器和信号调制器组成。光学系统是远红外探测器的重要组成部分。根据光学系统的结构分为反射式光学系统的远红外探测器和透射式光学系统的远红外探测器两种。

对于反射式光学系统的红外探测器的结构,它由凹面玻璃反射镜组成,其表面镀金、铝和镍铬等红外波段反射率很高的材料构成反射式光学系统。为了减小像差或使用上的方便,常另加一片次镜,使目标辐射经两次反射聚集到敏感元件上,敏感元件与透镜组合在一起,前置放大器接收热电转换后的电信号,并对其进行放大。

本设计中主要使用透射式光学系统的远红外探测器,其原理图如图 3.1所示。透射式光学系统的部件用红外光学材料做成,不同的红外光波长应选用不同的红外光学材料:在测量700℃以上的高温时,用波长为0.75~3um范围内的近

红外光,用一般光学玻璃和石英等材料作透镜材料;当测量100~700℃范围内的温度时,一般用3~5um的中红外光,多用氟化镁、氧化镁等热敏材料;当测量100℃以下的温度用波长为5~14um的中远红外光,多采用锗、硅、硫化锌等热敏材料。三个范围内的波长远红外光其测量的温度相对较低,同时对仪器的损坏了相对较小,而远红外测温仪最适合的工作波长是8~14um,因此,在选用波段时应充分考虑远红外测温仪的工作波长而选择第三段。获取透射红外光的光学材料一般比较困难,反射式光学系统可避免这一困难,所以,反射式光学系统用得较多。

图3.1 透射式远红外探测器示意图

(2)测温模块的分析

远红外测温仪系统是一个有机的整体,并能对各种信息进行快捷的处理和显示,因此,在进行信号接收时首先利用遮光板对被测物体所发出的红外辐射能量进行有选择的吸收,主要吸收其中的远红外光谱。而遮光孔的大小由单片机输出控制信号控制电机的转动与否来带动遮光板旋转。经选择吸收的远红外辐射光信号通过敏感元件的转换成与之相应的电信号并送到放大器进行放大处理,再经滤波器的滤波处理成所需要的电信号送到加法器运算,最后送到显示输出端显示,但是在进行加法运算时要利用温度补偿部分对所输出的数据进行补偿,以实现被测物体温度值与显示输出的线性关系,从而实现测温仪的智能化控制,据此原理得出远红外测温仪的部份处理装置的原理框图如图3.2所示。

图3.2 红外测温部份处理装置的原理框图

远红外测温仪的探头部分的方框图是一个包括光、机、电一体化的红外测温系统,利用热辐射体在远红外波段的辐射能量来测量温度,由测温传感器、放大单元、滤波单元及加法单元、温度补偿单元组成。测温传感器为一暗盒,盒内固定热释电探测器件,前方有遮光板,电动机带动遮光板旋转,将被测的红外辐射调制成交变的红外辐射线,红外测温装置通过光电敏感元件将远红外辐射能变换为电信号输出,温度补偿二极管也固定在盒内;放大单元是选用集成运放作为模拟放大器,且运放工作于线性放大区,电路的输出与输入之间存在一一对应的关系, 反馈信号通过反馈电阻送到输入端,即利用电压本身的变化量通过反馈网络对放大电路起自动调整作用,最终达到放大并稳定输出电压的作用;滤波单元采用集成运放组成的有源滤波器, 由两节RC滤波电路和反相比例放大电路所组成, 开环电压增益的输入阻抗很高,输出阻抗较低,而且具有一定的电压放大和缓冲作用;温度补偿单元采用二极管温度补偿电路,利用半导体受到外界的光和热的刺激时,其导电性能将会发生其显著变化,在将二极管的温度补偿信号经差动放大以补偿环境温度的影响。

(3)同相放大器的方案设计

运算放大器(简称运放)实际上是多级直接耦合放大电路的集成形式,其特点是高输入电阻、高放大倍数、低输出电阻。通常可以选用集成运算放大器作为模拟放大器,在某些精密的数字仪表系统中则可以选用仪表放大器和隔离放大器。选择放大器时主要考虑放大器的带宽和精度,放大器的满度误差和零位误差多半是可调的,因此这里精度主要指温漂和噪声。由于运放在电路性能方面具有众多优点,因此被广泛应用于模拟电路的各个领域之中,根据运放在电路中的工作状

态,可把这些电路归纳为两大类:一是运放的线性应用,此类电路有一个显著的待点,即运放工作于线性放大区,电路的输出与输入之间存在一一对应的函数关系;二是运放的非线性应用,此类电路在多数情况下,运放工作在饱和状态。由于运放的工作状态不同,故所适用的分析方法亦不同。

集成运放在使用中常因以下三种原因被损坏:输入信号过大,使PN 结击穿;电源电压极性接反或过高;输出端直接接“地”或接电源,此时,运放将因输出级功耗过大而损坏。因此,为使运算放大器安全工作,也从这三个方面进行保护。

在常用的放大电路中,比例运算放大器电路的接法有两种:一种是同相输入接法,另一种是反相输入接法,分别属于电压串联负反馈电路和电压并联负反馈电路。在本课题中比例运算放大电路采用同相输入的接法,其电路图如图 3.4所示。这种电路的重要特点是:电路的输出电压趋向于维持恒定,因为无论反馈信号以何种方式引回到输入端,实际上都是利用输出电压本身的变化量通过反馈网络对放大电路起自动调整作用,这就是电压反馈的实质。若从输入电压取样,通过反馈网络得到反馈电压,然后与输入电压相比较,求得差值作为净输入电压进行放大,则称电路中引入了电压串联负反馈, 其电路图如图3.3所示。该电路采用电阻分压的方式将输出电压的一部分作为反馈电压,电路各点电位的瞬时极性如图中所标注。

其工作原理是:当输入端正向电压i U 增加时,且i U 接放大器的同相输入端,反馈电压O F U R R R U ?+=2

11,若输入电压i U 对R1和R2所组成的反馈网络的作用忽略不计,即可以为R1上的电压F R U U ≈1;并且,由于集成运放开环差模增益od A 很大,因而其净输入电压D U 也可以忽略不计。根据“虚短”和“虚断”的概念,集成运放的净输入电压为零,即

F F D R D I u u u u u u ≈+≈+=1 说明集成运放有共模输入电压。 所以输出电压为:I O u R R u ????? ?

?+≈121

此式表明,o u 与I u 同相且o u 大于I u ,电路引入电压串联负反馈后,一旦1R 和2R 的取值确定,O u 就仅仅决定于I u ,而与负载电阻L R 无关。因此,可以将电

路的输出看成为电压I u 控制的电压源O u ,所以它稳定了输出电压O u ,且输出电阻为零。信号源内阻越小,其反馈效果就越好。由于电路引入了电压串联负反馈,故可以认为输入电阻为无穷大,输出电阻为零。即使考虑集成运放参数的影响,输入电阻也可达Ω910。

应当指出,虽然同相比例运算电路具有高输入电阻、低输出电阻的优点,但因为集成运放有共模输入,所以为了提高运算精度,应当选用高共模抑制比的集成运放。上述结论是有条件的,只有认为集成运放同相输入端和反相输入端的电流P i ﹑N i 趋于零(称为“虚断路”),才能忽略I u 对反馈网络的作用;只有认为集成运放同相输入端和反相输入端的电位近似相等(称为“虚短路”),才能忽略净输入电压,使I F u u ≈。实际上,只有集成运放的开环差模增益od A 和差模输入电阻id r 均趋近于无穷大时,才会在集成运放的输入端存在“虚断路”和“虚短路”。

电压串联负反馈电路示图

Ui

同相放大器电路图

(4)A/D转换模块

能将模拟信号转换成数字信号的电路,称为模数转换器,A/D转换器已经成为计算机系统中不可缺少的接口电路。为确保系统处理结果的精确度,A/D转换器必须具有足够的转换精度;在实现对快速变化的信号的实时控制与检测,还要求具有较高的转换速度。为将时间连续、幅值也连续的模拟量转换为时间离散、幅值也离散的数字信号,A/D转换一般要经过取样、保持、量化及编码4个过程,在实际电路中,这些过程有的是合并进行的,同时实现。即外部的各种模拟信号必须通过A/D转换器变换为数字信号后,才能送入微处理器芯片。在单片集成A/D转换器中,ADC0809是8位的芯片,采用逐次比较式工作原理。具有地址锁存控制的8路模拟开关,应用单一+5V电源,其模拟量输入电压的范围为00H—FFH,转换时间为100s ,无须调零或调整满量程。

大部分M68HC08等系列MCU中具有ADC模块,但结构功能不完全相同,有8位精度的,也有10位精度的。采样通道数也有多种选择。ADC还有一个来自模拟模块的内部采样源。模拟多路复用允许选择14个ADC通道中的一个作为采样V。当转换结束后,ADC把转换好的结果放入数据寄存器,高字节电压输入端

ADIN

和低字节分别为ADRH0和ADRL0,然后设置标志位或产生中断。在自动扫描模式下,用附加的3个ADC数据寄存器ADRL1~3来存放ATD1~3通道的A/D转换结果,通道ATD0的转换数据放在ADRL0中。

(5)单片机的选择

自1971年微处理器研制成功后,不久就出现了单片的微型计算机(简称单片机)。特别是1976年Intel公司推出的MCS-48单片机,以其体积小、功能全、价格低等特点赢得了广泛应用。MCS-48为单片机的发展奠定了基础,成为单片机发展过程中的一个重要阶段。在MCS-48的成功应用的激励下,许多半导体公司和计算机公司竞相研制和发展自己的单片机系列。1980年Intel公司最先推出的8位单片机MCS-51系列,包括8031、8051、8052及8751等,它们的基本组成、基本性能和指令系统都是相同的。MCS-51是在MCS-48的基础之上发展起来的,虽然它仍然是8位的单片机,但其功能较MCS-48有很大的增强。

此外,它还具有品种全、兼容性强、软硬件资料丰富等特点。因此,它被广泛应用于工业过程控制,智能仪器、仪表,生产自动化领域,现在我国乃至世界范围内不失为单片机应用中的主流机型。

鉴于MCS-51系列单片机的高性能、低价格,以及在我国的广泛应用,我们决定选用该系列的单片机。但MCS-51系列单片机包含多种型号,通常以片内是否带ROM以及所带ROM的类型分为8*51类。而MCS-51系列单片机一般采用HMOS 和CHMOS工艺制造,CHMOS工艺比较先进,不仅具有HMOS的高速性,同时还具有CMOS的低功耗。为区别起见,CHMOS工艺的单片机名称前冠以字母C,成为8*C51类。比较多种型号的MCS-51系列单片机,为满足高性/价比,以及开发方便、高效的要求,我们选用了89C51单片机,它采用CHMOS工艺制造,与MCS-51系列的其它机型兼容,内带4K的EEPROM。

由于AT89C51内部具有RAM和EEPROM,所以在芯片的外部接上时钟电路和上电复位电路就可以构成一个基本的应用系统了,如图所示。本系统采用自动复位方式,主频率为6MHz,一方面保证满足系统对时间的要求,同时也考虑了可靠性的要求,即适当降低速度以提高抗干扰能力。由于内部的程序空间有限,不适合编写较大、较复杂的程序,所以,这个系统适合于简单的控制系统的应用。

单片机应用系统是指以单片机为核心,由硬件部分和软件部分组成,配以一定的外围电路和软件,能实现某几种功能的应用系统。硬件是系统的基础,软件则是在硬件的基础上对其合理的调配和使用,从而完成应用系统所要完成的任务。单片机应用系统的设计分为硬件设计和软件设计两大部分,其设计包括下述几个步骤:总体设计;系统硬件设计(用PROTEL);系统软件设计(用仿真机软

件);仿真调试硬件和软件(用仿真机);固化应用程序(用仿真机);脱机运行(用户系统)。一个单片机应用系统的硬件设计电路包括两大部分内容:一是单片机系统的扩展部分设计,这包括存储器扩展和接口扩展。二是各功能模块的设计。如信号测量功能模块、信号控制功能模块等,根据系统功能要求配置相应的A/D、D/A、键盘、显示器、打印机等外围设备,设计合适的接口电路。

AT89C51最小应用系统图

在进行应用系统的硬件设计时,首要问题是确定电路的总体方案,并需进行详细的技术论证。设计还需要考虑以下几点:

○1尽可能选择典型电路。

○2系统的扩充和外围装置,应充分满足应用系统的要求,并留有一些扩充槽,以便进行二次开发。

○3硬件结构应结合应用软件一并考虑。

○4整个系统器件尽可能做到性能匹配。

○5可靠性及抗干扰性设计是硬件设计极其重要的部分,包括器件选择、电路板布线、通道隔离等。

○6单片机外接电路较多时,必须考虑其驱动能力,驱动能力不足时,系统工作不可靠。解决办法是增加驱动能力,降低总线负载。

四、系统流程图

当红外测温仪接通电源时,STC89C51单片机自动复位,开始运行该程序。该程序首先对STC89C51初始化。然后给出开机显示,接着判断是否有键输入,若没有键输入,则继续判断;若有键输入,则判断是否是红外测温。若不是就返回开机显示,是则进行红外测温,接收数据,并将计算的温度值显示出来,如果是环境温度通过数码管前四位显示,目标温度用后四位显示。并等待结束测温命令。再判定是否结束温度测量,若没则继续测温,若收到结束命令则返回开机显示,重新判断。具体工作的流程图如下图:

系统流程图

参考文献:

[1]齐志才刘红丽.自动化仪表. 中国林业出版社北京大学出版社

[2]李朝青刘艳玲.单片机原理及接口技术(第四版).北京航空航天大学出版社

[3]郁有文常建.传感器原理及工程应用(第三版).西安电子科技大学

非接触式红外测温仪

毕业设计(论文) 题目非接触式红外测温仪 学生姓名:李林 指导教师:李宏升 理学院应用物理学专业061 班

非接触式红外测温仪 学生姓名:李林 所在专业:应用物理学班级:061 指导教师:李宏升 申请学位:学士 论文提交日期:20xx -xx-xx 论文答辩日期:20xx -xx-xx 学位授予单位:青岛理工大学

摘要:本文结合国内外红外技术的发展和应用,简绍了红外技术的基础理论,阐述了红外热像仪的工作原理、发展和分类。以及红外测温仪的原理和实现。 关键词:黑体辐射、红外测温仪、普朗克定律、热像仪。 目录 内容摘要 第一章概述 第二章红外基础理论 2.1 扫像仪原理 2.2热像仪的发展 2.3 热像仪分类 第三章红外测温仪的原理及实现 3.1红外测温仪的种类 3.2红外测温仪的工作原理 3.3红外测温仪的性能 第四章红外测温仪的选择 4.1确定测温范围 4.2确定目标尺寸 4.3确定距离系数(光学分辨率) 4.4确定波长范围 4.5确定响应时间 4.6 信号处理功能

4.7环境每件考虑 4.8 红外测温仪的优点 4.9 红外测温仪的缺点 4.10 使用注意事项 第五章结束语 参考文献 第一章概述 红外测温技术在生产过程中,在产品质量控制和监测,设备在线故障诊断和安全保护以及节约能源等方面发挥了着重要作用。近20年来,非接触红外测温仪在技术上得到迅速发展,性能不断完善,功能不断增强,品种不断增多,适用范围也不断扩大,市场占有率逐年增长。比起接触式测温方法,红外测温有着响应时间快、非接触、使用安全及使用寿命长等优点。非接触红外测温仪包括便携式、在线式和扫描式三大系列,并备有各种选件和计算机软件,每一系列中又有各种型号及规格。在不同规格的各种型号测温仪中,正确选择红外测温仪型号对用户来说是十分重要的。 红外检测技术是“九五”国家科技成果重点推广项目,红外检测是一种在线监测(不停电)式高科技检测技术,它集光电成像技术、计算机技术、图像处理技术于一身,通过接收物体发出的红外线(红外辐射),将其热像显示在荧光屏上,从而准确判断物体表面的温度分

JJF(浙)1041-2009 黑体空腔式钢水连续测温仪校准规范

浙江省地方计量技术规范 JJF(浙)1041-2009 黑体空腔式钢水连续测温仪 The Continuous Temperature Measurement of Black body cavity of Molten Steel 2010-01-04发布2010-01-18实施浙江省质量技术监督局 发布

黑体空腔式钢水连续测温仪校准规范 Specification of Calibration for The Continuous Temperature Measurement Of Black body cavity of Molten Steel 本校准规范经浙江省质量技术监督局于2010年01月04日批准,并自2010年01月18XX日起施行。 归 口 单 位:浙江省质量技术监督局 主要起草单位:杭州市质量技术监督检测院 聚光科技(杭州)有限公司 参加起草单位:中国方圆标志认证委员会浙江审核中心 杭州市正和热能计量校准有限公司 本校准规范由主要起草单位负责解释。

本规范主要起草人: 蒋雪萍 (杭州市质量技术监督检测院) 张艳辉 (聚光科技(杭州)有限公司) 石 诚 (杭州市质量技术监督检测院) 孙世勃 (中国方圆标志认证委员会浙江审核中心) 郭晓维 (聚光科技(杭州)有限公司) 参加起草人: 陈伟琪 (杭州市正和热能计量校准有限公司) 孙 麒 (聚光科技(杭州)有限公司) 邹姝文 (杭州市质量技术监督检测院)

目 录 1 范围 (1) 2 引用文献 (1) 3 术语和定义 (1) 3.1黑体 (1) 3.2测温管 (1) 3.3有效长径比 (1) 4 概述 (1) 5 计量特性 (1) 5.1 示值误差 (1) 5.2 重复性 (2) 5.3 模拟量输出误差 (2) 5.4 开关量输出 (2) 5.5 温度变化影响量 (2) 6 校准条件 (2) 6.1 环境条件 (2) 6.2 测量标准及其他设备 (2) 7 校准项目和校准方法 (3) 7.1 外观及工作正常性检查 (3) 7.2 示值误差校准 (3) 7.3 重复性校准 (4) 7.4 模拟量输出误差校准 (4) 7.5开关量输出校准 (4) 7.6 温度变化影响量校准 (4) 8 校准结果表达 (5) 9 复校时间间隔 (5) 附录A (6) 附录B (8)

非接触式测温仪设计与制作

非接触式测温仪的设计与制作 田云,黑龙江农业经济职业学院 本文介绍一种采用凌阳公司生产的TN9红外测温传感器来实现红外测温,控制器采用大家熟悉的51单片机。所有物体都会发出红外线能量。物体越热,其分子就愈加活跃,它所发出的红外线能量也就越多。红外线温度仪包括有光学装置,可以收集来自物体的辐射红外线能量,并把该能量聚焦在探测器上。能量经探测器转化为电信号,并被放大、显示出来。红外测温打破了传统的接触式测温模式,它根据被测物体的红外辐射能量来确定物体的温度,不与被测物体接触,具有不扰动被测物体温度分布场,温度分辨率高、响应速度快、测温范围广,稳定性好、可同时测量环境温度和目标温度的特点。近年来在汽车电子、航空和军事上得到越来越广泛的应用。 一、红外测温传感器TN9 红外测温传感器选用凌阳科技公司生产的TN9红外测温传感器,可测量目标温度和环境温度。它采用非接触测温手段,解决了传统测温中需要接触的问题,具有回应速度快、测量精度高、测量范围广以及可同时测量目标温度和环境温度的特点。红外测温模块根据大气状况最远测温距离约 30m,测量回应时间大约为 0.5s,而且,它具备 SPI接口,可以很方便地与单片机传输数据。外型如图1所示,它的基本特性如表1所示。 量程-33-220℃/-27-428℉ 工作温度-10-50℃/14-122℉ 精度±0.6℃ 反应时间1sec 重量8g 电压范围3V- 5V 图1 TN9红外测量传感器外型

1、红外测温传感器引脚 红外测温模块的引脚如图2所示。其中V为电源电压引脚VCC,VCC一般为 3V到 5V之间的电压;D为数据接收引脚,没有数据接收时D为高电平;C为 2KHz Clock输出引脚(这里需要注意,只有为TN9供上电源,C脚就有2KHz的方波信号输出);G为接地引脚;A为测温启动信号引脚,低电平有效。 图2 TN9红外测温传感器引脚 2、红外测温模块的工作时序 TN9红外模块的工作SPI时序如图3所示。 从时序图可以看出: TN9红外传感器向单片机发送一帧数据共有5个BYTE组成,每个BYTE位的含义如下: Item :如果为4CH代表此帧测量为目标温度,为66H代表此帧测量为环境温度。 MSB :数据高八位 LSB :数据低八位 SUM :校验位 SUM=Item+MSB+LSB CR :0DH为结束码 单片机在CLOCK的下降沿接收数据,一次温度测量需接收 5 个字节的数据,这五个字节中:Item为 0x4c表示测量目标温度,为 0x66 表示测量环境温度;MSB为接收温度的高八位数据;LSB为接收温度的低八位数据;Sum为验证码,接收正确时Sum=Item+MSB+LSB;CR 为结束标志,当CR为 0x0dH时表示完成一次温度数据接收。

热原测温仪操作规程

药业有限公司 标准操作规程 题目 制订人 制订日期 颁发部门热原测温仪操作规程 质管部审核人 审核日期编号 SOP-EM-329 批准人 批准日期版本号 A 共3 页第1 页生效日期分发部门质管部 1 目的规范热原测温仪的使用操作。 2 适用范围热原测温仪的使用操作。 3 责任者质管部QC 检验人员。 4 内容 4.1 系统进入 4.1.1接通电源,依次打开主机、打印机电源,进入WINDOW系统。 4.1.2在WINDOW程序管理器中,用鼠标双击“ 200版热原实验”快捷图标,进入热原程序主功能窗口。 4.2 探头标定 4.2.1把待标定的探头与一根最小分度值为

0.1 C的精密温度计置于恒温水浴箱中。 4.2.2在主功能窗口中,用鼠标点击“标定探头”窗口或“其它”菜单下的“探头自动标定”项,进入自动标定窗口。 4.2.3在“自动标定”窗口,分别输入起始探头号和终止探头号,按“确认” 键。 4.2.4待水浴温度达到第一个设定点( 37.0 ± 0.2C),水浴温度恒温时(窗口”右半部分同时显示的每个探头的数字电压基本保持不变),在“第一点温度”项目中输入此刻温度计的数值,按回车键,再按左侧相对应的“0!”钮,进入第二个温度点。 4 . 2 . 5待水浴温度达到第二个设定点( 38.0 士 0.2C )且恒定后,按上法输入温度计读数,进入第三个温度点。 4.2.6按上述操作方法,依次输人第三个温度点( 39.3 士 0.2C)、第四个温度点( 39.9 士 0.2C)、第五个温度点( 41.0 士 0.2C )的温度计读数,上述数据输完后,再按存盘”,微机存盘后返回” 主功能窗口,至此标定完毕。药业有限公司 标准操作规程 题目热原测温仪操作规程编号

便携式红外热像仪与在线式红外热像仪的区别_

便携式红外热像仪与在线式红外热像仪的区别_ 根据不同的使用形式,可以将红外热像仪分为在线式红外热像仪跟便携式红外热像仪。今天我们就来说说这两款热像仪以及它们之间的区别所在。 一、不同点 1、供电方式不同 便携式红外热像仪都带有电池,而在线式红外热像仪则需要外部实时供电; 2、使用方式不同 便携式红外热像仪带有手柄,使用灵活,开机即可使用,走到哪用到哪。而在线式红外热像仪需要固定安装使用,一般只能看到固定区域内的红外热图像。当然了,如果选配武汉永盛科技的云台和手动或电动调焦镜头,会观测到更大的区域。 3、应用领域不同 便携式红外热像仪一般用于不需要每天24小时连续使用的场合,如日常巡检、故障排查、品质检测、执法巡逻等等。而在线式红外热像仪一般用在需要24小时连续监测的场合,如石油炼制、化工生产、安防等等。 4、PC机数据处理软件不同 与便携式红外热像仪不同,一般在线式红外热像仪的PC软件功能更强大、

更丰富,如在线式红外热像仪不仅能实时显示红外热图,还能实时显示热图中高或低温度点变化曲线。 便携式红外热像仪是一款外形比较小巧,结构紧凑、轻巧便携的红外热像仪器,而且配有电池,可以很大程度的满足不同工作场合的使用。是建筑围护、改修和修缮、检查以及屋面应用的好工具。便携式红外热像仪这款高性能、全辐射成像仪是专门用来针对恶劣的工作环境而优化设计的,适用于电气安装、机电设备、过程设备、HVAC/R设备及其它更多应用的排障工作。能提供快速发现故障所需的清晰、锐利图像的热灵敏度可用于发现很多细微的可能预示着故障问题的温度差异。而且便携式红外热像仪的使用简单,操作直观,用一个大拇指即可轻松的实现导览,无需携带纸笔仅需讲话即可记录发现的所有细节,大大方便我们的试验操作。 在线式红外热像仪在线式热像仪不同于手持式热像仪的一点就是,在线式的要固定在被监测对象的周围,好的的在线式红外热像仪几乎可以安装在任何地方,监控关键设备或其他重要资产。它可帮助您保护生产现场,监测现场状况,使您提前发现异常情况,从而避免财产损失、停工,并保障工人的安危。在线式红外热像仪主要应用于:石油炼制及开采,石化工厂: 甲烷的处理、运输和储存、储存区域防火、监控耐火材料衬里、检查火焰、生产过程质量控制。

手持式测温仪操作规程

手持式测温仪操作规程 编制: 审核: 批准:

目的 二、手持式测振仪是常见的一种设备温度检测工具,也可以辅助检修进行设备故 障判断,目前,包化公司主要用于泵、压缩机、风机、电机等设备的检测,具有方便、快捷、便携等特点,为使设备处于良好的工作状态,特制订本使用规程。 二、工作原理 红外测温仪是一种专业型的手持式非接触红外线测温仪,有使用简易,设计坚实,测量准确度高,测温量程范围宽等特点。它具有激光瞄准、带背光灯的LCD 最大值、最小值、差值、平均值、数据保持、高低温报警、发射率可调及自动关机等功能,该手持式红外测温仪可以用来测量传统的接触式红外测温仪很难测量的物体表面温度。(如:移动的物体、带电的物体、不易接触的物体等)测量物体表面温度,测温仪的光学元件将发射的、反射的以及透射的能量会聚到探测器上。测温仪的电子元件将此信息转换成温度读数,并显示在测湿仪的显示面板上。测温仪的激光仅作瞄准之用。 三、仪器功能(外形如图1) 该测温仪具有以下功能。 1. 环形激光瞄准 2. 发射率可调 3. 咼、低温报警 4 .最大值/最小值/平均值/差值显示 5. 数据存储 6. 扳机锁定 图1 7. 背景光显示 8. 接触探针插孔 9. 硬盒和腕带 四、操作使用方法 握住仪表手柄将红外线感温器对准被测物体。仪表能自动补偿环境温度变化时引起的误差,但当测量环境温度变化太大或者先测量过一个高温再去测一个低温的物体时,仪表需要在一个稳定的环境中进行30分钟的热平衡,才能进行下一次的测量扣动扳机以开机测量。如果电量充足显示器会亮,若不亮或电池能量不足显示则请

更换电池; 释放扳机LCD 显示屏将出现“ HOLD ”表示以示数据已经记录.在HOLD 莫式下,按UP 键可启动或者关闭激光,按DOW 键则可启动或者关闭背光; 放开扳机大约7秒后仪表将自动关机.(除非该仪表被锁定),要测量温度,请将测温 仪对准物体并扣动扳机。务必考虑距离和测量点的比例和视物。激光只作瞄准之用。 环形激光瞄准(如图2) A )背景光标准 B) C/F 标志 C )咼、低温报警标志 D ) 温度最大值 MAX 、最小值 MIN 、差值DIF 、平均值AVG 、高 温报警值HAL 、低温报警值LAL 0 E ) MAX 、MIN 、DI F 、AV G 、HAL 、LAL 、PRB F ) LOG 图标表示数据存储模式 G ) 当前温度值 H ) S CAN 或 HOLD 标志 I ) 发射率标志和发射率值 J ) 电池不足,锁定和激光开启标志 按钮(如图4) A ) SET 按钮(设置高温、低温报警和发射率) B ) 向上向下按钮 C ) M ODE 按钮(用于设置各种功能) D ) 激光/背景光开/闭按钮(扣动扳机按下按钮以激活激光/背 E ) LOG 按钮(用于存储数据) 环形激光为八个激光点形成的环状激光,环形区域为被测区域,在光线 较暗的条件下,会有更高的光点出现在激光环的周围,这些光点不能用于瞄 准目标,只能用激光环来瞄准。 用户界面显示(如图3) f i

非接触式红外测温仪设计

非接触式红外测温仪设计 摘要 温度测量技术应用十分广泛,而且在现代设备故障检测领域中也是一项非常重要的技术。但在某些应用领域中,要求测量温度用的传感器不能与被测物体相接触,这就需要一种非接触的测温方式来满足上述测温需求。本论文正是应上述实际需求而设计的红外测温仪。 红外测温仪是以黑体辐射定律作为理论基础,是光学理论和微电子学综合发展的产物。与传统的测温方式相比,具有响应时间短、非接触、不干扰被测温场、使用寿命长、操作方便等一系列优点。 本文介绍了红外测温仪测温的基本原理和实现方法,提出了以STC89C51单片机为其核心控制部件的红外测温系统。详细介绍了该系统的构成和实现方式,给出了硬件原理图和软件的设计流程图。该系统主要由光学系统、光电探测器、显示输出等部分组成。光学系统汇集其视场内目标的红外辐射能量,红外能量聚焦在光电探测仪上并转变为相应的电信号。STC89C51单片机负责控制启动温度测量、接收测量数据、并按照单片机中的温度值计算算法计算出目标的温度值再通过LED把结果显示出来。 关键词: STC89C51单片机,红外测温,LED显示

THE DESIGN OF NON-CONTECT INFRARED THERMOMETER ABSTRACT The technology of temperature measurement is used widespread, and it also important in the modern equipment failure examination field. But in some application domains, we needn’t the sensor contact with the measured object which used in temperature measurement, this needs a kind of non-contact temperature measurement to satisfies the demand and the design of this infrared thermometer is also based on the demand. Infrared thermomter, it uses the blackbody radiation laws as the theories foundation, it is the outcome that the optical theories and micro-electronics learn a comprehensive development. Compared to the way of traditional temperature measurement, it has a series of merits, such as short in response time, non-contact, noninterference to temperature field, long useful time and convenient operation, etc. The paper introduces the basic principle of infrared thermometer and the method of realization, puts forward infrared trermometer system with the STC89C51 MCU as the CPU. The paper introduces the composing and the method of that system in detail, and gives the hardware principle diagram and the design flow chart of the software. The system formed by the optical system, photoelectron detector,display and output partially. The optical system collects the infrared radiation energy of the object in its field of view, the infrared energy focusing on the instrument and transforms to the corresponding electrical signal. The STC89C51 MCU is used to start the temperature survey, data receive, count the value of the object temperature based on the arithmetic with in MCU and the result is displayed on LED.

(完整word版)在线测温仪校准规范.doc

河北敬业集团 测量设备对比规范 JYJJF0001—2014 在线测温仪对比规范 2014 年 12 月 10 日发布2014年12月25日实施河北敬业集团能源管控中心发布

`JYJJF 0001-2014 在线测温仪对比规范 JYJJF 0001-2014 本校准规范经河北敬业集团能源管控中心2014年 12 月 10日批准并自 2014 年 12 月 25 日施行。 归口单位: 起草单位: 批准人签字: 本规范由起草单位负责解释

JYJJF 0001-2014 目录 1.范围及目的 1 2.引用技术文件 1 3、计量性能要求 1 4、校准方法 1 5.校准结果的处理及校准周期 2 6.附加说明 2 7. 附录 A 3 8. 附录 B 4

`JYJJF 0001-2014 1、范围及目的: 本规范适用于在河北敬业集团各分厂生产过程中使用的在线测温仪的校准。对集团生产工序所用加热炉、热处理炉等设备的温度及工件产品在生产过程中的温度控制测量所需的红外测温仪实施校准,以确保其结果满足测量准确度的要求。 2.引用技术文件 2.1产品技术说明书 2.2JJG415-2001《工作用辐射温度计检定规程》 2.2.3JJG67-2003《工作用全辐射温度计检定规程》 3.计量性能要求 3.1 所用参考便携红外测温仪的示值误差不得大于±5℃。 3.1 红外测温仪基本误差: 在线红外测温仪最大基本误差见下表: 参考标准温度范围(℃)基本误差(℃) ≤300 0.5 300~600 2 600~900 4 900~1100 5 1100~2000 8 4.校准方法 4.1 外观检查 4.1.1 测温仪的型号、名称、规格、测量范围、准确度等级、制造厂名或商标、出厂编号、制造年月等均应有明确的标记。 4.1.2 测温仪显示值应清晰。 4.1.3 测温仪的外形结构应完好。

TI300便携红外测温仪使用说明书

TI300系列 红 外 测 温 仪 使 用 说 明 书 北京时代之峰科技有限公司

目录 一概述 (3) 1.1 工作原理 (3) 1.2 功能特性 (3) 二主要技术参数 (3) 三仪器配置 (4) 四仪器使用 (4) 4.1 用户界面 (4) 4.2 基本操作 (5) 4.3 辐射率设定 (6) 4.4 辐射率的确定 (6) 4.5 高低温报警 (7) 4.6 时间设置 (7) 4.7 日期设置 (8) 4.8 数据存储 (8) 4.9 数据查看 (8) 4.10数据删除 (9) 4.11数据清除 (9) 4.12自动关机 (9) 4.13电池电量显示 (9) 4.14报警 (10) 五故障解决 (10) 六注意事项 (10) 七仪器维护 (11) 附录1:辐射率表 (11)

一 概述 TI300系列红外测温仪是一种用途广泛的非接触式测温仪,操作简便、 测量迅速、使用安全、携带方便,测温范围从400摄氏度到1500摄氏度。 仪器体积小、重量轻、操作简单、使用可靠。可广泛应用于石油、电力、 化工、冶金、塑料、金属加工,节能等行业快速非接触地测量物体的温度。 1.1 工作原理:任何物体当它的温度高于绝对零度时,都向外辐射红外线。 红外线也是一种电磁波,具有很强的温度效应,其能量的大小与物体表面 的温度有着十分密切的关系。红外测温仪由光学系统,光电探测器,信号 放大器及信号处理.显示输出等部分组成。光学系统汇聚其视场内的目标 红外辐射能量,红外能量聚焦在光电探测器上并转变为相应的电信号,该 信号再经微处理器处理、换算转变为被测目标的温度值,液晶屏显示该温 度。 1.2 功能特性: 1) 实时值、最大值、最小值、差值、平均值显示 2) 同轴激光秒瞄准功能 6)显示保持功能 3)高/低温报警功能 7)日历显示功能 4)华氏、摄氏转换功能 8)数据存储功能 5)液晶背光功能 9)电量显示功能 二 主要技术参数 技术参数 TI300 测温范围400~1500℃ 测量精度±1% 重复精度±0.5% 距离系数50:1(95%的能量) 工作波段8~14μm 响应时间≤1000ms 显示分辨率0.1℃或0.1℉ ℃/℉转换√ 液晶背光灯√ 显示保持√ 高低温报警√ 工作温度0℃~50℃ 辐射率0.01-1.0可调 激光瞄准 同轴 最大、最小、差 √ 值和平均值显示 储存数据个数 20 相对湿度非凝结状态下, 达到40℃时为10%~90% 储存温度-20℃~+60℃ 电源AAA 1.5V电池(3节) 连续工作时间50小时(不开背光和激光) 背光功耗≤10mA 激光功耗≤30mA 尺寸192m×192mm×50mm 重量 445g

红外测温仪使用说明书

红外测温仪及二次表现场使用 说明书

双波长红外测温仪 为了解决温度的测量问题,温度的自由选择问题,以及长期稳定的校准需要等,威廉姆森设计了双波长高温计,这使得威廉姆森温度的测量上远远超过了业界的其它测温产品,显示出威廉姆森显著的优势 传感器概述: 相对与单波长温度传感器,双波长红外测温仪的主要优点在于: ●对于难测量的物体(如灰色金属表面),红外测温仪采用自动 补偿的方法从而增加准确度。 ●目标大小小于传感器目标直径,如电线,或移动的目标等,它 也可以准确无误的测量。 ●目标在部分受到阻挡镜头模糊时,或干预媒体,如烟雾,灰尘, 和/或水喷雾,双波长红外测温仪仍然可以准确和可靠的测量

williamson 有两种类型的高温计的设计。双波长及双色彩设计。这两种温度测量技术是基于相同的物理原理主要涉及测量红外能量 在两个相邻的波长之间计算的比例通过这两项测量,确定温度。两者的设计不同点在于:双色彩设计采用了两个层次的红外探测器被称为“夹心探测器” ,而双波长技术采用“单一探测器”的设计(见图) 。 基于其独特的技术测量红外能量,双波长红外测温仪设计提供了一些优势。 一, 在恶劣的环境下更高的稀释信号因子。提高了传感器的控制能力,使它可以穿过脏的窗口或水喷淋,喷雾油,烟,和尘埃等。从而也提高了测量精度这使得它对被测物体表面的氧化物,熔融金属,有光泽的金属(低辐射)等都不会受到影响 ,包括应用目标大小小于传感器目标直径,如电线,或移动的目标等,它也可以准确无误的测量。 双波长 双色彩

二、可根据需要定制温度范围,测量目标的温度可以低至300 C 以 下 三、长期稳定的校准过程监测与控制等方面的应用,使得测量结果准 确无误。 红外测温仪现场连接方式按现场接线图连接 工作正常时LCD上应显示LO TEMP 红外测温仪工作基本原理

红外线测温仪原理及应用

红外线测温仪原理及应用 摘要:测量温度的方法有很多种,温度计大致可以分为接触式测温仪表和非接触式测温仪表两类。其中接触式的有我们熟悉的液体式温度计,热电偶式温度计和 热电阻式温度计等等。 关键词:红外线测温辐射光纤 众所周知,温度是供热,供燃气,通风及空调系统中最重要的参数之一。尤其在热工测量过程中,温度的精准程度往往是决定实验成败的关键。因此,一个精确度高的测温仪器在工程中是必不可少的。因此本文就温度测量工具中的红外线测温仪的原理及应用进行一些介绍。 一,红外测温的理论原理 在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断的向四周辐射电磁波,其中就包含了波段位于0.75μm~100μm的红外线。他最大的特点是在给定的温度和波长下,物体发射的辐射能有一个最大值,这种物质称为黑体,并设定他的反射系数为1,其他的物质反射系数小于1,称为灰体,由于黑体的光谱辐射功率P(λT)与绝对温度T之间满足普朗克定。说明在绝对温度T下,波长λ处单位面积上黑体的辐射功率为P(λT)。根据这个关系可以得到图1的关系曲线,从图中可以看出: (1)随着温度的升高,物体的辐射能量越强。这是红外辐射理论的出发点,也是单波段红外测温仪的设计依据。 (2)随着温度升高,辐射峰值向短波方向移动(向左),并且满足维恩位移定理,峰值处的波长与绝对温度T成反比,虚线为处峰值连线。这个公式告诉我们为什么高温测温仪多工作在短波处,低温测温仪多工作在长波处。 (3)辐射能量随温度的变化率,短波处比长波处大,即短波处工作的测温仪相对信噪比高(灵敏度高),抗干扰性强,测温仪应尽量选择工作在峰值波长处,特别是低温小目标的情况下,这一点显得尤为重要。 二,红外线测温仪的原理

在线测温仪校准规范

.' 河北敬业集团 测量设备对比规范 JYJJF 0001—2014 在线测温仪对比规范 25日实施月日发布12月10 2014年12年2014

河北敬业集团能源管控中心布发 ;.. .' 在线测温仪对比规JYJJF 0001-2014 2014日批准并自月10本校准规范经河北敬业集团能源管控中心2014年12 25日施行。月年12

归口单位: 起草单位: 批准人签字: 本规范由起草单位负责解释 ;.. .' 目录 1.范围及目的 1 2.引用技术文件 1 3、计量性能要求 1 4、校准方法 1 5.校准结果的处理及校准周期 2

2 6.附加说明 3 7. 附录A 4 B 8. 附录 ;.. .' 1、范围及目的:本规范适用于在河北敬业集团各分厂生产过程中使用的在线测温仪的校准。对集团生产工序所用加热炉、热处理炉等设备的温度及工件产品在生产过程中的温度控制测量所需的红外测温

仪实施校准,以确保其结果满足测量准确度的要求。 2.引用技术文件 2.1 产品技术说明书 JJG415-2001《工作用辐射温度计检定规程》 2.2 《工作用全辐射温度计检定规程》2.2.3 JJG67-2003.计量性能要求3℃。3.1所用参考便携红外测温仪的示值误差不得大于±5 红外测温仪基本误差:3.1 在线红外测温仪最大基本误差见下表: .校准方法4 1外观检查.4测温仪的型号、名称、规格、测量范围、准确度等级、制造厂名或商标、4.1.1 出厂编号、制造年月等均应有明确的标记。测温仪显示值应清晰。4.1.2 4.1.3测温仪的外形结构应完好。;.. .' 校准用的标准设备:便携式红外测温仪4.2 基本误差的校准4.3校准时作为标准的便携式红外测温仪传感器到被测目标的距离与测量角4.3.1 度要与在线测温仪表一致。次32min内重复4.3.2便携式

DT测温仪说明书

DT 系列非接触式光纤传感测温仪 GXW/DT Series Non - Contact Fibre - optic Pyrometer 使 用 说 明 书 飞秒光电科技(西安)有限公司 传感器事业部 地址:西安高新区新型工业园发展大道18号 电话:(029) 85691775, 85691327 传真:(029)85691327 网址:https://www.wendangku.net/doc/7e12473410.html, Email: fosmarket@https://www.wendangku.net/doc/7e12473410.html, DT 测温仪

一.概述 DT系列非接触式光纤传感测温仪是一种结合非接触式测温方法和光纤传感技术,实现高精度、高重复性、快速响应、非接触式测量和高性能价格比的新型光纤传感类测温仪。 该产品广泛应用于冶炼、粉末冶金、铸造、轧钢、电力、化工、玻璃、陶瓷生产、 热处理、中高频感应加热、焊接等行业。 该系列测温仪曾获得93年国家新产品证书、97年中科院科技进步三等奖,96年被 列入国家级科技成果推广项目。 光纤传感测温仪采用光纤探头与电子处理单元分离的结构,探测热源辐射的红外波密度,经光纤传导进入光电转换单元,经放大、线性化处理后,得到与被测温度信号成线性关系的电压(或电流)信号,可将该信号接入数字显示调节仪,显示温度值,或设定温度区限以控制温区工况; 也可将测温仪的输出信号接入计算机,根据设定工艺曲线,进行多点多量程的温度控制。光纤传感测温仪的原理框图如下: 原理框图 二.主要技术指标 1、测温范围: 400℃~1200℃,500℃~1400℃,650℃~1650℃, 800℃~1800℃,1000℃~2500℃,1600℃~3000℃ 2、精度:0.5(± 0.5% 满量程) 3、分辨率:0.5℃ 4、响应时间: <10ms 5、距离系数:75:1,最小测量直径:Φ2mm(目标在150mm处) 6、输出:0~5VDC;4~20m A 7、工作电源:±12VDC(四线制) 8、目标距离: 0.5m--2m

红外测温仪企业技术标准规范

有限公司企业标准 Q/HSC021-2019 88系列红外测温仪 (工作用辐射温度计) Infrared Thermometer 2019-01-30发布2019-02-28实施 发布

目录 前言········································ III 1 范围 (1) 2 规范性引用文件 (1) 3 术语及含义 (1) 4分类及命名 (1) 5 要求 (2) 6 试验方法 (3) 7 检验规则 (5) 8 标志、标签、使用说明书 (6) 9 包装、贮存、运输 (6)

前言 本标准代替了Q/HSC008-2013《88系列红外测温仪》。 本标准与Q/HSC008-2013《88系列红外测温仪》的主要技术性差异如下:---------修改了规范性引用文件; ---------修改了基本要求及性能要求; 本标准由提出并归口。 本标准起草单位: 本标准主要起草人 本标准所代替标准的历次版本发布情况为: --------- Q/HSC008-2003。 --------- Q/HSC008-2010。 --------- Q/HSC008-2013。

88系列红外测温仪(工作用辐射温度计) 1 范围 本标准规定了具有红外测温功能的仪表,常用专业术语及含义、产品分类与命名、技术要求、试验方法和检验规则,以及仪器的标志、标签、包装、运输、贮存等一些基本要求。 本标准适用于公司生产的红外测温仪(工作用辐射温度计)。 本标准不适用于医用临床温度测量仪器及设备。 2 规范性引用文件 下列文件中的条款通过的本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 191-2008 包装储运图示标志 GB/T 2423.1-2008 电工电子产品环境试验第2部分:试验方法试验A:低温 GB/T 2423.2-2008 电工电子产品环境试验第2部分:试验方法试验B:高温 GB/T 2423.3-2016 环境试验第2部分:试验方法试验Cab:恒定湿热试验 GB/T 2423.8-1995 电工电子产品环境试验第2部分:试验方法试验Ed:自由跌落 GB/T 2423.10-2008 电工电子产品环境试验第2部分:试验方法试验Fc和导则:振动(正弦)GB/T 6587-2012 电子测量仪器通用规范 GB/T 9969-2008 工业产品使用说明书总则 JJG 856-2015 工作用辐射温度计检定规程 3术语及含义 下列术语及定义适用于本标准: 3.1黑体 blackbody 在给定温度下,发射和吸收全部有效热辐射的理想的热辐射体(发射率为1) 3.2发射率 ,ε emissivity, ε 在给定温度下,一个物体的辐射亮度与处于相同温度下黑体的相应辐射亮度之比。 3.3[空腔]黑体辐射源blackbody radiation source 用于检定或标准辐射温度计、具有稳定控制的温度和明确的发射率,且热辐射特性接近于黑体的凹形装置。 3.4【平】面辐射源 plate radiation source 用于检定或校准辐射温度计、具有稳定控制的温度和明确的发射率的平表面。 3.5 测量距离 measuring distance 辐射温度计与目标之间的距离(或距离范围)。 3.6距离系数distance ratio 目标聚焦状态下,测量距离与视场直径之比。 4分类与命名 4.1分类 按分辨力分为0.1℃;

手持式红外测温仪说明与维护

手持式红外测温仪说明 与维护 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

手持式红外测温仪说明与维护 一,操作面板说明 测温范围 -25℃--900℃ 测温精度读数值的±1%或±1℃ 工作温度 -10℃~60℃ 存储温度 -18℃~60℃ 重复精度读数值的±0.5%或±1℃ 响应时间小于200ms 工作波段 8um --14um 温度分辨率 1℃或1℉ 辐射率修正 0.10—1.00可调,步长0.01 1.按下仪器测温开关,通过红色同轴激光点瞄准目标,激光点应打在被测目标的中心,此时仪器显示器显示的即为被测目标的瞬时温度。 2.辐射率设置 按下仪器测温开关,仪器显示器上显示有辐射率符号“ε=”和辐射率值。按压面板上的“∧”键,显示器显示的辐射率值应增大,按压面板上的“∨”键,显示器显示的辐射率值应减小,辐射率值调整范围为0.1~1.00 。 3.上/下限温度报警的使用和报警温度的设置 按下仪器测温开关,连续按压两次面板上的MENU键,当显示器显示闪烁的“HI”符号及“on”或“oFF”时,仪器便进入上限报警设置状态,按压面板上的“∧”键可打开报警状态,此时显示器显示“on”;按压“∨”键可关闭报警状态,此时显示器显示“oFF”。在打开状态下,按住测温开关,第三次按压面板上的MENU键,此时显示器显示闪烁的“HI”符号和报警上限温度值,按压“∧”键和“∨”键可设置报警上限温度值。 在使用过程中,如上限报警处于打开状态,当目标温度超过上限温度值时,仪器的蜂鸣器将鸣叫同时显示器显示闪烁的“ HI”符号。

非接触式红外测温仪的设计

非接触式红外测温仪的设计 摘要 利用温度测量技术是很常见的,而且在当前问题的检测设备类仍然是一个非常重要的技术。但在某些应用中,需要使用测量与被测物体接触式温度传感器,它需要一个非接触式温度测量来满足测量要求,本文是红外测温仪的设计的实际需要。 红外测温仪是利用黑体辐射定律为基础,是光学理论和微电子学综合发展的现象。与基本的测温方式相比,具有反应时段短、非触碰、不干扰被测温场、使用寿命长、操做简便等一系列优点。 本文阐述了红外测温仪的基本原理和显示方式,指出红外测温系统的中心控制单元以STC89C51单片机。具体列举了该系统的组成和制作方法,给出了硬件理论图和软件的设计流程图。该系统基本由光学系统、光电探测器、显示输出等部份构成。光学系统的红外辐射能量采集物体的红外能量收集在光电探测器转换成相应的电信号的视野。STC89C51单片机担当节制驱动温度量取、接受量取的数据、并按照单片机中的温度值统计算法算出目的温度值再经过LCD把温度显示出来。

关键词: STC89C51单片机;红外测温;LCD显示屏

ABSTRACT The use of temperature measurement technique is common, but in the current issue of the detection device class is still a very important technology. It requires the use of measurement and the object contact temperature sensor, This is the actual need infrared thermometer designed. Infrared thermometer is the use of blackbody radiation law, based on the phenomenon of optical theory and integrated development of microelectronics. Compared with the basic temperature measurement mode, with a short response time, non-touch, no interference is temperature field, long life, easy operation to do a series of advantages. This paper describes the basic principles and display infrared thermometer, noting that the center of the infrared temperature measurement system control unit STC89C51 microcontroller. accepted amount,and calculates the temperature in accordance with the purpose of single-chip temperature values through statistical algorithms and then the temperature LCD display. Keywords: STC89C51 microcontroller;infrared temperature measurement; LCD display

基因扩增仪PCR仪测温系统校准规范

《基因扩增仪(PCR仪)测温系统校准规范》 编制说明 《基因扩增仪(PCR仪)测温系统校准规范》起草小组 2017年02月

目录 一、任务来源 二、制定目的和意义 三、基因扩增仪(PCR仪)测温系统生产和使用情况 四、规范起草的技术依据 五、制定规范的主要内容 六、总结

《基因扩增仪(PCR仪)测温系统校准规范》 编制说明 一、任务来源 根据国家质量监督检验检疫总局国质检量函[2014]79号文件《2016年国家计量技术法规文件制定/修订计划》,2016年5月,全国温度计量技术委员会向上海市计量测试技术研究院等单位下达制定《基因扩增仪(PCR仪)测温系统校准规范》任务,完成期限2017年5月。 二、制定目的和意义 基因扩增仪也称聚合酶链式反应仪(以下简称PCR仪),是一种使DNA聚合酶在指定的温度场条件下发生基因复制的仪器。随着生物技术不断发展,PCR 仪的校准需求也随之呈现几何级数增长。 图1 基因扩增仪(PCR仪)测温系统 基因扩增仪测温系统(如图1)是一种外观新型,结构特殊的高精度温度计量器具,主要用作基因扩增仪温度性能校准的标准器,它作为JJF1527-2015《聚合酶链式反应分析仪校准规范》规定的温度计量标准器,国内外技术机构已经广泛使用其开展基因扩增仪的温度校准,目前国内基因扩增仪(PCR仪)测温系统主要用户集中在各大计量技术机构,PCR仪生产厂商,各类生物实验室,医学检验所。作为PCR仪的测温标准器,这些用户对基因扩增仪测温系统的温度量值溯源需求是显而易见的,而基因扩增仪(PCR仪)测温系统本身的量值溯源问题却始终未解决,国内外尚无针对该类测温系统的校准方法。 基因扩增仪测温系统校准方法的研究与制订配合了JJF1527-2015《聚合酶链式反应仪校准规范》和YY/T1173-2010 《聚合酶链反应分析仪》等技术法规的颁布实施,更好的规范了国内基因扩增仪的使用,保障基因扩增仪温度参数评价

相关文档
相关文档 最新文档