文档库 最新最全的文档下载
当前位置:文档库 › 基于的汽车消音片降噪性能研究

基于的汽车消音片降噪性能研究

基于的汽车消音片降噪性能研究
基于的汽车消音片降噪性能研究

基于Matlab的主动降噪实验(优.选)

SHANGHAI JIAO TONG UNIVERSITY 实验三主动降噪实验 指导老师:王旭永 小组成员:吴淑标5110209352 汤剑宏5110209355 朱安林5110209344

目录 一、实验目的 (1) 二、实验原理 (1) 三、实验仪器 (3) 四、实验步骤 (4) 五、实验过程 (5) 六、程序代码及解释 (7) 七、实验数据观察及解释 (10) 八、误差分析 (11) 九、实验感想 (12)

一、实验目的 1. 了解噪声的基本概念; 2. 了解工程中处理噪声的常规方法; 3. 掌握主动降噪的基本原理与方法; 4. 通过实验模拟主动降噪,分析降噪效果。 二、实验原理 主动降噪(主动噪声控制),又称为有源噪声控制。早在1933年就由德国物理学家Paul Lueg提出了。其主要依据了声波的干涉原理,来消除噪声。主动降噪的基本原理图如图1所示: 图1 主动降噪的原理 简单的说就是用传感器检测噪声信号,通过控制系统反馈给次声源,由次生源发出与原噪声信号频率相同、幅值大小相同、相位相反的声信号,根据声波叠加原理,达到一种降噪的效果。其逻辑程序框图如图2所示: 图2 主动降噪逻辑框图

主动降噪,习惯上可以进行如下分类: 1)有源声控制和有源力控制; 2)单通道有源控制和多通道有源控制; 3)非自适应有源控制和自适应有源控制。 对于有源噪声控制系统而言,也可以这样分类: 1)模拟系统和数字系统; 2)前馈控制系统和反馈控制系统; 3)单通道系统和多通道系统。 主动降噪的实现: 以单通道有源噪声控制系统为例,这里也分非自适应有源噪声控制系统和自适应有源噪声控制系统。 1)自适应有源噪声控制系统: 该系统一般由初级声源、自适应控制器、次级声源和误差传感器组成。其特点是控制器带反馈,并具有自适应控制算法,控制器多为数字控制器。这种系统适用的范围宽,相对灵活,但其结构复杂,实现难度加大,成本增加。本系统原理图如图3所示: 图3 自适应有源噪声控制系统 本实验主要采用此种控制方式。 2)非自适应有源噪声控制系统: 该系统一般由初级声源、控制器、次级声源和传感器组成。其特点是控制器不带反馈,可以是模拟控制器,也可以是数字控制器。这种系统适用的范围有限。影响主动降噪性能的主要因素: 1)初级声源的类型与特征:

改善汽车静音几大方法

改善汽车静音几大方法. 静音效果已经成为驾乘人员评判车辆舒适性的一个重要指标。车门、后备厢、车底盘、引擎盖和车顶是最容易产生空气摩擦噪音的地方,通过减振、降噪和密封等方式可以有效降低汽车噪音。 隔音棉减少发动机噪音 车内的噪声主要是由发动机等机械构件噪声、轮胎与地面的摩擦声、汽车冲破空气产生的碰撞及摩擦声及驾驶舱内饰板等部件发生振动产生的内部噪音等组成。发动机引擎声的大小随发动机转速的提高而增加,对引擎的声音除了驾驶人员的控制外,汽车隔音工程还能再进一步的改善,车主可以通过专业人员处理发动机挡火墙内部和外部,可以有效地减少引擎噪音。隔音施工可能会对车体原有设备造成改变和影响,一般不建议对此部分进行隔音施工操作。 对于发动机的噪音,则最好在引擎盖下粘贴一种高级吸音泡沫声学材料,既可吸收和消耗大量发动机的噪音,又能抑制引擎盖的振动,阻隔来自发动机的热量,保护车漆不受高温损伤。 隔音降噪重点要明确 路噪和胎噪是因为轮胎和路面摩擦产生振动和噪音,同时,柏油路面与混凝土路面所产生的胎噪有很大区别。针对路噪和胎噪减振是最好的方法,用减振板或专用减振板和吸音垫及车门密封条对叶子板和车地板及车门进行全面隔音施工可以有效改善胎噪和路噪。 风噪是汽车在高速行驶的过程中,风压超过车门密封阻力进入车内而产生的,行驶速度越快,风噪越大。另外,车体本身就像是一个

箱体,而声音本身就有折射和重叠的性质,当声音传入车内时,如没有吸音和隔音材料来吸收和阻隔,噪音就会不断折射和重叠,形成共鸣声。加强密封阻力是最直接最根本的解决方法,车门密封条和内心密封条就能很好解决这一问题。 在做汽车隔音前,应先检查一下车况,有些噪音是由车辆本身的故障引起,如轮胎气压不正常、不规则磨损、悬挂或底盘损坏及发动机异响等。车门、后备厢、车底盘、引擎盖和车顶是最容易产生空气摩擦噪音的地方,因此,这些地方都是隔音降噪处理的重点。

汽车车内声场分析及降噪方法研究发展

目录 1 引言 (1) 2 汽车噪声种类 (1) 3 车内噪声的主要来源 (2) 3.1 发动机噪声 (2) 3.2 底盘噪声 (2) 3.3 车身噪声和车内附属设备噪声 (2) 4 传统的车内噪声控制技术 (3) 4.1 消除或减弱噪声源的噪声辐射 (3) 4.2 隔绝传播途径 (3) 4.3 用吸声处理降低车室混响声 (3) 5 车内噪声主动控制技术 (4) 5.1 有源噪声控制技术 (4) 5.2 结构声的有源振动控制 (4) 6 车内噪声控制技术研究的发展趋势 (4) 7 结语及展望 (5) 参考文献: (6)

汽车车内声场分析及降噪方法研究发展 1引言 控制车内噪声一直是车辆设计、制造工程师的努力方向。汽车内部噪声不但增加驾驶乘人员的疲劳,而且影响车辆的行驶安全。车内噪声水平的高低在很大程度上反映了车辆制造厂家的设计和工艺水平。近年来,车内噪声已经成为无额定车辆品质的重要因素,车内低噪声设计已经成为产品开发中的重要任务之一。车内噪声级与乘坐室振动级别一样,已经成为判断汽车舒适性的主要指标。车内噪声主要取决于乘坐室的减振隔音性能,重量轻的承载式车身结构和类似的减轻车身重量的措施被认为可能增大车内噪声,尤其是低频噪声。实车测试表明,这种低频噪声主要集中在20~30HZ。车身壁板的振动和噪声有紧密关系,且乘坐室空腔的共振会放大噪声。这个问题的解决方法是在车辆设计阶段,利用现代振动力学与声学分析方法,预测车内噪声特性,实现优化设计;并通过实车测试,改进设计及工艺,最后使得车内噪声处于最优水平,最大极限地改善乘坐的舒适性,减轻人员的疲劳[1]。 2汽车噪声种类 汽车是有多种声源的机器, 运行中会有多种噪声,可分为: 车外噪声和车内噪声。车内噪声是指行驶的汽车乘坐室或驾驶室内存在的噪声, 其主要噪声源有: 发动机噪声、进气噪声、排气噪声、冷却风扇噪声、底盘噪声等。车内噪声按传播途径分为: 空气声和固体声[2][3][4]。 空气声(Air Borne Sound) 是从动力系统表面发出的辐射声, 它在空气中传播并对车身加振而形成。空气声会在传播过程中衰减, 材料对声能的衰减也使其大大衰减。固体声(Solid Borne Sound)是机械振动沿固体构件传播中产生的噪声, 它产生于发动机、变速箱、后桥、轮胎等, 并能通过底盘车架传播。由于固体构件一般由均质、密实的弹性材料组成, 对声波的吸收作用很小, 并能约束声波使它在有限空间内传播; 因此结构声往往可以传播很远距离。固体声通过构件表面的振动也会辐射出“再生”的空气声, 它与原始空气声相比较,结构声形成的再生噪声往往更难解决。空气声和结构声是可以相互转化的。空气声的振动能够迫使构件产生振动成为结构声; 结构声辐射出声音时, 也就成为空气声。减少空气声的传播, 要从减少或阻止空气的振动入手, 可以采取吸声或隔音措施; 减少结构声的传递,则须采取隔振或阻尼措施。

汽车主动噪声控制技术和发展趋势

车内噪声控制技术及发展趋势 摘要:分析了汽车车内噪声产生的机理,评述了车内噪声被动控制技术的三个途径,并对主动控制技术在汽车减振降噪领域的应用作了探讨和展望。 关键词:减振;噪声控制;汽车 前言 噪声、振动和舒适性是衡量现代汽车制造质量的一个综合性技术指标,也是世界汽车业各大整车制造企业和零部件企业关注的问题之一。车内噪声影响驾驶员和乘客的身心健康、行车安全以及乘车舒适性。为了提高车辆的舒适性。世界各大汽车公司都对车内噪声水平制定了严格的控制标准,将车内噪声控制作为重要的研究方向。现代汽车既是交通工具,又是人们生活空间的一部分,随着汽车制造水平的提高和消费者对舒适性要求的提高,对汽车噪声控制的研究也越来越深入。因此掌握车内噪声产生机理,采取相应的减振降噪技术加以控制是十分必要的。智能材料结构的出现以及主动控制技术的发展为振动与噪声的控制开辟了新的途径。 1 车内噪声产生机理 汽车车内噪声的来源可以从两个传播途径加以分类,即固体传播和空气传播。具体来讲,根据车内噪声产生的不同振动源和噪声源又可分为以下几种: (1)动力传动系统噪声。发动机燃烧和惯性力引起的振动,传至车身引起弯曲振动和扭转振动,向车内辐射中、低频噪声,发动机运行产生的排气噪声、进气噪声、风扇噪声等。由空气通过车身的孔、缝隙传至车内或通过车身板壁透声至车内,传动系由于质量不平衡及齿轮啮合产生的振动,传至车身引起振动进而辐射中、低频噪声至车内。 (2)路面不平度激励引起的噪声。路面激励通过悬架等引起车身振动造成车内低频噪声。 (3)车轮噪声。由于车轮不平衡引起的振动传至车身引起振动,产生车内低频噪声,轮胎与地面的摩擦声(路噪)通过车底板传到车内。 (4)空气扰动噪声。高速行驶时,汽车冲破空气幕产生的碰撞及摩擦对车身的激励造成车身高频振动.在车内产生高频噪声。 (5)其他噪声。驾驶舱内饰板等部件发生振动产生的内部噪声;空调系统产生的噪声;制动系统产生 的噪声等。 以上可知,固体传播振动通过结构件传播至车身,引起车身的振动,再由车身板壁振动辐射噪声至车内,形成车内噪声;空气传播则将各种噪声源所辐射的噪声通过空气,由车身的缝隙或孔洞传播至车内,形成车内噪声。而对于车身而言,本身结构的固有频率、振型、阻尼等模态参数,对车内噪声的形成有着重要的作用。当外界激励与车身固有频率一致时,车身发生共振,可使噪声放大;同时,车身上外界振动输入点的动刚度对振动能量的输入也有很大影响,在一定程度上影响着车内噪声水平。实践表明,中低频(3O-400Hz)车内噪声主要由固体传播这一途径造成,而高频车内噪声则以空气传播为主。如果能够削弱或消除固体传播,则可使车内噪声大大降低。 2 被动控制技术 被动控制降噪技术多从以下三方面着手:一是消除或减弱声源噪声;二是控制噪声传播途径,阻断固体传播;三是保护噪声接受者。 2.1 消除、减弱噪声源 首先,在开发过程中,必须对汽车进行减振降噪结构设计。目前国外已有用于研究汽车噪声

基于-Matlab的主动降噪实验

SHANGHAI JIAOTONG UNIVERSITY 实验三主动降噪实验 指导老师:王旭永 小组成员:吴淑标5110209352 汤剑宏5110209355

朱安林5110209344

目录 一、实验目的 (1) 二、实验原理 (1) 三、实验仪器 (4) 四、实验步骤 (5) 五、实验过程 (5) 六、程序代码及解释 (9) 七、实验数据观察及解释 (14) 八、误差分析 (15) 九、实验感想 (16)

一、实验目的 1. 了解噪声的基本概念; 2. 了解工程中处理噪声的常规方法; 3. 掌握主动降噪的基本原理与方法; 4. 通过实验模拟主动降噪,分析降噪效果。 二、实验原理 主动降噪(主动噪声控制),又称为有源噪声控制。早在1933年就由德国物理学家Paul Lueg提出了。其主要依据了声波的干涉原理,来消除噪声。主动降噪的基本原理图如图1所示: 图1 主动降噪的原理 简单的说就是用传感器检测噪声信号,通过控制系统反馈给次声源,由次生源发出与原噪声信号频率相同、幅值大小相同、相位相反的声信号,根据声波叠加原理,达到一种降噪的效果。其逻辑程序框图如图2所示:

图2 主动降噪逻辑框图 主动降噪,习惯上可以进行如下分类: 1)有源声控制和有源力控制; 2)单通道有源控制和多通道有源控制; 3)非自适应有源控制和自适应有源控制。 对于有源噪声控制系统而言,也可以这样分类: 1)模拟系统和数字系统; 2)前馈控制系统和反馈控制系统; 3)单通道系统和多通道系统。 主动降噪的实现: 以单通道有源噪声控制系统为例,这里也分非自适应有源噪声控制系统和自适应有源噪声控制系统。 1)自适应有源噪声控制系统: 该系统一般由初级声源、自适应控制器、次级声源和误差传感器组成。其特点是控制器带反馈,并具有自适应控制算法,控制器多为数字控制器。这种系统适用的范围宽,相对灵活,但其结构复杂,实现难度加大,成本增加。本系统原理图如图3所示:

发动机减震降噪技术

降噪减振技术: 发动机的振动、噪音是汽车振动和噪音的最大来源。在往复式发动机中,燃烧压力作用在活塞上,并转换为曲轴的转动。但是,由于曲轴转动每隔一周工作压力才产生一次,这样就产生了转矩波动。在四缸发动机中,曲轴每转一周,就产生两次转矩波动,在六缸发动机中,产生三次转矩波动。这些波动经离合器传至变速器,然后又传给驱动轴,使车辆产生噪音和振动。 活塞上的燃烧压力周期性地施加在曲轴上,从而产生转矩,但通过减振皮带轮可抑制这个转矩波动。减振皮带轮是由一夹在皮带轮和轴套间的橡胶隔振板构成的。当曲轴稳定转动时,转矩减振器与之同步转动,当发动机转速变化并产生转矩波动时,这个减振器会使橡胶隔振板扭转,以保持现有转速,吸收了扭转振动。发动机的飞轮通过惯性保持而减少转矩波动,使发动机转动平顺,较重的飞轮减振作用好,但是发动机灵敏性减弱,所以飞轮的质量要适当,有些飞轮带有扭力减振器。它由两部分组成,这两部分之间有弹簧减振机构、以减少扭转振动。在往复式发动机中,活塞和连杆在上下行程中交替沿相反方向运动,如活塞、连杆有质量差,就会发生惯性不平衡,而飞轮可减少这种惯性不平衡所导致的转矩波动,在制造中活塞和连杆也制造得很精确,以使这一不平衡减至最小。在发动机中,曲轴、飞轮、皮带轮等转动部件中的任何一个都会形成振动力,由于这个振动力与部件的不平衡量成正比,与其每分钟转速的平方成正比,因此,当转速增加时,振动也被急剧放大,所以转动部件之间的平衡量最好小一些。 其它机械噪音来自发动机活塞、气门机构等,构成了发动机噪音的一部分,如活塞敲缸,挺杆噪音,气门开闭所产生的噪音,气门和气门弹簧振动所产生的噪音,以及正时链与链轮啮合时产生的噪音。 活塞敲缸是活塞侧面敲击缸壁所产生的噪音,当作用到活塞上的压缩压力转变为燃烧压力时,就产生了敲缸。活塞敲缸因活塞间隙的不同而不同,活塞间隙大时,最有可能产生敲缸声。活塞敲缸的特点是发动机冷态时很响,因此时活塞间隙大,随着发动机的温升,声音也变小。

汽车隔音降噪方法

汽车隔音降噪方法 噪音是令很多车主头疼的一个问题,尤其是在高速路上行驶,发动机、轮胎等的噪声尤为明显,想要一个更为舒适的驾车体验,对于噪音的处理就是必不可少的,而对汽车进行隔音降噪主要包括:减振、隔音、吸音、密封四个环节。汽车音响改装过程中,通常会从声学原理出发对噪音进行控制: 隔音:隔音方法就是用某种隔音材料将声源与周围环境隔离,使其辐射的噪声不能直接传播到周围区域,从而达到控制噪音的目的,隔音的要素取决于隔音材料的厚度和密度,由于车内空间有限,车内隔音材料主要采用高密度材料,才会有好的隔音效果。 吸音:在汽车有限空间内的噪音包括直达噪音和反射噪音两部分。吸音是用特种被动式材料来改变声波的方向,以吸收其能量。合理的布置吸音材料,能有效降低声能的反射量,达到吸音降噪的目的。常用的吸音材料由于受环保、防水、防火、轻量化等条件的限制,能够用于汽车的吸音材料比较少见,博亚的隔音吸音棉由于采用了波浪型吸音槽设计,材料的声阻抗与空气的声阻抗能较好地匹配,从而使较宽频段的声波都能被高效地吸收。 减振:汽车的外壳一般都是由金属薄板制成,车辆行驶过程中,震源把它的振动传给车体,在车体中以弹性波形式进行传播,这些薄板受激震动时会产生噪音,同时引起车体上其它部件的

振动,这些部件又向外辐射噪音,在该传播途径上安装弹性材料或元件,隔绝或衰减振动的传播,就可以实现减振降噪的目的。博亚顶级隔音止振王就是在阻尼减振原理的基础上研发的。当顶级隔音止振王与汽车金属面板粘贴后,可以有效的把车身振动的动能转化为热能,从而达到抑制振动并阻隔噪音传递的目的。 密封:大量试验表明:车内整体噪音的控制与车体的密封性能密切相关。好的密封可以有效降低车辆整体噪音,尤其对高速行驶过程中的风噪有很好的抑制效果。车辆行驶过程中产生的扰流是引起风噪的根源——车辆高速行驶过程中车身某一部件处会出现周期性气流分离,涡从车身两侧拖出,顺气流方向移动,从而产生噪音。博亚专业密封条源于对不同车体缝隙部位的研究,通过对不同车型的不同部位粘贴密封条,最大程度保证了车身各部件之间曲线的连续性、曲线斜率和曲率的连续性,使开放气流的背后不产生涡流,由流动再附着来达到有效抑止气动噪音的目的。 以上就是小编跟大家分享的关于汽车降噪的相关知识,下面小编在为大家推荐一家专业从事汽车降噪处理的企业。

【CN110017260A】用于冰箱的主动降噪系统及其控制方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910251988.1 (22)申请日 2019.03.29 (71)申请人 长虹美菱股份有限公司 地址 230000 安徽省合肥市经济技术开发 区莲花路2163号 (72)发明人 周斌 束仁志 万春旭 汪良树  (74)专利代理机构 上海精晟知识产权代理有限 公司 31253 代理人 冯子玲 (51)Int.Cl. F04B 39/00(2006.01) F04B 51/00(2006.01) F04B 49/06(2006.01) F25D 23/00(2006.01) F25D 29/00(2006.01) (54)发明名称 用于冰箱的主动降噪系统及其控制方法 (57)摘要 本发明公开了用于冰箱的主动降噪系统及 其控制方法,涉及家用电器技术领域。本发明包 括噪音采集单元、降噪前声音检测单元、降噪振 动单元、反馈单元和噪音处理单元;所述噪音采 集单元、降噪前声音检测单元和反馈检测单元均 向噪音处理单元传输噪音信息,噪音处理单元向 降噪振动单元传输降噪振动单元控制信息。本发 明通过噪音采集单元和降噪前声音检测单元收 集冰箱的噪音信息,并根据噪音信息控制降噪振 动单元进行反向振动,达到对冰箱进行主动降噪 的目的,通过反馈检测单元检测降噪效果并进行 反馈,提高噪音处理单元对降噪振动单元控制的 精准度。权利要求书1页 说明书4页 附图1页CN 110017260 A 2019.07.16 C N 110017260 A

权 利 要 求 书1/1页CN 110017260 A 1.用于冰箱的主动降噪系统,包括噪音采集单元、降噪前声音检测单元、降噪振动单元、反馈检测单元和噪音处理单元,其特征在于: 所述噪音处理单元分别与噪音采集单元、降噪前声音检测单元、降噪振动单元和反馈检测单元电性连接;所述噪音采集单元、降噪前声音检测单元和反馈检测单元均将采集到的噪音波形及噪音音量数据传输给噪音处理单元;所述噪音处理单元将降噪振动控制信号传输给降噪振动单元; 所述噪音采集单元设置在冰箱压缩机舱室内,用于监测压缩机实时噪音波形及噪音音量;所述降噪前声音检测单元、降噪振动单元和反馈检测单元均设置在压缩机舱室向外传播噪音的通道内;所述降噪振动单元设置在通道中间位置,所述降噪振动单元通过反向振动抵消噪音振动;所述降噪前声音检测单元设置在降噪振动单元与噪音采集单元之间,且所述降噪前声音检测单元设置在靠近降噪振动单元的位置,所述降噪前声音检测单元用于检测通道中间位置噪音波形及噪音音量;所述反馈单元设置在通道出口处,用于检测通道出口处噪音的波形及噪音音量。 2.根据权利要求1所述的用于冰箱的主动降噪系统,其特征在于,所述噪音处理单元包括微处理器,所述微处理器集成在冰箱的控制模块中。 3.根据权利要求1所述的用于冰箱的主动降噪系统,其特征在于,所述反馈检测单元与降噪振动单元之间设置有隔音板。 4.如权利要求1-3任一所述的用于冰箱的主动降噪系统的控制方法,其特征在于,包括以下步骤: SS01:所述噪音采集单元采集压缩机舱室内的噪音波形和噪音音量,并将噪音波形信号和噪音音量信号数据传输给噪音处理单元; SS02:所述降噪前声音检测单元检测通道中间位置的噪音波形和噪音音量,并将噪音波形信号和噪音音量信号数据传输给噪音处理单元; SS03:所述噪音处理单元根据两次检测到的噪音音频信号进行匹配对比,并根据相同的噪音波形部分实时确定通道内的噪音音量衰减系数,并计算声音从噪音采集单元传输至降噪前声音检测单元的迟滞时间; SS04:设置噪音从通道内输出的音量大小的阈值,所述噪音处理单元根据SS03中获得的衰减系数,调整降噪振动单元的振动幅度,并根据迟滞时间调整降噪振动单元振动的相位差;所述噪音处理单元将对降噪振动单元的控制信息传输给降噪振动单元; SS05:所述降噪振动单元根据接收到的降噪振动单元控制信息进行振动; SS06:所述反馈检测单元检测实时噪音音量,并将噪音音量信息传输给噪音处理单元;所述噪音处理单元根据反馈检测单元提供的噪音音量信息调整降噪振动单元的振动幅度。 5.根据权利要求4所述的用于冰箱的主动降噪系统的控制方法,其特征在于,所述噪音处理单元传输给降噪振动单元的控制信息还包括降噪振动单元的振动波形,所述振动波形与降噪振动单元所要消除的噪音波形相反。 2

汽车车内声场分析及降噪方法研究现状

汽车车内声场分析及降噪方法研究现状 摘要:本文首先对车内噪声的来源进行分析,然后建立了车室空腔声场的声学有限元模型,利用结构及声场动态分析技术,对车身结构的动态特性、车室空腔声场的声学特征进行了研究。在此基础上,分析了声固耦合系统在外界激励下的声学响应。阐述了车内被动噪声控制在低频噪声上的原理与应用。及决定主动噪声控制效果的决定因素及在车内噪声控制中应用的发展过程, 并指出当前研究中需解决的问题和今后的研究方向。 关键词:车内噪声;控制;车室空腔;主动降噪 Abstract:This article first interior noise sources were analyzed, and then the establishment of a finite element model of the vehicle compartment acoustic sound field in the cavity, the use of the structure and dynamic sound field analysis of the dynamic characteristics of the body structure, the acoustic characteristics of the vehicle compartment cavities were sound field the study. On this basis, the analysis of the acoustic excitation solid coupling system in the outside world under the acoustic response. It describes the principle and application of passive noise control car on the low-frequency noise. And determine the effect of active noise control determinants and development process in the car noise control applications, and pointed out that current research problems to be resolved and future research directions. Keywords: interior noise; control; the passenger compartment of the cavity; Active Noise Reduction 0 引言 汽车车内噪声不但增加驾驶员和乘客 的疲劳,而且影响汽车的行驶安全。因此,车内噪声特性已成为汽车乘坐舒适性的评价 指标之一,日益受到人们的重视。车内噪声 主要由发动机、传动系、轮胎、液压系统及结构振动引起。而这些噪声有直接或间接地传到车身结构,在车室内形成声场。车内的噪声水平是体现其舒适性的一项重要指标。为了提高车辆的舒适性, 世界各大汽车公 司都对车内噪声水平制定了严格的控制标准, 将车内噪声的控制作为重要的研究方向。特别是轿车, 车内噪声状况更是衡量轿车档次的标准之一。如何改善车辆内部乘员室声学环境, 降低车内噪声水平,提高车辆 乘坐舒适性已成为研究的热点。 1 车内噪声来源 一切向周围辐射噪声的振动物体都被 称为噪声源。噪声源的类型较多, 有固体的, 即机械性噪声;还有流体的, 即空气、水、 油的动力性噪声; 行驶汽车的噪声包括发 动机、汽车动力总成所产生的噪声, 车身因发动机、道路和空气流的作用而振动所产生的噪声以及附件噪声等。车内噪声产生机理如图1所示[1]。从声源来看,车内噪声的来源主要有: 发动机噪声、进排气噪声、冷却风扇噪声等。车外噪声向车内传播的具体途径主要有两个: 一是通过车身壁板及门窗上所有的孔、缝直接传入车内;二是车外噪声声波作用于车身壁板,激发壁板振动,并向车内辐射噪声。从振动源来看,主要有两个方面: 发动机、底盘工作时产生的振动和路面激励产生的振动。后者频率较低,对激发噪声影响较小。车身壁板主要由金属板和玻璃构成,这些材料都具有很强的声反射性能。在车室门窗均关闭的条件下,上述传入车内的空气声和壁板振动辐射的固体声,都会在密闭空间内多次反射,相互叠加成为车内噪声。 图1 车内噪声产生机理

处理主动降噪耳机设计

处理主动降噪耳机设计的两大挑战 耳机主动降噪(Active Noise Cancellation) 的基本概念并不复杂,但如何实现高品质的降噪效果却并不简单,特别是滤波电路的设计及生产过程控制更加关键。本文针对ANC耳机设计者所遇到的困难,针对性地讨论如何采用创新技术进行滤波器及量产时调节,设计及生产高性能的降噪耳机。 两种结构的ANC系统的选择 主动降噪,是指采集环境噪音,并产生与噪音反相的信号用耳机等装置回放,用以抵消噪音的技术。通常,主动降噪技术与被动降噪技术(采用吸音或隔音材料来降低进入耳朵声音的强度)相结合,以产生最佳的降噪效果。 典型的降噪系统由下列部份组成: ● 用以采集噪音的麦克风系统; ● 电子控制部份,用以处理声音信号,并生成降噪信号; ● 喇叭系统,用以产生降噪声音信号。 大部分ANC系统采用两种主要结构中的一种:前馈式或反馈式。在前馈式系统(如图1)中,采样麦克风位于耳机外部,用以采集进入耳机的噪音,喇叭用以播放反相信号,用以抵消噪音。前馈系统通常用于入耳式耳机设计。在反馈式系统(如图2)中,麦克风位于耳机内部,采集所谓“误差信号”,这就是说,麦克风采集了正常播放的音乐信号与残留噪音混合的信号,把正常播放的音乐信号减去后,就得到残留的噪音。通过恰当的反馈电路,可以使误差信号与正常音乐的差别尽可能的小,也就是说,降低了噪音。 在前馈系统中,由喇叭产生的用以抵消噪音的声音称之为反相声音(anti-phase sound),因为要实现两个声音最好的抵消效果,必须幅度相同,相位相差180度(反相)。

如图3所示,从麦克风到位置A,组成了降噪回路。这个降噪回路的传递函数必须被精确测量,因为在电声系统中,各种衰减及延时必须被考虑到。换句话说,噪音从被麦克风捕获并通过信号处理到喇叭回放再传到耳道必须与噪音从耳机外部穿过耳机再传入耳道保持一致。另外,因为耳机吸音材料所造成的被动降噪作用,麦克风在耳机外部捕获的噪音与真正穿过耳机传入耳道的的噪音并不完全一致。在此,电子处理电路G(W)必须这些在整个降噪回路中的衰减及延时进行补偿。 反馈式工作原理有些不一样。反馈式处理旨在衰减在A点(图4)的残留噪音。反馈式设计必须要非常小心,在相应的频率范围内,必须进行负反馈设计从而降低残留噪音。同时,必须小心过滤其余频率范围信号,特别是高频部份。这是因为由于延时引起的相们改变将会随着频率的升高而增大,一旦相位差大于60度,负反馈将会变成正反馈。这将引入严重的声学问题—高频噪音甚至是高频震荡引起啸叫。与前馈系统相同的是,精确的声学测量是非常重要的。测量结果将被计算并用于补偿降噪回路中的各种衰减与延时。 前馈式耳机设计 前面讨论了ANC系统在理想情况下如何工作。对设计人员来说,真正的目标是在现在世界里如何获得尽可能好的性能。以下为一个实际的例子,用以描述如何进行设计ANC耳机。

山东省滨州市2020-2021学年高二(上)期末考试物理试题 含答案

山东省滨州市2020-2021学年高二(上)期末考试 物理试题 2021. 1 注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷.上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、单项选择题:本题共8小题,每小题3分,共24分。每小题只有一个选项符合题目要求。 1.噪声会影响我们的生活,有一种具有主动降噪功能的耳机,其工作原理如图所示。下列关于该原理说法正 确的是 A .耳机的降噪原理为声波的干涉 B .耳机的降噪原理为声波的反射 C .耳机的降噪原理为声波的衍射 D .耳机的降噪原理为声波的多普勒效应 2.如图所示是科比在某场NBA 比赛过程中的一个瞬间,他在原地运球寻找战机。假设篮球在竖直方向运动,落地前瞬间的速度大小为10/m s ,弹起瞬间的速度大小为8/m s ,球与地面的接触时间为0.1s 。已知篮球质量为600g ,取2 10/g m s =。则地面对球的弹力大小为 A . 12N B . 18N C . 108N D . 114N 3.1834年,洛埃利用单面镜得到了杨氏干涉的结果(称洛埃镜实验)。洛埃镜实验的基本装置如图所示,S 为单色光源,M 为一平面镜。S 发出的光直接照在光屏上,同时S 发出的光通过平面镜反射在光屏上。设光源S 到平面镜的垂直距离和到光屏的垂直距离分别为a 和l ,光的波长为λ。则相邻两条亮条纹的中心间

距x ?是 A . l x a λ?= B . a x l λ?= C . 2l x a λ?= D . 2a x l λ?= 4.如图所示,回旋加速器两个D 形金属盒分别和一高频交流电源两极相接,两D 形金属盒放在匀强磁场中,磁场方向垂直于两D 形金属盒底面,磁感应强度大小为B ,粒子源置于两D 形金属盒的圆心附近。下列说 法正确的是 A .高频交流电源的电压越大,粒子打出回旋加速器的速度越大 B .D 形金属盒半径越大,粒子打出回旋加速器的速度越大 C .粒子在磁场中做圆周运动的周期可以是高频交流电周期的2倍 D .粒子在回旋加速器中加速次数越多,粒子打出时的动能越大 5.一列简谐横波在均匀介质中沿x 轴负方向传播,已知32t T = 时刻刚好传播到O 点,此时波形如图所示。关于坐标x λ=的质点的运动情况,下列说法正确的是 A . 0t =时刻,质点沿y 轴负方向振动 B . 12 t T =时刻,质点沿y 轴正方向振动 C .从0t =到t T =时间内,质点运动的时间为12T D .从0t =到32 t T =时间内,质点运动的路程为λ 6.某次实验的实物连线如图所示,电源内阻忽略不计,线圈L 的直流电阻与小灯泡A 的直流电阻相等,闭合电键稳定后,小灯泡正常发光。断开电键的瞬间,下列说法正确的是 A 小灯泡突然变亮然后再慢慢熄灭 B .小灯泡中的电流方向发生变化 C .断开电键后,小灯泡能继续发光,是因为电源继续向小灯泡输出能量 D .自感线圈的自感系数L 越大,小灯泡和自感线圈组成的回路中的电流越大 7.如图所示,MN 和PQ 是两根相互平行、竖直放置的光滑金属导轨,已知导轨足够长,且电阻不计,导轨间距为L 。ab 是一根与导轨垂直而且始终与导轨接触良好的金属棒,金属棒质量为m ,电阻为R ,长度为

有效对汽车隔音降噪措施

调查:如何有效对汽车隔音降噪? 逛了下论坛发现有反映车辆噪音特别大但难辨是何种噪音的,有询问做隔音需时多长的,还有打听全车降噪价格的,汽车隔音材料等……在车主当中,如何降低爱车噪音也一直是个长盛不衰的话题。对此,业内专家指出,由于汽车噪音五花八门,对降噪有大量需求不足为奇。根据不同情况,车主们应对症下药,而现在一些车主动辄要求全车隔音,虽然起到相应效果,却也造成大量费用支出,毫无必要。 1.降低发动机噪音 招数:引擎盖下粘贴吸音材料 发动机噪音的产生,是随着发动机转速的不同,通过前翼子板、引擎盖、挡火墙、排气管产生和传递入驾驶室内。因此,通过对这些部位的止振及密封,可以有效地控制并降低发动机舱的噪音。 降噪要点:对付发动机引起的噪音,可在引擎盖下粘贴一种高级吸音泡沫材料,既可吸收和消耗大量发动机的噪音,又能抑制引擎盖的振动和阻隔来自发动机的热量。不过,这种方式要采用专业施工技术,在不破坏原车电路,不改变原车结构的前提下完成。施工完毕后,可使车内噪音下降4-8分贝。 2.降低风噪 车门边密封施工可有效降风噪 招数:安装密封条+车门隔音 风噪是汽车运动过程中,由于空气快速流动与车体摩擦所产生的噪音,也就是由于行驶中气流对车体外观有些突起或是死角处回旋而产生的噪声。由于设计原因,汽车风阻系数无法改变,也很难彻底有效清除。不同车型不同速度产生的风噪都不同(轿车一般加速到100公里/时后风噪开始增大)。风噪通过车门缝隙传入车内,所以只有通过加强车辆的严密性和隔音性才能有所降低。 降噪要点:对于风噪问题,一般可采用安装门边密封条和车门隔音来解决。这样不仅能很好地降低风噪和关门的碰撞力度,使原车行驶到时速120公里时听到的风噪,只相当于时速80公里时的噪音,同时,关门声也会更加厚实。 与未做隔音的车相比,在时速50公里以下时,感觉并不明显。在时速50—90公里时,虽然风噪都会增大,但做了隔音的车风噪增大明显不如没做的明显。到时速90公里以上时,两者的差别就相当明显了。做了隔音的车听到的是较柔和的“刷刷”声,而没有做隔音的车则是刮大风的“呼呼”声。到120公里时,发动机约保持在3000转左右,由于做了隔音,原本淹没在风噪声中的发动机声,在车内又可隐约听见。 3.降低胎噪(路噪)

主动降噪技术概述

主动降噪技术概述 目前,在降噪耳机领域,比较流行的有被动式噪音控制(Passive Noise Control, PNC)和主动式噪音控制(Active Noise Control, ANC)两种。 被动式噪音控制,也称物理噪音控制,即物理降噪。物理降噪耳机指的是物理隔离,通过好的外形设计或者入耳式紧贴耳道,创造一个密闭的空间将外界的声音阻挡在耳朵外面,以此来达到消减噪音的效果。 物理降噪原理:利用外部硬质材质和内部的填充材质以堵塞声音进入人耳,能起到一定的隔离与吸收噪音的作用。 这种物理降噪的方式,简单常见,易于实现。只是物理降噪针对高频段噪音的屏蔽效果明显,对于中低频噪音则显得有点束手无策。在800Hz或更低频率的噪音范围,物理降噪则发挥不了好的作用。另一方面,物理降噪耳机在隔离外界环境噪音的同时,把人声部分的声音同时阻隔掉,使用被动式的耳塞来降噪存在一定的危险性。 主动式噪音控制,也称主动降噪,这种降噪方式是相对于被动式降噪而言的。主动降噪耳机运用了高灵敏度的声学麦克风采集周围的噪音,然后通过内置的处理器实时运算出一个与噪音完全相反的声波来抵消噪音,从而达到抵消噪音的效果。 主动降噪基础原理:所有声音都由一定的频谱组成,主动降噪技术的基本原理是对已经存在的噪声进行主动对抗和消除,与传统被动防御降噪不同,主动降噪技术通过技术手段,生成一组与所要消除的噪声相位相等的反相声波,将噪音中和,达到降噪的目的。 主动降噪耳机分类: 1.前馈式主动降噪:将麦克风暴露在噪声中,与喇叭隔离 2.反馈式主动降噪:将麦克风放置在尽可能接近喇叭的地方 3.前馈与反馈结合式:同时有两个麦克风,一个与喇叭隔离,另一个与喇叭接近 主动降噪耳机原理主要分为三步: 1.运用高灵敏麦克风为传感器,对外界环境噪音(主要为高频噪音)进行采集及分析; 2.实时运算采集到的噪音声波的波频,生成反向的声波,呈180度的两种声波结合之后,互相抵消; 3.声音进入人耳时,由于噪音和反向声波的相互抵消,达到消除噪音效果。

主动降噪设计---ANC技术原理及其应用

2020.06.281

1.降噪分类 什么是降噪: 降噪,顾名思义就是减少噪音对人的影响,或是利用一定的手段和方法对噪音对行降低或消除 降噪分类: 1.被动降噪 2.主动降噪 被动降噪是是耳机技术的一种,通过耳机结构包围耳朵形成封闭空间或采用硅胶耳塞等隔音材料来阻挡外界噪声来达到降噪效果。由于噪音没有经过降噪电路芯片处理,只能靠加大夹持力,填充隔音或消音材料,一般只能阻隔高频噪声,对低频噪声降噪效果不明显。如下图为被动降噪耳机几种形式 3

按照使用材料和部位又可分为减振噪声治理、吸音噪声治理和隔音噪声治理。在大多数情况下,通常是多种方法复合使用 在很多场合被动降噪耳机也称为劳保耳机,下图即为被动降噪图 按照使用材料和部位又可分为减振噪声治理、吸音噪声治理和隔音噪声治理。在大多数情况下,通常是多 种方法复合使用。 4

主动降噪 主动降噪的发展史: 人类与噪音的斗争可以追溯到原始社会,那时候的人没太多科学知识,打个雷都会用手捂住耳朵,这也是人类最早的主动降噪手段了,一直沿用至今。 所以隔音的手段历史悠久,发展到今天衍生出很多相关产品:耳塞、隔音棉、隔音板等,后来人们发现这种手段的隔音效果有限,所以也不断的探索更多的方法比如用其它声音来盖过噪音,比如听音乐,加大声音音量就是一个不错的选择。 于是,在遇到隔壁装修的时候,很多人会戴上耳机或是调大音箱音量 但是夹杂了噪音的音乐,其本身也成了噪音,这也不是降噪的终极目的,为了听更纯粹的韵,主动降噪耳机由此产生。 1978年,BO S E的创始人A m a r G.B o s e博士在从欧洲飞往波士顿的飞机上,发现了飞机的引擎噪声干扰了他戴耳机欣赏音乐的兴致,这就激发了他对主动降噪技术研究,在下了飞机后就开始推导验算,写出了主动降噪耳机的最原始的方程式。 世界上的第一台降噪耳机也由此诞生,与所有的高精尖技术一样,这项在当时看来先进的技术在当时也应用到了军事领域。 直到1989年,B O S E才将此技术投入量产,专供飞行员使用,此耳机一面市便得到美国军方的大单 据说美国军方通过给飞行员/地勤人员佩戴降噪耳机,节约由于噪音致残而需发放的补偿金高达2亿美金 5

AVL EXCITE用于车辆降噪的发动机仿真

AVL EXCITE用于车辆降噪的发动机仿真 作者:AVL List Harald Pramberger 蓝军 [摘要] 噪声和振动工程已成为汽车工业扩大市场的重要因素。不用置疑,在中国为区别产品优劣和满足外部噪声法规,NVH(噪声、振动和粗暴)问题越来越重要。 与配置良好的工程试验方法一道,发动机噪声辐射和振动的仿真已频繁应用于发动机的开发过程中。仿真的基本方法仍然在不断发展,并获得稳步提高。本文着重讨论发动机计算声学的当前常用方法,并展望新方法和新技术,可在不久的将来应用在发动机和车辆的开发过程中。 概述 为减少城市环境的噪声污染,并满足不断增长的舒适性要求,需要低噪声的车用发动机和动力总成。因此在设计阶段,需要适用广泛的仿真方法和软件工具,来分析噪声的产生和传递至机体或总成的复杂物理现象。 AVL EXCITE正是为这些应用而开发的,它结合杰出的仿真技术,可实现发动机动力学和噪声的仿真计算,获得接近真值的理想结果[1]、[2]、[3]、[4]、[5]、[6]、[7]。 1 前言 当车辆在公路上高速行驶时,风声和轮胎噪声是主导的,但在城镇中使用时,发动机则是最重要的噪声源。由于法规旨在降低城镇环境噪声污染,故低噪声发动机是降低车辆噪声的重要手段。 测量技术已在过去的时间里得到发展、应用和报道。由加窗及随后的其它处理方法,可成功获取单一噪声源,进而估计单一噪声源在车辆行驶总噪声中的主导贡献,包括考虑噪声源辐射的方向性、传播和反射,或使用车辆近场大型麦克风阵[4]。可确定的单一噪声源常来自发动机表面、油底壳、齿轮箱表面、排气口、排气消声器、排气管、进气口、进气管表面以及轮胎(与道路)等。图1 为一实例。

降噪耳机原理

降噪声耳机原理 降噪耳机分为主动式降噪和被动式降噪两种。被动式降噪耳机利用物理特性将外部噪声与耳朵隔绝开,主要通过隔声材料阻挡噪声,对高频率声音非常有效,一般可使噪声降低大约为15-20dB。这种方法原理简单,降噪成本低,但效果略为逊色,且由于使用了高密度的隔声材料,耳机较重佩戴不舒服。 我们可以看见的大多数便携式隔音耳机产品都是这种被动式降噪方式,入耳式耳塞和封闭式耳机能够在一定程度上隔离噪音,但却没有办法来中和噪声达到安静的聆听效果。被动降噪的优势是降噪空间大,对于高频信号的隔绝效果好,比如公路旁边的隔音板。但是,对于小空间的低频噪声来说,像空调工作噪声、飞机发动机噪声等噪音则效果大打折扣。 主动降噪概念是BOSE公司创始人Amar G. Bose博士在一次飞行旅途中由于受不了飞机噪音而提出的。1989年,BOSE主动降噪耳机推出,但主要用于商业以及军用战场上,真正量产到民用还是在2000年。之所以要采用主动降噪耳机,一方面是因为某些噪音是无法通过物理方式隔绝的,另一方面,很多情况下,噪音来自于多方面,我们无法通过传统方法来进行降噪。 其实主动降噪的理论十分简单,“声波”是我们中学物理课程中都会学到的理论。声音的传播是通过介质的振动来实现,波与波之间如果呈反相则会在理论条件下实现抵消。这就好比平静的湖中两组不同方向的波浪相互抵消一个道理。 主动降噪的原理在于首先要收集噪音的波型特点,然后通过内置的处理芯片运算出反相的波,再通过高还原度扬声器相抵消。所以主动降噪系统必备的设备有拾音器、处理芯片、扬声器,每一个部分都要保

证高质量才能达到最终的效果,故成本上就要比传统非降噪设备高。 主动降噪耳机除使用隔声材料,耳机内部还设有音频处理电路,可对部分低频信号进行消减,因此降噪效果比被动式耳机要好。所有的声音都由一定的频谱组成,如果可以找到一种声音,其频谱与所要消除的噪声完全一样,只是相位刚好相反,相差180°,就可以将这噪声完全抵消掉,如图所示。 抗噪信号仅仅是通过对原始噪声信号的反相处理得到的,目的就是当它们相遇时可以互相抵消。这种方法基于叠加原理,当波形相同、相位相差180。的两个信号相互叠加时,就会产生干涉相消现象。如果噪声抑制信号和原信号不完全相同或者相位不是精确的相差180°,则只会减弱噪声,并不能达到完全抵消的效果。 外置传感器的开环路主动降噪耳机系统 4、闭环路系统、自适应降噪系统 主动降噪系统通过一只传声器采集噪声并产生抗噪信号。在一个开环路系统中,如图所示,传声器放置于耳罩的外部,其拾取的声音信号经反相放大器输出得到抗噪信号,而后与所需的音频信号混合,最终在耳机换能器中重放嘲。抗噪信号能够衰减外界噪声,使原始声音更便于理解。通常,开环主动降噪系统可以实现噪声衰减10-15dB,这在为专业人士及普通消费者设计的不同种类的降噪耳机中可以普遍发现。可是,这种设计对于那些想要独自调整抗噪信号大小以满足最佳听音效果的人们来说并不适用。 开环路系统的最大优势就是简单,但与其他类型的降噪耳机比,可能并不是最令人满意的。由于传声器放置于耳罩外,实际采集到的噪声和耳罩内听到的噪声并不完全一样。事实上,经过耳罩再加上其内部的反射作用,声音已发生了改变。因此,在很多情况下,抗噪信号可以在耳机内生成。

相关文档