文档库 最新最全的文档下载
当前位置:文档库 › Ozone Degradation of Lignin

Ozone Degradation of Lignin

Ozone Degradation of Lignin
Ozone Degradation of Lignin

Ozone Degradation of Lignin; its Impact Upon the Subsequent Biodegradation

Ma?gorzata Michniewicz, Jadwiga Stufka-Olczyk,

Anna Milczarek

Institute of Biopolymers and Chemical Fibres ul. M. Sk?odowskiej-Curie 19/27, 90-570 ?ód?, Poland

E-mail: michniewicz@ibwch.lodz.pl

Abstract

The possible use of ozone and advanced oxidation processes (AOP) to degrade and elimi-nate lignin compounds from aqueous solutions, and the determination of the required ozone dose are the primary objectives of this study. The influence of the oxidation methods on the subsequent biological decomposition of the by-products was also investigated.During ozonisation of the alkalilignin aqueous solutions, the polymer is degraded to a degree de-pending on the ozone dose. Lignin content decreased by about 40 to 96.6% at an ozone dose of 0.1 and 3.6 mgO 3/mgCOD, respectively, accompanied by a drop of COD in the range of 8.8 - 69.6%. An ozone dose of about 1 mgO 3/mgCOD is required to reduce the lignin content by more than 80%; at such a dose, the reduction of COD was about 35%. Lignin proved to be a substance that is practically insusceptible to biodegradation under the test conditions. An increase of the susceptibility to biodegradation of the lignin disintegration products could have been observed at an appropriately high dose of ozone.Key words: degradation, lignin, ozone, advanced oxidation process, biodegradation.

biological treatment of the joint wastewa-ter streams comprises the final step. Most

promising amongst the physical-chem-ical methods are advanced oxidation processes (AOP), with the use of ozone, ozone and UV irradiation, H 2O 2 and O 3 or all of the agents together [11 - 13]. Lignin is one of the three main chemi-cal constituents of plant matter (cellu-lose and hemicellulose are the remaining two). Lignin content accounts for be -tween 16 and 31% of the plant mass. In respect of the chemical structure, lignin is a 3-D organic polymer with an aro-matic character in which derivatives of phenylpropane are the basic structural elements [14 - 17]. Ether bonds appear in the lignin molecule between the phenyl-propane units, and most of the bonds are insusceptible to hydrolysis.The composition and structure of lignin are diverse depending upon kind of the wood, its habitat, the growing conditions and other factors. This is the reason for the structure of the lignin molecule not being well known or well-defined. In the sulphate pulping process, lignin is sepa-rated from the hydrocarbon fraction by the action of strong base (NaOH). Hence,

in the effluents from cellulose pulp pro -duction, lignin appears in the form of wa-ter-soluble sodium salts, which are also called alkalilignins. Lignin content gives a dark brown colour to the effluents, and is resistant to classical biodegradation methods [18 - 20].Investigations concerning the impact of ozone on lignin decomposition were per-formed with the following lignin model compounds: coniferyl alcohol, ferulic acid and β-O-4 dimer; these investiga -

n Introduction

The pulp and paper industry has been seen as a large polluter of waters for a long time. The burden of the industry has in the last two decades been largely reduced thanks to improved technology with the result of decreased effluents, and

an ever wider use of biotechnology in wastewater treatment. Still, compounds that are highly durable and barely sus-ceptible to biodegradation appear in the effluents of the pulp and paper indus -try. These are primarily high-molecular lignin compounds (lignin) and low-mo-lecular compounds that are toxic to aque-ous organisms: resin acids and chloror-ganic derivatives, mainly chlorophenols [1 - 6]. Lignin and resin acids are the two groups of compounds that pose the largest problems in classical wastewater treatment [2, 3, 6 - 10]. In the common

praxis of effluents’ purification in the pulp and paper industry, two processes are employed: mechanical (sedimenta-tion) and biological, mostly aerobic (aer-ated ponds and activated sludge). The processes can be enhanced with a possi-ble chemical precipitation, which, how-ever, requires the addition of chemicals with often unknown toxicity [1, 8, 10]. The ever stricter environmental protection regulations are a driving force in the pur-suit of new methods and an improvement of traditional processes aimed at the limi-tation of water contaminative substances. An interesting approach to the problem of purifying effluents, containing durable

substances that are resistant to biological degradation, is the adoption of a multi-stage technology. The first step consists of a physical-chemical treatment of the most hazardous effluent streams, while a

tions showed that compounds readily re-act with ozone [14, 15, 21 - 23]. It was found that the aromatic structure almost completely disappeared at an adequately high ozone dose.

Oxidation by way of ozonolysis or other AOP methods seems to be the most ef-fective method for purifying effluents of the pulp and paper industry [24 - 26]. Application of the advanced oxidation processes, particularly of ozone, allows a high degradation of lignin to be obtained and the organic substance load in the ef-fluents, such as starch and low molecular compounds, to become lower, although not entirely eliminated [24]. Therefore, the methods can be employed in the first treatment step of the pulp-paper effluents prior to the biological aerobic step [24, 27]. The present knowledge in the domain of lignin degradation is insufficient on ac-count of the variety of lignin composi-tions and structures depending upon the kind of wood used and the method of pulping employed. This calls for further intensive investigations in that direction.

Aim and scope

of the investigation

The aim of the work was to investigate the effect of ozone and other AOP’s ac-tions on lignin compounds and to assess the suitability of the methods to the re-moval of lignin from wastewater.

The work comprised of:

n AOP experiments of the model lignin solutions.

Variable parameters: ozone dose and UV irradiation – on/off.

n Biodegradation experiments of the model lignin solutions prior to and af-ter ozonisation.

n Chemical analyses and testing of tox-icity and biodegradation.

distilled water to 1 l. Solutions with a

lignin content of 1000 mg and 500 mg (in

1 l) were used in the investigation.

Characteristics of the lignin preparation

and the model solutions are given in Ta-

ble 1.

Methods and conditions

of the experiments

An aqueous solution of the alkalilignin

preparation was ozonised at variable

ozone doses in some cases using also UV

irradiation. The biodegradation of the

ozonised solutions was tested with the

use of active sludge. The solutions both

before and after the experiments were

analysed in respect of:

n content of organic substance as COD

n content of substance susceptible to

biodegradation as BOD

n lignin content

n toxicity

Experiments in advanced oxidation

processes (AOP)

n Ozone dose (mg O3/mg COD):

0.10 – 3.71,

n Other AOD’s: O3 + UV,

O3+ UV + H2O2,

n UV irradiation: 15 W low pressure

lamp,

n H2O2 dose: 2 ml/l of solution,

n Temperature: 20 ± 1 °C,

n pH – initial 9 - 10, after ozonisation

7 - 8.

Biodegradation

On the basis of standard PN-EN ISO

9888:2005 (“Estimation of total biodeg-

radation in aqueous medium; Statistical

test – Zahn-Welles method”), a procedure

was performed to test the biodegradation

susceptibility of the model solutions. An

active sludge taken from a regular func-

tioning communal wastewater treatment

plant with a slight addition of industrial

effluents constituted the inoculum. The

amount of the active sludge placed in the

chambers of the analyser was adjusted

according to the COD values of the tested

solutions at the proportion of 1 g of ac-

tive sludge/1000 mg COD. The testing

time was 7 - 10 days.

Experimental equipment

The AOP experiments were performed in

a 1.5 l photo-reactor equipped with ozone

detectors. A scheme of the experimental

apparatus is shown in Figure 1. After

the AOP, the model solutions were bio-

degraded in laboratory equipment with Materials, methods

and equipment

Preparing the lignin formulation for

the investigations

The used black liquor originated from

one of the sulphate pulp mills process-

ing pine wood. The lignin preparation

was made by separating the lignin com-

pounds from the liquor, and the separa-

tion procedure was based on the authors’

earlier experience. A multistage precipi-

tation and re-dissolution of the lignin was

employed to get rid of the low molecu-

lar compounds including the degraded

lignin fragments (so-called hemilignins).

Alkalilignin was precipitated in the first

step by acidifying the black liquor with

25% H2SO4 (analytical purity) to pH = 4.

Carbon dioxide, hydrogen sulphide and a

certain amount of volatile organic acids

were intensively delivered in the course

of the acidification. The mixture was

left for 24 hours and then the precipi-

tated sediment was decanted, separated

by filtration, washed with slightly acidic

(pH = 5) water and dried. The obtained

preparation was further purified by being

dissolved in a diluted NaOH solution and

re-precipitated with 25% H2SO4 at a pH

of about 2. The separated and dried sedi-

ment was extracted with ethyl ether to to-

tally remove the resin acids content. The

obtained purified preparation contained

an average of 3.4% water (96.6% of the

dry substance) and 95% of organic mat-

ter-lignin (98.3% of the dry substance).

The preparation was readily dissolvable

in diluted alkalis (0.01 N NaOH solu-

tion). A preparation of such purity may

be considered a standard of lignin to be

used in research and analyses.

Preparation of model alkalilignin

solutions

The model solutions for the investiga-

tions were prepared by dissolving a

weighed amount of the lignin, which

was prepared according to section “Pre-

paring the lignin formulation for the

investigations”, in 100 cm3 of a 0.1 N

NaOH solution. This was diluted with

Table 1. Characteristics of the lignin preparation and the model lignin solutions.

Parameter Unit Parameter value

Lignin preparation - Symbol Lign.Content of dry substance% wt.96.6 Content of dry organic substance% wt.95.0

Model alkalilignin solutions Concentration of model solution g/l 1.00.5 COD mg O2/l1950984 BOD5mg O2/l145110 Lignin content mg/l920470 Toxicity%70 42

controlled aeration. The air inlet was ar -ranged in the bottom of the five cylindri -cal chambers providing sufficient aera -tion in the entire volume of the chamber and mixing of the tested solutions with the active sludge suspension. Analytical equipment, reagents and materials

n Spectrophotometer: CADAS 200 and thermostats LT 100 (Dr Lange GmbH),n Microprocessor oxygen meter: Oxi 325 with oxygen sensor CellOx 325 (WTW Co.),n LUMIStox 300 with incubation block (Dr Lange GmbH),n Filtration apparatus (Whatman Co.),n Analytical scale type WA-32 (Mera – Wag Co.),

n Cuvette tests LCK 384, 380, 114, 314,

614 (HACH LANGE GmbH),n Sodium tungstate, sodium molybdate, ortophosphoric acid, hydrochloric

acid, sodium-potassium tartrate, sodi-um carbonate, sodium hydroxide, po-tassium dihydrophosphate anhydrous, di-potassium hydrophosphate anhy-drous, di-sodium hydrophosphate 2-hydrate, disodium hydrophosphate 2-hydrate, ammonium chloride, mag-nesium sulphate 7-hydrate, calcium chloride anhydrous, and iron chloride 6-hydrate,n Certified lyophilic bacteria strain Vibrio fisheri NRBL-B-11177.Analytical methods

Lignin content analysis by spectropho-tometric methods A spectrophotometric method for the esti-mation of lignin content was prepared on

the basis of standard PN-76/C-04623.00

(“Testing of lignin and tannin content”).

In this method, the reaction proceeding between hydroxyl groups and compo-nents of the tungsten-molybdenum-phos-phorous reagent was exploited, yielding products with an intensive blue colour. Intensity of the colour was measured by means of a spectrophotometer at a wavelength of l = 700 nm. The analyti -cal curve was prepared using a standard sulphate lignin solution – a preparation

made of spent kraft pulping liquors as de-scribed in section “Preparing the lignin formulation for the investigations ”.Chemical oxygen demand (COD) was estimated according to standard ISO

Table 2. Conditions of the ozonization experiments of model of lignin solutions and results.

Symbol of sample and No of experiment

Lignin and other AOP concentr. at start., g/l Time of ozonization, h

Ozone dose,

mgO 3/mgCOD

COD, mgO 2/dm 3

BZT, mgO 2/dm 3

Lignin content, mg/l

BOD/COD

Prior to experiment After experiment Prior to experiment After experiment Prior to experiment After experiment Prior to experiment After experiment

Lign. 3110.31192615471451408753170.070.09Lign. 4130.93192612201451568751400.070.13Lign. 50.53 3.0299342311011946022.50.110.28Lign. 613 1.821974105014519492287.50.070.18Lign. 70.5+UV 3 3.71970320110130440160.110.41Lign. 80.5+UV+H 2O 2

3 3.71970308110136440190.110.44Lign. 90.510.20984865n.o.n.o.480250--Lign. 100.510.50984760n.o.n.o.480116--Lign. 110.51 1.02984630n.o.n.o.48074--Lign. 120.5 1.5 1.52984538n.o.n.o.48059--Lign. 130.510.10993906n.o.n.o.431270--Lign. 140.53 3.02993445n.o.n.o.43148.5--Lign. 150.52 2.01993530n.o.n.o.43157.5--Lign. 160.5 2.5 2.52993520n.o.n.o.43155--Lign. 17 1.120.88227015721451109602500.060.07Lign. 180.6510.761309969110130480850.080.13Lign. 190.5+UV 1 1.02992715110985001250.110.14Lign. 200.5+UV 10.50992773110885001800.110.11Lign. 210.5+UV 10.10992929110755003700.110.08Lign. 22

0.5

3

3.63

992

302

110

132

500

17

0.11

0.44

Figure 1. Schematic diagram of the experimental apparatus set-up: 1 - steel cylinder with

oxygen, 2 - rotameters, 3 - drying columns filled with CaCl 2 and P 2O 5, 4 – gas flow rate meter, 5 – ozonator, 6 – porous plate, 7 – glass reactor vessel, 8 – quartz tube with UV lamp, 9 – thermostating jacket, 10 – hydrogen peroxide tank, 11 – system of ozone neutralization,

12 – ozone concentration meter to measure ozone content in oxygen at the reactor inlet and outlet, 13 – UV lamp feeder.

n Results and discussion

Conditions of the lignin oxidation ex-periments and the obtained results are presented in Table 2 (see page 193) and Tables 3 - 5 & Figures 2 - 6.

Ozonolysis – effects of ozone oxidation In Table 3 and Figures 2 & 3, the depend-ence of the reduction of COD and lignin content on the ozone dose is shown. The relationship is in accordance with expec-tations originating from data from the literature – the reduction of the lignin so-lutions’ COD is a rising function of the ozone dose. Furthermore, it appears that a fairly fast decomposition of lignin pro-ceeds under the action of ozone – 80% of the initial amount at an ozone dose of 1 mgO 3/mgCOD. Compounds formed as a result of lignin decomposition are further degraded to CO 2 and H 2O after a higher dose has been supplied (Fig-ure 2). The maximum reduction close to 70% of organic matter (as COD) was at-tained with the ozone dose of 3.63 mgO 3/mgChZT (trial 22). In that experiment, the maximal reduction of the content of non-degraded lignin reached 3.4% of the initial amount.

The high lignin degradation degree in trials 5 and 22 caused an increase of the biodegradation coefficient BZT 5/ChZT.

Other oxidizing agents (AOP)

UV irradiation at a constant ozone dose causes a certain stabilisation of the lignin

structure, which is reflected by the degra -dation rate decreasing. The effect is more pronounced at low doses of ozone (low

degradation degree). This can be seen by comparing the results of the experiments (Table 3):

n

Lign. 13 and Lign. 21n

Lign. 10 and Lign. 20n Lign. 11 and Lign. 19

Table 4. Toxicity of lignin solutions -test results (with the use of luminescent bacteria); (TU – Toxicity Unit) = 100/EC50.

Symbol of solution and No of sample Ozone dose, mgO 2/mgChZT

Toxicity results EC50

% of sample Index TU

Classfication of solution toxicity 15 min 30 min 30 min Preparat. lignin 0.5 g/l 044.642.3 2.36moderately toxic Preparat. lignin 1.0 g/l 021.918.4 5.43highly toxic Lign. 3 (1.0 g/l)0.3125.225.4 3.94toxic Lign. 17 (1.1 g/l)0.8821.316.6 6.08highly toxic Lign. 4 (1.0 g/l)0.9318.616.3

6.13

highly toxic

Lign. 6 (1.0 g/l) 1.8224.818.8 5.32highly toxic

Lign. 16 (0.5 g/l) 2.5247.241.5 2.41moderately toxic

Lign. 5 (0.5 g/l)

3.02

64.3

51.5 1.94moderately toxic

Table 3. Dependence COD reduction and lignin content on the conditions of advanced oxidation processes (ozone dose, time, UV)

Symbol of sample and No of experiment

Time of experiment, h

Conditions of oxidation Reduction of COD,%

Reduction of lignin, %

Ozone dose, mgO 3/mgCOD

UV Lign. 1310.10?8.841.3Lign. 2110.10+ 6.426.0Lign. 910.20?12.147.9Lign. 310.31?19.763.8Lign. 1010.50?22.875.8Lign. 2010.50+22.164.0Lign. 1810.76?26.082.3Lign. 1720.88?30.774.0Lign. 430.93?36.784.0Lign. 111 1.02?36.084.6Lign. 191 1.02+27.975.0Lign. 12 1.5 1.52?45.387.7Lign. 63 1.82?46.890.5Lign. 152 2.01?46.687.5Lign. 16 2.5 2.52?47.688.0Lign. 53 3.02?57.495.1Lign. 143 3.02?55.189.5Lign. 223 3.63?69.696.6Lign. 73 3.71+67.096.4Lign. 8

3

3.71

+ H 2O 2

68.2

95.7

15705:2002 (ST-COD), using the method of tight reagent glasses.

Biochemical oxygen demand (BOD) was estimated according to the procedure de-scribed in standard PN-EN 1899-1:2002.

Toxicity of the model solutions was ex-amined by means of the Lumistox 300 apparatus using the lyophilised lumi-nescent bacteria Vibrio fischeri NRBL B-11177 according to the manual and standard PN-EN ISO 11348-3:2002.Figure 2. Dependence of COD reduction on lignin solutions on

ozone dose.

Figure 3. Dependence of lignin reduction on ozone dose.

Ozone dose, mg O 3/mg COD Ozone dose, mg O 3/mg COD

The effect of UV irradiation and H2O2 ac-tion on COD and lignin reduction was not as distinct in trials 7, 8 and 22, probably on account of the prevailing impact of high ozone dose. Still, the highest reduction occurred in trial No. 22 without UV ir-radiation. The biodegradation coefficient BOD5/COD was distinctly increased in all three of the trials (7, 8 and 22). Toxicity

Lignin solutions with concentration of 1 g/l are highly toxic, and at 0.5 g/l are moderately toxic, against the lumines-cence bacteria Vibrio fisheri according to the proposed classification [28, 29]. The impact of ozonisation upon the tox-icity of solutions containing lignin deg-radation products is not unequivocal. This calls for further in-depth investi-gations with the use of various methods and test organisms. Thanks to the results obtained, the lignin degradation products may be regarded as equally or even more toxic than the starting lignin (Table 4). However, the results indicate that the de-pendence of toxicity on the ozone dose arrives at a maximum after which a de-crease of the toxicity proceeds at an ad-equately high ozone dose (high lignin de-composition degree); for example higher than 1.8 mgO3/mgCOD. Biodegradation

The results of the biodegradation tests of the lignin solutions prior to and after the ozonisation are presented in Figures 4 - 6. The course of the tests indicates that both lignin and its degradation products are compounds that are not susceptible to microbial degradation at low ozone dos-es. A temporary limitation of the COD values seen in some of the tests (experi-ments 17 and 18 – Figure 5) is an effect of a transitional retention on the surface of the active sludge flocs, and flotation,

along with the formed foam.

There were no signs of intoxication of the active sludge during the biodegrada-tion tests of the lignin solutions, nor any cell lysis, which would manifest itself by a turbidity of the fluid beyond the sedi-ment. Also the COD did not rise above the initial value.

In the trials with high doses of ozone (7, 8 and 22 - Figure 6), a distinct improve-ment of the biodegradation occurred. However, the lignin decomposition prod-ucts cannot be deemed easily biodegrad-able as the reduction in COD after 8 days

was below 50%.

The ultimate effects of the biodegrada-

tion testing in dependence on ozone dose

in the singular experiments are presented

in Table 5 (see page 196).

n Summary

Ozonisation of lignin causes the nearly

complete degradation and total de-

composition of a substantial part of the

organic matter, which is manifested

by a distinct decrease of COD (70%

at 3.6 mg O3/mg COD of ozone dose).

Disappearance of the dark colour of the

model lignin solutions is a spectacular ef-

fect of the ozonisation.

Lignin proved to be insusceptible to bio-

degradation under the test conditions.

The same conclusion also arises from the

low biodegradability coefficient BOD/

COD in the range of 0.06 - 0.11. Ozone-

induced lignin decomposition products

do not manifest improvement of the bio-

degradability at low ozone doses, while

Figure 6. Graph of biodegradation of model lignin solutions before and after ozonisation (experiments 7, 8 and 22).

Figure 4. Graph of biodegradation of model lignin solutions before and after ozonisation (experiments No 4, 5 and 6).

Figure 5. Graph of biodegradation of model lignin solutions before and after ozonization (experiments No 17, 18 and 19).

at high doses (e.g. 3.6 mgO3/mgCOD) they were more prone to biodegradation. The use of UV irradiation along with ozone produces a rather negative effect by slowing the process of lignin decom-position down to a certain degree.

The use of ozone in the effluent treatment allows the dark colour and a substantial part of the organic matter originating from lignin to be removed. This is much more favourable since lignin does not un-dergo a biological decomposition under the conditions and time applied routinely in classical wastewater aerobic treatment plants with active sludge. A primary puri-fication step in the treatment of effluents contaminated with lignin applied prior to the secondary biological treatment pro-cess allows the cumulated efficiency of the removal of organic substances to be improved.

Acknowledgments

The study was funded by the Polish Commit-tee for Scientific Research, Grant No. 4 T09B 008 24 and the Polish Ministry of Science and Higher Education

References

1. Pokhrel D, Viraraghavan T. Treatment of

pulp and paper mill wastewater - a re-

view. Science of the Total Environment

2004; 333: 37-58.

2. Werker AG, Hall ER. Limitation for bio-

logical removal of resin acids from pulp

mill effluent. Wat Sci Tech 1999; 40 (11-

12): 281-288.

3. Fretheim K. Heavy metals and low

molecular weight substances in wood:

Consequences for certain properties

of paper/board products and effluent/

wastes from pulp making – a condensed

review sponsored by the Confederation

of European Paper Industries. Brussels,

1994.4. Muna A, Sreekrishnan TR. Aquatic toxic-

ity from pulp and paper mill effluents: a

review, Advances in Environmental Re-

search 2001; 5: 175-196.

5. ?e?en F. Investigation of substrate deg-

radation and non-biodegradable portion

in several pulp bleaching wastes. Wat

Sci Tech 1999; 40 (11-12): 305-312.

6. Ledakowicz S, Michniewicz M, Jagie??a

A, Stufka-Olczyk J, Martynelis M. Elimi-

nation of resin acids by advanced oxi-

dation processes and their impact on

subsequent biodegradation. Water Re-

search 2006; 40: 3439-3446.

7. Michniewicz M, Na??cz-Jawecki G,

Stufka-Olczyk J, Sawicki J. Comparison

of chemical composition and toxicity of

wastewaters from pulp industry. In: Per-

soone G., Janssen C., De Coen Eds.

New Microbiotests for Routine Toxicity

Screening and Biomonitoring401-411,

Kluwer Academic/Plenum Publ. London

2000.

8. Helble A, Schlayer W. et al. Advanced

effluent treatment in the pulp and pa-

per industry with a combined process of

ozonation and fixed bed biofilm reactors.

Wat Sci Tech 1999; 40(11-12): 343-350.

9. Zhongtang Yu, Mohn WW. Bioaugmen-

tation with resin acid degrading bacte-

ria enhances resin acid removal in se-

quencing batch reactors treating pulp

mill effluents. Wat Res2001; 35 (4):

883-890.

10. Kaindl N, Tillman U, M?bius CH. En-

hancement of capacity and efficiency of

a biological wastewater treatment plant.

Wat Sci Tech 1999; 40 (11-12): 231-239.

11. Biń AK. Ozone and ozonisation. The use

of oxidation techniques in environment

protection – collective work directed

by R. Zarzycki (in Polish) PAN o/?ód?,

2002, pp. 5-12.

12. Hostachy JC, Lenon G, et al. Reduction

of pulp and paper mill pollution by ozone

treatment. Wat Sci Tech 1997; 35 (2-3):

261-268.

13. Kos L, Perkowski J. Chemical oxidation

as a stage of highly efficient technolo-

gies for textile wastewater treatment.Fi-

bres & Textiles in Eastern Europe 2009;

17, 5 (76): 99-105.

14. Jagie??a A, Michniewicz M, Ledakowicz

S. Influence of ozonation on lignin com-

Received 19.10.2012 Reviewed 12.11.2012

pounds degradation in pulp and paper

effluents. Prz. Pap. 2005; 61, 3: 166-170.

15. Michniewicz M, Jagie??a A, Ledakowicz

S. Applications of extended oxidation

processes for degradation of lignin com-

pounds in pulp and paper effluents. Prz.

Pap. 2007; 63, 8: 483-486.

16. El Mansouri N-E, Salvado J. Structural

characterization of technical lignins for

the production of adhesives: Applica-

tion to lignosulphonate, kraft, soda-

anthraquinone, organosolv and ethanol

process lignins. Industrial Crops and

Products 2006; 24: 8-16.

17. Kuitunen S, Kalliola A, Tarvo V, et al.

Lignin oxidation mechanisms under

oxygen delignification conditions. Holz-

forschung 2011; 65, 4: 587-599.

18. Bentivenga G, Bonini C, et al. Singlet

oxygen mediated degradation of Kla-

son lignin. Chemosphere 1999: 39(14):

2409-2417.

19. Tanaka K, Calanag RCR, Hisanaga T.

Photocatalysed degradation of lignin on

TiO2. Journal of Molecular Catalysis A.:

Chemical 1999; 138: 287-294.

20. Nakamura Y, Sawada T, et al. Microbial

treatment of kraft pulp wastewater pre-

treated with ozone. Wat Sci Tech 1997;

35 (2-3): 277-282.

21. Ferron B, Croue JP, Dore M. Compara-

tive study of ozonation of two lignin

model compounds: coniferyl alcohol and

ferulic acid. Identification of some by-

product. Ozone Sci Eng 1995; 17: 687-

699.

22. Bertaud F, Croue JP, Legube B. Ozona-

tion of -O-4 dimer lignin model: by-prod-

uct identification and reaction pathways.

Ozone Sci Eng 2001; 23: 139-148.

23. Kaneko H, Hosoya S, Iiyma K, Nakano

J. Degradation of lignin with ozone:

reactivity of lignin model compounds

toward ozone. J Wood Chem Technol

1983; 3, 4: 399-411.

24. Amat A.M., Arques A., Miranda M.A.,

López F.: “Use of ozone and/or UV in the

treatment of effluents from board paper

industry”, Chemosphere 60, 1111-1117

(2005)

25. Makhotkina OA, Preis SV, Parkhomchuk

EV. Water delignification by advanced

oxidation processes: Homogeneous and

heterogeneous Fenton and H2O2 photo-

assisted reactions. Applied Catalysis B:

Environmental 2008; 84: 821-826.

26. Saroj DP, Arun Kumar A, Purnendu

Bose P, et al. Mineralisation of some

natural refractory organic compounds

by biodegradation and ozonation. Water

Research 2005; 39: 1921-1933.

27. Michniewicz M, Stufka-Olczyk J, Jagie??a

A. Applications of advanced oxidation

methods to preliminary treatment of

wastewaters containing resin acids and

lignin. Prz. Pap. 2008; 64, 11: 677-683.

28. ?ebkowska M. et al. Toxicology of the

environment (in Polish). Ed. PWN 1999.

29. Na??cz-Jawecki G. Examination of

aqueous environment toxicity by the

method of bioindication (in Polish), Biu-

letyn Wydzia?u Farmaceutycznego AM

w Warszawie 2, 2003.

Table 5. Results of biodegradation testing of model lignin solutions (test time: 8 - 10 days).

Symbol of solution and No of sample

Oxidation conditions Reduction of COD as a

result of biodegradation, % Ozone dose UV

Starting solution of

lignin preparation0-9.7 Lign. 210.10+8.0 Lign. 200.50+8.3 Lign. 180.76-13.0 Lign. 170.88-14.4 Lign. 40.93-14.0 Lign. 19 1.02+10.9 Lign. 6 1.82-16.1 Lign. 5 3.02-34.8 Lign. 22 3.63-44.6 Lign. 7 3.71+45.7 Lign. 8 3.71UV + H2O2

49.7

富含低聚果糖的食物有什么

富含低聚果糖的食物有什么 低聚果糖相信普通的人都不是很了解,这些词只有专门学习相关专业的人才会了解。但是说到对肠胃紊乱有帮助,相信许多人都已经了解到,低聚果糖对于人们的作用非常的大,不仅可以降低血脂,还能治疗腹泻和便秘,对于治疗蛀牙也有着非常好的效果,低聚果糖在一些食物中也存在,那么你知道富含低聚果糖的食物有哪些,下面我们就来具体的说一说。 富含低聚果糖的食物有:香蕉、大麦、洋葱、洋姜等。 低聚果糖是一种水溶性膳食纤维,长期服用可以降低血清胆固醇,改善脂质代谢,经动物和人体实验证实。 低聚果糖具有如下生理功能:为双歧杆菌等有益菌所利用,即只增殖10~100倍,时双歧杆菌(致病菌),具有双向调节之功效。人体摄入低聚果糖后,体内有益菌群双歧杆菌数量可抑制外源致病菌和肠内固有腐败细菌如沙门氏菌等生长繁殖,减少肠内腐败物质的生长和积累,促进肠道蠕动,防止便秘和腹泻。低聚果糖是一种优良的水溶性膳食纤维,能有效降低血清胆固醇、甘油三脂、游离脂肪酸的数量,对于因血脂高而引起的高血压、动脉硬化等一系列心血管疾病有较好的改善作用。低聚果糖在大肠内被细菌发酵生成L-乳酸,可以溶解钙、镁、铁等矿物质,促进人体对矿物质的吸收。 六大功效 1.低热能值,由于低聚果糖不能被人体直接消化吸收,只能

被肠道细菌吸收利用,故其热值低,不会导致肥胖,间接也有减肥作用。对糖尿病患者来说也是一种良好的甜味剂。 2.由于其不能被口腔细菌(指突变链球菌Smutans)利用,因而具有防龋齿作用。 3.对肠道益菌的增殖作用。低聚果糖对肠道中有益菌群如双岐杆菌、乳酸杆菌等有选择性增殖作用,使有益菌群在肠道中占有优势,抑制有害菌的生长,减少有毒物质(如内毒素、氨类等)的形成,对肠粘膜细胞和肝具有保护作用,从而防止病变肠癌的发生,增强机体免疫力。 4.可降低血清中胆固醇和甘油三酯的含量。 5.促进营养的吸收,尤其是钙的吸收。摄入低聚果糖能提高生物体对钙离子的吸收,这一现象受到了越来越多的关注,一些人体临床实验也得以陆续开展。对于青少年,含有丰富低聚果糖的菊粉证实可通过强化钙质吸收和增加骨密度对骨骼健康产生正面的效用。对于停经后的妇女,富含低聚果糖的菊粉证实可提高矿物质吸收而改善骨骼健康。另有临床研究结果指出,补充含有丰富低聚果糖的菊粉可帮助改善更年期妇女的矿物质吸收并影响其骨更新标记。 6.防治腹泻和便秘。 富含低聚果糖的食物有哪些,看着上面的介绍我们相信大家都已经了解到了什么样的食物含有这样的元素了,低聚果糖对于人们的作用很大,特别是对于肠胃功能紊乱更是有着非常好的效果,香蕉这是大家都喜欢的水果,不仅营养丰富,而且还能预防疾病,所以大家可以经常的食用哦。

低聚果糖沙棘茶

===完美低聚果糖沙棘茶=== 健康之源怡神健体身体浮肿、血黏稠、妇科炎症、前列腺炎、便秘、脸色暗淡无光、易疲劳等人的(福音)。(低聚果糖沙棘茶)主要以(低聚果糖、沙棘粉、红茶粉、罗汉果甜苷)为主要原料。"沙棘"有两个"美称":1.血管清道夫的美称,(降血压、血黏稠、血糖,提高高密度脂蛋白胆固醇,从而降低血栓和出血风险)。2.维C之王的美称,(提高免疫力)。3.沙棘有利尿的作用,(洁净泌尿、排尿多降低浮肿)。完美的产品让您有(三心),{放心、安心、信心} 因为有完美的国际、国内的5项认证做保证。为了再造一个山川秀美的黄土高原--也为了您的健康,向您介绍高原圣果沙棘相传,古代一个原始部落中,牧民们不忍杀掉疾病缠身的老马,将它们放逐于广袤的山野中。不久,这群马又出现在帐篷外,雄姿剽悍,浑身闪耀着太阳的光芒。牧民们以为有神相助,跟踪马群来到一片茂密的果林中,见马群以一野果为食,遂尊此果为圣果。千百年来,圣果和关于圣果的传说在牧民中广为流传,藏医、蒙医皆以它制药,这种药食两用的圣果学名就叫沙棘。沙棘是一种适应性强、耐干旱、不择土壤、固沙防风、无毒无害无污染的"神奇植物",是改造黄土高原水土流失环境的先锋。沙棘是一味中药,具有活血、祛瘀、养胃、健脾、抗炎生肌的药理功效。早已在唐代的《月王药珍》、八世纪末的《四部医典》和清代的《晶珠本草》等著名的古典医书上都有记载。1977年我国卫、生部正式将沙棘列入《中国药典》。据科学分析,沙棘果实中含有200多种生物活性成分,对提高免疫力、治疗胃病、便秘、心脑血管疾病、皮肤外伤、宫颈糜烂和癌症的辅助治疗具有显著作用。消费沙棘产品,既有利于您的健康,也有利于国家绿化荒山、改善环境。沙棘是生长于我国西北、东北高原山区的一种无毒、无害、无污染的野生植物,因其具有良好的保持水土、改良土壤的作用,特别是它的果实具有养胃、健脾、活血等功效,经济开发价值巨大,被称为神奇植物和高原圣果。现代医学证明,沙棘果实中的生物活性成份多达190多种,富含维生素C、维生素E、黄酮类、甾醇类、多种氨基酸等,是我国卫生部公布的"既是药物、又是食物"的药食同源植物。沙棘果中的维生素C(抗坏血酸)含量比弥猴桃高出8倍,比橙高出24倍,甚至比葡萄高出200倍!沙棘中所含总黄酮已成为现代制造治疗心脑血管疾病药物的药源;维生素E 和SOD含量高,是沙棘的一大特点,能清除人体内自由基和提高抗衰老机能。产品说明本品是以低聚果糖、沙棘粉、红茶粉、柠檬酸、苹果酸、罗汉果甜甙、维生素C、三氯蔗糖、柠檬香精、茶香精、乙基麦芽酚为主要原料制成的保健食品,经动物功能和人体试食试验证明,具有调节肠道菌群的保健功能。主要原料:低聚果糖、沙棘粉、红茶粉、柠檬酸、苹果酸、罗汉果甜甙、维生素C、三氯蔗糖、柠檬香精、茶香精、乙基麦芽酚。功效成份及含量:每100g含:低聚果糖40.0g 保健功能:调节肠道菌群。适宜人群:肠道功能紊乱者。不适宜人群:孕妇。食用方法及食用量:每日2次,每次5g,,冲饮。贮藏方法:贮存于阴凉干燥处。注意事项:本品不能代替药物。沙棘果:养在高原人未识沙棘果中Vc含量是苹果的100倍,素有"维生素王"的誉称,但因缺乏市场推广能力而鲜为人知。青藏高原是自然资源的宝库,许多人知道那里有贵比黄金的冬虫夏草和神奇的藏药,但却不知道那里有全世界独一无二的沙棘果。沙棘生长在青藏高原海拔3000米以上的深山峡谷中。直径仅数毫米的沙棘果几乎包含了目前所发现的所有天然维生素和上百种珍贵的人体不可缺少的营养物质。经权威部门检测,其中维生素C含量比弥猴桃高出8倍,比橙高出24倍,甚至比葡萄高出200倍,素有"维生素王"的誉称。前苏联学者B ·阿沃库莫夫曾发出惊叹:"大自然竟能这样完整地把一组有益物质集中在一种植物中,这可真是奇迹!"藏医巨著《四部医典》中系统地记载了沙棘果的药效:增加血红蛋白、防治心脑血管系统疾病,对各种维生素缺乏症尤有疗效。据中科院西北高原生物研究所的最新研究发现,沙棘果还可防治癌症,并有美容的功欢迎各位朋友使用、批发和代购,我们真诚的为您提供专业性的指导和(售前、中、后的服务)。

低聚果糖降血脂作用的研究概况

低聚果糖降血脂作用的研究概况 低聚糖是指那些“人体不消化或难消化的成份,(低聚糖由2~10个单糖组成的糖类,由于其聚合度低,所以称作低聚糖。)这些成份可选择性刺激结肠生理活性益生菌的生长和活性,从而对宿主产生健康效应”,也称之为双歧因子(Bifidogenic Factor)。有益生元功能的低聚糖主要是一些非(或难)消化性低聚糖,如低聚异麦芽糖、低聚果糖、低聚半乳糖、低聚木糖、大豆低聚耱、水苏糖、棉籽糖、甘露低聚糖、低聚壳聚糖等[1]。低聚果糖是指蔗糖(GF)的果糖C1位置通过糖苷键结合1~3个分子果糖所构成的低聚糖,其分子式为G-F-Fn,n=1~3(F为果糖,G为葡萄糖)。一般而言,低聚果糖是蔗果三糖、蔗果四糖和蔗果五糖混合物的总称。低聚果糖是利用微生物或植物中具有果糖转移酶活性的酶作用于蔗糖而得到的。这一类低聚糖统称为Fructo-oligosaccharides (FOS)。FOS作为一种膳食纤维对脂质代谢产生影响[2],FOS是一种优良的水溶性膳食纤维,通过肠内双歧杆菌的作用,FOS能发酵产生丙酸,阻碍胆固醇的合成,促使胆固醇向胆汁酸转换,增加胆汁酸排出量,能有效降低血清胆固醇、甘油三脂、游离脂肪酸的数量。另外,FOS不被人体吸收,不能由糖→脂代谢途径合成脂肪。 1. FOS降血脂作用的动物研究 FOS是广泛存在于水果、蔬菜、蜂蜜等食物中的天然物质,是融营养与保健为一体的活性成分,该成分不仅具有食物纤维的功能,还是一种双歧因子,对双歧杆菌具有显著增殖作用。双歧杆菌代谢产生烟酸的能力与血清胆固醇水平的降低有一定关系。认为双歧杆菌通过抑制人体内活化的T细菌,控制新生成低密度脂蛋白接收器,起到降低血清胆固醇含量的作用,从而对宿主产生健康效应。 国内外动物实验结果显示,FOS具有降动物血脂的效应[2-6]。Fiordaliso M等用含10% FOS的饲料分别喂大鼠30 d、16周后,分离肝脏进行体外研究,发现FOS能降低肝脏甘油三酯的水平,胆固醇的水平未受影响[3,4]。 徐进等人的研究中以高脂饲料诱发大鼠为高脂动物模型,同时给予高脂饲料与FOS 28 d 后,与高脂模型组比较。0.5、1.5、2.5 g/kg·bw FOS可显著降低大鼠血清总胆固醇和甘油三脂的水平(P<0.05),但对高密度脂蛋白胆固醇的水平无显著影响[2]。 罗予等人的研究中以1 g/kg·bw FOS灌服小鼠,其血甘油三脂含量呈现下降趋势。FOS 作为消化性的膳食纤维,促进双歧杆菌增殖,后者产生的醋酸和乳酸能刺激肠蠕动,影响脂类吸收入血和促进脂类排出[5]。

低聚果糖改善肠道功能性食品的发展

低聚果糖改善肠道功能性食品的发展 摘要 低聚果糖(Fructooligosaccharide,FOS)是一种益生元,能够激活体内双歧杆菌或乳酸杆菌等益生菌群的增殖,维持人体微生态平衡,促进体内矿物质吸收,提高机体免疫等。它以其独特饿功能性作用得到广泛的关注和应用,可能成为一种新型食品。本文主要介绍了低聚果糖的功能性作用以及其改善肠道功能性食品的发展、前景。 关键词:低聚果糖菊粉功能性肠道

Abstract Fructooligosaccharide is as a prebiotis that can activate the proliferation of bacillus or bacillus acidic lactic and so on vivo, maintain micro-ecological balance, stimulate the absorption of mineral and enhance immunity in human body. It is extensively attracted and applied dude to its special functional effect and may become a new type of food. This review introduces the functional role of fructooligosaccharides and their improve intestinal functional food development prospects. Key words: fructooligosaccharides inulin functional intestinal canal

完美顺口溜

一.简易版 早晚高纤乐,岁月不蹉跎。常常吃沙蒜,身暖血脂淡。常喝沙棘茶,男女都潇洒。早晚一生糖,舒胃又润肠。天天吃肽藻,终生不显老。常吃矿物晶,越吃越年轻。每天品红酒,青春不会走。男女吃健扬,生命更飞扬。 二.产品版 美丽中山城,完美传佳音.多少风雨路,战略定乾坤.公司三领导,海外赤子心.慈善无国界,公益最热心.捐资又助学,莘莘学子情.赈灾作贡献,献血献爱心.公司实力强,设备最先进.工厂雄姿美,企业理念新.奉献于社会,守法来经营.稳健去发展,不断在创新.产品四系列,高科技结晶.品质有保障,获得五认证.产品口碑好,美名报上登.营养保健品,健康伴你行.预防胜治疗,保健是根本.完美清调补,送礼是佳品.清体内毒素,调身体机能.补均衡营养,健康传真情.完美高纤乐,轻松把肠清.减少血管病,降低胆固醇.酸甜又爽口,美容又瘦身.芦荟矿物晶,免疫筑长城.补充矿物质,排毒一身轻.调理八系统,检查出疾病.完美营养餐,超级营养品.深海螺旋藻,营养素最丰.五谷和杂粮,预防富贵病.

科学化配方,营养最均衡.完美沙棘茶,沙棘有美称.清血调肠胃,增殖有益菌.抗癌延衰老,利尿抑病菌.怡神又健体,茶中把王称.完美高纤餐,改善肠功能.降糖降血脂,宿便无踪影.清肠排毒素,烦恼自然清.完美玉米肽,保护肝功能.解酒又排毒,修复肝受损.酒逢知己饮,应酬带在身.美酒喝不醉,肝脏负担轻.个人护理品,芦荟好成分.形象更美好,信心百倍增.完美芦荟胶,护肤功效神.伤口愈合快,不易留疤痕.镇痛又止血,消炎杀病菌.美称万能胶,理想必备品.洗发用荟新,飘洒有弹性.去屑抑真菌,护理更柔顺.护发补营养,洗护一定分.荟新有四宝,秀发更滋润.头发要定型,发胶用荟新.持久易梳理,随意换发型.动感有魅力,回头率大增.完美沐浴露,花果馨香型.不含有皂质,属于微酸性.天然润肤乳,洁肤除细菌.肌肤滑如丝,舒爽好精神.口腔护理品,牙膏和口喷.口喷随身带,口气更清新.谈笑有魅力,沁心又提神.牙膏除牙病,洁牙不受损.双氟互补充,防腐耐酸性.广普玉洁纯,高效灭病菌.美白防口臭,笑容更自信.家居日用品,生物分解性.

健康理念透析

健康理念透析 大家好,今天和大家讲健康,我们大家都有这样的经历,我们一生病首先想到的是去医院看病,一般不会考虑到去保养。为了很透彻地了解今天这个话题,我和大家来讲健康理念透析,如果你好好把这个了解的话,会对你自己和家人的健康都有非常大的帮助。这个理论是一位获得两次诺贝尔奖、三次诺贝尔奖提名的美国医学家莱纳斯.鲍林的著名医学理论,叫做“分子矫正医学”或者“细胞矫正医学”。 一、服用功能保健食品与药物治疗的区别 1、了解人体结构 细胞组织器官系统人体 决定 2、影响细胞健康的因素 ★先天:人的身高、血型、相貌等都有遗传基因,健康也有遗传基因。(种瓜得瓜种豆得豆) 注:一般来讲绝大多数的人先天都是没有问题的真正影响人身体的因素都取决于第二点。 ★后天:细胞生存环境的质量好坏决定了人的健康状况。(同样的种子在不同的环境中生长,结果是不一样的)

细胞生存环境也叫体液体液包括:血液、淋巴液、细胞内外液等,它占人体比重的50%—70%体液质量对细胞质量的影响是巨大的。如果把细胞比作是鱼塘中的鱼,将体液比作鱼塘中的水。 细胞——生存环境—–→体液 鱼——-生存环境—–→鱼塘里的水 ★洁净度:保持体液洁净的方法有两种,分别为降低污染和排除毒素。 A、降低污染 首先了解污染源: |→空气 |→水 |→食物:粮食、蔬菜、水果、肉类等 |→药物:副作用对人体的损伤 |→情绪:恶劣的情绪会自身产生毒素 另外,电器辐射、家居的装修、食品的包装和各种添加剂等。 我们现在生活在一个公害时代:公害时代+不良饮食→炎性体质→腐烂体质。但以上各项污染源我们都无法逃避,所以降低污染根本不可能,而唯一能做到就是排除毒素。 B、排除毒素

低聚果糖的作用及功效

低聚果糖的作用及功效 低聚果糖是一种营养物质,也是人体所必须的一种物质,具有着一定的促进人体健康的功效和作用。总结起来,低聚果糖具有促进双歧杆菌增殖、防止热气和上火、营养作用、促进人体对矿物质的吸收、防止便秘、防止龋齿、美容作用等多方面的功效作用。下面将对低聚果糖的功效进行详细介绍。 1、促进双歧杆菌增殖 双歧杆菌在肠道内数量越多越好。人体试验表明,摄入低聚果粮可以促使双歧杆菌迅速增殖,从而抑制有害菌的生长,维护肠道菌群平衡。科学研究表明,肠道菌群紊乱会引起腹泻,腹泻也会导致肠道菌群失调,二者互为因果。因此,微生态制剂,调整肠道菌群而防治腹泻。 2、防止热气和上火 试验表明,人体每天摄入3-6克低聚果糖,3周之内,即可减少44.6%有毒发酵产物和40.9%有害细菌毒素的产生。从而减少有毒代谢物引起的热气或上火、口臭、口苦等现象。同时减轻肝脏的解毒负担,起到保护肝脏的作用。 3、营养作用 在肠道内可以自然合成维生素B1、B2、B6、B12、烟酸及叶酸,从而提高人体新陈代谢水平,改善肠道的功能,提高免疫力和抗病力,减少口腔溃疡的发生。 4、促进人体对矿物质的吸收在大肠内被细菌发酵生成L-乳酸

可以溶解钙、镁、铁等矿物质,促进人体对矿物质的吸收;实验证实,低聚果糖促进钙的吸收率达70.8%。因此,低聚果糖可以促进儿童生长发育。 5、防止便秘 低聚果糖在肠道内通过双歧杆菌发酵,会产生大量的短链脂肪酸,这种脂肪酸能够刺激肠道蠕动、增加粪便湿润度并保持一定的渗透压,从而防止便秘的产生。在人体试验中,每天摄入5克的低聚果糖,一周之内便可起到防止便秘的效果。 6、防止龋齿 低聚果糖不能被突变链球菌利用生成不溶性葡聚糖而提供口腔微生物沉积、产酸和腐蚀的产所,因此,可以防止龋齿。 7、美容作用 低聚果糖在肠道内减少毒性代谢产物的生成,同时迅速将毒性代谢物排出体外,排除肠道内的宿便,即给“肠子洗个澡”,减少毒性代谢物对皮肤的损伤,儿童可以减少过敏的发生,成人可以防止面疮、青春痘、黑斑、雀斑、老人斑,使皮肤亮丽,起到排毒养颜的作用。

低聚果糖在饮料中的应用

中国食品报/2009年/10月/20日/第004版 广告 低聚果糖在饮料中的应用 随着当今社会人们对饮料需求的增加和对健康生活的需求,近年来饮料市场发生着激烈的变化。在我们的现今社会,压力、疲劳、生命力衰竭就是几种被称作“西方疾病”的社会性问题。果汁营养丰富,含人体必需的多种维生素、微量元素、各种糖类和有机酸等,是人们理想的天然饮料。 低聚果糖是一种具有适度的甜味、纯天然、口感良好的甜味剂,易溶于水,不增加产品的黏度,物理性质稳定,非常适合于在功能性饮料中应用,因为它具有低热量、高纤维、胰岛素反应平稳等等优点。 低聚果糖的特点: 高纤维低聚果糖属优质的水溶性膳食纤维,添加了低聚果糖的饮料为高纤维饮料。 低热每克低聚果糖中仅含6.3kj的热量,非常适合于肥胖者、年轻爱美的女士食用。 双歧因子低聚果糖是较强的双歧因子,其能增殖肠道内的有益菌、抑制有害菌,能起消除便秘、清除肠道垃圾、改善肠道功能的功效。 降血脂大量的人体试验已经证实,摄入低聚果糖后可降低血清胆固醇水平。每天摄入6~12g 低聚果糖并持续2周至3个月,总血清胆固醇降低20一50mg/d1。 润肠通便低聚果糖不能在人体内被消化吸收,属于低相对分子质量的水溶性膳食纤维,因此可用它来使粪便变稀、缓解便秘。它的这种生理功能完全归功于其独有的发酵特征(双歧杆菌增殖特性)。 抗龋齿功能性低聚果糖一般对牙齿无不良影响。龋齿主要是由于口腔微生物,特别是突变链球菌利用蔗糖所生成的酸,特别是乳酸及不溶于水的β-葡聚糖作用的结果。功能性低聚果糖不能成为上述口腔微生物的作用底物,也没有菌体凝结作用,因而不会引起牙齿龋变。 促进矿物质的吸收研究表明,低聚果糖具有截留矿物质元素如Ca、MgFe、Zn的能力。低聚果糖不能被消化酶分解,在到达大肠后,随着低聚果糖被双歧杆菌发酵分解,释放出矿物质离子。同时能降低肠道pH值,在酸性环境中,许多矿物质溶解速度增加,因而有利于吸收。 无糖高纯度低聚果糖为非发酵性糖,人摄食后其不会被人体消化吸收、不会引起血糖值升高,用低聚果糖与非能量型甜味剂配伍代替蔗糖用于饮料中可生产出适合糖尿病人、肥胖病患者、高血压病人饮用的无糖健康饮料。 综上所述,低聚果糖是一种非常优良的功能性饮料配料,其一般添加量为3%-10%左右。 第1页共1页

完美产品价格表

完美产品价格表 产品名称+代号+规格+售价+积分 健康食品系列清调补 完美清调补健康食品礼盒FAP031套装840※714 排毒养颜 完美高纤乐(盒)FD30※10g*30包170※145 完美高纤餐(盒)FM30※15克×30 包135※115 低聚果糖沙棘茶(瓶)FA※175g/瓶220※187 低聚果糖沙棘茶 (盒)FA305克×30袋213※182 增强免疫 芦荟王浆矿物粉(瓶)AMPN145g/瓶229※195 芦荟王浆矿物粉(盒)AMPN305g*30袋256※218 芦荟矿物晶(瓶)AMP132g/瓶208※177 完美营养餐(罐)NB800g/罐 173※147 完美营养餐(盒)NB30※20克×30包145※123 肽藻营养粉(罐)PSN※680克/罐485※412 肽藻营养粉(盒)PSN30※20g*30包485※412 缓解疲劳完美牌健扬胶囊JYC※120粒/瓶318※270 完美吉福参牌人参滴丸GE96粒*3 瓶/盒913※730 肝脏保护 玉米肽糙米胚芽压片CPT02※0.8g×90片380※323 调理肠胃 活立多健肠口服液OLI※10ml×30支185※157 完美活立多牌一生糖 OLS※450g/瓶98※79 完美活立多牌一生糖套装OLS6※6瓶/套558※474 心血健康沙蒜软胶囊PSG※500mg×135粒355※300 沙蒜软胶囊PSG2※135粒*2瓶 690※588 综合营养 完美压榨山茶籽油CSO※750ml×2瓶298※180 营养配方油COF※1.6L/罐 232※186 祛斑产品 完美牌丹参阿胶珍珠胶囊BC※120粒/瓶285※242 红酒系列

大豆低聚糖

大豆低聚糖 大豆低聚糖 本词条缺少信息栏,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧!低聚糖(或寡糖Oligosaccharides)是指其分子结构由2~10个单糖分子以糖苷键相连接而形成的糖类总称。分子量300~2000,界于单糖(葡萄糖、果糖、半乳糖)和多糖(纤维、淀粉)之间,又有二糖、三糖、四糖之分。作为"特定保健用食品"的低聚糖是指具有特殊生物学功能,特别有益于胃肠健康的一类低聚糖,故又称"功能性低聚糖"。大豆低聚糖是大豆中可溶性糖质的总称。主要成分是指单糖数为3~4的蔗糖(双糖)、棉子糖(三糖)和水苏糖(四糖)等。 目录 1简介 2作用机理

3适应人群 4功效1简介 大豆低聚糖是大豆中所含可溶性碳水化合物的总称呼,它是 功能性低聚糖,属于益生元的一种。[1] 不同功能性低聚糖包括:市场上常见的异麦芽糖低聚糖(IMO):低聚果糖(FOS)、低聚半乳糖(GOS)、低聚木糖(XOS)、低聚乳果糖(LACT)、大豆低聚糖(SOS)、菊粉(Inulin))等,它们都属于益生元的范畴[2] 。它是a-半乳糖苷类,主要由水苏糖四糖、棉子糖和Vabascose等组成。成熟后的大豆约含有10%低聚糖。大豆低聚糖是一种低甜度、低热量的甜味剂,其甜度为蔗糖的70%,其热量是每克8.36千焦耳,仅是蔗糖热能的1/2,而且安全无毒。大豆低聚糖主要分布在大豆胚轴中,其主要成分为水苏糖、棉子糖(或称蜜三糖)。水苏糖和棉子糖属于贮藏性糖类,在未成熟豆中几乎没有,随大豆的逐渐成熟其含量递增。但当大豆发芽、发酵,或者大豆贮藏温度低于15℃,相对湿度60%以下,水苏糖、棉子糖含量也会减少。大豆低聚糖有类似于蔗糖的甜味,其甜度为蔗糖的70%,热值为蔗糖的50%,大豆低聚糖可代替部分蔗糖作为低热量甜味剂。大豆低聚糖的保温、吸湿性比蔗糖小,但优于果葡糖浆。水分活性接近蔗糖,可用于清凉饮料和焙烤食品,也可用于降低水分活性、抑制微生物繁殖,还可达到保鲜,保湿

低聚半乳糖和低聚果糖

低聚半乳糖和低聚果糖 对于很多新手父母而言,在选购奶粉的时候,总是容易被各种各样的概念所混淆,比如说低聚果糖和低聚半乳糖,就是父母们在选购时,十分需要注意的两种概念。两者看起来很相似,其实之间还是存在着比较大的区别的。下面,就为大家详细介绍一下这两者的概念以及两者之间的区别! 一、低聚果糖 是一种天然活性物质。低聚果糖是一种水溶性膳食纤维。除具有一般功能性低聚糖的物理化学性质外,最引人注目的生理特性是它能明显改善肠道内微生物种群比例,对肠道益菌的增殖作用。低聚果糖对肠道中有益菌群如双岐杆菌、乳酸杆菌等有选择性增殖作用,使有益菌群在肠道中占有优势,抑制有害菌的生长,减少有毒物质(如内毒素、氨类等)的形成,对肠粘膜细胞和肝具有保护作用,从而防止病变肠癌的发生,增强机体免疫力。 二、低聚半乳糖 低聚半乳糖是一种具有天然属性的功能性低聚糖,其分子结构一般是在半乳糖或葡萄糖分子上连接1~7个半乳糖基,即Gal-(Gal)n-Glc/Gal(n为0-6)。在自然界中,动物的乳汁中存在微量的GOS,而人母乳中含量较多,婴儿体内的双歧杆菌菌群的建立很大程度上依赖母乳中的GOS成分。

三、低聚半乳糖、低聚果糖的区别 低聚半乳糖、低聚果糖都是出现的配方奶中常见的低聚糖种类。乍一看,两者很像,虽然两者都是低聚糖,但其实它们之间是有区别的哦。 低聚半乳糖(GOS)是一种具有天然属性的功能性低聚糖。在自然界中,是一种具有天然属性的功能性低聚糖,人母乳中含量较多,婴儿体内的双歧杆菌菌群的建立很大程度上依赖母乳中或者奶粉中的GOS成分。 低聚果糖是一种天然活性物质,是具有调节肠道菌群,增殖双歧杆菌,促进钙的吸收,调节血脂,免疫调节,抗龋齿等保健功能的新型甜味剂,所以低聚果糖在奶粉中更多的是起到“改善口味”的作用。 低聚半乳糖都能够被人体肠内8大有益菌所利用,能够抑制宝宝肠内有害菌的生长繁殖,低聚半乳糖具有较强的耐酸性、耐热性,不会因为在加工过程中的高温杀菌及人体胃酸所分解而失去其本来应有之特性,而低聚果糖则不具备这些特性。低聚半乳糖能有效地被双歧杆B菌和乳酸杆A菌同时利用。低聚果糖FOS 等低聚糖则只可被乳酸杆A菌利用,对双歧杆B菌则不明显。

低聚果糖的功能

五大功能: 润肠通便、增强免疫力、排毒降火、纤体养颜、减少蛀牙低聚果糖的功能成因一、肠道的重要性肠道是人体器官中与外界接触面积第二大的器官最大的 是肺除了具有消化与吸收营养的功能之外还是人体中免疫系统抵御外来致病原的重要屏障。 其中 A、人体中的营养90靠肠道吸收 B、人体中99的毒素、84的致病菌是从肠道进入 C、人体中必需的130多种维生素是靠肠道有益菌合成 D、肠道不仅是消化器官还是人体中最 大的免疫器官肠道的功能好除了能不断吸收营养提高人体的整体免疫力同时还能发挥肠道自身的免疫作用 E、在肠道免疫系统中起关键作用的就是肠道有益菌群双歧杆菌能够阻止致 病菌的入侵是生物屏障中的中坚力量。 双歧杆菌对维持肠道正常的微生态、 维持正常排便功 能起到至关重要的作用 F、事实上很多因素滥用抗生素、细菌污染、饮食不洁、过度劳累等 都会使肠道正常菌群的生活环境发生变化双歧杆菌在种类、数量、活力等方面都会受到影响导致致病菌得不到制约而大量繁殖肠道的微生态平衡被打破从而引起腹泻、便秘、腹胀腹痛等肠道问题。 二、肠道菌群与人体健康的关系现代医学证实人体内微生态系统与健康有密 切联系微生态达到平衡时有益菌占上风它在我们人的肠道功能有 A、防止肠内腐败抑制有毒物质的产生 B、在体内合成B1、B2、等B族维生素 C、制造有机酸促进肠蠕动预防便秘 D、抑制病原菌的增殖能刺激体内的免疫系统提高免疫力 E、预防致癌物质的产生分解致癌物质 F、促进蛋白质及钙、锌、铁等矿物质的吸收 G、膳食纤维能吸附胆汁酸、胆固醇变异原等 有机分子抑制总胆固醇TC 浓度升高降低胆酸及其盐类的合成与吸收降低人体血浆和肝脏胆 固醇水平防治冠状动脉硬化、胆石症和预防心脑血管疾病 H、预防和治疗肠炎、慢性腹泻 低聚果糖主要功能就是调节肠道菌群增加有益菌调节肠道平衡以致达到身体的平衡服用低 聚果糖后的生理现象低聚果糖的肠道护理过程是您可亲身感受和体验到的。 首次服用后约4个小时您会觉得肚子有反应并伴随有趣的生理现象——频频放屁。 请放心只响不臭因为低聚果糖是人体内有益菌的最佳营养物当您服用后体内的有益菌大量繁殖随着它们的新陈代谢,产生大量的二氧化碳并随之排出体外。 如果您无此现象则说明您体内有益菌已为数不多这可是您身体衰退的反映但别担心只要您坚持服用身体放屁的现象会逐渐增多、即体内的有益菌会恢复到健康的水平。接着约6个小时您感到肠蠕动增强有时会伴随着轻微腹痛。这是因为低聚果糖携带大量水分冲洗您的肠道刺激肠壁而加强肠蠕动促使污物排出体外。不久您就需要上厕所了随之宣告第一次体内

完美产品对症养生配方

完美产品12天快速减肥法 2013-09-16 22:36:23 归档在| 浏览 247 次| 评论 0 条 完美产品12天快速减肥法 ——程梅华老师推荐 1-4天: 早餐:高纤乐2包(用40度温水冲服) 中餐:1-3只苹果 晚餐:高纤乐1包(用40度温水冲服) 备注:吃高纤乐前后喝一杯水,每天至少要喝8杯水以上. 5-8天: 早餐前30分钟:1勺矿物晶 早餐:高纤乐2包(用40度温水冲服) 中餐:1-3只苹果 晚餐:高纤乐1包(用40度温水冲服)备注:上午下午各吃1包沙棘茶(用40度温水冲服) 9-12天: 早餐前30分钟:1勺矿物晶 早餐:高纤乐2包(用40度温水冲服) 中餐:1-3只苹果及3大勺营养餐 晚餐:高纤乐1包、营养餐3大勺备注:上午下午各吃1包沙棘茶(用40度温水冲服)

12天后: 早餐前30分钟:1勺矿物晶 早餐:高纤乐1包(用40度温水冲服) 中餐:吃饭(七分饱) 晚餐:吃饭(七分饱) 备注:喝8杯以上的水 肥胖是因为摄入的单一营养超量,即蛋白质、碳水化合物和脂肪超量,形成体内垃圾。肥胖对身体的危害是极易引发高血压、心脏病、便秘、腹胀、食欲亢进、脂肪肝、胆结石、糖代谢紊乱和激素代谢紊乱引发的生育能力和性功能下降等症状。所以,垃圾食品是导致肥胖的根本原因。在12天以内,用完美产品补充身体所需要的均衡营养,控制你的饮食。该配方主要是严格限制了引发肥胖的三种营养素的过多摄入,只靠消耗体内原有的营养素来维持。因此,该配方特点:第一是明显有效(一般可减5-20斤);第二是健康安全;第三是科学不反弹;第四是经济实惠;第五是不影响正常的工作和生活。 注意事项: 1.服用矿物晶时,所用器具一律不准是金属或带磁性的杯子,可用玻璃杯或塑料杯、木筷子。 2.泡矿物晶必须用冷开水,搅拌均匀后服用。 3.矿物晶怕光、怕潮,每次打开后须拧紧盖子,放在阴暗、干燥处。 4.吃高纤乐前后各喝一杯水。并且每天至少喝8杯水以上。

2011年新产品简介资料

完美红葡萄酒简单介绍 一、历史悠久品位尊贵 早在古希腊和罗马的文化中,葡萄酒就已经备受皇家贵族的青睐。 法国人更是把葡萄酒的酿造升华到了艺术的境界,如今已成为最负盛名的葡萄酒产地。(详细请参考薛洁课件中有关葡萄酒历史的介绍) 二、每日品味健康美丽 最新的医学研究结果证明,葡萄酒除了能怡情助兴,更有延缓衰老、预防心脑血管病、预防癌症、补充营养、美容养颜、减肥塑身、增进食欲、改善睡眠、抗氧化、助消化等功效。(红酒中含有白藜芦醇、原花青素多种萜烯等有效成分对保持健康有重要的作用,每天品尝葡萄酒50~300ml对身体健康有很大的帮助) 三、系出名门尊贵典雅 绽放的烂漫——法国兰 法国兰是源自奥地利的珍稀葡萄品种,法国人曾多次进行大面积引种,但都宣告失败,最后仅在法国著名的法定葡萄种植区AOC——勃艮第地区有少量的种植。使用法国兰葡萄酿造的葡萄酒富有诱人的樱桃和覆盆子等红色浆果的香气,良好的酸度使之结构丰富饱满,入口爽滑,余味悠长,清新宜人。 法国兰葡萄酒被誉为酒中战神,相传是横扫欧洲的拿破仑提高士兵战斗力的灵丹妙药和克敌制胜的重要法宝,是壮行酒、庆功酒的最佳选择。 相传在拿破仑一世还是一个普通士兵时,一次战败负伤流落到勃艮第地区,有幸得到当地一酒馆掌柜女儿的接济,才能勉强度日,酒馆掌柜的女儿见拿破仑终日郁郁寡欢,便以酒馆内最好的法国兰葡萄酒为其解愁,并不断鼓励其再次振作。随着拿破仑伤势的逐渐恢复,他终于恢复斗志,决心要闯出一番功业,然后再回来与女友成婚,因此辞别了女友,赶往与部队会合;战争不断的升级,拿破仑的功业也越发壮大,最后成为了法兰

西帝国的国王,胜利后拿破仑回到勃艮第地区寻找昔日鼓励他重新振作的女友,并希望与其成婚,但却发现昔日女友及家人全部葬身于战争之中,废墟下仅存有少量的法国兰葡萄酒,拿破仑以仅存的法国兰葡萄酒慰军民,发誓打败强敌,为在战争中死去的人们报仇,此后在每次出征前拿破仑都以法国兰葡萄酒作为壮行酒,犒赏军队以振士气,使得拿破仑的军队所向披靡,最终横扫了整个欧洲。 四、自然的奢华——完美红 1、有机种植低产高质 完美有机葡萄园,北纬41.58度,冬季气温持续零下10℃至零下15℃,绝佳的地理位置,独特的土壤结构(10年有机土壤的培植,确保无化肥无农药无污染[注释:长达10年持续对土壤进行改造,坚持通过生态调整,土壤监控等手段,提高土壤肥沃程度及改良葡萄天然抗病虫能力,只为追求收获最为天然、最为安全的葡萄资源]),自然的原生态环境,国内外种植有机葡萄罕有的理想基地 完美有机葡萄园采用宽距单臂篱架种植(通风透光,提高葡萄抗病害能力),间隙达3.8米(一般的葡萄种植为了追求产量大部分会采用双臂篱架种植,且间距仅为1.2米左右,虽然提升了单位葡萄的产量,但有限的空间将使葡萄容易产生病害,为确保葡萄的丰收,故需要定期喷洒农药及化肥),坚持手工采摘,精心挑选,主动降低产量,只为追求完美品质。 2、国际工艺原汁原味 完美红富含白藜芦醇、原花青素等抗氧化物质,发酵过程采用国际顶级设备严格控制温度和各个工艺参数,最大限度保留原料天然的果香和营养物质。 3、权威检测品质保证 完美红葡萄酒由中国食品发酵工业研究院监制、国家食品质量监督检验中心检测,荣获欧盟有机种植认证,并采用GC-MS、HPLC等现代分析法,从有机葡萄园管理到葡萄酒质量安全控制,全程实现了传统工艺与现代分析技术的完美结合。再加上完美公司5项国际认证体系,使产品用得安心又健康;

低聚果糖通便作用的研究

低聚果糖通便作用的研究 发布: 2005-1-1 | 来源: 互联网 | 查看: 2次 免费点歌 绝色美女 手机铃声 小 中 大 | 转发 | 收藏本文 作者:何为涛,赵鹏,刘荣珍,李凤文,姚思宇 【摘要】 目的 研究低聚果糖的通便功能作用。方法 动物实验:分别以2.5、5.0和10.0 g /(kg·bw)3个剂量经口给予小鼠连续灌胃,7天后进行小肠运动实验、排便时间、粪便粒数和粪便重量的测定。结果 各剂量组的墨汁推进率均高于便秘模型对照组,各剂量组的首便时间均比便秘模型对照组的缩短,而各剂量组粪便粒数均多于便秘模型对照组,且差异有显著性;人群试食试验:选择非器质性便秘者102例,分为试食组和对照组各51例,两组试验期间不改变原来的饮食习惯,正常饮食,试食组加服低聚果糖,3次/d,每次10ml 。7天后,比较两组试验前后排便次数、排便状况和粪便性状的变化,并测定试验前后血常规、血生化指标等。结果 试验组服用后排便次数明显增加(p <0.01),排便状况和粪便性状明显改善(p <0.01),总有效率为92.2%(p <0.01),且受试者的血常规、血液生化指标及其他临床检查均无异常。结论 低聚果糖具有通便功能。 【关键词】 低聚果糖;通便;人体试验 study on the effect of fructooligosaccharide facilitating feces excretion 【abstract 】 objective to study the effect of fructooligosaccharide on facilitating feces excretion.methods in vivo animal experiment : in the experiment , mice were given fructooligosaccharide samples through oral gavage at 2.5,5.0 and 10.0g/(kg·bw) for seven consecutive days. then the rate of indian ink advancing in the small intestines , the time of first black feces excretion ,the number of feces granules and the weight of feces were measured.results we found that the rate of indian ink advancing in the small intestines of mice treated with fructooligosaccharide was significantly higher than that in the constipation control group. also compared to the constipation control mice , the first black feces excretion was significantly faster in the mice treated with fructooligosacharide. furthermore , mice treated with fructooligosacharide samples produced more feces granules than the control group. in vivo human study : 102 constipation patients were randomly divided into two groups. both the treated group and the control group contained 51 patients. patients maintained their regular diet throughout the experiment. however , patients in the treated group were given 25g/day fructooligosaccharide for seven consecutive days. then , the frequency of feces excretion , ease of feces excretion and the appearance of feces granules were examined and compared to that before treatment. the effect of fructooligosaccharide treatment on blood biochemistry and blood routine were also examined. results : the frequency of feces excretion in the treated group was significantly improved (p <0.01). moreover , ease of feces excretion and the appearance of feces granules were also improved (p <0.01). overall , 92.2% of the patients treated with fructooligosaccharide showed

低聚果糖沙棘茶

低聚果糖沙棘茶 来源:完美小助手 一、产品说明: 低聚果糖沙棘茶是以低聚果糖、沙棘粉、红茶粉、柠檬酸、苹果酸、罗汉果甜甙、维生素C、三氯蔗糖、柠檬香精、茶香精、乙基麦芽酚为主要原料制成的保健食品,经动物功能和人体试食试验证明,具有调节肠道菌群,洁净血液,清洁泌尿系统,呼吸系统的保健功能,并有效补充多种维生素及微量元素。浓浓的茶香味道,清新、纯净,让您品不一般的茶,享不一样的健康。 二、产品功效: 身体浮肿、血黏稠、妇科炎症、前列腺炎、便秘、脸色暗淡无光、易疲劳等人的福音。 1、改善消化系统 完美沙棘茶中含有大量的菊粉,能在大肠里大量繁殖双歧杆菌,增加双歧杆菌数量,促进大肠蠕动,提高新陈代谢,改善营养吸收功能,消除体内各种毒素,对肠炎、结肠炎有特效。菊粉经酶转化后形成IOS,而IOS是双歧杆菌的高效增殖因子,能活化肠道内的双歧杆菌并促进其生长繁殖,双岐杆菌是人体肠道内的有益菌群,其数量的多少直接反应人体的健康状况,它可以减少肠道有害细菌(如痢疾细菌、霍乱细菌等)的数量,增强人体免疫力,并且能在人体肠道内合成B族维生素,维护人体神经系统的正常运作。 双岐杆菌与人是一种共生的关系(共生是指两种或两种以上生物互利、互惠的生存方式),其生长繁殖贯穿于人的整个生命历程。新生婴儿2-3天后粪便中便可发现双歧杆菌,4-5天后双歧杆菌占肠道细菌的绝大部分;随着年龄的增长,双歧杆菌的数量逐渐减少;体质虚弱者,双歧杆菌的存在量很少;在临死的人的肠道中,根本不存在双歧杆菌。 双歧杆菌有很强的保健作用,近二十年来医学专家们对这类菌进行了比较详细的研究,

特别是近几年随着人们保健意识的增强,对双歧杆菌的利用也越来越多。双歧杆菌对胃炎、腹泻、慢性痢疾、消化不良、免疫力下降、解毒护肝、痔疮、便秘等肠胃道疾病有明显的调理作用。 2、清洁循环系统 沙棘黄酮、β-谷固醇、甜菜碱、茶多酚等多种活性物质具有降低血清胆固醇含量、清除血管壁上的沉积物、抑制血小板过度聚集、提高高密度脂蛋白含量、增加血红蛋白、软化血管、恢复血管弹性、增大血流量、增加对大脑的供血能力、调节血脂代谢等作用。因此对心脑血管疾病有很好的辅助治疗作用。 3、洁净沁尿系统 通过补充甘露醇,促进体内多余水份及时排出,防止污垢在体内沉积,对肾脏、尿路感染、前列腺等有较高的洁净功能。 4、其他 1)、沙棘茶是血液新陈代谢的保鲜剂。 2)、沙棘茶是肠道双歧杆菌的增殖剂。 3)、沙棘茶是男性功能助推器。 4)、沙棘茶是女性的妇宝。 5)、沙棘茶是胆固醇的清道夫。 6)、沙棘茶是人体的除污去垢剂。 7)、沙棘茶是胆结石的击碎剂。 8)、沙棘茶是肥胖者的减肥剂。 9)、沙棘茶是抗衰老的阻断剂。 沙棘茶的“三清三降三抗”:清肠道、清血液、清泌尿降血压、降血脂、降血糖抗肿瘤、抗衰老、抗氧化 10)、沙棘茶是天然血糖控制剂 沙棘茶刺激胰岛素的分泌,增进葡萄糖利用率,改善体内血糖代谢。

低聚果糖对人体肠道菌群的影响

[作者单位]11首都师范大学化学系,北京,100037;21中国疾病预防控制中心营养与食品安全所 [作者简介]张帆(1963~),女,高级工程师,学士,研究方向:食品检验.【论著】 低聚果糖对人体肠道菌群的影响 张帆1,汪会玲2,孟晶2 [摘 要] 目的:研究低聚果糖对人体肠道菌群的影响。方法:将100名受试者随机分成试食组和空白对照组,试食组每天服用低聚果糖20ml,连续14d,比较两组肠道菌群的变化情况。结果:试食组试验后肠道中双歧杆菌和乳杆菌的数量明显增加,差异均有统计学意义(P<0101);肠杆菌、肠球菌、拟杆菌、产气荚膜梭菌数量变化差异均无统计学意义(P>0105)。结论:低聚果糖具有调节人体肠道菌群,增殖双歧杆菌和乳杆菌的作用,且对受试者身体健康无不良影响。 [关键词] 低聚果糖;肠道菌群;双歧杆菌; [中图分类号]R15 [文献标识码]A [文章编号]1003-8507(2006)02-0158-02 THE EFFECT OF FRUCTO-OLIG OSACCH ARI DE ON HU MAN INTESTINA L F LORA.ZH ANG Fan,Wang Hui2ling,MENG Jing.Department o f Chemistry,Capital Normal Univer sity,Beijing,100037. Abstract:Objective:T o study the effect of fructo2olig osaccharide(FOS)on the intestinal flora.Methods:100v olunteers were di2 vided into test group and blank control group.The test group were given20m L FOSfor14days,the changes of intestinal flora were com pared between tw o groups.R esults:There were extremely significant increase in the numbers of Bifidobacteria and Lactobacilli(P<0.01),no significant differences in the numbers of Escherichia,Enterococcus,Bacteroides,and C.per fringens(P>0.05).Conclusions:FOS could adjust humam intestinal flora,prom ot the growth of Bifidobacteria and Lactobacilli,have no harm ful effects on oneπs health. K ey w ords:Fructo2olig osaccharide;Intestinal flora;Bifidobacteria;Lactobacilli; 低聚果糖(FOS)又称果寡糖或蔗果三糖族低聚糖,它是由蔗糖和1~3个果糖通过β-2,1键与蔗糖中的果糖基结合而成的蔗果三糖、蔗果四糖和蔗果五糖及其混合物[1]。低聚果糖可有效地促进双歧杆菌增殖,并能显著抑制有害菌的增殖,具有调节肠道菌群的功能。此外,低聚果糖还具有提高机本免疫力、降低血脂、润肠通便等广泛的生理功能[2,3]。本文通过人体试食试验,进一步研究低聚果糖对人体肠道菌群的影响。 1 材料与方法[4] 111 受试样品 ×××牌低聚果糖口服液为黄色透明液体,可溶性固形物≥75%,其中低聚果糖≥55%,由某公司提供。 112 受试人群 经体检指标全部正常的100名成年志愿者。将其随机分成试食组和空白对照组,每组50人,男女各半。 113 观察指标 11311 一般情况 受试者的精神、饮食、睡眠、大小便、血压等情况。 11312 安全性指标 试验前受试者进行胸透、心电图、腹部B超、肝、肾功能检查;试验前后进行血常规、尿常规、便常规、血生化检测。 11313 功效性指标 双歧杆菌、乳杆菌、肠杆菌、肠球菌、拟杆菌、产气荚膜梭菌。 114 试验方法 11411 试验步骤 在给予受试样品之前,无菌采取受试者粪便,检查双歧杆菌、乳杆菌、肠杆菌、肠球菌、拟杆菌、产气荚膜梭菌等数量指标。受试者每日服用低聚果糖口服液1次,每次20ml,连续14d。于给受试样品最后一次24 h后,无菌采取受试者粪便,再次检验上述指标。空白对照组人群试验前后粪便的采集同上。 11412 肠道菌群检验方法 收集受试者新鲜粪便于便盒中,立即送检。定量称取标本,10倍稀释并均浆后,分别接种至各选择性培养基。 双歧杆菌:BLL培养基 37℃、48h厌氧培养。 乳杆菌:MRS培养基 37℃、48h培养。 肠杆菌:伊红美蓝培养基 37℃、24h培养。 肠球菌:叠氮钠-结晶紫-七味苷培养基 37℃、48 h培养。 拟杆菌:改良G AM培养基 37℃、48h厌氧培养。 产气荚膜梭菌:TSC培养基 37℃、24h培养。 2 结果 211 一般情况 试验前受试人群的精神、睡眠、饮食、大小便及血压情况良好;血常规、便常规、血生化和肝、肾功能各项检测指标均在正常值范围内;胸透、心电图和腹部B超检查均正常。试验期间,部分试食组人群服用受试样品后有排气现象,未观察到对健康有不良反应。试验后血、尿和便常规指标无异常改变。 212 肠道菌群检测结果

相关文档