文档库 最新最全的文档下载
当前位置:文档库 › 分子伴侣的作用探析

分子伴侣的作用探析

分子伴侣的作用探析
分子伴侣的作用探析

分子伴侣

分子伴侣:分子伴侣(chaperon):细胞一类保守蛋白质,能识别肽链的非天然构象,通过与疏水肽段“结合和释放”(需要消耗ATP),防止蛋白质不正确的叠折,简化正确折叠途径或提供折叠的微环境。 超二级结构的概念:指蛋白质中相邻的二级结构单位(α-螺旋、β-折叠、β-转角及无规卷曲)组合在一起,形成有规则的在空间上能辩认的二级结构组合体。又称为花样或模体称为基元。超二级结构在结构层次上高于二级结构,但没有聚集成具有功能的结构域 米氏常数Km的意义:①物理意义: 当反应速度达到最大反应速度(Vmax)的一半时的底物浓度. 单位:mol·L-1或mmol·L-1 ②Km是酶的特征常数之一。一般只与酶的性质、底物种类及反应条件有关,与酶的浓度无关。对于专一性不强的酶来说对于每一个底物都有一个相应的Km值. 半不连续复制:DNA聚合酶只能按5…—3?方向催化合成DNA不能催化3…—5?方向合成, 这样一条链连续合成和另一条链不连续合成的复制方式,称为DNA的半不连续复制 操纵子:原核生物中几个功能相关的结构基因成簇串联排列组成的一个基因表达的协同单位(DNA序列).一个操纵子只含有一个启动序列,但转录的产物为一条mRNA分子,带有编码几种蛋白质的信息。 TRNA的结构特点: 一级结构:70-90b,分子量在25kd左右,沉降系数4S左右(分子量三种主要RNA中最小)有较多稀有碱基(DHU 、T、ψ、mG和mA等) 3?末端为…CCA-OH 5?末端大多为pG…或pC… t RNA二级结构:三叶草形四环:二氢尿嘧啶环(D环)、反密码环、额外环、TψC环 四臂:氨基酸臂、二氢尿嘧啶臂、反密码臂、TψC臂(1)tRNA的二级结构由四臂、四环组成。已配对的片断称为臂,未配对的片断称为环。 (2)叶柄是氨基酸臂。其上含有CCA-OH3’,此结构是接受氨基酸的位置。 (3)氨基酸臂对面是反密码子环。在它的中部含有三个相邻碱基组成的反密码子,可与mRNA 上的密码子相互识别。 (4)左环是二氢尿嘧啶环(D环),它与氨基酰-tRNA合成酶的结合有关。 (5)右环是假尿嘧啶环(TψC环),它与核糖体的结合有关。TψC环中GTψC与核糖体中5S rRNA相应区段有碱基互补关系; (6)在反密码子与假尿嘧啶环之间的是可变环,它的大小决定着tRNA分子大小。

(完整版)功能高分子复习提纲

一、名词解释( 5 题,共 15 分) ——功能高分子材料:一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。 ——功能与性能,性能:材料的功能从本质上来说是指向材料输入某种能量和信息,经过材料的储存、传输或转换等过程,再向外输出的一种特性;材料的性能是指材料对外部作用的表征与抵抗的特性。材料在具备功能的同时,必须具有一定的性能。 ——结构型功能高分子材料,指在大分子链中具有特定的功能基团的高分子材料,它们的功能性是由分子中所含的特定的功能基团来实现的。 ——复合型功能高分子材料:指以普通高分子材料为基体或载体,与具有某些特定功能(如导电、磁电)的其他材料以一定的方式复合而成的,它们的功能性是上高分子材料以外的添加组分得到的。 ——智能材料:是将普通材料的各种功能与信息系统有机地结合起来的融合型材料,它可以感知外部的刺激(传感功能),通过自我判断和自我结论(处理功能),实现自我指令和自我执行的功能(执行功能);又称为灵巧材料(机敏材料)。 ——离子交换树脂:是一类带有可离子化基团的三维网状交联聚合物。它具有一般聚合物所没有的新功能——离子交换功能,本质上属于反应性聚合物。 ——高吸水性树脂,是由分子链上含有强亲水性基团(如羧基、磺酸基、酰胺基、羟基等)并有一定交联度的功能高分子材料。 ——高分子分离膜,是用人工或天然合成的高分子分离膜,可借助于化学位差(浓度差、压力差和电位差)的推动对双组份或多组份的溶质和溶剂进行分离、提纯和选择性透过等。 ――导电高分子:是指由具有共轭n键的高分子本身或经过“掺杂”后具有导电性的一类高分子材料。 -- 结构型导电高分子: -- 复合型导电高分子: --- 载流子:――掺杂:这种因添加了电子受体或电子给体而提高电导率的方法称为“掺杂” --- 光功能高分子材料:也称感光性高分子,指在吸收了光能后,能在分子内或分子间产生化学、物理变化的一类功能高分子材料。这种变化发生后,材料将输出其特有的功能。 ――光致抗蚀材料:指高分子材料经过光照后,分子结构从线型可溶性转变为网状不可溶性,从而产生了对溶剂的抗蚀能力。(负片型) -- 光致诱蚀材料,与光致抗蚀材料正好相反,当高分子材料受光照辐射后,感光部分发生光分解反应,从而变为可溶性。(正片型) ――光引发剂和光敏剂:都是在光聚合中起到促进引发聚合作用的化合物。二者不同在于,光引发剂吸收光能后跃迁到激发态,当激发态能量高于键断裂所需的能量时,断键产生自由基,而引发反应,属消耗性,光敏剂吸收光能后跃迁到激发态,然后发生分子内或分子间能量转移。将能量传递给另一个分子,产生初级自由基,光敏剂回到基态,属非消耗性。 ――生物降解高分子材料:指一类能够被微生物酶的作用分裂成较小聚合物产物的高分子材 料。 ――生物降解:是指高分子的分子链在微生物酶作用下分裂成较小聚合物产物的过程。 ――生物相容性:是指生物材料在生物体内与周围环境的相互适应性,也可理解为宿主体与材料之间的相互作用程度。 ――生物吸收性高分子:在体内逐渐降解,其降解产物为机体吸收代谢的高分子材料。 ――生物惰性高分子:指在生物环境下呈现化学和物理惰性的高分子材料。 ――水凝胶:由液体和高分子网络组成,由于高分子网络与液体之间的亲和性,液体被高分子网络封闭在里面,并且像固体一样显示一定形状的材料。 ――智能型凝胶:高分子主链或侧链上通常存在着离子化基团、极性和疏水性基团,从而使之具有类似生物体的特性,当收到外界刺激(温度 PH 溶剂盐浓度化学物质等),其结构,物理特性会产生敏感响应的一类凝胶材料。 ――形状记忆材料:是指对已经赋形的材料在一定的条件下(如加热、光照、改变酸碱度、磁场等)

分子筛原理

多孔材料在许多领域有着广泛的应用,如微孔分子筛作为主要的催化材料、吸附分离材料和离子交换材料,在石油加工、石油化工、精细化工以及日用化工中起着越来越重要的作用。那么,分子筛原理是什么?为此,安徽天普克环保吸附材料有限公司为大家总结了相关信息,希望能够为大家带来帮助。 吸附功能:分子筛对物质的吸附来源于物理吸附(范德华力),其晶体孔穴内部有很强的极性和库仑场,对极性分子(如水)和不饱和分子表现出强烈的吸附能力。 筛分功能:分子筛的孔径分布非常均一,只有分子直径小于孔穴直径的物质才可能进入分子筛的晶穴内部。 通过吸附的优先顺序和尺寸大小来区分不同物质的分子,所以被形象的称为“分子筛”。

安徽天普克环保吸附材料有限公司是原上海摩力克分子筛有限公司直属公司,本公司成立于2004年,由于生产量扩增,本公司在安徽合肥空港寿县新桥产业园投资建设生产基地。公司目前拥有年产2000吨分子筛、1500吨活性氧化铝生产线各一条。 二期工程将建成4000吨分子筛生产线。公司全面推行ISO9001质量管理体系,建有现代化的实验室和质量控制中心。现有工程技术人员20人,其中工程师8人。 产品系列化、经营多元化,这些都是企业的发展方针,而OEM----更是公司多年的经营模式,并且得到广泛好评。我们的用户涉及石油、化工、冶金、汽车、空调、电子仪表等行业,我们的客户群不仅是在国内而且遍及东南亚、欧美等地。公司热忱欢迎国内外客商与我们真诚合作。我们将以精美的产品、可靠的技术、精益求精的服务满足广大客户的要求。 分子筛广泛用于制氧、炼油、化工化肥、医药、钢铁、冶金、酒

精、玻璃行业,是气体、液体纯制、分离干燥的好的产品。安徽天普克环保吸附材料有限公司始建于2001年,已有18多年历史,产品有分子筛系列3A分子筛、4A分子筛、5A分子筛、lOX分子筛、13x 分子筛、K13X中空玻璃专用分子筛、变压吸附、富氧专用分子筛、活性氧化铝、瓷球等塔填料。 近期开发研制的CM6-5A脱腊分子筛各项,性能指标均达到和超过规定标准,并获得河南省高新技术产品证书,由于我厂产品质量上乘,价格适中,已批量销往缅甸、日本等国,是我国型号导弹和神州系列载人飞船定点供货厂家。 安徽天普克环保吸附材料有限公司周边交通便利,环境优美,我们热忱欢迎新老客户来厂洽谈业务,我们将以优良的产品、合理的价格,为客户提供批发,零售来料交工等服务。

功能高分子-概述

1 概述 1.1 液晶的基本概念 物质在自然界中通常以固态、液态和气态形式存在,即常说的三相态。在外界条件发生变化时(如压力或温度发生变化),物质可以在三种相态之间进行转换,即发生所谓的相变。大多数物质发生相变时直接从一种相态转变为另一种相态,中间没有过渡态生成。例如冰受热后从有序的固态晶体直接转变成分子呈无序状态的液态。 而某些物质的受热熔融或被溶解后,虽然失去了固态物质的大部分特性,外观呈液态物质的流动性,但可能仍然保留着晶态物质分子的有序排列,从而在物理性质上表现为各向异性,形成一种兼有晶体和液体部分性质的过渡中间相态,这种中间相态被称为液晶态,处于这种状态下的物质称为液晶(liquid crystals)。其主要特征是其聚集状态在一定程度上既类似于晶体,分子呈有序排列;又类似于液体,有一定的流动性。 液晶现象是1888年奥地利植物学家莱尼茨尔(F. Reinitzer)在研究胆甾醇苯甲酯时首先观察到的现象。他发现,当该化合物被加热时,在145℃和179℃时有两个敏锐的“熔点”。在145℃时,晶体转变为混浊的各向异性的液体,继续加热至179℃时,体系又进一步转变为透明的各向同性的液体。 研究发现,处于145℃和179℃之间的液体部分保留了晶体物质分子的有序排列,因此被称为“流动的晶体”、“结晶的液体”。1889年,德国科学家将处于这种状态的物质命名为“液晶”(liquid crystals,LC)。研究表明,液晶是介于晶态和液态之间的一种热力学稳定的相态,它既具有晶态的各向异性,又具有液态的流动性。 小分子液晶的这种神奇状态,引起了人们的浓厚兴趣。现已发现许多物质具有液晶特性(主要是一些有机化合物)。形成液晶的物质通常具有刚性的分子结构。导致液晶形成的刚性结构部分称为致晶单元。分子的长度和宽度的比例R>>l,呈棒状或近似棒状的构象。同时,还须具有在液态下维持分子的某种有序排列所必需的凝聚力。这种凝聚力通常是与结构中的强极性基团、高度可极化基团、氢键等相联系的。 按照液晶的形成条件不同,可将其主要分为热致性和溶致性两大类。热致性液晶是依靠温度的变化,在某一温度范围形成的液晶态物质。液晶态物质从浑浊的各向异性的液体转变为透明的各向同性的液体的过程是热力学一级转变过程,相应的转变温度称为清亮点,记为Tcl。不同的物质,其清亮点的高低和熔点至清亮点之间的温度范围是不同的。 溶致性液晶则是依靠溶剂的溶解分散,在一定浓度范围形成的液晶态物质。 除了这两类液晶物质外,人们还发现了在外力场(压力、流动场、电场、磁场和光场等)作用下形成的液晶。例如聚乙烯在某一压力下可出现液晶态,是一种压致型液晶。聚对苯二甲酰对氨基苯甲酰肼在施加流动场后可呈现液晶态,因此属于流致型液晶。 根据分子排列的形式和有序性的不同,液晶有三种结构类型:近晶型、向列型和胆甾型。(见图12—1)。 近晶型向列型胆甾型 图12—1 液晶结构示意图 (1)近晶型液晶(smectic liquid crystals,S) 近晶型液晶是所有液晶中最接近结晶结构的一类,因此得名。在这类液晶中,棒状分子互相平行排列成层状结构。分子的长轴垂直于层状结构平面。层内分子排列具有二维有序性。但这些层状结构并不是严格刚性的,分子可在本层内运动,但不能来往于各层之间。因此,层状结构之间可以相互滑移,而垂直于层片方向的流动却很困难。 这种结构决定了近晶型液晶的粘度具有各向异性。但在通常情况下,层片的取向是无规的,因此,宏观上表现为在各个方向上都非常粘滞。

药理简答题答案详解

1、简述抗高血压药的分类及代表药。 2、简述可乐定的降压作用机制 3试述治疗高血压联合应用氢氯噻嗪、肼苯哒嗪和普奈洛尔的优点。 4简述硝酸甘油抗心绞痛的作用机制。 5.改变心肌的血液分布,有利于缺血区的供血 6简述普萘洛尔抗心绞痛的作用机制。 7简述他汀类药物抗动脉粥样硬化的药理学基础是什么 8试述抗动脉粥样硬化药包括哪类,各举一代表药。 9利尿药的分类、每类药的作用部位及代表药。 10述高效能和中效能利尿药的不良反应 11比较各类利尿药的利尿作用部位、作用机制及药理作用、临床应用、不良反应 12血的类型及抗贫血药的临床应用和注意事项。 13双香豆素可与哪些药物产生相互作用为什么 14常用抗凝药物肝素和双香豆素的抗凝作用机理、临床应用及主要的不良反应及过量的解救药。 15简述糖皮质激素的临床应用及局部雾化吸入的主要不良反应。 16简述茶碱类平喘药作用机制、临床应用及主要不良反应。 17平喘药的分类、作用机制和临床应用。 18试述奥美拉唑的作用机制与临床用途 19.简述多潘立酮的作用机制与临床意义 20抗消化性溃疡药的分类及作用机理,并各举一代表药物。 21简述糖皮质激素类药物的疗程及适用情况。 22 长期应用糖皮质激素类药物引起代谢紊乱方面的不良反应有哪些 23状腺激素的主要药理作用和临床应用。 24碘化物的不良反应。 25胰岛素主要用于何种糖尿病如何根据病情选择剂型 26胰岛素过量所致的低血糖有何症状如何预防 27格列本脲的作用机制及临床应用 28试述糖皮质激素的药理作用 29抗甲状腺药物的分类、作用机制和临床应用 30试胰岛素的药理作用和临床应用。 31细菌耐药性的产生机理 32 抗菌药物的作用机制,并举例说明 33简述青霉素G的抗菌谱、抗菌机制及临床应用。 34试述四代头孢菌素的特点。 35常用大环内酯类抗生素的药物及其共同特点有哪些 36.CCBs(钙通道阻滞药、钙拮抗药)的分类、代表药、药理作用及临床应用(21章)。37.抗心律失常药的分类及代表药。(22章) 38.抗高血压药的分类及代表药。(25章) 39.强心苷的药理作用和不良反应。(26章) 40。硝酸酯类的药理作用和临床应用。(28章) 41.抗动脉粥样硬化药的分类。(27章) 42尿药的分类、每类药的作用部位及代表药。 43.普萘洛尔的药理作用和临床应用。(22章)

(推荐)分子筛吸附原理

分子筛吸附原理 吸附是一种把气态和液态物质(吸附质)固定在固体表面(吸附剂)上的物理现象,这种固体(吸附剂)具有大量微孔的活性表面,吸附质的分子受到吸附剂表面引力的作用,从而固定在上面。引力的大小取决于: -吸附剂表面的构造(微孔率); -吸附质的分压; -温度。 吸附伴随着放热,是一种可逆的现象。类似于凝结: -如果增加压力。吸附能力增加; -降低温度,吸附能力增加。 因此,在吸附时,要使压力升到最高,温度降到最低。解吸时,则要使压力降到最低,温度升到最高。

带有吸附床的净化工艺 也叫空气净化的“干燥-脱除CO 2 ”工艺。 为使空气获得较低的净化前温度,常用制冷机组或空气水冷塔 对其进行降温。(图中的“X10”表示预冷设备。) 净化装置位于空气压缩机、空气预冷系统之后,为了保持净化 器工作的连续性,需要使用两台吸附器。当一台工作时(即正在脱除H 2 O 与CO 2 ),另一台处于再生状态。 吸附阶段 由于氧化铝吸附CO 2的效果很差,故它主要用于吸附H 2 O,而位于 其后的分子筛则处理干燥后含有 CO 2 的空气。 注:分子筛具有很强的吸水性,因此,在吸附和再生期间绝不 能让分子筛与水份接触而降低其吸附CO 2 的能力。如果有意外情况发生使

水份带入了分子筛,惟有高温特殊再生(见10 章)才能够使其恢复原有的吸附性能。

下图显示了吸附质在临近穿透的时刻(在吸附阶段结束),CO 2 O在两种吸附床层中及给定时间内的含量分布图。 与H 2 吸附器必须在吸附质的前锋抵达吸附出口之前进行再生(即在穿透之前)。 再生阶段: 再生就是利用压力和温度两方面的因素,将吸附器里的吸附质排出去。 首先,将吸附器降压至较低的压力(大气压力)。用加热的干燥气体,解吸并带走所吸附的吸附质。然后,用未加热的干燥气体,将热端面推向铝胶床层,直至其出口,这样。吸附剂又恢复到随之而来的吸附阶段时的正常温度。 过程见图示:

功能高分子思考题与答案

第一章绪论 1.什么是功能高分子? 带有特殊功能基团并具有功能性的聚合物就是功能高分子。 一般认为:其具有普通高分子的结构性质,同时具有一定的功能,主要指具有物质、能量和信息的贮存、传递、转化等作用的高分子。 一次功能:当向材料输入的能量和从材料输出的能量属同种形式,材料只能起到能量传送部件的作用,这种功能称为一次功能。(如导电、导热) 二次功能:当向材料输入的能量和输出的能量是不同形式时,材料起能量转换部件的作用,这种功能称为二次功能。 高分子的功能:(1)化学功能-离子交换、催化、氧化还原(2)物理功能-导电、热电、压电、磁记录。(3)生物功能-医用高分子 2.功能高分子的主要种类?(1)离子交换树脂(2)高分子吸水材料(3)高分子功能膜(4)液晶高分子(5)导电高分子6)医用高分子(7)感光高分子(8)其他功能高分子(智能高分子磁性高分子高分子催化剂树形高分子超疏水材料) 1.离子交换树脂是由交联结构的高分子骨架与能离解的基团两组分构成的不溶性、多孔的、高分子电解质。 ? 功能:能在液相中与带相同电荷的离子进行交换,此交换反应可逆的,即可用适当的电解质冲洗,使树脂恢复到原有状态(再生),可反复使用。 3.合成功能高分子的一般方法? 通过化学或者物理的方法将功能基与高分子骨架相结合,实现预定功能。 ①. 分子合成化学方法:分子结构设计、官能团设计、引入感光功能集团则赋予了材料感光性。措施:共聚、接枝、嵌段共聚、交联、官能团的引入、模板聚合等 ②. 特殊加工物理方法:把高分子加工成极薄的膜,把高分子纤维化,如人造羊毛(介绍其主体结构)有些功能高分子极难加工,如光缆、导电、聚丙烯 ③. 复合手段:如将高分子中掺入银粉得到导电高分子。复合两种或几种高分子:纤维复合、层叠复合、细粒复合、互穿网络等方法,可得新功能。(1、功能性小分子的高分子材料化2、高分子材料的功能化) 聚对苯二甲酸乙二醇酯纤维(PET)----涤纶丙烯腈-丙烯酸酯共聚物----腈纶聚己二酰己二胺纤维(PA66)----锦纶66 聚乙烯醇缩甲醛----维纶聚丙烯纤维(PP)----丙纶聚胺酯弹性纤维(PU)----氨纶聚间苯二甲酰间苯二胺纤

中国医科大学15春《药理学(本科)》满分答案

中国医科大学《药理学(本科)》在线作业 1. 经耳缘静脉给予去甲基肾上腺素后,家兔血压的变化情况是 A. 降低 B. 先降低后升高 C. 升高 D. 先升高后降低 正确答案:C 满分:2 分得分:2 2. 苯海拉明不具备的药理作用是 A. 镇静 B. 止吐 C. 抗过敏 D. 减少胃酸分泌 E. 催眠 正确答案:D 满分:2 分得分:2 3. 关于磺胺嘧啶下述正确的是: A. 抑制二氢叶酸合成酶 B. 抑制二氢叶酸还原酶 C. 无肾毒性 D. 杀菌剂 E. 血浆蛋白结合率高 正确答案:A 满分:2 分得分:2 4. 在神经体液因素及药物对心血管活动的影响简介的实验中,下列麻药的给药方式中最理想的是 A. 全部快速推注 B. 全部缓慢推注 C. 前三分之一快速推注,后三分之二缓慢推注 D. 前三分之一缓慢推注,后三分之二快速推注 正确答案:C 满分:2 分得分:2 5. 能干扰DNA拓扑异构酶I的活性,从而抑制DNA合成的药物为: A. 长春碱 B. 丝裂霉素 C. 喜树碱 D. 羟基脲 E. 阿糖胞苷 正确答案:C 满分:2 分得分:2 6. 口服苯妥英钠几周后又加服氯霉素,测得苯妥英钠的血药浓度明显升高,这种现象是因为: A. 氯霉素使苯妥英钠吸收增加 B. 氯霉素增加苯妥英钠的生物利用度 C. 氯霉素与苯妥英钠竞争与血浆蛋白结合,使游离的苯妥英钠增加 D. 氯霉素抑制肝药酶使苯妥英钠代谢减少 E. 氯霉素抑制肝药酶使苯妥英钠代谢增加 正确答案:D 满分:2 分得分:2

7. 何药只能由静脉给药才能产生全身作用: A. 肾上腺素 B. 去甲肾上腺素 C. 间羟胺 D. 异丙肾上腺素 E. 麻黄碱 正确答案:B 满分:2 分得分:2 8. 维拉帕米不具有下列哪项作用 A. 阻滞心肌细胞钙通道 B. 阻滞心肌细胞钠通道 C. 负性肌力作用 D. 负性频率作用 E. 负性传导作用 正确答案:B 满分:2 分得分:2 9. 异丙基肾上腺素对血压的影响描述错误的是 A. 点滴可使收缩压升高 B. 点滴使舒张压降低 C. 点滴使平均动脉压略降低 D. 无变化 正确答案:D 满分:2 分得分:2 10. 关于小肠的运动,下列叙述错误的是 A. 紧张性收缩是小肠其它运动形式的基础 B. 分节运动是纵型肌的收缩和舒张运动 C. 小肠蠕动可发生在小肠的任何部位 D. 小肠蠕动的速度约为0.5-2.0cm/s 正确答案:B 满分:2 分得分:2 11. 在药物对离体肠管的作用的实验中,学生自主设计给药顺序,下列不是实验设计必须遵循的原则是 A. 先用起效慢的药物,后用起效快的药物 B. 先已知的药物,后未知的药物 C. 先用激动药,后用阻断药 D. 先用作用可逆的药物,后用作用不可逆的药物 正确答案:A 满分:2 分得分:2 12. 硫脲类药物的最严重不良反应是: A. 粒细胞缺乏 B. 药热 C. 甲状腺肿大 D. 突眼加重 E. 甲状腺素缺乏 正确答案:A 满分:2 分得分:2 13. 下列哪一个药物在治疗支气管哮喘时,可减轻粘膜水肿: A. 异丙肾上腺素 B. 肾上腺素 C. 氨茶碱

分子名词解释

.核小体(nucleosome):线性的DNA分子被折叠盘曲而包装的第一层次,数种真核细胞间期染色质经松解处理后呈现串珠样结构。 增强子(enhancer)指真核生物的一段DNA序列,不具有方向性,距离结构基因可远可近(甚至可以位于内含子)。它与某些蛋白质因子结合后,通常能够增强启动子的转录活性,有时也可以抑制转录 核酶(ribozyme)指具有催化活性的RNA,其作用底物是RNA,主要参与RNA的加工成熟。 分子伴侣(molecular chaperon)帮助新生多肽链折叠成天然空间构象的一类保守蛋白质(如热休克蛋白),在原核细胞和真核细胞中广泛存在。分子伴侣:它是细胞中一类能够识别并结合到不完全折叠或装配的蛋白质上以帮助这些多肽正确折叠、转运或防止他们聚集的蛋白质,其本身不参与终产物的形成 模板链:在转录过程中,RNA聚合酶以DNA双链中的一条链为模板,按照碱基互补配 对原则合成RNA,这条作为模板的DNA链,就叫模板链。 原位杂交(in situ hybridization):使用DNA或者RNA探针来检测与其互补的另一条链在细菌或其他真核细胞中的位置。 基因家族(Families of genes):同一物种中结构与功能相似,进化起源上密切相关的一组基因。 转座子:存在于染色体DNA上可自主复制和位移的基本单位 增强子(Enhancer)包括启动子上游或下游的一段DNA序列,可以增强启动子发动转录,提高转录效率。指能使与它连锁的基因转录频率明显增加的DNA序列。 RNA的编辑(RNA editing)是指转录后的RNA在编码区发生碱基的突变、添加或缺失等现象。 RNA的再编码(RNA recoding)把RNA编码和读码方式的改变称为RNA的再编码 核酶(ribozyme)具有催化功能的RNA为核酶 核小体(nucleosome)是染色质的基本结构单位,由大约200bp 的DNA和组蛋白质八聚体及外围H1蛋白所组成 转座子(transposon,Tn):存在于染色体DNA上可自主复制和位移的基本单位 分子伴侣(molecular chaperone)细胞中一类能够识别并结合到不完全折叠或装配的蛋白质上以帮助这些多肽正确折叠、转运或防止它们聚集的蛋白质,其本身不参与终产物的形成。基因家族(gene family)真核生物的基因组中有很多来源相同、结构相似、功能相关的基因,将这些基因称为基因家族。

功能高分子名词解释

名词解释 高性能高分子:对外力有特别强的抵抗能力的高分子材料。 功能高分子:是指当有外部刺激时,能通过化学或物理的方法做出相应的高分子材料。 特种高分子材料:带有特殊物理、力学、化学性质和功能的高分子材料,其性能和特征都大大超出了原有通用高分子材料的范畴。 通用高分子材料:应用面广量大,价格较低。根据其性质和用途可分为五个大类:化学纤维、塑料、橡胶、油漆涂料、粘合剂。 阳离子交换树脂:能解离出阳离子、并能与外来阳离子进行交换的树脂。 阴离子交换树脂:能解离出阴离子、并能与外来阴离子进行交换的树脂。 分离膜:能以特定形式限制和传递流体物质的分隔两相或两部分的界面。 膜在生产和研究中的使用技术被称为膜技术。

如果在高浓度水溶液一侧加压,使高浓度水溶液侧与低浓度水溶液侧的压差大于渗透压,则高浓度水溶液中的水将通过半透膜流向低浓度水溶液侧,这一过程就称为反渗透。 用于实施反渗透操作的膜为反渗透膜。反渗透膜大部分为不对称膜,孔径小于0.5nm,可截留溶质分子。 超滤技术的核心部件是超滤膜,分离截留的原理为筛分,小于孔径的微粒随溶剂一起透过膜上的微孔,而大于孔径的微粒则被截留。 导电高分子是由具有共轭π键的高分子经化学或电化学“掺杂”使其由绝缘体转变为导体的一类高分子材料。 这些带电粒子可以是正、负离子,也可以是电子或空穴,统称为载流子。 这种因添加了电子受体或电子给体而提高电导率的方法称为掺杂。掺杂的方法可分为化学法和物理法两大类,前者有气相掺杂、液相掺杂、电化学掺杂、光引发掺杂等,后者有离子注入法等。

电导率发生突变的导电填料浓度称为“渗滤阈值” 光致抗蚀,是指高分子材料经过光照后,分子结构从线型可溶性转变为网状不可溶性,从而产生了对溶剂的抗蚀能力。 光致诱蚀,当高分子材料受光照辐射后,感光部分发生光分解反应,从而变为可溶性。 医用高分子材料则是生物医用材料中的重要组成部分,主要用于人工器官、外科修复、理疗康复、诊断检查、患疾治疗等医疗领域。 高分子药物:它依靠连接在聚合物分子链上的药理活性基团或高分子本身的药理作用,进入人体后,能与肌体组织发生生理反应,从而产生医疗效果或预防性效果。 微胶囊是指以高分子膜为外壳、其中包有被保护或被密封的物质的微小包囊物。

药理学8 肝素的抗凝血试验

试验8 肝素对小鼠的抗凝血作用 【目的】 1.熟悉抗凝血药的筛选方法。 2.观察肝素的抗凝作用和硫酸鱼精蛋白的解救效果。 【原理】 肝素为硫酸化的糖胺聚糖,分子量为3~30kDa,其中硫酸根约占40%,硫酸根呈强酸性,带大量负电荷。肝素能增强抗凝血酶Ⅲ(AT-Ⅲ)与凝血酶等活化型凝血因子的亲和力,产生体内外抗凝作用,主要灭活IIa和Xa,也灭活IXa, XIa, XIIa, 激肽释放酶和纤溶酶等。 硫酸鱼精蛋白呈碱性,带有大量正电荷,如果肝素过量造成出血,则可用硫酸鱼精蛋白中和解救。 【材料】 1.器材:注射器、电子秤、玻片、针头; 2.药品:0.05%肝素溶液、生理盐水、1%硫酸鱼精蛋白,苦味酸; 3.动物:小鼠12只,20 g左右,雌雄兼用。 【试验步骤】 1.小鼠标记,称重; 2.分组,分为3组,每组4只,分别为A(生理盐水)、B(肝素)和C(肝素 +硫酸鱼精蛋白)组; 3.给药: A组:腹腔注射生理盐水,0.2 ml/10 g,10 min后测定凝血时间; B组:腹腔注射肝素,0.2 ml/10 g,10 min后测定凝血时间; C组:腹腔注射鱼精蛋白,0.1 ml/10 g;10 min后腹腔注射肝素,0.2 ml/10 g, 10 min后测定凝血时间; 4.测定凝血时间的方法 ①眼球后静脉丛取血2滴。眼球后静脉丛取血法:左手拇指及中指抓住头 颈部皮肤,左手掌尽量将小鼠全身皮肤向左移,慢慢使小鼠右眼球突出,小鼠头向下充血。取长约2cm的毛细管从内皉间45度角进针,至有抵骨

质的感觉,然后毛细管向外拔出约1-2mm即可有血滴流出。 ②采出的血滴分别置于洁净的玻片(自来水清洗后用生理盐水润洗,晾干) 上,计时; ③每隔30 s用针头(自来水清洗后用生理盐水润洗)自滴血内连续挑起纤 维丝为止,计时。另一滴血作为最后挑起纤维丝的对照。 ④正常小鼠血液的凝血时间为0.5-2min,如果观察10 min无凝血可计时为 10 min。 5.汇总全实验室结果,数据统计分析,得到平均值,标准偏差,Student T-Test 得到P值。 【结果】

蛋白质,分子伴侣定义及运用

分子伴侣是一种引导蛋白质正确折叠的蛋白质。当蛋白质折叠时,它们能保护蛋白质 分子免受其它蛋白质的干扰。很多分子伴侣属于热休克蛋白(例如HSP-60),它们在细胞受热时大量合成。热激可导致蛋白质稳定性降低,增加错误折叠的几率,因此在受到热刺 激时,细胞中的蛋白质需要更多热休克蛋白的帮助。 目录 1基本简介 分子伴侣是细胞中一大类蛋白质, 是由不相关的蛋白质组成的一个家系,它们介导其 它蛋白质的正确装配,但自己不成为最后功能结构中的组分。分子伴侣的概念有三个特点: ①凡具有这种功能的蛋白,都称为分子伴侣,尽管是完全不同的蛋白质。 ②作用机理是不清楚的,故用了“介导”二字,以含糊其辞,“帮助”二字可理解为:通过催 化的或非催化的方式,加速或减缓组装的过程,传递组装所需要的空间信息,也可能抑制 组装过程中不正确的副反应。 ③分子伴侣一定不是最终组装完成的结构的组成部分,但不一定是一个分离的实体。如一些蛋白水解酶的前序列,以及一些核糖核蛋白体的加工前的部分,若具分子伴侣的作用,也称为分子伴侣。组装的涵意比较广,主要指:帮助新生肽的折叠、帮助新生肽成熟为 活性蛋白、帮助蛋白质跨膜定位、亚基组装等。 2发现历程 分子伴侣1987 年Lasky首先提出了分子伴侣的概念。他将细胞核内能与组蛋白结合并能介导核小体有序组装的核质素称为分子伴侣。根据 Ellis 的定义,这一概念延伸为“一类在序列上没有相关性但有共同功能的蛋白质,它们在细胞内帮助其他含多肽的结构完成正确的组装,而且在组装完毕后与之分离,不构成这些蛋白质 结构执行功能时的组份”。热休克蛋白就是一大类分子伴侣。1987年,Ikemura发现枯草 杆菌素的折叠需要前肽的帮助。这类前肽常位于信号肽与成熟多肽之间,在蛋白质合成过 程中与其介导的蛋白质多肽链是一前一后合成出来的,并以共价键相连接,是成熟多肽正 确折叠所必需的,成熟多肽完成折叠后即通过水解作用与前肽脱离。Shinde和Inouye将 这类前肽称为分子内伴侣。

肝素类抗凝血药物

肝素类抗凝血药物 摘要:肝素类药物是目前使用最广泛一类的抗凝血药物,并具有较好的抗血栓的疗效。低分子肝素和合成肝素是现在最常用的一类肝素药物[1]。但肝素类药物会有血小板减少症和出血的副作用。如何减少副作用的发生是目前肝素类药物研发的一个重要方向。 Abstract:Heparin drugs is currently the most widely used class of anti-clotting drugs, and has good antithrombotic efficacy.Low molecular weight heparin, synthetic heparin is now the most commonly used type of heparin drugs.But heparin drugs has thrombocytopenia and bleeding side effects,How to reduce side effects is an important direction of research and development of the heparin drugs. 关键词:肝素;抗凝血;抗血栓;血小板减少症; Keywords: heparin; anticoagulant; antithrombotic; thrombocytopenia; 一.肝素的结构 肝素是硫酸化的糖胺聚糖,由糖醛酸和葡萄糖胺以1→4 键连接起来的重复二糖单位组成的多糖链的混合物[2]。含10—30 个二糖单位不等,分子量3000—30000, 平均分子量12000.整个结构变得异常复杂因其与硫酸和羧酸共价结合,故为强酸带有很强负电荷,每个糖单位之间可产生排斥力,使肝素分子链不易卷曲和交叉连接,因此呈线形结构,称为线形阴离子聚电解质体[3]。 [4] 只有部分肝素分子(约三分之一)含核心五糖[5]。

TRiC 分子伴侣系统

TRiC分子伴侣系统 王莺综述 摘要:综述了TRiC分子伴侣系统的结构、功能及作用底物方面的研究进展。TRiC 分子伴侣能够特异地帮助细胞内新生的肌动蛋白、微管蛋白、周期蛋白E等折叠。 分子伴侣是一类能特异地结合和释放底物蛋白的蛋白分子,它们帮助底物蛋白实现正确折叠、寡聚体组装、向特定细胞器转运或变换活化/去活化构象等(1-4)。分子伴侣既可以与未折叠的蛋白结合使其在获得正确折叠之前维持未折叠的可溶状态,又可以通过与错误折叠的蛋白结合使其重新回到未折叠状态并进一步正确折叠。需要指出的是,分子伴侣本身并不含有有关正确折叠的任何特定信息,它们只是通过疏水键阻止非天然状态的蛋白分子间或分子内的不正确相互作用,从而增加正确折叠的产率(5)。 分子伴侣这个概念是从功能上定义的,凡是具有上述功能的蛋白质都可以称为分子伴侣,但是它们的结构可以完全不相同.目前鉴定出来的分子伴侣主要是几类进化高度保守、结构各不相同的蛋白质家族(见表1),其中研究最清楚的是热休克蛋白HSP70/DnaK和分子伴侣素TRiC/GroES家族(6-10)。本文主要综述TRiC的结构、功能和作用底物等方面的研究进展。 表1 分子伴侣家族的主要成员(摘自国外医学遗传学分册,2002年,第二期)

1. TRiC分子伴侣系统简介 TRiC分子伴侣系统属于分子伴侣素(chaperonin)家族。分子伴侣素是进化上最为保守的蛋白之一,从结构上可以分为两类,一类见于原核细胞和真核细胞器,以GroEL和HSP60为代表,另一类见于古细菌和真核细胞,以thermosome 和TRiC为代表(3,11,12)。TRiC(TCP-1 ring complex)又称为CCT (chaperonin containing TCP-1),是存在于真核细胞胞质中重要的分子伴侣系统。 2.TRiC分子伴侣系统的结构 分子伴侣素是中空圆柱形的蛋白复合物,由两个背对背的环堆叠而成,每个环有7-9个同源或异源亚单位。晶体结构研究表明I类和II类分子伴侣素有相似的结构域排列方式(11-14)。以GroEL为例,一个GroEL亚单位由三个结构域组成:赤道结构域(Equatorial domain),包含ATP结合位点及大部分环内、环与环之间的相互作用位点;顶端结构域(Apical domain),位于中空圆柱的两端开口处,包含底物蛋白和辅助分子(cochaperonin)结合位点;中间结构域(Intermediate domain),在顶端结构域结合ATP前后发生构象变化时象铰链一样连接顶端结构域和赤道结构域(图1)。底物蛋白主要依靠暴露的疏水侧链和GroEL顶端结构域的疏水残基相互作用,进而多种非天然形式的底物在GroEL的中央空腔完成正确折叠过程。此外,GroEL介导的蛋白质折叠需要辅助分子GroES 的协助,GroES是由相对分子量为1.0 X103的七个亚基组成的聚环,象“盖子”一样连在GroEL的一端,保证底物在一个相对密闭的环境完成折叠过程(13-16)。 图1 GroEL-GroES分子伴侣系统结构示意图(摘自Science 2002, 295:1852-1858)与I类分子伴侣素相比,II类分子伴侣素TRiC的结构相对复杂(17)。I类分子伴侣素GroEL的环是由七个同源亚单位构成,II类分子伴侣素中古细菌thermosome的环由2-3种不同的亚单位组成包含8-9个亚单位的异源聚环,

分子筛作用机理

分子筛催化剂及其作用机理 1.分子筛的概念 分子筛是结晶型的硅铝酸盐,具有均匀的孔隙结构。分子筛中含有大量的结晶水,加热时可汽化除去,故又称沸石。自然界存在的常称沸石,人工合成的称为分子筛。它们的化学组成可表示为Mx/n[(AlO2)x?(SiO2)y] ?ZH2O 式中M是金属阳离子,n是它的价数,x是AlO2的分子数,y是SiO2分子数,Z是水分子数,因为AlO2带负电荷,金属阳离子的存在可使分子筛保持电中性。当金属离子的化合价n = 1时,M 的原子数等于Al的原子数;若n = 2,M的原子数为Al原子数的一半。 常用的分子筛主要有:方钠型沸石,如A型分子筛;八面型沸石,如X-型,Y-型分子筛;丝光型沸石(-M型);高硅型沸石,如ZSM-5等。分子筛在各种不同的酸性催化剂中能够提供很高的活性和不寻常的选择性,且绝大多数反应是由分子筛的酸性引起的,也属于固体酸类。近20年来在工业上得到了广泛应用,尤其在炼油工业和石油化工中作为工业催化剂占有重要地位。 2.分子筛的结构特征(1)四个方面、三种层次: 分子筛的结构特征可以分为四个方面、三种不同的结构层次。第一个结构层次也就是最基本的结构单元硅氧四面体(SiO4)和铝氧四面体(AlO4),它们构成分子筛的骨架。相邻的四面体由氧桥连结成环。环是分子筛结构的第二个层次,按成环的氧原子数划分,有四元氧环、五元氧环、六元氧环、八元氧环、十元氧环和十二元氧环等。环是分子筛的通道孔口,对通过分子起着筛分作用。氧环通过氧桥相互联结,形成具有三维空间的多面体。各种各样的多面体是分子筛结构的第三个层次。多面体有中空的笼,笼是分子筛结构的重要特征。笼分为α笼,八面沸石笼,β笼和γ笼等。(2)分子筛的笼: α笼:是A型分子筛骨架结构的主要孔穴,它是由12个四元环,8个六元环及6个八元环组成的二十六面体。笼的平均孔径为1.14nm,空腔体积为760[Å]3。α笼的最大窗孔为八元环,孔径0.41nm。 八面沸石笼:是构成X-型和Y-型分子筛骨架的主要孔穴,由18个四元环、4个六元环和4个十二元环组成的二十六面体,笼的平均孔径为1.25nm,空腔体积为850[Å]3。最大孔窗为十

(完整版)功能高分子复习提纲

一、名词解释(5题,共15分) ——功能高分子材料:一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。——功能与性能,性能:材料的功能从本质上来说是指向材料输入某种能量和信息,经过材料的储存、传输或转换等过程,再向外输出的一种特性;材料的性能是指材料对外部作用的表征与抵抗的特性。材料在具备功能的同时,必须具有一定的性能。 ——结构型功能高分子材料,指在大分子链中具有特定的功能基团的高分子材料,它们的功能性是由分子中所含的特定的功能基团来实现的。 ——复合型功能高分子材料:指以普通高分子材料为基体或载体,与具有某些特定功能(如导电、磁电)的其他材料以一定的方式复合而成的,它们的功能性是上高分子材料以外的添加组分得到的。 ——智能材料:是将普通材料的各种功能与信息系统有机地结合起来的融合型材料,它可以感知外部的刺激(传感功能),通过自我判断和自我结论(处理功能),实现自我指令和自我执行的功能(执行功能);又称为灵巧材料(机敏材料)。 ——离子交换树脂:是一类带有可离子化基团的三维网状交联聚合物。它具有一般聚合物所没有的新功能——离子交换功能,本质上属于反应性聚合物。 ——高吸水性树脂,是由分子链上含有强亲水性基团(如羧基、磺酸基、酰胺基、羟基等)并有一定交联度的功能高分子材料。 ——高分子分离膜,是用人工或天然合成的高分子分离膜,可借助于化学位差(浓度差、压力差和电位差)的推动对双组份或多组份的溶质和溶剂进行分离、提纯和选择性透过等。——导电高分子:是指由具有共轭π键的高分子本身或经过“掺杂”后具有导电性的一类高分子材料。 ----结构型导电高分子: ----复合型导电高分子: ---载流子: ——掺杂:这种因添加了电子受体或电子给体而提高电导率的方法称为“掺杂” ---光功能高分子材料:也称感光性高分子,指在吸收了光能后,能在分子内或分子间产生化学、物理变化的一类功能高分子材料。这种变化发生后,材料将输出其特有的功能。——光致抗蚀材料:指高分子材料经过光照后,分子结构从线型可溶性转变为网状不可溶性,从而产生了对溶剂的抗蚀能力。(负片型) ----光致诱蚀材料,与光致抗蚀材料正好相反,当高分子材料受光照辐射后,感光部分发生光分解反应,从而变为可溶性。(正片型) ——光引发剂和光敏剂:都是在光聚合中起到促进引发聚合作用的化合物。二者不同在于,光引发剂吸收光能后跃迁到激发态,当激发态能量高于键断裂所需的能量时,断键产生自由基,而引发反应,属消耗性,光敏剂吸收光能后跃迁到激发态,然后发生分子内或分子间能量转移。将能量传递给另一个分子,产生初级自由基,光敏剂回到基态,属非消耗性。——生物降解高分子材料:指一类能够被微生物酶的作用分裂成较小聚合物产物的高分子材料。 ——生物降解:是指高分子的分子链在微生物酶作用下分裂成较小聚合物产物的过程。——生物相容性:是指生物材料在生物体内与周围环境的相互适应性,也可理解为宿主体与材料之间的相互作用程度。 ——生物吸收性高分子:在体内逐渐降解,其降解产物为机体吸收代谢的高分子材料。——生物惰性高分子:指在生物环境下呈现化学和物理惰性的高分子材料。 ——水凝胶:由液体和高分子网络组成,由于高分子网络与液体之间的亲和性,液体被高分子网络封闭在里面,并且像固体一样显示一定形状的材料。 ——智能型凝胶:高分子主链或侧链上通常存在着离子化基团、极性和疏水性基团,从而使之具有类似生物体的特性,当收到外界刺激(温度 PH 溶剂盐浓度化学物质等),其结构,物理特性会产生敏感响应的一类凝胶材料。

低分子肝素的药理作用和临床应用研究进展

低分子肝素的药理作用和临床应用研究进展 发表时间:2016-06-08T14:32:41.513Z 来源:《健康世界》2016年第4期作者:张玉倩 [导读] 根据LMWH的药理作用,结合临床应用进行深入研究,进行低分子肝素的临床推广。 大连大学 116000 摘要:肝素是临床医疗当中的常用药物,在预防和治疗静脉血栓方面发挥着重要的作用,取得了良好的疗效。随着肝素的深入研究和开发,低分子肝素(LMWH)开始作为新制剂在临床医疗当中得到广泛的应用,具有注射吸收好、生物利用度髙、出血负作用少的优点,对治疗不稳定性心绞痛、深静脉血栓及糖尿病肾病等具有显著的疗效。根据LMWH的药理作用,结合临床应用进行深入研究,进行低分子肝素的临床推广。 关键词:低分子肝素;药理作用;临床应用 引言:低分子肝素(LMWH)是由普通肝素(UFH)酶解或化学降解获得,LMWH是一种混合物,平均相对分子质量(Mr)约为5000,其药理作用主要包括抗凝血、抗血栓、抗炎及抗脂质代谢紊乱等作用,有效调节细胞增殖,能够预防腹部术后粘连,对治疗心脑血管疾病、肾脏疾病、肝脏疾病和预防术后血栓有着良好的疗效,减少了出血、血小板减少症及过敏反应等不良反应的发生,正逐渐取代UFH在临床医疗当中的地位。本文就低分子肝素的药理作用和临床应用研究进展进行综述。 1.低分子肝素的药理作用 1.1抗凝血作用 LMWH主要通过对凝血酶(FIIa)和凝血活性因子(FXa)的抑制作用,依赖于抗凝血酶Ⅲ(AT-Ⅲ)与LMWH的结合。结合AT-Ⅲ的LMWH,与FIIa和FXa的结合能力增强。LMWH由于糖链相对较短(低于18个单糖的长度),不能直接与FIIa结合而起到抑制作用,而对于FXa可以直接发挥抑制作用,LMWH抗FXa的能力更强。研究表明,LMWH抗FXa与抗FIIa的活性之比(2~4)高于UFH(1),减少了出血、血小板减少症及过敏反应等不良反应的发生率。 1.2抗血栓作用 由于FIIa被激活,进而导致血栓的形成。更多的组织纤溶酶原激活因子由于LMWH被血管内皮吸收而释放。在纤维蛋白的溶解作用下,FIIa诱导的血小板聚集力,LMWH能够抑制二磷酸腺苷对血小板聚集的促进作用,通过抑制FXa进而抑制FIIa的激活,LMWH的抗血栓作用明显优于UFH。 1.3抗炎作用 LMWH抗炎作用的研究正在深入进行,目前还未得出统一的结论。一部分人认为LMWH抗炎作用是独立于抗凝血作用之外的性质,而另一部分人认为抗炎作用与LMWH对FXa的抑制作用有关,经由抗凝途径介导而发挥作用。在给予Ball/c小鼠LMWH的实验当中,肿瘤坏死因子α(TNFα)所引起的白细胞滚动、粘连和组织浸润,会由于LMWH的作用而减少。在TNFα之后给予LMWH,减少了白细胞滚动,对白细胞的粘连和组织浸润无影响。由此可见,LMWH的抗炎作用可以通过多种机制和途径来实现。根据研究显示,白细胞抑制黏附分子能够促进LMWH抑制白细胞黏附聚集的作用。在临床应用当中,LMWH可作为有效且安全抗炎制剂来使用[1]。 2.低分子肝素的临床应用研究 2.1脑血管疾病治疗 急性脑梗死、进展性脑梗死以及短暂性脑缺血是主要的脑血管疾病,在以上脑血管疾病的临床治疗当中,都应用了LMWH作为主要的治疗药物。①急性脑梗死:急性脑梗死是一种突发的脑血液循环障碍性疾病,由动脉硬化引发的血管病变。薛东莉提出了LMWH联合阿司匹林治疗急性期脑梗死,但是根据临床疗效来看,LMWH联合阿司匹林治疗急性脑梗死的效果并不十分显著,疗效与单独使用阿司匹林相接近[2]。根据目前的临床研究表明,LMWH联合疏血通治疗急性脑梗死的效果十分理想,治疗简便且安全,充分发挥了LMWH与疏血通治疗方法的协同作用,保证急性脑梗死治疗的安全有效。②进展性脑梗死:进展性脑梗死是由于脑动脉狭窄、闭塞破裂而导致脑血液循环障碍,主要表现为神经系统功能缺失,存在永久性脑功能障碍的症状,患者的病情在发病48h内逐渐加重。黎敏,唐震等提出了LMWH联合依达拉奉治疗进展性脑梗死,通过临床治疗分析和疗效评价,LMWH联合依达拉奉注射液治疗进展性脑梗死具有显著的疗效,明显优于单独使用LMWH的治疗效果[3]。③短暂性脑缺血:短暂性脑缺血是一种短暂的脑血液循环障碍,并伴有局灶症状,容易导致神经功能的损伤,患者表现为失语、瘫痪及感觉障碍等暂时性症状和体征,并会在24h内消失。LMWH钙治疗和血栓通治疗都是治疗短暂性脑缺血有效方法,根据临床试验对照,LMWH钙治疗短暂性脑缺血的效更为显著[4]。 2.2心脏疾病及其他疾病的治疗 根据临床应用试验,基于常规应用抗心绞痛药物治疗,联合应用LMWH和丹参川芎嗪注射液,对不稳定性心绞痛急性心肌梗死具有良好的疗效。LMWH联合尿激酶能够有效预防急性心肌梗死。对于肺源性心脏病的治疗,则采用LMWH联合纳洛酮的治疗方法,以有效环节患者的血液高凝,进而改善通气,有助于患者的康复。在心脏疾病的治疗当中,LMWH有着重要的应用价值[5]。 另外,在治疗肝脏疾病、肾脏疾病、急性胰腺炎、扁平苔藓、癌症等疾病和预防术后血栓的过程中,都需要应用到LMWH,或单独使用LMWH进行治疗,或采用LMWH联合其他治疗方法,可有效改善患者的症状,提升临床治疗的质量和效率,帮助患者快速的恢复。 总结:目前低分子肝素药理作用和临床应用研究取得了突破性的进展,治疗心脑血管疾病、肾脏疾病、肝脏疾病的防治上得到广泛的作用,充分发挥其抗凝血、抗血栓、抗炎等药理作用,并在临床应用实践当中深入的研究,开发出低分子肝素更大的应用价值,给广大患者带来福音,对于临床医疗具有重要的意义。 参考文献: [1]兰志新,林秀山. 低分子肝素的药理分析及临床应用研究[J]. 数理医药学杂志,2016,02:223-224. [2]薛东莉.低分子肝素联合阿司匹林治疗急性期脑梗死疗效观察[J].医学理论与实践,2011,24( 17) :2067. [3]黎敏,唐震宇,沈小平. 低分子肝素联合依达拉奉治疗进展性脑梗死疗效的系统评价[J]. 循证医学,2013,04:218-224+229.

相关文档