文档库 最新最全的文档下载
当前位置:文档库 › 液位检测光纤传感器系统设计

液位检测光纤传感器系统设计

液位检测光纤传感器系统设计
液位检测光纤传感器系统设计

液位检测光纤传感器系

统设计

Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

北京化工大学

检测技术及仪器

题目:液位检测光纤传感器系统设计

专业:测控技术与仪器

班级:测控1303

姓名:孙应贵

学号:

1检测系统构成

光纤液位传感器的结构如图所示传感器的主要组成部分有:双膜盒光纤位移探头和防水支撑结构。双膜盒是水压变化的敏感组件膜盒中央为光滑平面近似反射平面,为提高反射光强度可以在膜盒中央粘贴一个小反射镜水压变化时双膜盒的1个膜片均发生形变

:

状态。在实验装置中,光纤采用多光束光纤。光纤分布呈半圆状、投射光纤输出端和接受光纤接收端纤芯直径为1mm膜盒内部为低真空状态。测量时调整探头位置,将探头

位置设置在输出特性曲线中较为灵敏的位置上。当水面升高引起压力增加时,膜盒压缩、间隔增大,若压力减小时,膜盒膨胀,间隔减小。

光纤液位传感器的系统框如图3所示。主要包括:光纤位移探头、双膜盒检测器、

LED的光功率进行控制.

由脉冲发生模块产生较为稳定的脉冲信号通过比较放大模块和激光管驱动电路驱动 LD背向光检测器接收的光功率并将其转化为电信号。此信号通过调理电路处理后送到比较放大模块,与脉冲信号进行比较放大,并再次送入激光管驱动电路,完成对LD 光功率的稳定控制,使LD的光功率在一个很小的范围内波动。

激光器的驱动电路采用射极偏置电路。它是交流放大电路中最常见的一种基本电路。电路设计如图5所示。

信号调理电路

信号调理电路包括光电流的IV及前置放大电路(图7).带通滤波电路真值转换电路和后置放大电路.从出射光纤接受的信号中含有背景光噪声.经过前置放大后,需要从其中得到可用信号.所以在前置放大后需要带通滤波电路将其中有用信号提取出来.考虑到前置放大器工作的稳定性,放大器的电流电压转换系数不宜太大.在光信号较弱的情况下,前置输出的信号较小.因此,调理电路中的带通滤波器采用带增益的有源滤波器.如图8所示.

4系统测量结果与讨论

系统的稳定性主要取决于电源的稳定和光源的稳定性。因此在实际实验中,电源采用稳定性较好的开关电源作为整个系统的电源。光源采用稳光强电路设计按图所示组装系统。其中水箱的高度固定在高出光纤端面水平位置约1M处。以模拟系统在水下的工作状态。水箱中的水面高度为0~181.0mm。其系统测量的电压变化有较好的线性度(图10)。经过多次测量后,系统的分辨率可以达到0.7mm.由于系统采用单接收光纤.光源的稳定性会使系统的精度和灵敏度受到影响.如果采用双接收光纤同时接收信号光.由于光源的不稳定所导致的系统误差将会大大降低。下一步将此外,通过增加膜盒的数量可以增加因液面变化所引起的膜盒与光纤端面的距离变化量,可以进一步提高系统的分辨率。

5结论

基于光纤位移传感器的液面高度变化测量系统具有结构简单、抗环境干扰能力强、灵敏度高等优点。采用MSP430FIXX系列单片机进行采样和数据处理使得测量系统结构紧凑,便于智能化。可以通过增加膜盒的数量,实现更高灵敏度的测量。还可根据实际应用的要求,进一步优化结构参数。

光纤传感器基础实验

光纤传感器基础实验 王帅 (哈尔滨工程大学13-3班75号,黑龙江省哈尔滨市 150001) 摘要:光纤传感实验仪开发研制的目的是将光纤传感这一现代技术进行广泛的普及和渗透。了解光纤传感仪试验仪的基本构造和原理,学习和掌握其正确使用方法;了解光纤端光场的径向分布和轴向分布的特点;定量了解一种光纤的纤端光场的径向分布和轴向分布;学习掌握最基本的光纤位移传感器的原理。通过对光纤接受端电压的测量,可以间接测量光纤端轴向和径向的光场强度的分布。 关键词:光纤传感器;轴向;径向;光强分布 Optical Fiber Sensor Based Experiment Wang shuai (Harbin Engineering University, Harbin,150001,Chnia) Abstract:The purpose of the development of fiber optic sensing experimental kits is to make this technology popularization. Understanding the basic structure and principle of fiber optic sensing experimental kits,learning and mastering the correct using method; Understand the radial and axial distribution characteristic of the fiber end; Learning to master the basic principle of optical fiber displacement sensor. By measuring the voltage of the optical fiber acceptting, optical fiber end light field intensity distribution of the axial and radial can be measured indirectly. Key words:fiber optic sensing experimental kits;axial; radial; light intensity distribution 0 引言 光纤传感实验仪是由多种形式的光纤传感器组成,是集教学和实验于一体的传感测量系统。它具有结构简单,灵敏度高,稳定性好,切换方便应用范围广等特点。在实验过程中,我们用光纤传感实验仪构成反射式光纤微位移传感器,可用于测量多种可转换成位移的物理量。 1 实验原理 1.1光在光纤中传输的原理 光在光纤中的传输依据是光学中的全反射定律。普通石英光纤的结构包括纤芯、包层和

光纤传感器与边坡监测

一、边坡问题的现状 滑坡是指斜坡上的土体或岩体,受河流冲刷、地下水活动、地震及人工切坡等因素的影响,致使部分或全部土体(或岩体)在重力作用下,沿着地面软弱面(或软弱带)整体地或分散地顺坡向下滑动的地质现象。 我国是地质灾害多发国家之一,尤以滑坡灾害的影响最为严重。据不完全统计,中国有70多座城市和460多个县市受到滑坡灾害的威胁及危害,平均每年至少造成15-23亿元的经济损失。如果能够对滑坡进行监测, 实现滑坡危害的早期预报, 就可以最大限度地减少和防止滑坡所造成的损失。因此, 监测既是滑坡调查、研究和防治工程的重要组成部分,又是崩塌滑坡灾害预测预报信息获取的一种有效手段。 二、滑坡监测的方法 从滑坡的监测内容来看,滑坡监测应该是由多种监测方法相结合的。对于不同的监测目的、不同的滑坡发育阶段及不同的滑坡类型所选择的滑坡监测方法也不同。目前滑坡动态监测中使用的技术大致可归纳为宏观简易地质检测法、大地精密测量法、设站观测法、仪器仪表监测法和综合自动遥测法。 2.1 、宏观简易地质检测法 这种方法主要是对滑坡发育过程中的各种迹象,如地裂隙、房屋、泉水动态等进行定期监测、记录,掌握滑坡的动态变化和发展趋势。其中,最常用的是对地表裂隙、建筑物变形的监测。在裂隙处设置简易监测标志,定期测量裂隙长度、宽度、深度的变化,以及裂隙的形态和开裂延伸方向等。由于滑坡体在滑动过程中各部位受力性质和大小不同,滑速也不同,因而不同部位产生不同力学性质的裂隙,有滑坡后部的拉张裂隙、滑坡体中前部两侧的剪切裂隙、滑体前缘的鼓张裂隙和滑坡舌部的扇形裂隙。除此之外,还有一些滑坡标志,如封闭洼地、滑坡鼓丘、滑坡泉、马刀树、醉汉林等。该方法的特点是获取的信息直观可靠,简单经济,实用性较强,适应于对正在发生病害的边坡进行观测。但也存在内容单一、精度低和劳动强度大等缺点。 2.2、大地精密测量法 该方法即采用高精度光学和光电测量仪器,如精密水准仪、全站仪等仪器,通过测角和测距来完成监测任务。监测边坡的二维( X、Y 方向)水平位移常用前方交会法、距离交会法:监测水平单向位移常用视准线法、小角法、测距法:监测边坡的垂直位移常用几何水准测量法、精密三角高程测量法。 大地精密测量法长期以来受到滑坡工程监测人员的高度重视,是由于具有如下优点:能确定边坡地表变形范围;量程不受限制;能观测到边坡体的绝对位移量;精度高;多维测量能提供点位坐标和高程;测量数字化,和计算机技术结合形成系统,实时性强;一机多测点,效率高。适用于不同变形阶段的位移监测。但是这种方法的缺点是受到地形条件和气象条件的限制,工作量大,周期长,连续观测能力差。 3.3 仪器仪表监测法 滑坡稳定性的监测涉及到一系列的影响滑坡特定的因素及其随时间的变化量,如降雨量、土壤潮湿度、地下水位及移动特征,其中最重要的是两个因素是移动特征和地下水位。滑坡的移动特征则由滑动面的深度、方向、移动量和移动速度等指标来表示,通过监测这些指标中得一项或者多项就能达到监测滑坡的目的 2.2、GPS滑坡监测系统

安全监测监控系统课程设计44033

安全监测监控系统课程设计 1 设计目的与要求 1.1设计目的 对于多数矿井来说,较大的矿井水被排放到地面后比较难以处理,自然排放容易造成环境污染,二次处理成本极高,采用二次利用的方式能有效的解决矿井水排放问题。把矿井中的水抽放到地面的蓄水池,通过相关的处理后再次利用。由于蓄水池水位变化的原因,有时候就发生了蓄水池缺水事故而影响井下正常生产,有时候也发生满水溢流浪费的现象。不论是什么情况对企业都是无益的。就其缺水或满水的原因,主要有两方面:一个是供水操作人员责任心不强,对蓄水池水位的监视不到位,当蓄水池水位变化较大时,不能及时调节进水阀门的开度确保水池正常供水;另一个是蓄水池进水管出口安装的浮球阀不完好,水满时不能关严,从而造成溢流浪费。矿井蓄水池水位采用自动控制装置后,保证了井下用水的可靠性,提高了管理水平,避免了溢流浪费。 1.2 设计要求 各生产矿井用水都是由地面蓄水池靠自然压力向井下各用水地点供应的。在蓄水池向井下供水的同时,外界水源也向蓄水池注水。一般情况下,外界的供水压力是恒定不变的,由于井下生产用水量的大小随时变化,从而蓄水池的水位也随时变化。即外界供水阀门开度不变时,水池水位随井下用水量的增加而降低,随用水量的减少而升高。本文设计在蓄水池进水管路上与原进水阀门并联安装一座电动调节阀,在蓄水池安装一套投入式液位变送器通过WT-600控制表控制电动调节阀的开启度,调节蓄水池的进水量,保证井下生产用水量与蓄水池进水量相平衡,即井下生产用水量增大时, 电动调节阀自动开大;当井下生产用水量减小时,电动调节阀自动关小,从而达到水位恒定的目的。由于抽取到地面蓄水池的水杂质较多,所以在水泵供水管路上设置Y型过滤器,可以有效地过滤循环水池循环水中的杂质,减少喷嘴的堵塞,保证系统的正常工作从真正意义上实现煤矿水的再次利用,避免环境污染和不必要的水资源浪费。

光纤传感器的位移特性

光纤传感器的位移特性实验报告 一、实验目的 了解光纤位移传感器的工作原理和性能。 二、基本原理 本实验采用的是传光型光纤,它由两束光纤混合后,组成Y型光纤,半园分布即双D型一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X有关,因此可用于测量位移。 三、需用器件与单元 光纤传感器、光纤传感器实验模板、数显单元、测微头、直流源、反射面。 四、实验步骤 1、根据图1-6安装光纤位移传感器,二束光纤插入实验板上的座孔上。其内部已和发光管D及光电转换管T 相接。 图1-6光纤传感器安装示意图

2、将光纤实验模板输出端V O1与数显单元相连,见图1-7。 图1-7光纤传感器位移实验接线图 2、调节测微头,使探头与反射面圆平板接触。 3、实验模板接入±15V电源,合上主控箱电源开关,调R W、使数显表显示为零。 4、旋转测微头,被测体离开探头,每隔0.1mm读出数显表值,将其填入表1-4。 表1-4光纤位移传感器输出电压与位移数据 5、根据表9-1数据,作光纤位移传感器的位移特性,计算在量程1mm时灵敏度和非线性误差。 五、实验数据处理 1、实验数据:

2、光纤传感器位移与输出电压特性曲线: 3、1mm时的灵敏度与非线性误差:

用最小二乘法拟合的直线为: 灵敏度为0.1458V/mm 在0.45mm处取最大相对误差为:0.07V 非线性误差为: 六、思考题 光纤位移传感器测位移时对被测体的表面有些什么要求? 答:表面要干净没有污点,而且光洁度要好;再因为一定要可以反射光,因此一定不能出现黑色表面的情况。

强磁场下微弱电压信号检测系统设计

第26卷第6期2013年6月 传感技术学报 CHINESE JOURNAL OF SENSORS AND ACTUATORS Vol.26 No.6Jun.2013 项目来源:贵州大学研究生创新基金项目(理工2012013)收稿日期:2013-03-19 修改日期:2013-05-06 The Design of Weak Signal Detection System in Strong Magnetic Field * LIU Wenjing ,WANG Minhui *,WANG Yalin ,HU Lanzi (Electrical Engineering College of Guizhou University ,Guiyang 550025,China ) Abstract :In order to measure the electric current of busbar ,a measuring device is designed to provide a reference for busbar configuration.This device is based on INA114which is an operational amplifier circuit with high precision and processor S3C2440of ARM.Weak voltage signal and temperature signal can be detected under the strong magnetic field by the detecting system.The characteristic feature and the adverse effects of the strong magnetic field are introduced ,and the characteristics of hardware ,software ,Anti?interference measures are also analyzed.We use the way of power spectral estimation to confirm the signal information of the frequency ,which is proved validity by LabVIEW simulation result.According to the signal frequency ,a low pass filter is designed in the hardware.Finally ,the test data proves that the accuracy of the system can be within 5%.In strong magnetic field the device can collect data once per second and track the change of the current in time. Key words :weak signal detection ;strong magnetic field ;busbar current ;detection circuit ;power spectral estimation ;anti?interference measure EEACC :6140 doi :10.3969/j.issn.1004-1699.2013.06.022强磁场下微弱信号检测系统设计 * 刘文静,王民慧*,汪亚霖,胡兰子 (贵州大学电气工程学院,贵阳550025) 摘 要:为获知母线电流的分布情况,给母线配置提供参考,设计了一个以高精度运放INA114和RAM 处理器S3C2440为基 础的检测装置,使其在强磁场环境下能完成微小电压和温度信号的测量三阐述了强磁场环境的特点和影响,重点分析了系统的硬件构成,软件设计和系统所采取的抗干扰措施三其中,硬件设计采用了功率谱估计的方法确定信号频段,通过Labview 的仿真实验验证了该方法的可行性,并以该频段信息为参考依据设计了低通滤波器三最后,通过试验数据证明了该系统的可靠性,其测量误差小于5%,且在强磁场环境下能实现每秒采集一次数据,实时跟踪电流变化的功能三 关键词:微弱信号检测;强磁场环境;母线电流;检测电路;功率谱估计;抗干扰措施 中图分类号:TP274 文献标识码:A 文章编号:1004-1699(2013)06-0865-06 众所周知,铝电解槽的电场二磁场和流场的稳定直接决定了电解槽的运行情况[1],而运行稳定的电解槽又有利于降低运行电压,达到节能减排的要求三但是,如果母线配置存在缺陷将会导致阴极电流的分布不均,从而无法降低运行电压三刘升[2]在对 300kA 系列电解槽的母线优化改造的研究中,主要以母线电流分布作为参考依据来发现缺陷,通过修正母线电阻来达到从新分配电流的目的三改造后,修正了母线电流的分布偏差,且吨铝省电超过200kWh ,达到了节能的效果三该研究表明,对母线电流 分布的在线监控,可以分析母线配置是否存在缺陷,从而指导电解槽的运行和维护三周萍[3]通过对不同进电方式的电解槽进行了研究,并得出结论:电解槽的进电方式直接影响了槽内熔体的运动三贺志辉[4]对不同进线点的母线配置和母线补偿技术进行了研究,研究表明:进线点数较多以及适当使用母线补偿技术可以有效的降低影响电解生产的垂直磁场强度三对于铝电解工业,电解槽内产生的磁场是直接影响磁流体运动的主要原因之一,磁场不稳定会引起磁流体的强烈扰动[5],从而威胁安全生产三

自动报警系统检测数量要求小结

自动报警系统检测数量要求小结 按照安装数量全部功能检测: 1.火灾报警控制器(包括气体报警控制器、电气火灾监控设备) 2.消防联动控制器 3.自动喷水系统压力开关、电动阀、电磁阀等 4.防烟排烟风机 按照比例抽烟功能检测: 1.消防联动系统其他用电设备、区域显示器超过10台,30%~50%且不少于5台(5台以下全部,6-10台抽验5台),水流指示器、信号阀等实际安装数量30~50% 2.火灾探测器(包括可燃气体探测器和电气火灾监控探测器)和手动报警按钮超过100只,10~20%且不少于20只(100只以下,抽验20只),通风空调和防烟排烟设备的阀门,实际安装数量的10%~20%,消防应急广播按实际安装数量的10%-20%进行功能检验,电话插孔按实际安装数量的10-20%。 3.室内消火栓,在消火栓处启动按钮,安装数量的5%~10% 4.气体、泡沫、干粉等灭火系统,实际安装数量20%~30%进行控制功能检测 5.电动防火门、防火卷帘超过5樘的按实际安装数量20%且不小于5樘比例抽验(5樘以下全部) 按照次数检验: 1~3次:1.室内消火栓在消防控制室操作启、停泵。 2.自喷系统在消防控制室操作启、停泵。 3. 气体、泡沫、干粉等灭火系统按照20%~30%比例自动手动启动和紧急切断试验、与固定灭火设备联动控制的其他设备动作试验。 4.报警联动启动、消防控制室直接启停、现场手动启动联动防烟排烟风机,报警联动停止、消防控制室远程停止空调送风,报警联动开启、消防控制室开启、现场手动开启防烟排烟阀门。 5.消防控制室与所设的消防电话专机通话试验,外线电话与另一部外线电话模拟报警通话。 6.消防应急照明和疏散系统转入应急状态的检验。 特殊:1.各类消防用电设备主用、备用电源自动转换试验3次。 2.电梯进行联动返回首层功能检验1-2次。 不合格情况,应修复或更换,并进行复验,复验时对有抽验要求的,应加倍检验

安全监测监控系统课程设计

. 安全监测监控系统课程设计 1 设计目的与要求 1.1设计目的 对于多数矿井来说,较大的矿井水被排放到地面后比较难以处理,自然排放容易造成环境污染,二次处理成本极高,采用二次利用的方式能有效的解决矿井水排放问题。把矿井中的水抽放到地面的蓄水池,通过相关的处理后再次利用。由于蓄水池水位变化的原因,有时候就发生了蓄水池缺水事故而影响井下正常生产,有时候也发生满水溢流浪费的现象。不论是什么情况对企业都是无益的。就其缺水或满水的原因,主要有两方面:一个是供水操作人员责任心不强,对蓄水池水位的监视不到位,当蓄水池水位变化较大时,不能及时调节进水阀门的开度确保水池正常供水;另一个是蓄水池进水管出口安装的浮球阀不完好,水满时不能关严,从而造成溢流浪费。矿井蓄水池水位采用自动控制装置后,保证了井下用水的可靠性,提高了管理水平,避免了溢流浪费。 1.2 设计要求 各生产矿井用水都是由地面蓄水池靠自然压力向井下各用水地点供应的。在蓄水池向井下供水的同时,外界水源也向蓄水池内注水。一般情况下,外界的供水压力是恒定不变的,由于井下生产用水量的大小随时变化,从而蓄水池的水位也随时变化。即外界供水阀门开度不变时,水池水位随井下用水量的增加而降低,随用水量的减少而升高。本文设计在蓄水池进水管路上与原进水阀门并联安装一座 电动调节阀,在蓄水池内安装一套投入式液位变送器通过WT-600控制表控制电 动调节阀的开启度,调节蓄水池的进水量,保证井资料Word . 下生产用水量与蓄水池进水量相平衡,即井下生产用水量增大时, 电动调节阀自动开大;当井下生产用水量减小时,电动调节阀自动关小,从而达到水位恒定的目的。由于抽取到地面蓄水池的水杂质较多,所以在水泵供水管路上设置Y型 过滤器,可以有效地过滤循环水池循环水中的杂质,减少喷嘴的堵塞,保证系统的正常工作从真正意义上实现煤矿水的再次利用,避免环境污染和不必要的水资

光纤传感器实验报告

实验题目:光纤传感器 实验目的: 掌握干涉原理,自行制作光线干涉仪,使用它对某些物理量进行测量, 加深对光纤传感理论的理解,以受到光纤技术基本操作技能的训练。实验仪器: 激光器及电源,光纤夹具,光纤剥线钳,宝石刀,激光功率计,五位调 整架,显微镜,光纤传感实验仪,CCD及显示器,等等 实验原理:(见预习报告) 实验数据: 1.光纤传感实验(室温:24.1℃) (1)升温过程 (2)降温过程

2.测量光纤的耦合效率 在光波长为633nm条件下,测得光功率计最大读数为712.3nw。数据处理: 一.测量光纤的耦合效率 在λ=633nW,光的输出功率P1=2mW情况下。在调节过程中测得最大 输出功率P2=712.3nW 代入耦合效率η的计算公式: 3.56×10-4 二.光纤传感实验 1.升温时 利用Origin作出拟合图像如下: B 温度/℃由上图可看出k=5.49±0.06

根据光纤温度灵敏度的计算公式,由于每移动一个条纹相位改变 2π,则 Δφ=2π×m (m 为移动的条纹数) 故灵敏度即为 因l=29.0cm 故其灵敏度为±1.30)rad/℃ 2.降温时 利用Origin 作出拟合图像如下: -40 -20 A B 由上图可看出k=7.45±0.11 同上: 条纹数 温度/℃

灵敏度为 因l=29.0cm 故其灵敏度为±2.38)rad/℃ 由上述数据可看出,升温时与降温时灵敏度数据相差较大,这是因为在升温时温度变化较快,且仪表读数有滞后,所以测出数据较不准确,在降温时测出的数据是比较准确的。 思考题: 1.能否不用分束器做实验?替代方案是什么? 答:可以,只要用两个相同的相干波波源分别照射光纤即可,这样也可造成光的干涉。 2.温度改变1℃时,条纹的移动量与哪些因素有关? 答: (1)与光纤的温度灵敏度有关 (2)与光纤置于温度场的长度有关 3.实验中不可用ccd是否能有办法看到干涉条纹?替代方案是什么? 答:可以。可以用透镜将干涉条纹成像在光电探测器上进行测量。 实验小结: 1.光纤的功能层非常脆弱,光纤剥离过程中要使力均匀,不可用力过猛, 否则易造成光纤的断裂,必要时可分段进行剥离。 2.使用宝石刀进行切割时,要轻轻划一下,再将光纤弹断,直接切断会 造成光纤断面不平滑,导致测出的光纤耦合系数较低。 3.光纤传感实验时记录移动的条纹数时可自行在显示器上寻找参照点, 保证记录的准确即可。

微弱信号检测 课程设计

LDO 低输出噪声的分析与优化设计 1 LDO 的典型结构 LDO 的典型结构如下图所示,虚线框内为LDO 芯片内部电路,它是一个闭环系统,由误差放大器(Error amplifier)、调整管(Pass device)、反馈电阻网络(Feedback resistor network)组成,其闭环增益是: OUT REF V Acloseloop V = (1) 此外,带隙基准电压源 ( Bandgap reference)为误差放大器提供参考电压。 LDO 的工作原理是:反馈电阻网络对输出电压进行分压后得到反馈电压,该电压输入到误差放大器的同相输入端。误差放大器放大参考电压和反馈电压之间的差值, 其输出直接驱动调整管,通过控制调整管的导通状态来得到稳定的输出电压。例如,当反馈电压小于基准电压时,误差放大器输出电压下降,控制调整管产生更大的电流使得输出电压上升。当误差放大器增益足够大时,输出电压可以表示为: R1(1+)R2 OUT REF V V = (2) 所谓基准电压源就是能提供高精度和高稳定度基准量的电源,这种基准源与电源、工艺参数和温度的关系很小,其原理是利用PN 结电压的负温度系数和不同电流密度下两个PN 结电压差的正温度系数电压相互补偿,而使输出电压达到很低的温度漂移。传统基准电压源是基 于晶体管或齐纳稳压管的原理而制成的,其αT =10-3/℃~10-4/℃,无法满足现代电子测量之 需要。20世纪70年代初,维德拉(Widlar)首先提出能带间隙基准电压源的概念,简称带隙(Bandgap)电压。所谓能带间隙是指硅半导体材料在0K 温度下的带隙电压,其数值约为 1.205V ,用U go 表示。带隙基准电压源的基本原理是利用电阻压降的正温漂去补偿晶体管发射结正向压降的负温漂,从而实现了零温漂。由于未采用工作在反向击穿状态下的稳压管,因而噪声电压极低。带隙基准电压源的简化电路如下图所示。

火灾自动报警系统的检查方法

火灾自动报警系统的检查方法 1.1火灾自动报警系统的组成 触发器件:自动或手动产生火灾报警信号的器件,包括感温、感烟、感光、可燃气体探测器等 火灾报警控制装置:可以接收、显示和传递火灾报警信号,并能发出控制指示的设备,包括火灾报警控制器、区域、集中火灾报警控制器 火灾警报装置:用以发出区别于环境声、光的火灾警报信号的装置称为火灾警报装置,包括火灾警报器 消防联动控制设备:当接收到来自触发器件的火灾报警信号后,能自动或手动启动相关消防设备并显示其状态的设备 电源:其主电源应当采用消防电源,备用电源采用蓄电池。系统电源除为火灾报警控制器供电外,还为与系统相关的消防控制设备等供电。 1.2火灾自动报警系统的工作原理 能够在火灾初期,将燃烧产生的烟雾、热量和光辐射等物理量,通过感温、感烟和感光等火灾探测器变成电信号,传输到火灾报警控制器,并同时显示出火灾发生的部位,记录火灾发生的时间。 一般火灾自动报警系统和自动喷水灭火系统、室内消火栓系统、防排烟系统、通风系统、空调系统、防火门、防火卷帘、挡烟垂壁等相关设备联动,自动或手动发出指令,启动相应的防火灭火装置。 消防控制设备的八个联动控制功能: 1. 对室内消火栓系统应有控制消防水泵的启、停;显示消防水泵的工作、故障状态;显示启泵按钮的位置的控制、显示功能。 2. 对自动喷水和水喷雾灭火系统应有控制系统的启、停;显示消防水泵的工作、故障状态;显示水流指示器、报警阀、安全信号阀的工作状态的控制、显示功能。 消防控制设备的八个联动控制功能: 3.对管网气体灭火系统应有显示系统的手动、自动工作状态;在报警、喷射各阶段,控制室应有相应的声、光警报信号,并能手动切除声响信号;在延时阶段,应自动关闭防火门、窗,停止通风空调系统,关闭有关部位防火阀;显示气体灭火系统防护区的报警、喷放及防火门(帘)、通风空调等设备的状态的控制、显示功能。

光纤传感器-位移测量

实验四光纤传感器————位移测量 实验目的 1、光纤位移传感器的结构与工作原理。 2、光纤传感器的输出特性曲线。 实验原理 反射式光纤位移传感器是一种传输型光纤传感器。其原理如图1所示:光纤采用Y型结构,两束光纤一端合并在一起组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。光从光源耦合到光源光纤,通过光纤传输,射向反射片,再被反射到接收光纤,最后由光电转换器接收,转换器接受到的光源与反射体表面性质、反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射片时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。图2所示就是反射式光纤位移传感器的输出特性曲线,利用这条特性曲线可以通过对光强的检测得到位移量。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。 图1 反射式位移传感器原理 图2 反射式光纤位移传感器的输出特性

实验所需部件: 光纤(光电转换器)、光电传感器模块、{光纤光电传感器实验模块}、支架、电压表示波器、螺旋测微仪、反射镜片 实验步骤: 1、观察光纤结构:本实验仪所配的光纤探头为半圆型结构,由数百根导光纤维组成,一半为光源光纤,一半为接收光纤。 2、连接主机与实验模块电源线及光纤变换器探头接口,光纤探头装上通用支架(原装电涡流探头),{探头支架},探头垂直对准反射片中央(镀铬圆铁片),螺旋测微仪装上支架,以带动反射镜片位移。 3、开启主机电源,光电变换器V 端接电压表,首先旋动测微仪使探头紧贴反射镜片(如 两表面不平行可稍许扳动光纤探头角度使两平面吻合),此时V 输出≈0,然后旋动测微仪,使反射镜片离开探头,每隔0.2mm记录一数值并记入下表: Xm m 0 0. 2 0. 4 0. 6 0. 8 1 1. 2 1. 4 1. 6 1. 8 2 2. 2 2. 4 2. 6 2. 8 3 3. 2 3. 4 3. 6 3. 8 4 V 位移距离如再加大,就可观察到光纤传感器输出特性曲线的前坡与后坡波形,作出V-X 曲线,通常测量用的是线性较好的前坡范围。 注意事项: 1、光纤请勿成锐角曲折,以免造成内部断裂,端面尤要注意保护,否则会光通量衰耗加 大造成灵敏度下降。 2、实验时注意增益调节,输出最大信号以3V左右为宜,避免过强的背景光照射。 3、双支光纤三端面均经过精密光学抛光,其端面的光洁度直接会影响光源损耗的大小,需 仔细保护。禁止使用硬物、尖锐物体碰触,遇脏可用镜头纸擦拭。如非必要,最好不要自行拆卸,观察光纤结构一定要在实验老师的指导下进行。

煤矿安全监控系统设计方案

编号:AQ-JS-07134 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 煤矿安全监控系统设计方案 Design scheme of coal mine safety monitoring system

煤矿安全监控系统设计方案 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 近年来,煤矿事故频频发生,如何加强安全生产,提高预警和事后搜救工作效率,摆到了国家各级主管部门和领导的面前。在经济高速发展、能源供应紧张的形势下,如何处理好保证安全和提高产量的关系,需要深入研究,发展不能以牺牲环境和生命为代价。 为此,如何正确处理安全与生产、安全与效益的关系,如何准确、实时、快速履行煤矿安全监测职能,有效进行矿工管理,保证抢险救灾、安全救护的高效运作显得尤为重要和紧迫。我们认为提升安全生产信息化管理水平,加强以灾害预防、搜救为主要目标的安全生产长效机制,是我国安全生产工作的必由之路。 在此环境下浙江大华技术股份有限公司率先推出适用于煤矿的数字视频监控系统,本系统从视频监控、信号传输、中心控制、远程监管等各方面提出全方位的解决办法,可以实现井下监控中心、地、市煤矿安全监控指挥中心与省局监控指挥中心联网,使煤矿安

全管理工作向科学化、规范化、数字化管理轨道迈进,提高煤矿安全管理水平。 利用远程视频监控系统,地面监控人员可以直接对井下情况进行实时监控,不仅能直观的监视和记录井下工作现场的安全生产情况,而且能及时发现事故,防患于未然,也能为事后分析事故提供有关的第一手图像资料。另外,煤矿监管部门可以从省部管理中心远程监看井下状况,提出整改方法,减少事故隐患,因此新天安远程视频监控系统将是保障矿井安全生产的重要组成部分。 需求分析 在我国,采煤机械化程度仅为45%,矿工队伍很大一部分是文化水平较低、培训时间有限的农民工,甚至存在井下抽烟等严重违章现象,在高度危险的作业环境中,极易发生事故,造成重大伤亡。我们在分析近期几个煤矿发生的特大事故时发现: 1)地面与井下人员的信息沟通不及时; 2)地面人员难以及时动态掌握井下人员的分布及作业情况; 3)一旦煤矿事故发生,抢险救灾、安全救护的效率低,搜救效

光纤传感器位移特性实验

光纤传感器位移特性实验报告 一、实验目的: 了解反射式光纤位移传感器的原理与应用。 二、实验仪器: 光纤位移传感器模块、Y型光纤传感器、测微头、反射面、直流电源、数显电压表。三、实验原理: 反射式光纤位移传感器是一种传输型光纤传感器。其原理如图36-1所示:光纤采用Y型结构,两束光纤一端合并在一起组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。光从光源耦合到光源光纤,通过光纤传输,射向反射面,再被反射到接收光纤,最后由光电转换器接收,转换器接收到的光源与反射体表面的性质及反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射面时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。 图36-1 反射式光纤位移传感器原理图36-2 光纤位移传感器安装示意图四、实验内容与步骤 1.光纤传感器的安装如图36-2所示,将Y型光纤安装在光纤位移传感器实验模块上。探头对准镀铬反射板,调节光纤探头端面与反射面平行,距离适中;固定测微头。接通电源预热数分钟。 2.将测微头起始位置调到14cm处,手动使反射面与光纤探头端面紧密接触,固定测微头。 3.实验模块从主控台接入±15V电源,打开实验台电源。 4.将模块输出“Uo”接到直流电压表(20V档),仔细调节电位器Rw使电压表显示为零。 5.旋动测微器,使反射面与光纤探头端面距离增大,每隔0.1mm读出一次输出电压U值,并记录。 五、数据记录与分析 1、数据记录表格 X(mm)0.10.20.30.40.50.60.70.80.9 1.0 Uo(V)0.080.180.280.400.520.640.750.870.97 1.06

火灾自动报警系统检测方案

火灾自动报警系统检测方案 (一).系统布线 (1)火灾自动报警系统的布线,应符合现行国家标准《电气装置工程施工及验收规范》、《火灾自动报警系统设计规范》及《火灾自动报警系统施工验收规范》的有关规定。 (2)信号传输线路保护材料 技术要求:火灾自动报警系统传输线路应采用铜芯绝缘导 线或铜芯电缆,并应采用穿金属管、硬质塑料管或封闭式线槽保护方式布线。 检测方法:目测 (3)消防控制、通信和警报线路保护材料 技术要求:消防控制、通讯和警报线路采用暗敷设时,宜采用金属管或径阻燃处理的硬质塑料管保护,并应敷设在不燃烧体的结构层内,且保护层厚度不宜小于30mm。当采用明敷时,应采用用属管或金属线槽保护,并应在金属管或金属线槽电缆上采取防火保护措施。采用经阻燃处理的电缆时,可不穿金属管保护,但应敷设在电缆竖井或吊顶内有防火保护措施的封闭式线槽内。 检测方法:目测 (4)管路加固措施及管路连接处理 技术要求:

a.管路入盒时,盒外侧应套锁母,内侧应装护口;在吊顶内敷设时,盒的内外侧均应套锁母,或采用焊接等其它加固措施。 b.在吊顶内敷设各类管路和线槽时,宜采用单独的卡具吊装或支撑物固定。 c.线槽的直线段应每隔1。0---1。5米设吊点或支点,在线槽接头处、接线盒0。2米处、线槽变向或转角处应设吊点或支点,。 d.线槽吊杆直径≥6 mm。 e.敷设于多尘或潮湿场所管路的管口和管路连接处,均应作密封处理。 检测器具:0-3米钢卷尺,游标卡尺 检测方法:按技术要求检查管路连接情况,用钢卷尺测 量线槽长度,用游标卡尺测吊杆直径。 (5)布线要求 技术要求: a.管路长度大于45米无弯曲时、大于30米有1个弯曲时、大于20米有2个弯曲时、大于12米有3个弯曲时,应加装接线盒便于接线。 b.不同系统、不同电压等级、不同电流类别的线路应分管、分槽设置、穿孔机绝缘导线或电缆的总截面积不宜超过管内截面积的40%。

安全监测监控课程设计实例

.

安全监测监控系统 课程设计 论文名称:蓄水池变频恒流量抽水自动控制系统设计论文单位:能源学院 资料Word . 论文作者:安全工程 学号: 指导老师: 蓄水池变频恒流量抽水自动控制系统

1 设计目的与要求 1.1 设计目的 对于多数矿井来说,较大的矿井水被排放到地面后比较难以处理,自然排放容易造成环境污染和资源浪费,而如果二次处理,成本极高。所以考虑采用二次利用的方式能有效的解决矿井水排放问题。 本设计利用从井下抽放到地面蓄水池的矿井水进行制浆,制成的泥浆将会用于井下灭火和充填。这样做可以变废为宝,减少对环境的污染,有效的解决矿井水排放处理问题,同时也解决了制泥浆所需水的问题,降低了制浆的成本。因此,这种设计会有很好的经济效益。 1.2 设计要求 设计对象是某煤矿地面蓄水池,通过设计一个自动控制系统,将其中的水抽出刀制定的制浆设备用于制浆,实现井下废水的再利用。该矿井下抽取到地面蓄水池 的水杂质较少,矿领导设计制浆用水量为70方/小时,可以采用变频器进行控制, 制定一个自动控制系统来实现该功能。 设计采用水泵将蓄水池的水抽出到指定设备的系统,具体要求: 资料Word . (一)、能检测抽出的水流量; (二)、形成一个自动恒流控制系统; (三)、能控制水流量为我们的指定值。 2 系统结构设计 2.1 控制方案 根据设计目的和设计要求,本设计采用变频恒流量抽水方式,最根本的目的是将蓄水池中的水抽送至制浆设备中,在设计中添加流量传感器、变频执行器和控制器等将抽水过程进行优化。实现恒流量变频自动控制抽水过程。 流量传感器用来监测管路中的流量是否达到生产所需的值;变频执行器以其显著的节能效果和稳定可靠的控制方式,在风机、水泵、空气压缩机、制冷压缩机等高能耗设备上广泛应用,在本设计中,其作用也是一样的,它是对水泵进行转速 控制的单元.变频器跟踪供水控制器送来的控制信号改变调速泵的运行频率,完 成对调速泵的转速控制;控制器可以实现对抽水过程的灵活控制。 对此,选用新型变频调速抽水设备,该设备将PID调节器以及简易可编程控制器的功能都综合进变频器内,形成了带有各种应用的新型变频器。由于PID运

光纤传感器的位移特性实验

实验二十五光纤传感器的位移特性实验 一、实验目的 了解光纤位移传感器的工作原理和性能。 二、实验内容 用传光型光纤测位移。 三、实验仪器 光纤传感器、光纤传感器实验模板、数显单元、测微头、直流源、反射面(用电涡流传感器的铁测片做反射面)。 四、实验原理 本实验采用的是传光型光纤,它由两束光纤混合后,组成Y型光纤,半园分布即双D 型一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X有关,因此可用于测量位移。 五、实验注意事项 1、实验时注意光纤探头与反射面保持平行,调整光纤探头使其位于反射面的圆心上。 2、实验前应用纸巾擦拭反射面,以保证反射效果。 六、实验步骤 1、根据图9-1安装光纤位移传感器,二束光纤插入实验板上的座孔上。其内部已和发光管D及光电转换管T 相接。 图9-1 光纤传感器安装示意图 2、将光纤实验模板输出端VO1与数显单元相连,见图9-2。

图9-2光纤传感器位移实验接线图 3、调节测微头,使探头与反射面圆平板接触。 4、实验模板接入±15V电源,合上主控台电源开关,调RW使数显表显示值最小,然后微调测微头使数显表显示为0.000(电压选择置2V档)。 5、旋转测微头,被测体离开探头,每隔0.05mm读出数显表值,将其填入下表:(实验结论:1、本实验每隔0.05mm是相对位置,起始值看做0.05mm即可,无需从测微头上读绝对位置值。每旋转0.05mm,输出的电压的增量应该大致相等。2、由于学生做实验可能不能正确的找到起始点,导致采集的数据不在线性范围内,从而影响数据采集的线性度,可以让学生从选取的起始点开始计数,多计几组数据,然后选取线性度较好的十组数据,填入下表。3、如果只看本实验的线性情况,可选取十组较好的数据填入下表,若要看到光纤传 感器的整个变化趋势,则至少应该记录25组数据,其V—X曲线见思考题答案) 6、根据上表数据,作光纤位移传感器的位移——输出曲线图。计算在量程1mm时灵敏度和非线性误差。 七、实验报告 在实验报告中填写《实验报告二十五》,详细记录实验过程中的原始记录(数据、图表、 波形等)并结合原始记录进一步理解实验原理。 八、实验思考题 根据实验步骤(6)中的光纤位移传感器的位移——输出曲线图,分析其原理。 答:由光源发出的光经发射光纤传输后入射到被测物表面,经反射体反射后再经接收光 纤接收并传输至光敏元件。由于光纤有一定的数值孔径,当光纤探头紧贴反射体时,发射光 纤中的光不能发射到接收光纤中,因此接收光纤中无光信号;当光纤探头逐渐远离被测体时, 接收光纤中的光强越来越大,当整个接收光纤被全部照亮时,接收光强达到峰值;当反射体 继续远离时,将有部分反射光没有反射进Y型光纤束,接收到的光强逐渐减小。位移特性 如下图所示。

基于锁定放大器的微弱信号检测系统设计

龙源期刊网 https://www.wendangku.net/doc/7f11052007.html, 基于锁定放大器的微弱信号检测系统设计 作者:蒋碧波杨振国杨越 来源:《科技经济市场》2017年第04期 摘要:文章设计了一种基于锁定放大器的微弱信号检测系统,该系统以相敏检波器和单片机为核心,结合加法器、纯电阻分压网络、微弱信号检测电路和显示电路组成。测试表明,该系统可以有效地用于噪声淹没的微弱信号检测。 关键词:微弱信号;强噪声;相敏检波 0.概述 微弱信号检测技术综合利用电子、信息学、计算机技术和物理学方法,研究导致噪声的原因和规律,以及被测信号的相关性,将被噪声淹没的微弱有用信号检测出来。相较于生物芯片扫描法中扫描时间与检测灵敏度难以兼顾的缺点和微弱振动信号的谐波小波频域提取法的局限性来说,以锁定放大器为核心的微弱信号检测系统更有潜力。 用调制器将直流或渐变信号进行交流放大,可以避免噪声的不利影响;利用相敏检测器检测频率和相位,利用窄带低通滤波器来抑制高频噪声,大大提高了稳定性,这些优点使得该项技术具有更加广阔的应用前景。 1.锁定放大器的原理 锁定放大器由信号通道、参考通道、相敏检波器以及输出电路组成。其基本思想是将与被测信号相同频率和相位关系的参考信号作为基准信号,使得只有与被测信号本身以及与参考信号同频和同相的噪声分量有响应,其他频率的噪声被抑制,从而能提取出有用信号。若增加辅助前置放大器,锁相放大器增益可达220dB,能检测极微弱交流输入信号。锁定放大器输出为直流电压信号,且正比于输入信号幅度及被测信号与参考信号相位差。与一般的带通放大器不同,锁相放大器具有极强的抗噪声能力。 系统的核心相敏检波器(PSD)的本质功能是对两个信号之间的相位进行检波,只有当同频同相信号输入时,为全波整流且输出最大。 2.系统总体设计 本系统总体框图如图1所示,系统由接收信号预处理通道、参考信号预处理通道、相关器及输出电路组成,其中核心部件相关器,它包括开关乘法器和RC低通滤波器;其中加法器由同相放大电路构成,实现噪声与待测信号相加,使得信号淹没在噪声环境中,然后经过衰减器衰减约100倍,模拟接收方收到的信号,并送入以相敏检波器为核心的微弱信号检测电路。参

火灾自动报警系统检测与维护范本

操作规程编号:LX-FS-A23088 火灾自动报警系统检测与维护范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

火灾自动报警系统检测与维护范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 火灾自动报警系统竣工后,建设单位应负责组织施工、设计、监理等单位进行检测。检测不合格不得投入使用。 一、检测资料查验 系统检测时,施工单位应提供下列资料: 1.竣工检测申请报告、设计变更通知书、竣工图; 2.工程质量事故处理报告; 3.施工现场质量管理检查记录; 4.火灾自动报警系统施工过程质量管理检查记录;

5.火灾自动报警系统内各设备的检验报告、合格证及相关材料。 二、系统检测 系统的检测要按照检测数量要求对系统内的所有装置进行检测,检测内容和数量要符合下列要求,同时按照判定标准要求对检测结果进行判定。 (一)系统检测的内容 系统检测内容包括系统中下列装置的安装位置、施工质量和功能,其功能应满足设计文件的要求。 1.火灾报警系统装置(包括各种火灾探测器、手动火灾报警按钮、火灾报警控制器和区域显示器等); 2.消防联动控制系统(含消防联动控制器、气体(泡沫)灭火控制器、防火卷帘控制器、防火门监控器、消防电气控制装置、消防设备应急电源、消防应

相关文档
相关文档 最新文档