文档库 最新最全的文档下载
当前位置:文档库 › 自适应控制中PID控制方法

自适应控制中PID控制方法

自适应控制中PID控制方法
自适应控制中PID控制方法

自适应PID 控制方法

1、自适应控制的理论概述

设某被控对象可用以下非线性微分方程来描述:

'()((),(),,)

()((),(),,)x t f x t u t t y t h x t u t t θθ== (1-1)

其中x(t),u(t),y(t)分别为n,p,m 维列向量。假设上述方程能线性化、离散化,并可得出在扰动和噪音影响下的方程:

(1)(,)()(,)()()()(,)()()

X k k X k k U k k Y k H k X k V k θρθωθ+=Φ++=+ (1-2) X(k),X(k),U(k),Y(k),V(k)分别为n ,n ,p ,m ,m 维列向量;(,)k θΦ、(,)k ρθ、(,)H k θ分别为n ×n 系统矩阵、n ×p 控制矩阵、m ×n 输出矩阵。那么自适应控制就是研究:在矩阵(,)k θΦ,(,)k ρθ,(,)H k θ中的参数向量,

随机{()k ω},{v(k)}的统计特性及随机向量X(0)的统计特性都未知的条件下的控制问题,也就是说自适应控制的问题可归结为在对象及扰动的数学模型不完全确定的条件下,设计控制序列u(0),u(1),…,u(N- 1),使得指定的性能指标尽可能接近最优和保持最优。

自适应控制是现代控制的重要组成部分,它同一般反馈控制相比有如下突出特点: (l)一般反馈控制主要适用于确定性对象或事先确知的对象,而自适应控制主要研究不确定对象或事先难以确知的对象。

(2)一般反馈控制具有抗干扰作用,即它能够消除状态扰动引起的系统误差,而自适应控制因为有辨识对象和在线修改参数的能力,因而不仅能消除状态扰动引起的系统误差,还能消除系统结构扰动引起的系统误差。

(3)自适应控制是更复杂的反馈控制,它在一般反馈控制的基础上增加了自适应控制机构或辨识器,还附加了一个可调系统"

1.1模型参考自适应控制系统

模型参考自适应控制系统由参考模型、反馈控制器、自适应机构及被控对象组成。此系统的主要特点是具有参考模型,其核心问题可归纳为如何确定自适应调节律及算法。目前设计自适应律所采用的方法主要有两种:局部参数最优法,如梯度算法等,该方法的局限性在于不一定能保证调节过程总是稳定的;基于稳定性理论的设计方法,如Lyapunov稳定性理论和Popov超稳定性理论的设计方法。

1.2自校正调节器

自校正调节器可分为设计机构、估计器、调节器及被控对象4个部分。此控制器的主要特点是具有在线测量及在线辨识环节,其核心问题可归纳为如何把不同参数估计算法与不同控制算法相结合。根据参数估计算法与控制算法相结合的情况把自校正控制分为:最小方差自校正控制,其特点是算法简单、易理解、易实现,但只适用于最小相位系统,对靠近单位圆的零点过于灵敏,而且扰动方差过大时调节过程过于猛烈;广义最小方差自校正控制,可用于非逆稳系统,但难以实现;基于多步预测的自适应控制,适用于不稳定系统等,具有易实现、鲁棒性强的优点;自校正极点配置控制,具有动态性能好、无控制过激现象的特点,但静态干扰特性差;自校正PID控制,具有算法简单、鲁棒性强、待定参数少的特点;增益调度控制,优点是参数适应快,缺点是选择合适的列表需要大量的仿真实验,另外离线的计算量大。

1.3动态系统稳定性理论

目前,自适应控制系统的设计都是基于稳定性理论的,即在保证系统全局稳定的前提下实现其参数调节规律,主要应用的稳定性理论有Lyapunov稳定定理和Popov稳定定理。正因为这样,自适应系统的设计方法主要分为两种,基于Lyapunov稳定定理的自适应控制系统和基于Popov稳定定理的自适应控制系统。

李雅普诺夫提出了运动稳定性的一般理论,即稳定性分析的第一法和第二法。第一法将非线性自治系统运动方程在足够小的邻域内进行泰勒展开,导出一次近似线性化系统,再根据线性系统特征值在复平面上的分布推断非线性系统在邻域内的稳定性;第二法引入具有广义能量属性的李雅普诺夫函数,并分析其函数的定号性,建立判断系统稳定性的相应结论。

2、模型参考自适应控制系统设计方法

下面以图1所示的典型的模型参考自适应控制系统为例说明其设计方法。

图1 模型参考自适应控制系统结构图

如图1所示的一阶被控对象为例说明模型参考自适应控制的原理。被控对象为一个一阶线性时不变系统,它的传递函数为:

()p

p k P s s a =+ (2-1)

参考模型是一个稳定的单输入单输出线性时不变系统,其传递函数为:

()m m

k M s s a =+ (2-2)

对象和模型的时域描述如下:

()()

()()

p p p p m m m m y a y t k u t y a y t k r t ??=-+=-+ (2-3)

控制的目标是设计控制u(t)使对象输出()p y t 能渐近跟踪参考模型的输出()m y t ,而且在整个控制过程中,在连续系统中,所有系统中的信号应当都是有界的。PID 控制规律可表达如下所示: 01()()()()t

d i d

e t u t K e t e t dt T T dt ??=++????? (2-4) 由图1可知,控制信号u(t)可由参考输入r(t)和对象的输出信号()p y t 的线性组合而构成,即有:

0()()()()()o p u t c t r t d t y t =+ (2-5)

图1中的虚线框内可调系统的传递函数和参考模型的传递函数完全匹配时可调参数00()c t c *=,00()d t d *=。其中0c *,0d *

式为其标称参数。定义输出误差0e ,参数误差φ,以及输出误差的动态方程为: 0000

0()()()()m p

r y e y y t c t c t d t d φφφ**=-??-????==??????-???? (2-6) 得输出误差的动态方程为:

001()()p r r p r r p m k e r y M r y s a c φφφφ?*=

+=++ (2-7)

此处的()r r p M r y φφ+代表对时域信号r r p r y φφ+按传递函数()M ?的算子关系进行运算。

3、自适应PID

当被控对象参数为定常或变化较小时,采用一般常规反馈控制、模型匹配控制或最优控制等方法,可以得到满意的控制效果。当对象在运行过程中其结构与参数及环境有剧烈变化时,仅用常规的反馈控制技术是得不到满意结果的。于是出现了自适应控制技术及理论。迄今为止,先后出现过各种形式的自适应控制系统,新的概念和方法仍在不断涌现,其中模型参考自适应控制系统无论从理论研究和实际应用上都是比较成熟的。基于PID 的模型参考自适应控制方法,如图2所示:

图2 基于PID 的模型参考自适应控制系统基本结构图

引入自适应误差信号()()()m t s a e t δ=-+、()()()m p e t y t y t =-,则控制律可以取为:

()()[()]()[()]l

l m l p t u t K t k r t K t s y t ==∑ (3-1)

可得模型参考自适应PID 控制器的控制策略为:

1203()()()

()()()()

()()

p p p t i i i d d d K t e t a K K K t e d a K K de t K t a K K dt γδγδττγδ**

*=---=---=---? (3-2)

式中γ,a 为自适应增益系数,(0)p p K K *

=,(0)i i K K *

=,

(0)d d K K *=为可调参数的初始值,可以通过参数整定或试算法得到。

PID控制算法经验之谈

PID控制概述 PID控制是目前工程上应用最广的一种控制方法,它的优点在于结构简单,且不依赖被控对象模型,控制所需的信息量也很少,因而非常易于工程实现,同时通过参数的调整也可获得较好的控制效果。 PID控制是将误差信号的比例(P)、积分(I)和微分通过线性组合构成控制量,故称之为PID控制。因此,在使用中只需要设定三个参数即可。在很多情况,往往不一定需要三个单元,但是比例单元是必不可少的。 PID控制器设计的难点在于参数整定。但是实际上很多情况下我们可以直接根据系统的时域响应来调整比例、微分和积分三个环节的参数,当然这就需要了解这三个环节对时域响应的有什么样的影响。 (1)比例环节:直接将误差信号放大或缩小,因此将比例环节参数增大可以提高响应速度并且减小稳态误差,但是,快速性和稳定性总是一对矛盾,也就是在增大比例系数的同时,系统的稳定性逐渐减低,系统将会出现超调、振荡,甚至发散,因此合适的比例增益是在快速性和稳定性之间进行折中。 (2)积分环节:从积分的定义可知,该环节是将误差不断进行累积,可实现消除稳态误差。增益越大,积分作用越强,稳态误差消除也越快,但是带来的问题是容易产生积分饱和现象,带来大的超调并延缓了系统进入稳态的速度,因此这又是一个矛盾。 (3)微分环节:该环节或取的是误差的微分信息,根据微分的定义,我们可以知道,这是一个超前环节,也就是说该信号提前告诉我们控制量是该减还是该增,避免造成超调、振荡,因此增大该环节增益有助于提高系统的稳定性,避免振荡,但是对快速性却产生了负作用(快速性和稳定性总是一会矛盾体),因此必须合理选取。还有必须注意的是,微分环节对噪声信号将产生放大作用,因此在噪声较大的系统中慎用。 正是由于PID控制参数整定的复杂性,目前出现了多种改进的PID控制方法,我们将在下一篇中对这些改进型进行归纳总结。 各种改进型PID控制总结 随着数字控制技术的发展,我们在控制器的设计上有了更大的灵活性,一些原来在模拟PID控制器中无法实现的问题,现在我们很容易就能在数字计算机上实现了,于是产生来了一系列改进的控制算法,形成非标准的控制算法,改善系统品质,满足不同控制系统的需要。 1.积分分离PID控制算法 PID控制中引入积分环节,主要是为了消除静差,提高控制精度。但在启动、结束或大幅度增减指令时,短时间内系统有很大输出,由于积分积累的作用,致使控制量超过执行机构可能运行的最大动作范围对应的极限控制量,引起系统较大的超调,甚至引起系统较大的振荡,这在生产中是绝对不允许的。积分分离的

PID控制的基本原理

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 PID 控制的基本原理 1.PID 控制概述 当今的自动控制技术绝大部分是基于反馈概念的。反馈理论包括三个基本要素:测量、比较和执行。测量关心的是变量,并与期望值相比较,以此误差来纠正和控制系统的响应。反馈理论及其在自动控制中应用的关键是:做出正确测量与比较后,如何用于系统的纠正与调节。 在过去的几十年里,PID 控制,也就是比例积分微分控制在工业控制中得到了广泛应用。在控制理论和技术飞速发展的今天,在工业过程控制中95%以上的控制回路都具有PID 结构,而且许多高级控制都是以PID 控制为基础的。 PID 控制器由比例单元(P)、积分单元(I)和微分单元(D)组成,它的基本原理比较简单,基本的PID 控制规律可描述为: G(S ) = K P + K1 + K D S (1-1) PID 控制用途广泛,使用灵活,已有系列化控制器产品,使用中只需设定三个参数(K P ,K I和K D )即可。在很多情况下,并不一定需要三个单元,可以取其中的一到两个单元,不过比例控制单元是必不可少的。 PID 控制具有以下优点: (1)原理简单,使用方便,PID 参数K P、K I和K D 可以根据过程动态特性变化,PID 参数就可以重新进行调整与设定。 (2)适应性强,按PID 控制规律进行工作的控制器早已商品化,即使目前最新式的过程控制计算机,其基本控制功能也仍然是PID 控制。PID 应用范围广,虽然很多工业过程是非线性或时变的,但通过适当简化,也可以将其变成基本线性和动态特性不随时间变化的系统,就可以进行PID 控制了。 (3)鲁棒性强,即其控制品质对被控对象特性的变化不太敏感。但不可否认PID 也有其固有的缺点。PID 在控制非线性、时变、偶合及参数和结构不缺点的复杂过程时,效果不是太好; 最主要的是:如果PID 控制器不能控制复杂过程,无论怎么调参数作用都不大。 在科学技术尤其是计算机技术迅速发展的今天,虽然涌现出了许多新的控制方法,但PID 仍因其自身的优点而得到了最广泛的应用,PID 控制规律仍是最普遍的控制规律。PID 控制器是最简单且许多时候最好的控制器。 在过程控制中,PID 控制也是应用最广泛的,一个大型现代化控制系统的控制回路可能达二三百个甚至更多,其中绝大部分都采用PID 控制。由此可见,在过程控制中,PID 控制的重要性是显然的,下面将结合实例讲述PID 控制。 1.1.1 比例(P)控制 比例控制是一种最简单的控制方式,其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳定误差。比例控制器的传递函数为: G C (S ) = K P (1- 2) 式中,K P 称为比例系数或增益(视情况可设置为正或负),一些传统的控制器又常用比例带(Proportional Band,PB),来取代比例系数K P ,比例带是比例系数的倒数,比例带也称为比例度。 对于单位反馈系统,0 型系统响应实际阶跃信号R0 1(t)的稳态误差与其开环增益K 近视成反比,即: t→∞

自我简述PID调节的方法

PID调节口诀 1. PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1, 2. 一看二调多分析,调节质量不会低2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照: 温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。 3.PID控制的原理和特点 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID 控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 比例(P)控制比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。 积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。 微分(D)控制在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

PID调节方法

PID调节方法 PID是由比例、微分、积分三个部分组成的,在实际应用中经常只使用其中的一项或者两项,如P、PI、PD、PID等。就可以达到控制要求...PLC编程指令里都会有PID这个功能指令...至于P,I,D 数值的确定要在现场的多次调试确定.. 比例控制(P): 比例控制是最常用的控制手段之一,比方说我们控制一个加热器的恒温100度,当开始加热时,离目标温度相差比较远,这时我们通常会加大加热,使温度快速上升,当温度超过100度时,我们则关闭输出,通常我们会使用这样一个函数 e(t) = SP – y(t); u(t) = e(t)*P SP——设定值 e(t)——误差值 y(t)——反馈值 u(t)——输出值 P——比例系数 滞后性不是很大的控制对象使用比例控制方式就可以满足控制要求,但很多被控对象中因为有滞后性。 也就是如果设定温度是200度,当采用比例方式控制时,如果P选择比较大,则会出现当温度达到200度输出为0后,温度仍然会止不住的向上爬升,比方说升至230度,当温度超过200度太多后又开始回落,尽管这时输出开始出力加热,但温度仍然会向下跌落一定的温度才会止跌回升,比方说降至170度,最后整个

系统会稳定在一定的范围内进行振荡。 如果这个振荡的幅度是允许的比方说家用电器的控制,那则可以选用比例控制.比例积分控制(PI): 积分的存在是针对比例控制要不就是有差值要不就是振荡的这种特点提出的改进,它常与比例一块进行控制,也就是PI控制。 其公式有很多种,但大多差别不大,标准公式如下: u(t) = Kp*e(t) + Ki∑e(t) +u0 u(t)——输出 Kp——比例放大系数 Ki——积分放大系数 e(t)——误差 u0——控制量基准值(基础偏差) 大家可以看到积分项是一个历史误差的累积值,如果光用比例控制时,我们知道要不就是达不到设定值要不就是振荡,在使用了积分项后就可以解决达不到设定值的静态误差问题,比方说一个控制中使用了PI控制后,如果存在静态误差,输出始终达不到设定值,这时积分项的误差累积值会越来越大,这个累积值乘上Ki后会在输出的比重中越占越多,使输出u(t)越来越大,最终达到消除静态误差的目的。 PI两个结合使用的情况下,我们的调整方式如下: 1、先将I值设为0,将P值放至比较大,当出现稳定振荡时,我们再减小P 值直到P值不振荡或者振荡很小为止(术语叫临界振荡状态),在有些情况下,

PID调节方法

1、先调节P值(I、D均为0),使其调节速度达到要求。P值增减先按倍 数处理(乘2或除2),直到超越了要求,再将前后两个值取平均值。 2、再根据调节偏差处理I的取值,该值从大往小试验,温度调节初始值可以从10min开始,而流量、压力可以从1min开始。直到偏差小到符合要求。 3、D值只在超调量过大时采用,取值从小往大试验,以超差幅度小于允许值, 又不发生震荡为度。 1. PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后 再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘 往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长, 理想曲线两个波,前高后低4比1, 2. 一看二调多分析,调节质量不会低 2.PID控制器参数的工程整定,各种调节 系统中P.I.D参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。 PID控制原理与PID参数的整定方法 PID是比例、积分、微分的简称,PID控制的难点不是编程,而是控制器的参数整定。参数整定的关键是正确地理解各参数的物理意义,PID控制的原理可以用人对 炉温的手动控制来理解。阅读本文不需要高深的数学知识。 1.比例控制 有经验的操作人员手动控制电加热炉的炉温,可以获得非常好的控制品质,PID控制 与人工控制的控制策略有很多相似的地方。 下面介绍操作人员怎样用比例控制的思想来手动控制电加热炉的炉温。 假设用热电偶检测炉温,用数字仪表显示温度值。在控制过程中,操作人员用眼睛读取炉温,并与炉温给定值比较,得到温度的误差值。然后用手操作电位器,调节加热的电流,使 炉温保持在给定值附近。 操作人员知道炉温稳定在给定值时电位器的大致位置(我们将它称为位置L),并根 据当时的温度误差值调整控制加热电流的电位器的转角。炉温小于给定值时,误差 为正,在位置L的基础上顺时针增大电位器的转角,以增大加热的电流。炉温大 于给定值时,误差为负,在位置L的基础上反时针减小电位器的转角,并令转角与位置L的差值与误差成正比。 上述控制策略就是比例控制,即PID控制器输出中的比例部分与误差成正比。 闭环中存在着各种各样的延迟作用。例如调节电位器转角后,到温度上升到新的 转角对应的稳态值时有较大的时间延迟。由于延迟因素的存在,调节电位器转角后 不能马上看到调节的效果,因此闭环控制系统调节困难的主要原因是系统中的延迟 作用。比例控制的比例系数如果太小,即调节后的电位器转角与位置L的差值太小,调节的力度不够,使系统输出量变化缓慢,调节所需的总时间过长。比例系数如果过大,即

自适应控制中PID控制方法

自适应PID 控制方法 1、自适应控制的理论概述 设某被控对象可用以下非线性微分方程来描述: '()((),(),,) ()((),(),,)x t f x t u t t y t h x t u t t θθ== (1-1) 其中x(t),u(t),y(t)分别为n,p,m 维列向量。假设上述方程能线性化、离散化,并可得出在扰动与噪音影响下的方程: (1)(,)()(,)()()()(,)()() X k k X k k U k k Y k H k X k V k θρθωθ+=Φ++=+ (1-2) X(k),X(k),U(k),Y(k),V(k)分别为n,n,p,m,m 维列向量;(,)k θΦ、(,)k ρθ、(,)H k θ分别为n ×n 系统矩阵、n ×p 控制矩阵、m ×n 输出矩阵。那么自适应控制就就是研究:在矩阵(,)k θΦ,(,)k ρθ,(,)H k θ中的参数向量,随机 {()k ω},{v(k)}的统计特性及随机向量X(0)的统计特性都未知的条件下的控制问题,也就就是说自适应控制的问题可归结为在对象及扰动的数学模型不完全确定的条件下,设计控制序列u(0),u(1),…,u(N- 1),使得指定的性能指标尽可能接近最优与保持最优。 自适应控制就是现代控制的重要组成部分,它同一般反馈控制相比有如下突出特点: (l)一般反馈控制主要适用于确定性对象或事先确知的对象,而自适应控制主要研究不确定对象或事先难以确知的对象。

(2)一般反馈控制具有抗干扰作用,即它能够消除状态扰动引起的系统误差,而自适应控制因为有辨识对象与在线修改参数的能力,因而不仅能消除状态扰动引起的系统误差,还能消除系统结构扰动引起的系统误差。 (3)自适应控制就是更复杂的反馈控制,它在一般反馈控制的基础上增加了自适应控制机构或辨识器,还附加了一个可调系统" 1、1模型参考自适应控制系统 模型参考自适应控制系统由参考模型、反馈控制器、自适应机构及被控对象组成。此系统的主要特点就是具有参考模型,其核心问题可归纳为如何确定自适应调节律及算法。目前设计自适应律所采用的方法主要有两种:局部参数最优法,如梯度算法等,该方法的局限性在于不一定能保证调节过程总就是稳定的;基于稳定性理论的设计方法,如Lyapunov稳定性理论与Popov超稳定性理论的设计方法。 1、2自校正调节器 自校正调节器可分为设计机构、估计器、调节器及被控对象4个部分。此控制器的主要特点就是具有在线测量及在线辨识环节,其核心问题可归纳为如何把不同参数估计算法与不同控制算法相结合。根据参数估计算法与控制算法相结合的情况把自校正控制分为:最小方差自校正控制,其特点就是算法简单、易理解、易实现,但只适用于最小相位系统,对靠近单位圆的零点过于灵敏,而且扰动方差过大时调节过程过于猛烈;广义最小方差自校正控制,可用于非逆稳系统,但难以实现;基于多步预测的自适应控制,适用于不稳定系统等,具有易实现、鲁棒性强的优点;自校正极点配置控制,具有动态性能好、无控制过激现象的特点,但静态干扰特性差;自校正PID控制,具有算法简单、鲁棒性强、待定参数少的特点;增益调度控制,优点就是参数适应快,缺点就是选择合适的列表需要大量的仿真实验,另外离线的计算量大。

PID调节方法

PID调节方法: ●你先设定I和D参数为0,P参数设小点,观察一下控制流量的效果,如果响应过慢的 话,再适当加大P值和I值。如果反复振荡,则减小P值,加大I值;D值就为0,可以不管。要达到好的效果,只能慢慢试,耐心点。 ●PID参数设定直接影响流量的稳定度,PI设定值大电动阀稳定,PI设定值小电动阀灵 敏。要根据工艺流程来设定。 ●pid的设定需要一定的经验我的经验是先将PI的值设大一些,之后逐渐减少. ●PID是比例,积分,微分的缩写, Uo(N)=P*E(N)+I*[E(N)+E(N-1)+...+E(0)]+D*[E(N)-E(N-1)] E-误差 P--改变P可提高响应速度,减小静态误差,但太大会增大超调量和稳定时间。 I--与P的作用基本相似,但要使静态误差为0,必须使用积分。 D--与P,I的作用相反,主要是为了减小超调,减小稳定时间。 三个参数要综合考虑,一般先将I,D设为0,调好P,达到基本的响应速度和误差,再加上I,使误差为0,这时再加入D,三个参数要反复调试,最终达到较好的结果。不同的控制对象,调试的难度相差很大,祝好运! ●PID调试步骤 PID解决了自动控制理论所要解决的最基本问题,既系统的稳定性、快速性和准确性。调节PID的参数,可实现在系统稳定的前提下,兼顾系统的带载能力和抗扰能力,同时,在PID调节器中引入积分项,系统增加了一个零积点,使之成为一阶或一阶以上的系统,这样系统阶跃响应的稳态误差就为零。 由于自动控制系统被控对象的千差万别,PID的参数也必须随之变化,以满足系统的性能要求。下面简单介绍一下调试PID参数的一般步骤: 1.负反馈 自动控制理论也被称为负反馈控制理论。首先检查系统接线,确定系统的反馈为负反馈。例如电机调速系统,输入信号为正,要求电机正转时,反馈信号也为正(PID算法时,误差=输入-反馈),同时电机转速越高,反馈信号越大。其余系统同此方法。 2.PID一般表达式 PID模拟算法:U(t)=P*[e(t)+ 1/Ti*∫0te(t)dt+Td*de(t)/dt] PID数字算法:U(K)=P*{[e(K)-e(K-1)+Ts/Ti*e(K-1)+Td/Ts*[e(K)-2e(K-1)+e(K-2)]]}+ U(K-1) 其中P为比例增益;Ti为积分时间常数;Td为微分时间常数;PID调节器要调节的也就是这三个参数。e(t)为输入误差;Ts为数字PID运算的采样周期。 3.PID调试一般原则 a.在输出不振荡时,增大比例增益P。 b.在输出不振荡时,减小积分时间常数Ti。 c.在输出不振荡时,增大微分时间常数Td。 4.一般步骤 a.确定比例增益P 确定比例增益P 时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。输入设定为系统允许的最大值的60%~70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此时的比例增益P逐渐减小,直至系统振荡消失,记录此时的比例增益P,设定PID的比例增益P

pid控制方法

尽管不同类型的控制器,其结构、原理各不相同,但是基本控制规律只有三个:比例(P)控制、积分(I)控制和微分(D)控制。这几种控制规律可以单独使用,但是更多场合是组合使用。如比例(P)控制、比例-积分(PI)控制、比例-积分-微分(PID)控制等。 比例(P)控制 单独的比例控制也称“有差控制”,输出的变化与输入控制器的偏差成比例关系,偏差越大输出越大。实际应用中,比例度的大小应视具体情况而定,比例度太小,控制作用太弱,不利于系统克服扰动,余差太大,控制质量差,也没有什么控制作用;比例度太大,控制作用太强,容易导致系统的稳定性变差,引发振荡。 对于反应灵敏、放大能力强的被控对象,为提高系统的稳定性,应当使比例度稍小些;而对于反应迟钝,放大能力又较弱的被控对象,比例度可选大一些,以提高整个系统的灵敏度,也可以相应减小余差。 单纯的比例控制适用于扰动不大,滞后较小,负荷变化小,要求不高,允许有一定余差存在的场合。工业生产中比例控制规律使用较为普遍。 比例积分(PI)控制 比例控制规律是基本控制规律中最基本的、应用最普遍的一种,其最大优点就是控制及时、迅速。只要有偏差产生,控制器立即产生控制作用。但是,不能最终消除余差的缺点限制了它的单独使用。克服余差的办法是在比例控制的基础上加上积分控制作用。 积分控制器的输出与输入偏差对时间的积分成正比。这里的“积分”指的是“积累”的意思。积分控制器的输出不仅与输入偏差的大小有关,而且还与偏差存在的时间有关。只要偏差存在,输出就会不断累积(输出值越来越大或越来越小),一直到偏差为零,累积才会停止。所以,积分控制可以消除余差。积分控制规律又称无差控制规律。 积分时间的大小表征了积分控制作用的强弱。积分时间越小,控制作用越强;反之,控制作用越弱。 积分控制虽然能消除余差,但它存在着控制不及时的缺点。因为积分输出的累积是渐进的,其产生的控制作用总是落后于偏差的变化,不能及时有效地克服干扰的影响,难以使控制系统稳定下来。所以,实用中一般不单独使用积分控制,而是和比例控制作用结合起来,构成比例积分控制。这样取二者之长,互相弥补,既有比例控制作用的迅速及时,又有积分控制作用消除余差的能力。因此,比例积分控制可以实现较为理想的过程控制。 比例积分控制器是目前应用最为广泛的一种控制器,多用于工业生产中液位、压力、流量等控制系统。由于引入积分作用能消除余差,弥补了纯比例控制的缺陷,获得较好的控制质量。但是积分作用的引入,会使系统稳定性变差。对于有较大惯性滞后的控制系统,要尽量避免使用。 比例微分(PD)控制

PID控制的基本原理

S lim et 1RK t PID 控制的基本原理 1.PID 控制概述 当今的自动控制技术绝大部分是基于反馈概念的。反馈理论包括三个基本要素:测量、比较和执行。测量关 心的是变量,并与期望值相比较,以此误差来纠正和控制系统的响应。反馈理论及其在自动控制中应用的关键是: 做出正确测量与比较后,如何用于系统的纠正与调节。 在过去的几十年里,PID 控制,也就是比例积分微分控制在工业控制中得到了广泛应用。在控制理论和技术 飞速发展的今天,在工业过程控制中 95%以上的控制回路都具有 PID 结构,而且许多高级控制都是以 PID 控制为 基础的。 PID 控制器由比例单元(P )、积分单元(I )和微分单元(D )组成,它的基本原理比较简单,基本的 PID 控 制规律可描述为: G S K P K 1 K D S (1-1) PID 控制用途广泛,使用灵活,已有系列化控制器产品,使用中只需设定三个参数( K P , K I 和 K D ) 即可。在很多情况下,并不一定需要三个单元,可以取其中的一到两个单元,不过比例控制单元是必不可少的。 PID 控制具有以下优点: (1) 原理简单,使用方便,PID 参数 K P 、K I 和 K D 可以根据过程动态特性变化,PID 参数就可以重 新进行调整与设定。 (2) 适应性强,按 PID 控制规律进行工作的控制器早已商品化,即使目前最新式的过程控制计算机,其 基本控制功能也仍然是 PID 控制。PID 应用范围广,虽然很多工业过程是非线性或时变的,但通过适当简化,也 可以将其变成基本线性和动态特性不随时间变化的系统,就可以进行 PID 控制了。 (3) 鲁棒性强,即其控制品质对被控对象特性的变化不太敏感。 但不可否 认 PID 也有其固有的缺点。PID 在控制非线性、时变、偶合及参数和结构不缺点的复杂过程时,效果不是太好; 最主要的是:如果 PID 控制器不能控制复杂过程,无论怎么调参数作用都不大。 在科学技术尤其是计算机技术迅速发展的今天,虽然涌现出了许多新的控制方法,但 PID 仍因其自身的优 点而得到了最广泛的应用,PID 控制规律仍是最普遍的控制规律。PID 控制器是最简单且许多时候最好的控制器。 在过程控制中,PID 控制也是应用最广泛的,一个大型现代化控制系统的控制回路可能达二三百个甚至更多, 其中绝大部分都采用 PID 控制。由此可见,在过程控制中,PID 控制的重要性是显然的,下面将结合实例讲述 PID 控制。 比例(P )控制 比例控制是一种最简单的控制方式,其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输 出存在稳定误差。比例控制器的传递函数为: G C S K P 1 2 式中, K P 称为比例系数或增益(视情况可设置为正或负),一些传统的控制器又常用比例带(Proportional Band , PB ),来取代比例系数 K P ,比例带是比例系数的倒数,比例带也称为比例度。 对于单位反馈系统,0 型系统响应实际阶跃信号 R 0 1(t)的稳态误差与其开环增益 K 近视成反比,即: t 对于单位反馈系统,I 型系统响应匀速信号 1 3 R 1 (t)的稳态误差与其开环增益 K v 近视成反比, 即: lim et R 1 K V 1 4

PID控制简介及PID调节经验方法

PID控制简介及PID调节经验方法 PID就是比例微积分调节,具体你可以参照自动控制课程里有详细介绍!正作用与反作用在温控里就是当正作用时是加热,反作用是制冷控制。 PID控制简介 目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligentregulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。 1、开环控制系统 开环控制系统(open-loopcontrolsystem)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。 闭环控制系统(closed-loopcontrolsystem)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈(NegativeFeedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。闭环控制系统的例子很多。比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过

PID控制方法的研究现状及应用展望

Hot-Point Perspective 热点透视 DCW 129 数字通信世界 2019.01 工业控制环节中离不开控制器,PID 调节器属于使用范围最为广泛的控制器之一。其控制精髓便是设置调整好其PID 参数,来满足预先设定好的各种控制性能。但是基于控制情况多种多样,许多被控过程具有机构复杂、非线性程度高、纯时滞以及时变不确定这些特征。尤其当控制器外界环境处于较大扰动或者较大噪声时,此时模型内部的结构以及预先设定参数均会由外界环境的改变发生改变。 1 智能PID 控制 现阶段智能控制器展现出空前的发展与应用水平。其主要结构分成两大层,上部分利用配备的智能技术将整个系统状态整体把控,随时根据需要对于参数进行调节。下部分会动态将被控对象进行控制。不同于传统的PID 控制器,智能控制器对于系统精确微分方程下的模型要求度不高,因此智能控制器拥有更加良好的鲁棒性以及高实现性,应用前景更高。以下为智能开发方面的具体介绍: 由智能技术现阶段的分类可知,智能PID 控制主要有三大类别,第一种为:基于专家系统的智能PID 控制器;第二种为:基于模糊逻辑的智能PID 控制器;第三种为:基于神经网络的智能PID 控制器。人们利用多种智能技术来应用并创造出智能程度更高的PID 控制器。 1.1 基于专家系统的智能PID 控制器 专家控制的本质是基于控制对象和控制规律的各种专家知识。通过人工智能技术的应用,可以尽可能地优化和应用受控对象。对于许多复杂的工业问题,在大多数情况下,很难做出准确的描述和严格的分析。该专家系统可以更好地预测上述问题,并找到合适的解决方法。此外,专家系统还可以处理具有一些错误或缺陷的一类数据。 1.2 基于模糊控制的智能PID 控制器 模糊控制器相关的知识库需要根据模糊规则表进行构建,根据模糊控制器在输入时记录进行模糊以及清晰两者数量上的收集,模糊逻辑为其整个过程的推理原理。将模糊PID 控制器应用于PID 控制当中变形成了模糊控制,该种方式主要能够在时变、高阶以及非线性等对象中使用到。 以模糊规则表的形式建立了模糊控制器的知识库。在数据库中收集模糊控制器输入的清晰数或模糊量,其推理机制由模糊逻辑组成。模糊控制,即模糊PID 控制器,引入了PID 控制,可用于高阶、时变和非线性控制对象。模糊PID 控制方式主要有模糊PID 控制器模糊(PID )2控制器等多种。 该控制器的基本设计思想如下:首先基于原有的PID 控制理论以及方法,利用相关知识理论构建出模糊控制的具体规则库,接着获取模糊PID 控制形式,然后输入模糊控制器。给予。最后,离散模糊控制器需要根据模糊处理过后的控制输出得到,其控制参数表现为非线性,此外该控制器依然和传统PID 拥有一样的线 性形式,两者控制效果相差不大。均有着一阶加纯延迟后的过程对象,同时也需看到高阶系统整体呈现出的控制效果要比PID 控制器的效果好,特别是对于非线性等复杂物体,由于控制器的输入矢量被分割,很难将模糊PID 控制器应用于传统的PID 控制器。将不同的控制规则应用于不同的区域,并获得令人满意的控制结果。模糊PID 控制器是传统PID 的延伸。通过模糊规则来表达人的经验,调整PID 参数,突破传统PID 的局限性。1.3 基于神经网络的智能PID 控制器 该控制器的参数可以根据神经网络自带的学习能力进行调整稳定,此外神经网络还有着强大的非线性函数能力一样可以辅助PID 控制器进行参数调节、结构和输入参考信号的变化。能够抵抗外界的干扰。在实际应用中,神经网络结构的确定、权系数初值的确定和输入模式的选择有时对控制结果起着重要的作用。 根据控制器的结构,神经网络PID 控制器可分为两种:一种是神经网络PID 控制器的输出参数,称为显式控制器,另一种是神经网络PID 控制器的输出控制。它被称为隐式控制器。前者的物理意义清晰,易于工程师理解和操作。利用PID 控制的思想,后者不再局限于控制器形式的PID 项的简单线性组合。它是一种更先进的PID 控制形式。 2 智能PID 控制器应用展望 控制方法不仅仅局限于上述三种,还有人类控制、学习控制以及专家控制等。免疫算法都处于开发过程中。综观近年来智能PID 控制的发展,我们可以总结出以下特点: (1)通常对于控制器性能的提高途径可以选择使用智能复合控制器。近些年逐渐呈现出神经网络与模糊控制两者互相融合这种智能系统研究新方向。此外在神经网络PID 控制器权重方面会经常使用到遗传算法来进行有效的优化,并且把模糊控制利用遗传算法进行分析应用,证明了遗传算法是一种有效的规则和隶属函数调整方法。 (2)控制理论领域中的专家阿思特罗姆曾经提出,控制工程在将来一段时间内将会继续产生并发挥其应有的作用,不论精度多高的控制器均不能离开控制器这一基础单元。我国吴宏鑫学者提出一种“特征建模”理论,该理论将PID 控制器体现出的应用理论基础进行了有效的证实,并且证明其具有其他控制器无法替代的优势。它将成为复杂系统智能控制中最基本的子控制单元。(3) 在理论研究方面,特别是在应用方面,中外差距明显。日本,欧洲和美国不仅处于理论研究的前沿,而且还成功应用了横河电机,富士电机等产品,模糊逻辑和标准PID 控制相结合来抑制超调,成功实现。然而,在中国有更多的重复研究,较少的创新研究和较少的工程应用,特别是运行时间长的智能PID 控制器可以说很少。这种情况需要广大理论家和工程师的共同努力,尽快改变这种状况。 PID 控制方法的研究现状及应用展望 樊大勇 (河钢集团唐钢公司信息自动化部,唐山 063000) 摘要:自动控制当中有众多控制方法,其中使用较为广泛且使用较早的便是PID 控制。从结构,实际控制工程要求和实现条件等方面分析了PID 控制的独特优势。同时,介绍了二阶线性时不变系统PID 控制器的设计方法。介绍了高阶线性时不变系统的特征建模原理,分析推导了基于特征模型的二次最优消除静态误差控制设计方法。实践证明,高阶线性时不变系统和大量非线性系统可以使用PID 控制器实现位置不变控制,为不同的输出状态等不同的手动调整方法提供了合理的解释。最后,PID 控制器的结构被描述为最基本的智能控制单元之一。 关键词:PID 控制;展望;智能控制doi :10.3969/J.ISSN.1672-7274.2019.01.095中图分类号:TP273.5 文献标示码:A 文章编码:1672-7274(2019)01-0129-02

PID控制的基本原理

PID 控制的基本原理 1.PID 控制概述 当今的自动控制技术绝大部分是基于反馈概念的。反馈理论包括三个基本要素:测量、比较和执行。测量关 心的是变量,并与期望值相比较,以此误差来纠正和控制系统的响应。反馈理论及其在自动控制中应用的关键是: 做出正确测量与比较后,如何用于系统的纠正与调节。 在过去的几十年里,PID 控制,也就是比例积分微分控制在工业控制中得到了广泛应用。在控制理论和技术 飞速发展的今天,在工业过程控制中95%以上的控制回路都具有PID 结构,而且许多高级控制都是以PID 控制为 基础的。 PID 控制器由比例单元(P)、积分单元(I)和微分单元(D)组成,它的基本原理比较简单,基本的PID 控 制规律可描述为: G(S ) = K P + K1 + K D S (1-1) PID 控制用途广泛,使用灵活,已有系列化控制器产品,使用中只需设定三个参数(K P ,K I和K D )即可。在很多情况下,并不一定需要三个单元,可以取其中的一到两个单元,不过比例控制单元是必不可少的。 PID 控制具有以下优点: (1)原理简单,使用方便,PID 参数K P、K I和K D 可以根据过程动态特性变化,PID 参数就可以重新进行调整与设定。 (2)适应性强,按PID 控制规律进行工作的控制器早已商品化,即使目前最新式的过程控制计算机,其 基本控制效用也仍然是PID 控制。PID 应用范围广,虽然很多工业过程是非线性或时变的,但通过适当简化,也 可以将其变成基本线性和动态特性不随时间变化的系统,就可以进行PID 控制了。 (3)鲁棒性强,即其控制品质对被控对象特性的变化不太敏感。但不可否认PID 也有其固有的缺点。PID 在控制非线性、时变、偶合及参数和结构不缺点的复杂过程时,效果不是太好; 最主要的是:如果PID 控制器不能控制复杂过程,无论怎么调参数作用都不大。 在科学技术尤其是计算机技术迅速发展的今天,虽然涌现出了许多新的控制方法,但PID 仍因其自身的优 点而得到了最广泛的应用,PID 控制规律仍是最普遍的控制规律。PID 控制器是最简单且许多时候最好的控制器。 在过程控制中,PID 控制也是应用最广泛的,一个大型现代化控制系统的控制回路可能达二三百个甚至更多, 其中绝大部分都采用PID 控制。由此可见,在过程控制中,PID 控制的重要性是显然的,下面将结合实例讲述PID 控制。 1.1.1 比例(P)控制 比例控制是一种最简单的控制方式,其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输 出存在稳定误差。比例控制器的传递函数为: G C (S ) = K P (1- 2) 式中, K P 称为比例系数或增益(视情况可设置为正或负),一些传统的控制器又常用比例带(Proportional Band, PB),来取代比例系数K P ,比例带是比例系数的倒数,比例带也称为比例度。 对于单位反馈系统,0 型系统响应实际阶跃信号R0 1(t)的稳态误差与其开环增益K 近视成反比,即: t→∞ 对于单位反馈系统,I 型系统响应匀速信号 (1- 3) R1 (t)的稳态误差与其开环增益K v近视成反比, 即: lim e(t) = R1 1 / 15

S7 200的PID参数整定方法

PID控制器参数整定的一般方法: PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类: 一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改; 二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。 现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。 PID参数的设定:是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P、I、D的大小。 书上的常用口诀: 参数整定找最佳,从小到大顺序查; 先是比例后积分,最后再把微分加; 曲线振荡很频繁,比例度盘要放大; 曲线漂浮绕大湾,比例度盘往小扳; 曲线偏离回复慢,积分时间往下降; 曲线波动周期长,积分时间再加长; 曲线振荡频率快,先把微分降下来; 动差大来波动慢。微分时间应加长; 理想曲线两个波,前高后低4比1; 一看二调多分析,调节质量不会低。 个人认为PID参数的设置的大小,一方面是要根据控制对象的具体情况而定;另一方面是经验。P是解决幅值震荡,P大了会出现幅值震荡的幅度大,但震荡频率小,系统达到稳定时间长;I是解决动作响应的速度快慢的,I大了响应速度慢,反之则快;D是消除静态误差的,一般D设置都比较小,而且对系统影响比较小。 PID控制原理: 1、比例(P)控制:比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差。 2、积分(I)控制:在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以

PID控制原理与参数整定方法

PID控制原理与参数整定方法 一、概述 PID是比例-积分-微分控制的简称,也是一种控制算法,其特点是结构改变灵活、技术成熟、适应性强。 对一个控制系统而言,由于控制对象的精确数学模型难以建立,系统的参数经常发生变化,运用控制理论综合分析要耗费很大的代价,却不能得到预期的效果,所以人们往往采用PID调节器,根据经验在线整定参数,以便得到满意的控制效果。随着计算机特别是微机技术的发展,PID控制算法已能用微机简单实现,由于软件系统的灵活性,PID算法可以得到修正而更加完善。 我们阳江基地有数以千计的采用PID控制的调节器,用于温度控制、压力控制、流量控制,在塑杯及灌装生产过程中,发挥着重要的作用。因此,学习PID 控制的基本原理,合理的设计PID控制系统,用好、维护好这些调节器,对提高产品质量,降低废品率,节约能源具有十分重要的意义。本课程从系统的角度,采用多种分析方法,详细讲解经典PID控制的基本原理和PID参数的整定方法,简介现代数字PID控制思想,希望对大家使用PID调节器有所帮助。 二、调节系统的品质和特性 一个调节系统的品质可以用静态品质和动态品质来衡量。所谓静态品质就是系统稳定后,被控参数与给定值间的差值的大小。偏差愈大则静差愈大,静差愈小静态品质愈好。 当系统受到扰动后或整定在一个新值时需要在较短时间内过渡到稳定,不发生振荡和发散,这便是衡量系统动态特性的指标。一个好的调节系统应该二个品质都好。但动静态品质往往是相互矛盾的,要静差小,系统的放大倍数就要大,系统放大倍数愈大则系统愈不稳定,即动态品质不好。 图1-1收敛型1 图1-2收敛型2 图1-3发散型落图1-4振荡型图1-1至1-4是几种典型的控制曲线,只有图1-1表示动静态品质都好。 一般的调节系统都具有惯性和滞后两种特性,只是大小不同而已。这两个特性应从控制对象,控制作用这两个方面去理解。弄懂以上关于调节系统的几个基本概念,对于理解PID控制的原理有很大的帮助。

PID控制方式

PID 是控制系统中的重要参数,指控制方式,指输出与输入之间的响应方式,英文字母比例积分微分。顾名思义,比例是输出与输入是按一个比例进行的,可调节快慢,通常是改变反馈。积分是输出是输入的积分,就是累加,当输入变化很大输出只按时间长短变化,起到滤波作用,也叫滞后,等效于在输入端并连一个电容。微分是输出只对输入变化部分敏感,特别是输入有尖峰的时候,输出剧烈的响应,但输入不变,不管有多大,输出就为零,因此,也叫超前调节,起加速作用,等效串联一个电容。 PID是比例,积分,微分的缩写. 比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。 积分调节作用:是使系统消除稳态误差,提高无差度。因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。积分作用的强弱取决与积分时间常数Ti,Ti 越小, 积分作用就越强。反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。 微分调节作用:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。因此,可以改善系统的动态性能。在微分时间选择合适情况下,可以减少超调,减少调节时间。 微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器。 PID(比例积分微分)英文全称为Proportion Integration Differentiation,它是一个数学物理术语。 目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。不同的控制系统,其传感器、变送器、执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编

相关文档