文档库 最新最全的文档下载
当前位置:文档库 › 典型飞行控制系统

典型飞行控制系统

典型飞行控制系统
典型飞行控制系统

三、典型飞行控制系统

1、已知某飞机的传递函数是:

)

69.19.0()4.0(5.1)

()

(2

+++-=

??Z s s s s s s δ?,其俯仰姿态角控制系统的

控制规律为:?

Z Z Z ?K +?-?K =?+T ?

?

??δ?

?

δ)()1(g s 。 (1)由控制规律画出相应的系统结构图;

(2)要控制该飞机舵回路的时间常数应作何限制? (3)若飞机受到常值力矩92

.0=?M

Z γ

公斤*米,已知 Z

Z

M

δ=-1.15公斤*米/度,若要求

稳定后其静差

s θ?<0

1 ,应对Z K ? 作何限制;

(4)若要保证该系统的动态性能,应如何选取Z

?

K

?

的值。

(5)分析在垂直向上风干扰下,系统的动态相应过程以及稳态情况。 2、已知某飞机的传递函数是:

)

47.15.1()59.0(2.1)

()(2

+++-=

??Z s s s s s s δ?,其俯仰姿态角控制系统的控

制规律为:?

Z Z Z ?K +?-?K =?+?

???δ?

?

)()11.0(g s 。 (1)由控制规律画出相应的系统结构图;

(2)求出内回路闭环传递函数,并绘制随参数?

Z

K

?

变化的根轨迹图,并求取

值时的使?

Z

K

=?

ξ87.0以及此时三个内回路闭环极点值;

(3)求出外回路闭环传递函数,并绘制随参数?Z

K

变化的根轨迹图,并求取

值时的使?ξZ

K

=8.0以及此时三个外回路闭环极点值;

(4)采用根轨迹方法分析舵回路时间常数对飞行控制系统工作性能的影响;

(5)分析参数?

Z

K ?

与?Z

K

之间的关系。

自动驾驶仪有哪几个工作回路?

(1)同步回路 (2)舵回路 (3)稳定回路 (4)控制回路 ● 俯仰阻尼器的作用是什么?

用来改善飞机的纵向短周期运动的阻尼特性 ● 滚转阻尼器的作用是什么?

用来改善飞机—阻尼器系统的滚转特性

● 什么是控制增稳系统?其作用是什么?

不牺牲操纵性来提高飞机的阻尼比和固有频率,又可以解决非线性操纵指令问题 ● 飞行高度控制系统需要 最基本的信号?

需要直接测量飞行高度,使用高度差传感器,根据高度差的信息来直接控制飞机的飞行姿态,从而改变航迹请教,以实现对飞行高度的闭环稳定和控制

●飞机进近过程中,按一定的下滑坡度下滑,此时飞机的水平速度一般为?下滑角度一般

为?垂直速度一般为?

下滑速度:70~80 m/s

下滑角度:-2.5°~ -3.5°

垂直速度:-3.5 ~ -4.5 m/s

●飞机接地速度一般为?

接地速度:-0.5~ -0.6 m/s

●自动拉平着陆系统的作用是?拉平轨迹的变化规律为?

为了使下降速度能够随高度降低而成比例减小,在理想情况下,当下降速度为零时,高度也恰好为零

拉平轨迹的变化规律:h(t)=h0e-t/t+th1 (接地速度)

●什么是协调转弯?飞机向左协调转弯时,副翼、方向舵、升降舵?

飞机在水平面内连续改变方向,保证偏航角与滚转运动两者耦合影响最小,并能保持飞行高度的一种机动动作称为协调转弯

升降舵:向上偏

副翼:左上右下,进行负向滚转

方向舵:左偏,防止侧滑

●速度控制方案有几种,其实质分别是?自动驾驶仪与自动油门系统在飞机的控制过程中

如何协调配合?

两种方案:⑴通过升降舵偏转来改变俯仰角从而实现速度控制:实质是调整重力在飞行速度方向上投影的变化

⑵自动油门系统:通过改变油门大小,改变发动机推力实现控制速度

四、电传操纵系统与余度技术

?什么是电传操纵系统,其优缺点是什么?

电传操纵系统是一种没有机械操纵系统,将驾驶员的操纵装置发出的信号转变成电信号,按照一定的规律和原理构成的飞机操纵系统。

优缺点:⑴靠电信号传递飞行员操纵指令,因而在这种系统中不再含机械操纵系统。

⑵把控制增稳系统作为这一系统不可分割的一个组成部分,系统可以利用全权限来

改善飞行品质,优于传统的控制增稳系统。

⑶系统配置多余度,以保证不亚于机械操纵系统的可靠性,而且应保证二次故障下

正常工作。目前一般要求失效率不大于10-7次/飞行小时。

?什么是余度系统?它有哪些功能?

余度系统是执行同一指令或完成同一任务的多重(套)系统。并且应具备如下功能:

⑴对系统各组成部分进行监控;(故障监控)

⑵对故障部件进行隔离,不使其危及系统的安全运行;(故障隔离)

⑶在故障部件隔离后,系统应具有重构的能力,以保证系统继续正常运行。(系统重构)

3、什么叫非相似余度?输入、选择、监控器的作用是什么?其基本余度算法有哪些?

非相似余度就是采用完全不同的硬件和软件来组成余度通道,产生和监控飞行控制信号,从而可以避免多通道余度系统的共点故障

?什么是备份系统,有什么缺点?

当电传操纵系统由于系统主要余度部件(如重要的传感器、计算机处理器等)完全失效时,或电传系统受到环境因素(如雷电或电磁干扰等)以及软件共点故障的影响完全失效时,保证飞机具有所要求的生存能力。

缺点:⑴采用备份系统将使系统的复杂性增加,提高了设计和研制成本。

⑵可能成为飞行控制系统额外的故障源。

⑶独立备份系统还要求额外飞行试验,要求驾驶员进行额外的训练以熟悉和掌握

这种操纵状态。

⑷系统设计时,还必须精心设计,以保证两种系统可以实现良好的转换。

五、偏航阻尼系统

?什么是飞机的荷兰滚?分析飞机产生荷兰滚的原因?偏航阻尼器的作用是什么?

⑴荷兰滚:飞机进行侧滑角的正负振荡运动的同时又造成左右滚转的运动

⑵当侧滑角>0时C lb产生正的偏航力矩,消除侧滑,产生正的偏航角速度

C lb产生负的滚转力矩,飞机向左滚转

此时升力L左倾斜,L与G的合力加剧左侧滑,抵消部分偏航运动的阻尼效果,若出项右侧滑,则重复以上过程,方向相反,这样出现了侧滑角正负振荡,滚转角左右滚转的运动过程

⑶偏航阻尼器的作用:偏航阻尼器给出指令使方向舵与飞行的偏航力矩成比例并与其相反的方向移动

?主偏航阻尼器的部件有哪些?各有什么作用?

SMYD 1:

偏航阻尼器衔接电门:衔接偏航阻尼系统使其工作

偏航阻尼器断开灯:

偏航阻尼器指示器:指示衔接情况,正常时灯熄灭

偏航阻尼器在主方向舵PCU上的部件:探测由荷兰滚和湍流造成的不期望的飞机偏航

?ADIRU给偏航阻尼器的信号主要有哪些?

大气数据惯性基准组件(ADIRU)向SMYD发送惯性的和大气数据。数据包括空速,姿态,偏航和横滚速率及加速度。

?主方向舵PCU —电动液压伺服活门的作用是?主方向舵PCU作动筒—电磁活门的

作用是?

电动液压伺服活门:对于主偏航阻尼,在主方向舵PCU上的电动液压伺服活门将来自SMYD 1的电气指令信号改变为受控的液压流送到主方向舵PCU上的偏航阻

尼作动筒。EHSV控制着使方向舵移动的偏航阻尼器作动筒的移动速率

和方向以提供主偏航阻尼。

作动筒—电磁活门:在主方向舵PCU上的偏航阻尼器电磁活门使偏航阻尼器系统增压。

当你衔接偏航阻尼器系统后,电磁活门向控制主方向舵PCU上的偏

航阻尼器作动筒的电动液压伺服活门(EHSV)传送液压液。这将使

方向舵移动起偏航阻尼作用。

飞行控制系统简介

自动飞行控制系统 飞行控制系统(简称飞控系统)的作用是保证飞机的稳定性和操纵性,提高飞机飞行性能和完成任务的能力,增强飞行的安全性和减轻驾驶员的工作负担。 深圳市瑞伯达科技有限公司,致力于成为全球无人机飞行器领导品牌,是智能化无人机飞行器及控制系统的研制开发的专业厂商,生产并提供各行业无人机应用的解决方案。产品线涵盖各种尺寸多旋翼飞行器、专业航拍飞行器、无人机飞行控制系统、无人机地面站控制系统、高清远距离数字图像传输系统、专业级无线遥控器、高精飞行器控制模块及各类飞行器配件 飞行器的自动飞行一、问题的提出早在重于空气的飞行器问世时,就有了实现自动控制飞行的设想。1891年海诺姆.马克西姆设计和建造的飞行器上安装了用于改善飞行器纵向稳定性的飞行系统。该系统中用陀螺提供反馈信号,用伺服作动器偏转升降舵。这个设想在基本概念和手段上与现代飞行自动控制系统有惊人的相似,但由于飞机在试飞中失事而未能成为现实。 60年代飞机设计的新思想产生了,即在设计飞机的开始就考虑自动控制系统的作用。基于这种设计思想的飞机称为随控布局飞行器(Control Configured Vehicle 简称CCV)。这种飞机有更多的控制面,这些控制面协同偏转可完成一般飞机难以实现的飞行任务,达到较高的飞行性能。 飞控系统分类飞控系统分为人工飞行控制系统和自动飞行控制系统两大类。由驾驶员通过对驾驶杆和脚蹬的操纵实现控制任务的系统,称为人工飞行控制系统。最简单的人工飞行控制系统就是机械操纵系统。不依赖于驾驶员操纵驾驶杆和脚蹬指令而自动完成控制任务的飞控系统,称为自动飞行控制系统。自动驾驶仪是最基本的自动飞行控制系统。飞控系统构成飞控系统由控制与显示装置、传感器、飞控计算机、作动器、自测试装置、信息传输链及接口装置组成。控制及显示装置是驾驶员输入飞行控制指令和获取飞控系统状态信息的设备,包括驾驶杆、脚蹬、油门杆、控制面板、专用指示灯盘和电子显示器(多功能显示器、平视显示器等)。传感器为飞控系统提供飞机运动参数(航向角、姿态角、角速度、位置、速度、加速度等)、大气数据以及相关机载分系统(如起落架、机轮、液压源、电源、燃油系统等)状态的信息,用于控制、导引和模态转换。飞控计算机是飞控系统的“大脑”,用来完成控制逻辑判断、控制和导引计算、系统管理并输出控制指令和系统状态显示信息。作动器是飞控系统的执行机构,用来按飞控计算机指令驱动飞机的各种舵面、油门杆、喷管、机轮等,以产生控制飞机运动的力和力矩。自测试装置用于飞行前、飞行中、飞行后和地面维护时对系统进行自动监测,以确定系统工作是否正常并判断出现故障的位置。信息传输链用于系统各部件之间传输信息。常用的传输链有电缆、光缆和数据总线。接口装置用于飞控系统和其他机载系统之间的连接,不同的连接情况可以有多种不同的接口形式。 自动飞行控制系统由自动驾驶仪、自动油门杆系统、自动导航系统、自动进场系统和自动着陆系统、自动地形跟随/回避系统构成。 RIBOLD瑞伯达科技有限公司,致力于成为全球飞行影像系统独家先驱,其产品线涵盖无人机飞行控制系统及地面站控制系统、影视航拍飞行平台、商用云台系统、高清远距离数字图像传输系统、无线遥控和成像终端及模型飞行器产品,多旋翼飞行器和高精控制模块。 RBD瑞伯达坚持创新, 以技术和产品为核心,通过完美的产品带来前所未有的飞行体验。我们的目标是做世界一流的无人机企业,为我们的客户提供一流的产品和服务!

飞行控制系统设计

(此文档为word格式,下载后您可任意编辑修改!) 一、对最简单的角位移系统的评价 1、某低速飞机本身具有较好的短周期阻尼,采用这种简单的控制规律是可行的。它的传递函数为: open p3_6 系统根轨迹为: nem1=-12.5; den1=[1 12.5]; sys1=tf(nem1,den1); nem2=[-1 -3.1]; den2=[1 2.8 3.24 0]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) 随着k的增大,该系统的一对闭环复极点的震荡阻尼逐渐减小。但由于飞机本身的阻尼较大,所以当k增大致1.34时,系统的震荡阻尼比仍有0.6。k增大到6.2时系统才开始不稳定。 2、现代高速飞机的短周期运动自然阻尼不足,若仍采用上述单回路控制系统则不能胜任自动控制飞机的要求。 open p3_10 系统根轨迹为: nem1=-10; den1=[1 10]; sys1=tf(nem1,den1);

nem2=[-4.3 -4.3*0.33]; den2=[1 0.61 3.3 0]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) 随着k增大,系统阻尼迅速下降。当k=1.06时,处于临界稳定。所以无法选择合适的k值以满足系统动静态性能。为了使系统在选取较大的k值基础上仍有良好的动态阻尼,引入俯仰角速度反馈。 二、具有俯仰角速率反馈的角位移自动驾驶仪参数设计open p3_16 1、系统内回路根轨迹为: nem1=-10; den1=[1 10]; sys1=tf(nem1,den1); nem2=[-4.3 -4.3*0.33]; den2=[1 0.61 3.3]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) 按物理概念似乎速率陀螺的作用越强,阻尼效果越显著。但根轨迹分析告诉我们,只有在一定范围内这种概念才是正确的,否则会得到相反的效果。这种现象是由舵回路的惯性造成的。舵回路具有不同时间常数时的内回路根轨迹图: Tδ=0 sys1=-1; nem2=[-4.3 -4.3*0.33]; den2=[1 0.61 3.3]; sys2=tf(nem2,den2); sys=series(sys1,sys2); rlocus(sys) Tδ=0.1

飞行器控制系统设计

课程设计任务书 学生姓名: 李攀 专业班级: 自动化0804 指导教师: 谭思云 工作单位: 自动化学院 题 目: 飞行器控制系统设计 初始条件: 飞行器控制系统的开环传递函数为: ) 2.361(4000)(+= s s K s G 控制系统性能指标为调节时间s 008.0≤,单位斜坡输入的稳态误差000443.0≤,相角裕度大于85度。 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) (1) 设计一个控制器,使系统满足上述性能指标; (2) 画出系统在校正前后的奈奎斯特曲线和波特图; (3) 用Matlab 画出上述每种情况的阶跃响应曲线,并根据曲线分析系统的动态性能指标; (4) 对上述任务写出完整的课程设计说明书,说明书中必须写清楚分析计算的过程,给出响应曲线,并包含Matlab 源程序或Simulink 仿真模型,说明书的格式按照教务处标准书写。 时间安排: (1) 课程设计任务书的布置,讲解 (一天) (2) 根据任务书的要求进行设计构思。(一天) (3) 熟悉MATLAB 中的相关工具(一天) (4) 系统设计与仿真分析。(四天) (5) 撰写说明书。 (两天) (6) 课程设计答辩(一天) 指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日

摘要 根据被控对象及给定的技术指标要求,设计自动控制系统,既要保证所设计的系统有良好的性能,满足给定技术指标的要求,还有考虑方案的可靠性和经济性。本说明书介绍了在给定的技术指标下,对飞行器控制系统的设计。为了达到给定要求,主要采用了串联之后—超前校正。 在对系统进行校正的时候,采用了基于波特图的串联之后—超前校正,对系统校正前后的性能作了分析和比较,并用MATLAB进行了绘图和仿真。对已校正系统的高频特性有要求时,采用频域法校正较其他方法更为方便。 关键词:飞行器控制系统校正 MATLAB

飞行控制系统

飞行控制系统 为了使无人机飞行控制系统具有强大的数据处理能力、较低的功耗、较强的灵活性和更高的集成度,提出了一种以SmartFusion为核心的无人机飞行控制系统解决方案。为满足飞控系统实时性和稳定性的要求,系统采用了μC/OS-Ⅱ实时操作系统。与传统的无人机飞行控制系统相比,在具有很强的数据处理能力的同时拥有较小的体积和较低的功耗。多次飞行证明,各个模块设计合理,整个系统运行稳定,可以用作下一代无人机高性能应用平台。 关键词:无人机;飞行控制系统;SmartFusion芯片;μC/OS-Ⅱ 0 引言 飞行控制系统是无人机的重要组成部分,是飞行控制算法的运行平台,它的性能好坏直接关系着无人机能否安全可靠的飞行。随着航空技术的发展,无人机飞行控制系统正向着多功能、高精度、小型化、可复用的方向发展。高精度要求无人机控制系统的精度高,稳定性好,能够适应复杂的外界环境,因此控制算法比较复杂,计算速度快,精度高;小型化则对控制系统的重量和体积提出了更高的要求,要求控制系统的性能越高越好,体积越小越好。此外,无人机飞行控制系统还要具有实时、可靠、低成本和低功耗的特点。基于以上考虑,本文从实际工程应用出发,设计了一种基于SmartFusion的无人机飞行控制系统。 1 飞控系统总体设计

飞行控制系统在无人机上的功能主要有两个:一是飞行控制,即无人机在空中保持飞机姿态与航迹的稳定,以及按地面无线电遥控指令或者预先设定好的高度、航线、航向、姿态角等改变飞机姿态与航迹,保证飞机的稳定飞行,这就是通常所谓的自动驾驶;二是飞行管理,即完成飞行状态参数采集、导航计算、遥测数据传送、故障诊断处理、应急情况处理、任务设备的控制与管理等工作。 飞行控制系统主要完成3个功能任务,其层次构成为三层:最底层的任务是提高无人机运动和突风减缓的固有阻尼——三个轴方向的阻尼器功能;第2层的任务是稳定无人机的姿态角——基本驾驶仪的功能(主要进行角运动控制);第3层的任务是控制飞行高度、航迹和飞行速度,实现较高级自动驾驶功能。飞行控制系统原理框图见图1。 由上述分析易知,飞行控制系统主要由飞行控制器、传感器(或敏感元件)、舵机3部分组成。无人机飞行控制系统的基本架构如图2所示。

飞行器自动控制导论_第六章

第六章 典型飞行自动控制系统的工作原理 概述 6.1.1典型飞行自动控制系统的组成 描述飞机运动的参数有三个姿态角(θ、ψ、φ)、两个气流角(α、β)、两个线位移(H 、Y )及一个线速度(V )。飞行控制的作用,就是应用负反馈控制原理对上述参数的部分或全部进行控制。有时也根据需要也可控制与速度V 和迎角α有关的马赫数M 及法向过载。实际上飞行自动控制就是按一定飞行控制律,输出三个舵偏角(e δ、r δ及a δ)及油门T δ对飞行器实现闭环控制。 典型飞行自动控制系统一般包括三个反馈回路:舵回路、稳定回路和控制(制导)回路。 舵回路通常是一个随动系统(或称为伺服系统),一般包括舵机、反馈部件和放大器,如图所示。舵回路中的舵机作为执行机构带动舵面偏转。 图 舵回路方框图 舵回路中有两个反馈回路:位置反馈回路,使控制信号与舵机输出信号成比例关系,速度反馈回路,增加舵回路阻尼,改善舵回路的动态性能。 如果敏感部件是测量飞机的姿态,测量敏感部件、放大计算装置与舵回路构成自动驾驶仪,自动驾驶仪和飞机构成了飞行器的稳定回路,主要起稳定和控制飞机的姿态的作用。典型的稳定回路如图所示。

图稳定回路 由稳定回路和飞机重心位置测量部件以及描述飞机空间几何关系的运动环节,组成更大的回路,称为控制(或称制导回路),如图6-3所示。主要起稳定和控制飞机的运动轨迹的作用。 图控制(或制导)回路 6.1.2 纵向控制 飞行器纵向扰动运动,一般由短周期模态运动和长周期模态运动组成。随着飞行器的速度越来越快,飞行高度越来越高,飞行包线范围扩大,欲使飞行器在整个包线范围内满足飞行品质要求,普遍采用反馈控制技术。例如高空飞行时,飞行器的阻尼特性常常变差,短周期模态特性趋于恶化,造成操纵反应过程中超调量过大,振荡加剧,严重影响飞行任务的完成,此时,可以在纵向通道引入适当的反馈可以改善飞行品质。又如当飞行器要完成保持姿态角或等速V飞行时,即使飞行器具有良好的短周期模态时,但由于长周期模态振荡频率较低,衰减较慢,甚至是慢发散的。要实现上述任务时,要求驾驶员经常操纵舵面加以控制,并且过程很长。为了减轻驾驶员负担,精确地完成上述任务,需要抑制沉浮运动,同样可以引入适当反馈信号达到目的。如要完成定高飞行,除了使飞行具有良好短周期模态和长周期模态外,还可以引入高度反馈,完全脱离驾驶员操纵实现保

飞行器控制系统课程设计

课程设计任务书 学生姓名:________ 专业班级: _______________ 指导教师:_______ 工作单位: ____________ 题目:飞行器控制系统设计 初始条件: 飞行器控制系统的开环传递函数为: G(s) -^500^ s(s 361.2) 控制系统性能指标为调节时间0.01s,单位斜坡输入的稳态误差 0.000521,相角裕度大于84度。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) (1)设计一个控制器,使系统满足上述性能指标; (2)画出系统在校正前后的奈奎斯特曲线和波特图; (3)用Matlab画出上述每种情况的阶跃响应曲线,并根据曲线分析系统的动态性能指标; (4)对上述任务写出完整的课程设计说明书,说明书中必须写清楚分析 计算的过程,给出响应曲线,并包含Matlab源程序或Simulink仿 真模型,说明书的格式按照教务处标准书写 时间安排:

指导教师签名: 系主任(或责任教师)签名: 目录 1串联滞后—超前校正的原理............ 错误! 未定义书签。 2 飞行器控制系统的设计过程. ................. 错误! 未定义书签。 2.1 飞行器控制系统的性能指标............... 错误! 未定义书签。 2.2 系统校正前的稳定情况................. 错误! 未定义书签。 2.2.1 校正前系统的波特图............. 错误! 未定义书签。 2.2.2 校正前系统的奈奎斯特曲线 (2) 2.2.3 校正前系统的单位阶跃响应曲线......... 错误! 未定义书签。 2.3 飞行器控制系统的串联滞后—超前校正 (4) 2.3.1 确定校正网络的相关参数 (4) 2.3.2 验证已校正系统的性能指标 (6) 2.4 系统校正前后的性能比较 (8) 2.4.1 校正前后的波特图 (8) 2.4.2 校正前后的奈奎斯特曲线 (9) 2.4.3 校正前后的单位阶跃响应曲线 (11) 3 设计总结与心得体会 (12) 参考文献 (13)

飞行器控制系统设计

学号: 课程设计 题目飞行器控制系统设计 学院自动化学院 专业自动化 班级自动化1002班 姓名 指导教师肖纯 2012 年12 月19 日

课程设计任务书 学生姓名: 专业班级:自动化1003班 指导教师: 肖 纯 工作单位: 自动化学院 题 目: 飞行器控制系统设计 初始条件:飞行器控制系统的开环传递函数为: ) 2.361(4500)(+= s s K s G 要求设计控制系统性能指标为调节时间ts 008.0≤秒,单位斜坡输入的稳态误差000443.0≤,相角裕度大于75度。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写 等具体要求) (1) 设计一个控制器,使系统满足上述性能指标; (2) 画出系统在校正前后的奈奎斯特曲线和波特图; (3) 用Matlab 画出上述每种情况的阶跃响应曲线,并根据曲线分析系统 的动态性能指标; (4) 对上述任务写出完整的课程设计说明书,说明书中必须写清楚分析 计算的过程,给出响应曲线,并包含Matlab 源程序或Simulink 仿真模型,说明书的格式按照教务处标准书写。 时间安排: 指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日

随着经济的发展,自动控制技术在国民经济中发挥着越来越重要的作用。自动控制就是在没有人的参与下,系统的控制器自动的按照人预订的要求控制设备或过程,使之具有一定的状态和性能。在实际中常常要求在达到制定性能指标的同时能更加节约成本、能具有更加优良的效果。本次飞行器设计中,采用频域校正的方法使系统达到指定的性能指标,同时采用matlab仿真软件更加直观的进行仿真分析和验证。 在此设计中主要采用超前校正的方法来对系统进行性能的改进,通过分析、设计、仿真、写实验报告书的过程,进一步加深了对自动控制原理基本知识的理解和认识,同时通过仿真系统的奈奎斯特图、bode图、单位阶跃响应曲线,进一步理解了系统的性能指标的含义,同时也加深了对matlab仿真的掌握,培养了认识问题、分析问题、解决问题的能力。

自动飞行控制系统电子讲稿第一部分

学习情景1 课程导论 1.飞行控制系统发展概述 自动飞行控制系统已有100多年的研制历史,早在有人驾驶飞机出现之前,自动飞行装置即已出现。 1.1方向稳定器 1873年,法国雷纳德(C.C.Renard)无人多翼滑翔机的方向稳定器。 1.2 电动陀螺稳定装置-姿态稳定 1914年,美国的爱莫尔·斯派雷(Eimer Sperry)研制成功第一台可以保持飞机稳定平飞的电动陀螺稳定装置,该装置利用陀螺的稳定性和进动性,建立一个测量基准,用来测量飞机的姿态,它和飞机的控制装置连在一起,一旦飞机偏离指定的状态,这个机构就通过飞机的控制装置操纵飞机的舵面偏转使飞机恢复到原来的状态。 1.3 自动驾驶仪 20世纪30年代出现了可以控制和保持飞机高度、速度和航迹的自动驾驶仪。 第二次世界大战促使自动驾驶仪等设备得到进一步发展,由过去气动-液压到全电动,由三个陀螺分别控制三个通道改用一个 或两个陀螺来操纵飞机,并可作机动、爬高及自动保持高度等。 二次大战期间,美国和原苏联相继研制出功能较完善的电气式自动驾驶仪C-1和其仿制品A∏-5; 德国在二战后期研制成功飞航式导弹V-1和弹道式导弹V-2,

更进一步促进了飞行自动控制装置的研制和发展。 20世纪50年代后,和导航系统、仪表着陆系统相联,自动驾驶装置实现了长距离自动飞行和自动着陆。 1.4 自动飞行控制系统 1947年成功突破音障后,飞机的飞行包线(飞行速度和高度的变化范围)扩大,越来越复杂的飞行任务对飞机性能的要求也越来越高,仅靠气动布局和发动机设计所获得的飞机性能已经很难满足复杂飞行任务的要求。因此,借助于自动控制技术来改善飞机稳定性的飞行自动控制装置(如增稳系统)相继问世,在此基础上,自动驾驶仪的功能得到进一步的扩展,发展成为自动飞行控制系统(AFCS)。 20世纪60年代,产生了随控布局飞行器(congtrol configured vehicle--CCV)的设计思想。 20世纪60年代前的以模拟电路或模拟计算机为主要计算装置的飞行控制系统,逐渐发展成为现在已普遍应用的数字式飞行控制系统,这也为新技术应用和更复杂更完善系统的综合提供了实现的可能性。例如: 主动控制技术(active control technology—ACT); 余度技术 容错控制技术 20世纪80年代得到迅速发展的火/推/飞综合控制系统等。 20世纪70年代中期,由于计算机的应用使自动驾驶仪和飞机的指引系统组成一个综合系统,使飞机的各种传感器数据、指

QFT飞行控制系统设计

QFT 飞行控制系统设计 4.1 引言 在飞控系统中,被控对象(如直升机等)往往是非常复杂的多输入多输出系统,具体表现为非线性、时变、高度耦合、高阶、不稳定、模型不确定性等。因此,这对设计一个覆盖整个飞行包线的控制器带来相当大的难度。目前,国内外设计全包线控制器一般有以下几种方法: 增益调度(gain scheduling )、非线性动态逆(Non-Linear Dynamic Inversion )、定量反馈理论(QFT )、自适应控制(AC )等。其中,国内外大多数采用增益调度方法。 本章将介绍一种工程上较为容易实现的强鲁棒控制理论—定量反馈理论(QFT )。重点介绍了MIMO 系统设计QFT 控制器的原理和一般步骤。 4.2 MIMO 系统的QFT 控制器设计概述 定量反馈理论(QFT )是以色列人Horowitz 教授提出的一种强鲁棒控制理论,它针对当对象具有不确定性和存在干扰的情况下,如何利用反馈信息设计出满足一定要求的控制系统这一问题而提出的。QFT 的最初发展首先研究具有不确定性的线性时不变单输入单输出系统(LTI/SISO ),如图4.1所示。其中,P 为不确定控制对象,r 为指令输入,y 为系统输出,1d 和2d 分别表示输入干扰和输出干扰,G 和F 为要设计的控制器和前置滤波器。随着QFT 的理论研究的深入,进一步推广到多输入多输出、非最小相位/不稳定、时变及非线性等系统。LTI/SISO 系统是QFT 研究的基础,而其他的MIMO 系统等都可以通过数学变化转化为等效的LTI/SISO 系统,再进行设计。 y 图4.1 SISO 系统的QFT 控制框图 MIMO 系统QFT 研究的重点就是如何有效地将原控制系统转化成一组等效的MISO 系统,从而可以运用相对成熟的SISO 系统QFT 设计分析,这也是MIMO 系统QFT 设计相比较与SISO 系统设计的最大特点。图4.2给出了两输入两输出系统的等效过程。可以看出原系统是22?系统,等效后变成了4个结构类似的21?子系统。每个系统都有两个输入端,一个输出端。两个输入分别是指令输入和由各子系统之间耦合作用引起的输入,即“干扰”输入。 然后,就可以对每个子系统采用SISO 系统的QFT 设计方法设计对应的控制器。最后,将各子系统的设计结果综合起来就是原系统的设计结果。

课程设计---飞行器控制系统设计

目录 1飞行器控制系统的设计过程 (1) 1.1飞行器控制系统的性能指标 (1) 1.2参数分析 (1) 2系统校正前的稳定情况 (3) 2.1校正前系统的伯特图 (3) 2.2校正前系统的奈奎斯特曲线 (3) 2.3校正前系统的单位阶跃响应曲线 (5) 2.4校正前系统的相关参数 (5) 2.4.1 上升时间 (6) 2.4.2超调时间 (7) 2.4.3超调量 (7) 2.4.4 调节时间 (7) 3校正系统 (8) 3.1校正系统的选择及其分析 (8) 3.2验证已校正系统的性能指标 (10) 4系统校正前后的性能比较 (13) 4.1校正前后的波特图 (13) 4.2校正前后的奈奎斯特曲线 (14) 4.3校正前后的单位阶跃响应曲线 (15) 5设计总结与心得 (17) 参考文献 (18)

飞行器控制系统设计 1飞行器控制系统的设计过程 1.1飞行器控制系统的性能指标 飞行器控制系统的开环传递函数 ) 2.361(4500)(+= s s K s G 控制系统性能指标为调节时间s 01.0≤,单位斜坡输入的稳态误差000521.0≤,相角裕度大于85度。 1.2参数分析 由系统开环传递函数可以求得: 令 2n ω= 4500k 所以开环传递函数: 2 ()(361.2) n G s s s ω= + 稳态误差为: ss 2 n n 1361.2e 0.000521lim ()s SG s ζ ωω→= =≤2= 可得832/n rad s ω=,0.217ζ=。 所以,取154k =。 开环传递函数 693000 ()(361.2) G s s s = + 稳态误差 0.005e δ=>

西工大飞行控制系统总复习

总复习 第一章 飞行动力学 一、概念: 1、体轴系纵轴ox 在飞机对称平面内;速度轴系纵轴a ox 不一定在飞机对称平面内;稳定轴系纵轴ox 在飞机对称平面内,与体轴系纵轴ox 相差一个配平迎角0α。 2、俯仰角θ的测量轴为地轴系横轴g oy ;滚转角φ(倾斜角)的测量轴为体轴系纵轴ox ;偏航角ψ的测量轴为地轴系铅锤轴g oz 。 3、迎角α:空速向量在飞机对称平面内投影与机体纵轴ox 夹角。 以的投影在ox 轴之下为正。 4、β(侧滑角):空速向量v 与飞机对称平面的夹角。以v 处于对称面右为正。 5、坐标系间的关系 机体轴系b S 与地轴系g S 之间的关系描述为飞机姿态角(ψφθ、、); 速度轴系a S 与机体轴系b S 之间的关系描述为气流角(βα、); 速度轴系a S 与地轴系g S 之间的关系描述为航迹角(χμγ、、)。 6、舵偏角符号 升降舵偏角e δ:平尾后缘下偏为正0>e δ,产生低头力矩。0a δ,产生左滚转力矩 0r δ,产生左偏航力矩0

飞行器自动控制导论_第一章飞行控制系统概述

第一章飞行控制系统概述 1.1飞行器自动控制 1.1.1飞行控制系统的功能 随着飞行任务的不断复杂化,对飞机性能的要求越来越高,不仅要求飞行距离远(例如运输机),高度高(高空侦察机),而且还要求飞机有良好的机动性(例如战斗机)。为了减轻驾驶员在长途飞行中的疲劳,或使驾驶员集中精力战斗,希望用自动控制系统代替驾驶员控制飞行,并能改善飞机的飞行性能。这种系统就是现代飞机上安装的飞行自动控制系统。 飞行控制系统的功能归结起来有两点:1)实现飞机的自动飞行;2)改善飞机的飞行性能。 飞机的自动飞行控制系统在无人参与的情况下,自动操纵飞机按规定的姿态和航迹飞行,通常可实现对飞机的三轴姿态角和飞机三个方向的空间位置的自动控制与稳定。例如,无人驾驶飞行器(如无人机或导弹等),实现完全的飞行自动控制;对于有人驾驶的飞机(如民用客机或军用飞机),虽然有人参与驾驶,但某些飞行阶段(如巡航段),驾驶员可以不直接参与操纵,而由飞行控制系统实现对飞机飞行的自动控制,但驾驶员应完成对自动飞行指令的设置和监督自动飞行的情况,并可以随时切断自动控制而实现人工驾驶。采用自动飞行具有以下优点: 1)长距离飞行时解除驾驶员的疲劳,减轻驾驶员的工作负担; 2)在一些恶劣天气或复杂的环境下,驾驶员难于精确控制飞机的姿态和航迹,自动飞行控制系统可以精确对飞机姿态和航迹的精确控制; 3)有一些飞行操纵任务,驾驶员难于精确完成,如进场着陆,采用自动飞行控制则可以较好地完成任务。 一般来说,飞机的性能和飞行品质是由飞机本身气动特性和发动机特性决定的,但随着飞机飞行高度及飞行速度的增加,飞机的自身特性将会变坏。如飞机在高空飞行时,由于空气稀薄,飞机的阻尼特性变坏,致使飞机角运动产生严重的摆动,靠驾驶员人工操纵将会很困难。此外,设计飞机时,为了减小质量和阻力,提高有用升力,将飞机设计成静不稳定的。对于这种静不稳定的飞机,驾驶员是难于操纵的。在飞机上采用增稳系统或阻尼系统可以很好地解决这些问题。

1 飞行控制系统的硬件设计

1 飞行控制系统的硬件设计 本文设计的飞行控制系统在硬件方面主要分为控制器、传感器、电源、执行机构和遥控接收等模块, 1.2 传感器 1.2.1 陀螺仪 陀螺仪能够对检测指示器中的数据加以显示,是自动控制系统当中的一个非常重要的组成。应用的陀螺仪是MPU6050三轴形式的陀螺仪,具有16位的模拟、数字转换器,使输出模拟量实现向可输出数字量的转化。 1.2.2 加速度传感器 在多旋翼的飞行控制系统当中,加速传感器应该说是一个非常重要的元器件。这不仅是由于加速度传感器具有动态载体的特性校正功能,并且它能够针对加速度实施积分,继而得出载体速度以及位置之类的基本信息。我们所选取的ADI公司研发的ADXL345传感器,同时兼具SPI以及I2C的数字输出功能,其分辨率较高,同时体积也比较小。 1.2.3 GPS模块 当无人机在天空飞行的时候定位系统是十分重要的,需要对无人机所呈现的姿态加以实时的测量,可以说在无人机系统当中,GPS模块占据着一定的主导地位。我们选取了U-BLOX公司所研发和生产的CJMCU-6M当作GPS的接收机,该传感器具有接口较为方便,而且定位的速度也比较快,不用长时间等待的特征。其利用串口输出的形式RS-232数据传输,继而结合协议而解算无人机所处的坐标、高度和时间之类的信息。 1.3 电源 电源模块主要的功能是为飞控系统当中的其他模块供给电量,从而确保飞行顺利。电源模块当中主要包含一个电源接口,以及一个稳压器,稳压器所具备的功能是对电压加以转换,避免因为高电压而导致电路板和一些其他元器件的损坏。本文中选择系统稳压器的标准为5V 输入,主控板的供电输出是3.3V,而最大的输出电流是500mA。 1.4 执行机构驱动 多旋翼无人机的飞行系统想要达成自主悬停功能,这就需要飞行器必须要在飞行不稳的情况之下能够迅速地改变成为平稳的状态,也就是在这种情况之下,执行机构要在非常短的时间之内做出相应的反应,让无人机所呈现的速度能够高速地提升或降低。本文所设计的系统当中采用直流无刷电机当作执行机构,继而配合无刷电调来应用,这个电机具备周期较长,而且效率较高等特征。电机是一种十分关键的执行机构,是对飞行器的姿态加以控制的动力。而我们所选择的直流无刷电机是想让四旋翼形式的飞行器形成多种飞行的姿态,工作的主要原理为对空气动力学的利用,从而使旋翼形成多种转速,继而达到想要的效果,完成各种飞行姿态。直流无刷的电机所接收到的控制信号是PWM波所发出的。而结合DSP所发出的具

变体飞行器控制系统综述

第30卷 第10期航 空 学 报 Vol 130No 110 2009年 10月ACTA AERONAUTICA ET ASTRONAUT ICA SINICA Oct. 2009 收稿日期:2008208212;修订日期:2008212205 基金项目:国家自然科学基金(90605007);南京航空航天大学博 士生创新基金((B CXJ06208) 通讯作者:何真E 2mail:hezhen@https://www.wendangku.net/doc/7f1623134.html, 文章编号:100026893(2009)1021906 206变体飞行器控制系统综述 陆宇平,何真 (南京航空航天大学自动化学院,江苏南京 210016) A Survey of Morphing Aircraft Control Systems Lu Yuping,H e Zhen (College of Automation Engineering,Nanjing Universit y of Aeronautics and Astronautics,Nanjing 210016,China) 摘 要:介绍了变体飞行器控制系统和涉及的控制理论问题。分析了变体飞行器的控制系统,指出变体飞行器的控制系统由变形控制层和飞行控制层组成。对变体飞行器的硬件结构和变体飞行器控制方法的研究现状进行了阐述。分析了集中式和分布式两种变形机械结构以及控制系统体系结构,提出采用总线网络连接变形结构的分布式元件。总结了变体飞行器需深入研究的变形控制和飞行控制问题,包括大尺度变体飞行器的飞行控制问题,通信受约束的大数目的驱动器的协调控制问题。关键词:变体飞行器;变形控制;飞行控制系统;分布式控制;网络控制中图分类号:V249 文献标识码:A Abstr act:The control system and r elated cont rol theor y of morphing aircraft a re introduced.The cont rol sys 2tem of mor phing air cr aft is analyzed.I t is shown that the system consists of a shape cont rol loop and a f light cont rol loop.Advances in the mechanical structures and contr ol appr oaches of mor phing aircraft ar e discussed.The centra lized mechanica l morphing structur e,the distributed mechanical morphing st ructur e,and the contr ol system structure are analyzed.It is pr oposed that the distr ibuted components in a morphing st ructur e should be connected through a bus net work.F utur e work in the shape contr ol and flight control of morphing aircraft is summar ized,including the flight contr ol of large 2scale shape air craft,cooperat ive contr ol of large numbers of actuators under communication constraints. Key words:morphing aircraft;sha pe control;flight control systems;distr ibuted control;networked contr ol 变体飞行器能根据飞行环境和飞行任务的变化,相应地改变外形,始终保持最优飞行状态,以满足在变化很大的飞行环境(高度、马赫数等)里执行多种任务(如起降、巡航、机动、盘旋、攻击等) 的要求。变体飞行器还能够改善飞行器空气动力学性能,增加续航时间,用能连续、光滑变形的变形结构代替传统操纵面,提高隐身性能。由于具有这些优势,变体飞行器得到了各国的重视。目前,已开展过的或正在开展的变体飞行器项目有 [125] :美国的AFTI/F111自适应机翼项目,主动 柔性翼(AFW)计划,智能机翼(Smart Wing)项目 和近期启动的变形飞机结构(MAS)项目;欧洲的3AS(Active Aeroelastic A ir craft Structures)研究项目等。 与传统飞行器相比,变体飞行器最特殊之处在于它具有变形结构。这给气动、材料、结构、控 制和优化等多个学科提出了一系列有待研究的问题。在控制学科方面,变形结构的分布式驱动特性以及变形引起的飞行器模型的不确定性和非线性等都引出了许多具有挑战性的研究课题。本文总结与思考了变体飞行器的控制体系结构设计和控制理论研究,提出了需深入研究的变形控制和飞行控制方面的问题。 1 工作原理 变体飞行器的控制系统可分为两个层次,如图1所示。第1层可称为变形控制系统,对变形结构进行控制,即实现变形控制;第2层可称为飞行控制系统,控制整个飞行器的飞行状态,即实现飞行控制。 变体飞行器的变形结构是使变体飞行器实现/变体0的部件。为了获得高气动效率,变体飞行器的变形应该是连续的、光滑的,因此,大部分变形结构由大数量的分布式驱动单元组成。变形结构可以是分布式作动器驱动的机械连杆结构(驱

飞行操纵系统

飞行操纵系统

飞行操纵系统 ——飞机系统结课论文 指导老师:闫凤良 班级:080441D 学号:080441436 姓名:朱仕广 2010.6.25

摘要:飞行操纵系统是飞机在天空中自由飞行必不可少的系统。飞机飞行操纵系统是飞机上用来传递操纵指令,驱动舵面运动的所有部件和装置的总称,用于飞机飞行姿态、速度、轨迹的控制。此文对飞机的飞行操纵系统、空客A320的操纵系统和相关案例进行简单介绍。 关键词:飞行操纵系统空客A320的操纵系统相关案例 正文: 飞机要想在天空中自由自在的翱翔,飞行操纵系统是必不可少的。飞行操纵系统让飞机在空中能按照人的意愿自由改变飞行状态,从而飞抵人们想要飞去的地方。下面,我们简单介绍飞机的飞行操纵系统、空客A320的操纵系统和相关案例。 一、飞行操纵系统 定义:飞机飞行操纵系统是飞机上用来传递操纵指令,驱动舵面运动的所有部件和装置的总称,用于飞机飞行姿态、速度、轨迹的控制。

1.飞行操纵系统分类 按照操纵指令的来源分为:人工飞行操纵系统和自动飞行控制系统。 (1)人工飞行操纵系统:其操纵信号由驾驶员发出。包括主飞行操纵系统和辅助飞行操纵系统。 主飞行操纵系统:操纵升降舵、方向舵、副翼、三个主舵面,实现飞机的俯仰、偏航和滚转操纵;辅助飞行操纵系统:操纵襟翼、副翼、扰流板、调整片等增升、增阻及水平安定面配平、方向舵配平等系统。 (2)自动飞行控制系统:其操纵信号由系统本身发出。 对飞机实施自动和半自动控制,协助驾驶员工作或自动控制飞机对扰动的响应。 包括:自动驾驶、飞行指引和自动油门。 按照指令的执行方式来分: (1)机械式操纵系统 (2)电传操纵系统 2.基本飞行操纵原理 (1)飞机的纵向操纵是通过操纵驾驶杆或驾驶

典型飞行控制系统

三、典型飞行控制系统 1、已知某飞机的传递函数是: ) 69.19.0()4.0(5.1) () (2 +++-= ??Z s s s s s s δ?,其俯仰姿态角控制系统的 控制规律为:? Z Z Z ?K +?-?K =?+T ? ? ??δ? ? δ)()1(g s 。 (1)由控制规律画出相应的系统结构图; (2)要控制该飞机舵回路的时间常数应作何限制? (3)若飞机受到常值力矩92 .0=?M Z γ 公斤*米,已知 Z Z M δ=-1.15公斤*米/度,若要求 稳定后其静差 s θ?<0 1 ,应对Z K ? 作何限制; (4)若要保证该系统的动态性能,应如何选取Z ? K ? 的值。 (5)分析在垂直向上风干扰下,系统的动态相应过程以及稳态情况。 2、已知某飞机的传递函数是: ) 47.15.1()59.0(2.1) ()(2 +++-= ??Z s s s s s s δ?,其俯仰姿态角控制系统的控 制规律为:? Z Z Z ?K +?-?K =?+? ???δ? ? )()11.0(g s 。 (1)由控制规律画出相应的系统结构图; (2)求出内回路闭环传递函数,并绘制随参数? Z K ? 变化的根轨迹图,并求取 值时的使? Z K =? ξ87.0以及此时三个内回路闭环极点值; (3)求出外回路闭环传递函数,并绘制随参数?Z K 变化的根轨迹图,并求取 值时的使?ξZ K =8.0以及此时三个外回路闭环极点值; (4)采用根轨迹方法分析舵回路时间常数对飞行控制系统工作性能的影响; (5)分析参数? Z K ? 与?Z K 之间的关系。 ● 自动驾驶仪有哪几个工作回路? (1)同步回路 (2)舵回路 (3)稳定回路 (4)控制回路 ● 俯仰阻尼器的作用是什么? 用来改善飞机的纵向短周期运动的阻尼特性 ● 滚转阻尼器的作用是什么? 用来改善飞机—阻尼器系统的滚转特性 ● 什么是控制增稳系统?其作用是什么? 不牺牲操纵性来提高飞机的阻尼比和固有频率,又可以解决非线性操纵指令问题 ● 飞行高度控制系统需要 最基本的信号? 需要直接测量飞行高度,使用高度差传感器,根据高度差的信息来直接控制飞机的飞行姿态,从而改变航迹请教,以实现对飞行高度的闭环稳定和控制

自动飞行控制系统 AFCS

涡轮发动机飞机 第六章自动飞行控制系统AFCS 自动飞行控制系统的组成和基本功能 自动驾驶仪(AP)飞行指引(FD)偏航阻尼系统(YDS)俯仰配平系统(Auto Trim)自动油门系统(ATS) 6.1自动飞行控制系统AFCS的组成和基本功能 系统的功用——自动飞行控制系统可在除起飞的飞机的整个飞行阶段中使用:离场、爬升、巡航、下降和进近着陆。 6.1.1 自动飞行控制系统AFCS由下列分系统组成: 自动驾驶仪(A/P)—既可用于控制飞行轨迹,也可用于控制飞行速度减轻飞行员 的工作负担,还可实现飞机的自动着陆。 飞行指引仪(F/D) 在PFD或EADI上显示计算机提供的自动飞行的指令使飞行 员按照飞行指引杆的指引驾驶飞机,或监控飞机的姿态。自动配平系统自动调节飞机的水平安定门,改善飞机的俯仰稳定性 偏航阻尼系统(Y/D)改善飞机整个飞行阶段的动态稳定性 自动油门系统(ATS)自动调节发动机输出功率,实现最佳飞行,并减轻飞行 员的负担。 偏航阻尼系统与自动配平系统合称为增稳系统。 飞行管理系统FMS 在现代飞机上,利用飞行管理系统FMS,可完成对飞机的全自动导航; 提供从起飞到进近着陆的最优侧向飞行轨迹和垂直飞行剖面的计算, 实现最佳飞行。FMS的输出信号加到AFCS,控制自动飞行控制系统 的工作,实现对飞机的制导和推力管理;同时监测AFCS的工作,防止 飞机在不正常条件下的自动飞行。 6.1.3 AFCS的基本结构 AFCS的基本组成: 飞行控制计算机——计算控制指令。 控制板——(方式控制板MCP)是人机接口,用于向计算机输入飞行员的控制 指令,如飞行方式、速度、高度等。 输出设备——将计算机产生的控制信号加到飞行控制系统(通过舵机控制飞行操 纵面等),将显示信息输往显示器。 数字式AFCS的结构 80年代AP/FD计算机集成为FCC。 电子飞行控制系统EFCS的结构

飞行器控制系统设计

课程设计名称:自动控制原理课程设计题目:飞行器控制系统设计 专业:电气工程及其自动化 班级: 11级一班 姓名: *** 学号: *************

控制系统的时域性能指标为: 单位斜坡输入的稳态误差0.000443 2. 用Matlab对校正前后的系统进行仿真分析,画出 阶跃响应曲线,计算其时域性能指标。 三、设计计划: 1.查阅相关资料 2.确定设计方案 3.进行设计并定稿 4.进行可行性分析及电脑仿真 5.进行电脑输入录出 四、设计要求: 飞行器控制系统的开环传递函数为: 指导教师: *** 教研室主任:*** 2011年12月19日 中国矿业大学银川学院 课程设计成绩评定表

3 摘要 摘要:根据被控对象及给定的技术指标要求,涉及自动控制系统,既要保证所设计的系统具有良好的性能,满足给定的指标要求,还有考虑方案的可靠性和经济性,本课程设计是在给定的指标下,分别用时域和频域方法设计该系统的控

制器。本文首先从理论的方法分别用时域和频域法求出控制系统的时域性能指标,再用Matlab对校正前后的系统进行仿真分析,画出阶跃响应曲线,计算其时域性能指标,经验证,满足设计要求。 关键词:飞行器控制系统时域频域 MATLAB 。 目录 1 设计分析 (6) 1.1系统分析 (6)

1.1.1系统时域分析 (7) 1.1.2系统频域分析 (8) 1.2 二阶系统性能改善方法选择 (9) 1.2.1 比例-微分控制(PD控制) (9) 1.2.2 测速反馈控制 (9) 1.2.3 校正选择 (10) 2 设计方案 (11) 2.1 校正后的系统结构图 (11) 2.2 系统参数的选取 (11) 2.3 校正前后的系统比较 (13) 3心得体会 (14) 参考文献 (15) 飞行器控制系统设计

相关文档