文档库 最新最全的文档下载
当前位置:文档库 › 二项分布与泊松分布的期望与方差

二项分布与泊松分布的期望与方差

二项分布与泊松分布的期望与方差
二项分布与泊松分布的期望与方差

几何分布的定义以及期望与方差的证明

几何分布的定义以及期望与方差 几何分布(Geometric distribution )是离散型概率分布。其中一种定义为:在n 次伯努利试验中,试验k 次才得到第一次成功的机率。详细的说,是:前k-1次皆失败,第k 次成功的概率。 公式: 它分两种情况: 1. 得到1次成功而进行,n 次伯努利实验,n 的概率分布,取值范围为『1,2,3,...』; 2. m = n-1次失败,第n 次成功,m 的概率分布,取值范围为『0,1,2,3,...』. 由两种不同情况而得出的期望和方差如下: , ; , 。 概率为p 的事件A ,以X 记A 首次发生所进行的试验次数,则X 的分布列: , 具有这种分布列的随机变量X ,称为服从参数p 的几何分布,记为X ~Geo (p )。 几何分布的期望 ,方差 。 高中数学教科书新版第三册(选修II )比原来的修订本新增加随机变量的几何分布,但书中只给出了结论:(1)E p ξ= 1,(2)D p p ξ=-12,而未加以证明。本文给出证明,并用于解题。

(1)由P k q p k ()ξ==-1,知 E p pq q p kq p q q kq p k k ξ=++++=+++++--231232121 () 下面用倍差法(也称为错位相减法)求上式括号内的值。记 S q q kq k k =++++-12321 记S q q kq k =+++++-12321 qS q q k q k =+++-+-2121 () 相减, ()111121-=+++++=--q S q q q q k

则S q p =-=11122 () 还可用导数公式()'x nx n n =-1,推导如下: 12321+++++-x x kx k =+++++ x x x x k '()'()'()'23 6 12322221+++++-q q k q k =+++++()'q q q kq k 2323

(完整word版)常见分布的期望和方差

常见分布的期望和方差 x n (0,1) N()

概率与数理统计重点摘要 1、正态分布的计算:()()( )X F x P X x μ σ -=≤=Φ。 2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。(参见P66~72) 3、分布函数(,)(,)x y F x y f u v dudv -∞-∞ = ?? 具有以下基本性质: ⑴、是变量x ,y 的非降函数; ⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续; ⑷、对于任意的11221212(,),(,),,x y x y x x y y <<   ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥ 4、一个重要的分布函数:1(,)(arctan )(arctan )23 x y F x y πππ2=++22的概率密度为:2222 6(,)(,)(4)(9)f x y F x y x y x y π?==??++ 5、二维随机变量的边缘分布: 边缘概率密度: ()(,)()(,)X Y f x f x y dy f y f x y dx +∞ -∞+∞ -∞ ==?? 边缘分布函数: ()(,)[(,)]()(,)[(,)]x X y Y F x F x f u y dy du F y F y f x v dx dv +∞ -∞-∞+∞ -∞ -∞ =+∞==+∞=?? ?? 二维正态分布的边缘分布为一维正态分布。 6、随机变量的独立性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独立。简称X 与Y 独立。

分布列期望方差

分布列期望方差

大石中学2015届高三数学(理)3月概率练 习 1、2014年巴西世界杯的周边商品有80%左右为“中国制造”,所有的厂家都是经过层层筛选才能获此殊荣。甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽出取14件和5件,测量产品中的微量元素,x y的含量(单位:毫克).下表是乙厂的5件产品的测量数据: (1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量; (2)当产品中的微量元素,x y满足175 x≥,且75 y≥,该产品为优等品。用上述样本数据估计乙厂生产的优等品的数量; (3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值(即数学期望)。

2、为调查市民对汽车品牌的认可度,在秋 季车展上,从有意购车的500名市民中,随机抽样100名市民,按年龄情况进行统计的频率分布表1和频率分布直方图2。 频率分布表1 频率分布直方图2 分组 (岁) 频数 频率 [20,25) 5 0.050 [25,30)20 0.200 [30,35)①0.350 [35,40)30 ② [40,45]10 0.100 合计 100 1.000 (1)频率分布表中的①②位置应填什么数?并补全频率分布直方图,再根据频率分布直方图估计这500名志愿者的平均年龄;

(2)在抽出的100名市民中,按分层抽样 法抽取20人参加宣传活动,从这20人中选取2名市民担任主要发言人,设这2名市民中“年龄低于30岁”的人数为X,求X的分布列及数学期望。大石中学2015届高三数学(理)3月概率练 习 3、某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成400万元的损失.现有甲、乙两种相互独立的预防措施可供采用.单独采用甲、乙预防措施所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率为0.9和0.85.若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用 (总费用=采取预防措施的费用+发生突发事件损失的期望值.) (1)求不采取任何措施下的总费用;(2)请确定预防方案使总费用最少.

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法 Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德 目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质

命名原因 泊松分布实例 泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。应用场景

在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例 泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。 观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: 例如采用0.05J/㎡紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: …… 是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/㎡照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此就意味着全部死亡的概率。 推导 泊松分布是最重要的离散分布之一,它多出现在当X表示在一定的时间或空间内出现的事件个数这种场合。在一定时间内某交通路口所发生的事故个数,是一个典型的例子。泊松分布的产生机制可以通过如下例子来解释。

随机变量的分布列 期望与方差

随机变量的分布列 期望与方差 1、 设随机变量的分布如下: 求常数k 的值 2、设随机变量ξ的概率分布为====a k a a k P k 则为常数,,2,1,,5 )(Λξ . 3、设某批产品合格率为43,不合格率为4 1,现对该产品进行测试,设第ξ次首次测到正品,则P (ξ=3)等于( ) A .)4 3()41(223?C B .)4 1()4 3 (223?C C .)4 3()4 1(2? D .)4 1()4 3(2? 4、设随机变量ξ只可能取5,6,7,……,16这12个值,且取每个值的概率均相同,则P (ξ≥9)= ;P (6<ξ≤14)= . 5、设某项试验的成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则P (ξ=0)等于_______。 6、袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P (ξ≤6)=________. 7、从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数。 (1)求ξ的分布列; (2)求“所选3人中女生人数1≤ξ”的概率。 8、罐中有5个红球,3个白球,从中每次任取一球后放入一个红球,直到取到红球为止用ξ表示抽取次数,求ξ的分布列,并计算P (1<ξ≤3) 9、某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是 1 3 ,遇到红灯时停留的时间都是2min.(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间ξ的概率分布列和数学期望。

几何分布的期望与方差

几何分布的期望与方差 康永清 高中数学教科书新版第三册(选修II )比原来的修订本新增加随机变量的几何分布,但书中只给出了结论:(1)E p ξ=1,(2)D p p ξ=-12 ,而未加以证明。本文给出证明,并用于解题。 (1)由P k q p k ()ξ==-1,知 E p pq q p kq p q q kq p k k ξ=++++=+++++--231232121 () 下面用倍差法(也称为错位相减法)求上式括号内的值。记 S q q kq k k =++++-12321 qS q q k q kq k k k =+++-+-2121 () 两式相减,得 ()1121-=++++--q S q q q kq k k k S q q kq q k k k =----1112() 由01<

记S q q kq k =+++++-12321 qS q q k q k =+++-+-2121 () 相减, ()111121-=+++++=--q S q q q q k 则S q p =-=11122() 还可用导数公式()'x nx n n =-1,推导如下: 12321+++++-x x kx k =+++++=+++++x x x x x x x x k k '()'()'()'()' 2323 =-=----=-( )'()()()()x x x x x x 111112 2 上式中令x q =,则得 1231112122 +++++=-=-q q kq q p k () (2)为简化运算,利用性质D E E ξξξ=-22()来推导(该性质的证明,可见本刊6页)。 可见关键是求E ξ2 。 E p qp q p k q p k ξ22222123=+++++- =+++++-p q q k q k ()12322221 对于上式括号中的式子,利用导数,关于q 求导:k q kq k k 21-=()',并用倍差法求和,有

高考纠错专题29离散型随机变量的分布列、期望与方差(解析版)

专题29 离散型随机变量的分布列、期望与方差(解析版) 易错点1:二项式展开式的通项公式、n 次独立重复试验中事件A 发生k 次的概率与二项分布的分布列三者易记混; 通项公式:1r n r r r n T C a b -+= (它是第r+1项而不是第r项); 事件A 发生k 次的概率:()(1)k k n k n n P k C p p -=-; ()=,0,1,2,3,01,1k k n k n p k C p q k n p p q 且ξ-==<<+=; 易错点2:混淆二项分布和超几何分布的期望和方差; 题组一 1.(2018全国卷Ⅲ)某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,(4)(6)P X P X =<=,则p = A .0.7 B .0.6 C .0.4 D .0.3 【解析】由题意,X~B(10,p),所以DX=10×p×(1-p)=2.4,p=0.4或0.6,又(4)(6)P X P X =<=,即()()644466101011C p p C p p -<-,得1,0.62 p p >=所以 2.(2017新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,表示抽到的二等品件数,则DX = . 【解析】由题意,X~B(100,0.02),所以DX=100×0.02×(1-0.02)=1.96 题组二 3.(2019全国I 理21)为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布) 生存分析 贝叶斯概率公式 全概率公式讲解

数学期望:随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。 也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为1.11个。 可以简单的理解为求一个概率性事件的平均状况。 各种数学分布的方差是: 1、一个完全符合分布的样本 2、这个样本的方差 概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。比如某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。 下图为概率密度函数图(F(x)应为f(x),表示概率密度):

离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X 2分布、t 分布、F 分布 抽样分布只与自由度,即样本含量(抽样样本含量)有关 二项分布(binomial distribution ):例子抛硬币 1、 重复试验(n 个相同试验,每次试验两种结果,每种结果概率恒定————伯努利试验) 2、 抽样分布

分布列、期望与方差

第十三章 分布列、期望与方差 【回顾与思考】 1.两点分布:对于一个随机试验,如果它的结果只有两种情况,则可以用随机变量0η=,1来描述这个随机试验的结果。如果发生的概率为p ,则不发生的概率为p -1,这时,称η服从两点分布,其中p 称为__________。其分布列为: 期望=ηE _______;方差=ηD ________。 2.超几何分布:()k n k M N M n N C C P X k C --==,0,1,,k m = ,其中=m ___________。 3.二项分布:在n 次独立重复试验中,事件A 发生的次数X 服从二项分布,记为_________。 ()(1,0,1,2k k n k n P X k C p q q p k -===-=,…)n ,表示______________________,二项 分布的分布列为: 期望为______________;方差为_________________。 4.正态分布: (1)正态曲线:如果总体密度曲线(当样本容量无限增大,分组的组距无限缩小,那么频 率分布折线图就会无限接近于一条光滑曲线,即为总体密度曲线)是或近似地是以下函数 2 22)(,21)(σμσμσ π?-- = x e x ,),(+∞-∞∈x 的图象,式中的实数σμ,)0(>σ是参数,分 别是总体的平均数与标准差。正态曲线具有以下性质: ① 曲线在____轴的上方,与____轴不相交;② 曲线关于直线______ 对称; ③ 曲线在的最高点的横坐标______;④ 当μx 时,曲线_____,并且当曲线向左、右两边无限延伸时,以_____轴为渐近线,向它无限靠近。 ⑤ 当μ一定时,σ越大,曲线越“矮胖”,表示总体越分散;σ越小,曲线越“瘦高”,表示 总体的分布越集中。 (2)若随机变量X 在),[b a 内取值的概率等于该区间上正态曲线与____轴、直线_____、______ 所围成曲边梯形的面积(即dx x b X a P b a )()(,σμ?? = ≤<),则称随机变量X 服从正 态分布。记为__________________。 记住:①=+≤<-)(σμσμX P _________;② =+≤<-)22(σμσμX P ________;③ =+≤<-)33(σμσμX P _________. 从理论上讲,服从正态分布的随机变量X 的取值范围是R ,但实际上X 的取值在区间)3,3(σμσμ+-外的可能性微乎其微,在实际问题中常常认为它是不会发生的。因此, 往往认为服从正态分布的随机变量X 的取值范围是)3,3(σμσμ+- ,这就是σ3原则。 在企业管理中,经常应用这个规则进行产品质量检查和工艺生产过程控制。 说明:“小概率事件”通常指发生的概率小于______的事件。

06二项分布及泊松分布

●Bernoulli 试验(Bernoulli T est): 将感兴趣的事件A出现的试验结果称为“成功”,事件A不出现的试验结果称为“失败”,这类试验就称为Bernoulli 试验 ●二项分布(binomial distribution): 是指在只会产生两种可能结果如阳性或阴性之一的n次独立重复试验中,当每次试验的阳性概率π保持不变时,出现阳性次数X=0,1,2,…,n的一种概率分布。 ●Poisson分布(Poisson distribution): 随机变量X服从Poisson分布式在足够多的n次独立试验中,X取值为1,2,…,的相应概率为 …的分布。 ★二项分布成立的条件: ①每次试验只能是互斥的两个结果之一;②每次试验的条件不变;③各次试验独立。 ★二项分布的图形: 当∏=0.5,二项分布图形是对称的,当∏不等于0.5,图形是偏态的,随着n增大,图形趋于对称。当n趋于无穷大时,只有∏不太靠近0或者1,二项分布近似正态分布。 ★二项分布的应用 总体率的区间估计,样本率与总体率比较,两样本率的比较 ★Poisson 分布的应用 总体均数的区间估计,样本均数与总体均数的比较,两个样本均数的比较:两个样本计数均较大时,可根据Poisson 分布的正态近似性对其进行u 检验。 ★Poisson 分布成立的条件: ①平稳性:X 的取值与观察单位的位置无关,只与观察单位的大小有关;②独立增量性:在某个观察单位上X 的取值与前面各观察单位上X 的取值无关;③普通性:在充分小的观察单位上X 的取值最多为1。 Poisson 分布,X~P(μ),X 的均数μX =μ,X的方差σ2 =μ,X的标准差σX ★Poisson分布的性质 1、总体均数λ与总体方差相等是泊松分布的重要特点。 2、当n增大,而∏很小,且n∏=λ总体均数时,二项分布近似泊松分布。 3、当总体均数增大时,泊松分布渐近正态分布,一般而言,总体均数》20时,泊松分布资料做为正态分布处理。 4、泊松分布具有可加性。 ★泊松分布的图形 当总体均数越小,分布就越偏态,当总体均数越大,泊松分布就越趋近正态分布。当总体均数小于等于1时,随X取值的变大,P(X)值反而变小;当总体均数大于1时,P(X)值先增大而后变小,若总体均数取整数时,则P(X)在X=总体均数,和X=总体均数—1取得最大值。 ★二项分布和泊松分布的特性 1.可加性 二项分布和Poisson 分布都具有可加性。 如果X1,X2,?Xk 相互独立,且它们分别服从以ni,p(i=1,2, ?,k)为参数的二项分 布,则X=X1+X2+?+Xk 服从以n,p(n=n1+n2+?+nk)为参数的二项分布。如果X1,X2,?,Xk相互独立,且它们分别服从以μi(i=1,2, ?,k)为参数的Poisson 分布,则X=X1+X2+?+Xk服从以μ(μ=μ1+μ2+?+μk)为参数的Poisson 分布。 2.近似分布

分布列、期望与方差(答案).doc

【目标与要求】(1) (2) (3) 2. R = 0,1,7, 其中"7 = 第十三章第一节排列与组合 执笔:李建军 审核:理数学备考小组 了解排列与组合的定义; 理解排列与组合数的性质,计算简单的排列与组合数; 解决与排列与组合有关的应用题。 1.两点分布:对于一个随机试验,如果它的结果只有两种情况,则可以用随机变量〃 =0, 1来 描述这个随机试验的结果。如果发生的概率为p,则不发生的概率为1-p,这时,称〃服 从两点分布,其中〃称为 0其分布列为: 期望En=;方差Dn=o 厂k 厂〃一A 超几何分布:P (X = k )= w V’ Cv 3.二项分布:在〃次独立重复试验中,事件*发生的次数X 服从二项分布,记为 p(X =k) = C ;pkq'i(q = \— p,k = &,\,2, ???〃),表示,二项 分布的分布列为: 期望为玖=;方差为。 4.正态分布: (1)正态曲线:如果总体密度曲线(当样本容量无限增大,分组的组距无限缩小,那么频 率分布折线图就会无限接近于一条光滑曲线,即为总体密度曲线)是或近似地是以下函数 1 —(")2 G (-00,4-00)的图象,式中的实数〃,b (b>0)是参数,分 别是总体的平均数与标准差。正态曲线具有以下性质: ①曲线在—轴的上方,与—轴不相交;②曲线关于直线 对称; ③ 曲线在的最高点的横坐标 ______ :④ 当x〃时?,曲线 ____ , 并且当曲线向左、右两边无限延伸小j,以 ______ 轴为渐近线,向它无限靠近。 ⑤ 当# 一定时,越大,曲线越“矮胖”,表示总体越分散;CT 越小,曲线越“瘦高”,表示 总 体的分布越集中。 (2)若随机变量X 在[Q ,。)内取值的概率等于该区间上正态曲线与—轴、直线、 所围成曲边梯形的面积(即P0VX Jb ) = y :(p”Q(x )djc ),则称随机变量X 服从正 态分布。记为。 记住:①P ("-o < X < “ + cr )= __________ ;② F (“一2。< X

浅析二项分布与泊松分布之间的关系

学年论文 题目:浅析二项分布与泊松分布之间的关系 学生: 学号: 院(系):理学院 专业:信息与计算科学 指导教师:安晓钢 2013 年11月25日

浅析二项分布与泊松分布之间的关系 信息121班; 指导教师:安晓钢 (陕西科技大学理学院 陕西 西安 710021) 摘 要:泊松分布刻画了稀有事件在一段时间内发生次数这一随机变量的分布,如电话交换台单位时间内接到的呼唤次数等。二项分布是n 个独立的是/非试验中成功的次数的离散概率分布。它们有着密切的关系。泊松分布是二项分布的特例。某现象的发生率很小,而样本例数n 很大时,则二项分布接近于泊松分布,即:如果试验次数n 很大,二项分布的概率p 很小,且乘积np =λ比较适中,则事件出现的次数的概率可以用泊松分布来逼近。事实上,二项分布可以看作泊松分布在离散时间上的对应物,是二项分布的特例。通过分析二项分布和泊松分布之间的关系,使学生对概率分布理论的理解更为深刻,能够将学到的理论知识应用在实际生活中,从而提高自己的综合素质。 关 键 词:二项分布, 泊松分布, 近似 The Application of Asignment Poblem ABSTRACT: Poisson distribution is used to depict the distribution of rare events that a random variable frequency over a period of time, such as a telephone exchange in unit time received the call number. The two distribution is n independent / discrete probability distributions of number of successful non trials. They have a close relationship. Poisson distribution is two distribution case. The incidence of the phenomenon is very small, and the number of sample n is large, then the two distribution is close to the Poisson distribution, i.e.: if the test number n is large, the two probability distribution P is small, and the product of lambda = N P is moderate, the probability of the event can be used to force the Poisson distribution near. In fact, the two distribution can be seen as the counterpart of Poisson distribution in discrete time, are the two distribution case. Through the analysis of the relationship between two binomial distribution and Poisson distribution, enables the student to the theory of probability distribution for more profound understanding will be able to learn the application of theoretical knowledge in real life, so as to improve their comprehensive quality. KEY WORDS : Two distribution, Poisson distribution, Approximate

61随机变量的概率分布、期望与方差1

如皋市薛窑中学2011届高三理科数学一轮复习 61随机变量的概率分布、期望与方差 【考点解读】 离散型随机变量及其分布列:A;超几何分布:A;条件概率及相互独立事件:A; n次独立重复试验的模型及二项分布:B;离散型随机变量的均值与方差:B 【复习目标】 1?了解取有限值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;会求某些简单的离散型随机变量的分布列。 2?了解超几何分布及其导出过程,并能进行简单的应用。 3?了解条件概率和两个事件相互独立的概念( 对条件概率的应用题不作要求 )。 4 ?理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。 5?了解取有限值的离散型随机变量的均值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。 活动一:基础知识 1. 随机变量: 1) 定义: _________________________________________________________ 。 2) ____________________________________ 表示方法:。 2. 随机变量分布列的定义: 假定随机变量X有n个不同的取值,它们分别是X1,X2丄X n且P(X=x i)=p i ,i=1,2, -n,① 称①为随机变量X 的概率分布列,简称X的分布列 3. 概率分布表 将①用表的形式表示如下: 4. 分布列的性质: 概率分布列中P(i 1,2L n)满足以下两个条件: (1) ______________________________ (2) ______________________________ 5. 两点分布 如果随机变量X只取两个可能值_0 和__________ 1 ___ ,则称该随机变量X服从0-1分布或两点分布并记为X?0-1或X?两点分布. 其概率分布表为: 其中丨min{ M , n},且n N,M N,n,M,N N .称分布列

二项分布期望和方差的推导过程

二项分布期望和方差推导 若随机变量),(~p n B X ,则np X E =)(,)1()(p np X D -= 二项分布数学期望的证明: 注意到11--=k n k n nC kC (证明:11)]! 1()1[()!1()!1()!()!1()!1()!(!!--=---?--?=-?--?=-??=k n k n nC k n k n n k n k n n k n k n k kC ) 所以n n p p C X E )1(0)(00-?=111)1(1--?+n n p p C Λ+-?+-222) 1(2n n p p C Λ+-?+-k n k k n p p C k )1( 111)1()1(p p C n n n n -?-+--0)1(p p C n n n n -?+ 1101)1(---?=n n p p C n Λ+-?+--2211)1(n n p p C n Λ+-+---k n k k n p p nC ) 1(11 1121)1(p p C n n n n -?+---011 )1(p p C n n n n -?+-- 101)1([---=n n p C np Λ+-+--2111)1(n n p p C Λ+-+----k n k k n p p C )1(1111221)1(p p C n n n -+---])1(0111p p C n n n -+--- np p p np n =+-=-1])1[(,故np p p C i X E n i i n i i n ∑=-=-?=0)1()(; 二项分布方差的证明:)1()(p np X D -= 证明:i n i i p X E x X D ?-= ∑-12)]([)(i n i i i p X E X E x x ∑-?+-=122)]()(2[∑-??+?-?=n i i i i i i p X E p X E x p x 122])()(2[ ∑∑∑-=-?+?-?=n i n i i n i i i i i p X E p X E x p x 11 212 )()(2)()(22X E X E -= 故任何离散随机变量的方差均满足式子:)()()(22X E X E X D -= 当随机变量),(~p n B X 时,=)(X D 20 2)()1(np p p C i i n i n i i n --?-=∑ i n i n i i n p p C i i -=-?-=∑)1()1(0 220)1(p n p p C i i n i n i i n --?+-=∑(注意np p p C i X E n i i n i i n ∑=-=-?=0)1()() i n i n i i n p p iC i -=-?-=∑)1()1(222p n np -+i n i n i i n p p nC i -=---?-=∑)1()1(21122p n np -+ i n i n i i n p p C i n -=---?-?=∑)1()1(21122p n np -+i n i n i i n p p C n n --=---?-?=∑)1()1(22 2222p n np -+ i n i n i i n p p C n n -=---?-=∑)1()1(22222p n np -+i n i n i i n p p C p n n --=---?-=∑)1()1(22 22222p n np -+ (指数之后凑组合数下标2-n ,利用展开式i i n n i i n n b a C b a ---=--∑=+22022) () i n i n i i n p p C p n n ---=--?-=∑22 022 )1()1(22p n np -+

期望与方差例题选讲有详解

概率统计(理)典型例题选讲 (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: ① 计算一次试验的基本事件总数n ; ② 设所求事件A ,并计算事件A 包含的基本事件的个数m ; ③ 依公式()m P A n =求值; ④ 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 典型例题分析 1.有10张卡片,其中8张标有数字2,有2张标有数字5.从中随机地抽取3张卡片,设3张卡片上的数字和为ξ,求Eξ与Dξ.

概率分布以及期望和方差

概率分布以及期望和方差 上课时间: 上课教师: 上课重点:掌握两点分布、超几何分布、二项分布、正态分布的概率分布及其期望和方差 上课规划:解题技巧和方法 一 两点分布 ⑴两点分布 如果随机变量X 的分布列为 X 1 0 P p q 其中01p <<,1q p =-,则称离散型随机变量X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足二点分布. X 1 0 P 0.8 0.2 两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布. (2)典型分布的期望与方差: 二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np . 1、在抛掷一枚图钉的随机试验中,令10X ?=? ? ,针尖向上; ,针尖向下.,如果针尖向上的 概率为p ,试写出随机变量X 的概率分布. 2、从装有6只白球和4只红球的口袋中任取一只球,用X 表示“取到的 知识内容 典例分析

白球个数”,即???=,当取到红球时, ,当取到白球时, 01X ,求随机变量X 的概率分布. 3、若随机变量X 的概率分布如下: X 1 P 29C C - 38C - 试求出C ,并写出X 的分布列. 3、抛掷一颗骰子两次,定义随机变量 ?? ?=)(,1)(,0的点数数等于第二次向上一面当第一次向上一面的点 面的点数数不等于第二次向上一当第一次向上一面的点 ξ 试写出随机变量ξ的分布列. 4、篮球运动员比赛投篮,命中得1分,不中得0分,已知运动员甲投篮命中率的概率为P . ⑴ 记投篮1次得分X ,求方差()D X 的最大值; ⑵ 当⑴中()D X 取最大值时,甲投3次篮,求所得总分Y 的分布列及Y 的期望与方差. 二 超几何分布

离散型随机变量的分布列与期望和方差

离散型随机变量的分布列与期望和方差 考点一:离散型随机变量的分布列 若离散型随机变量X 的分布列为 (1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量 (2)方差:称D (X )=∑n i =1 (x i -E (X ))2p i 为随机变量X 的方差,其算术平方根()X D 为随机变量X 的标准差. (3)均值与方差的性质 1.E(aX +b)=aE(X)+b. 2.D(aX +b)=a2D(X)(a ,b 为常数). 考点二:超几何分布 在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n - k N -M C n N ,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *,如果随机变量X 的分布列具有下表形式, 考点三:二项分布 二项分布;在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发 生的概率为p ,则P (X =k )=C k n p k (1-p ) n -k (k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率. 基础练习 1.在某公司的两次投标工作中,每次中标可以获利14万元,没有中标损失成本费8000元.若每次中标的概率为0.7,每次投标相互独立,设公司这两次投标盈利为X 万元,则EX =( ) A .18.12 B .18.22 C .19.12 D .19.22 2.设服从二项分布B (n ,p )的随机变量X 的期望与方差分别是10和8,则n ,p 的值分别是( ) A . B . C . D . 3.已知X 的分布列为

二项分布中方差的计算

二项分布中方差的计算 假设ξ~B (n ,p ), 即k n k k n q p C k P -==}{ξ 考虑E [ξ(ξ-1)]=Eξ2-Eξ 而 ∑∑ ∑∑=----=-=-=--=-----?-?=--=-=-n k k n k k n n k k n k n k k n k n k k n k k n q p C p n n q p k n k n n n q p k n k n k k q p C k k E 2 222222 )1()]!2(2[)!2()!2()1()! (!! ) 1()1()]1([ξξ 令2-=k i 上式=222220 22 2 )1()1(np p n p n n q p C p n n n i i n i i n -=-=-∑-=--- 即2222np p n E E -=-ξξ, 再将E ξ=np 代入上式,得)1(222222p np p n np np p n E -+=+-=ξ 最后得npq np p np p n E E D =--+=-=22222)()1()(ξξξ 例1的分布图 例2的分布图 4.2 超几何分布 例1的图形:

例2的图形: 定义4.2 设N 个元素分为两类, 有N 1个属于第一类, N 2个属于第二类(N 1+N 2=N ). 从中不重复抽样取n 个, 令ξ表示这n 个中第一类元素的个数, 则ξ的分布称为超几何分布, ),....,1,0()(2 1n m C C C m P n N m n N m N == =-ξ 规定: 如n

相关文档
相关文档 最新文档