文档库 最新最全的文档下载
当前位置:文档库 › 大学物理复习题目

大学物理复习题目

大学物理复习题目
大学物理复习题目

练习一 质点运动学

一、选择题

1、一质点沿x 轴运动,其速度与时间的关系为2

4t υ=+(SI ),当t=3 s 时,x=9 m,

则质点的运动学方程是 ( )

31A 4()3x t t m ?=-

31

B.4()3x t t m =+ 31

C.412()3x t t m =+- 31

D.412()3x t t m =++

2、一质点沿X 轴的运动规律是542

+-=t t x (SI),前三秒内它的 ( ) A 位移和路程都是3m ; B 位移和路程都是-3m ; C 位移是-3m ,路程是3m ; D 位移是-3m ,路程是5m

3、一质点在平面上运动,已知质点位置矢量的表示式为2

2

at bt =+r i j (其中a 、b 为常

量), 则该质点作 ( ) A 匀速直线运动 B 匀变速直线运动 C 抛物线运动 D 一般曲线运动

4、一小球沿斜面向上运动,其运动方程2

45t t s -+= (SI),则小球运动到最高点的时刻 是 ( ) A t=4S; B t=2S C t=8S; D t=5S

5、下列说法中哪一个是正确的 ( ) A 加速度恒定不变时,质点运动方向也不变 B 平均速率等于平均速度的大小 C 当物体的速度为零时,其加速度必为零

D 质点作曲线运动时,质点速度大小的变化产生切向加速度,速度方向的变化产生法向加速度

6、某质点作直线运动的运动学方程为x =3t-5t 3 + 6 (SI),则该质点作 ( ) A 匀加速直线运动,加速度沿x 轴正方向 B 匀加速直线运动,加速度沿x 轴负方向 C 变加速直线运动,加速度沿x 轴正方向 D 变加速直线运动,加速度沿x 轴负方向

7、一个质点在做匀速率圆周运动时 ( ) A 切向加速度改变,法向加速度也改变 B 切向加速度不变,法向加速度改变 C 切向加速度不变,法向加速度也不变 D 切向加速度改变,法向加速度不变 8、如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运

动。设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是 ( ) A.匀加速运动 B.匀减速运动 C.变加速运动 D.变减速运动

9、 质点的运动方程是r =Rcoswt i +Rsinwt j,R,w 为正的常数,从t=π/w 到t=2π/w 时间内,该质点的位移是 ( ) A -2R i B 2R i C -2 j D 0

10、质点沿半径为R 的圆周作匀速运动,每t 秒转一圈,在2t 时间间隔中,其平均速度和平均速率的大小分别为 ( )

A

t

R π2; t R π B 0;0

C 0; t R π2

D t

R

π2; 0

二、填空题

1、 质点作直线运动,其坐标x 与时间t 的关系曲线如图所示。则该质点在第 秒瞬时速度为零,在第 秒至第 秒间速度与加速度同方向。

2、一物体在某瞬时,以初速度0V

从某点开始运动,在t ?时间内,

经过一长度为s 的曲线路径后,又回到出发点,此时速度为0V

-,则在这段时间内:

(1)物体的平均速率 ; (2)物体的平均速度 ; (3)物体的平均加速度是 ;

3、已知质点的运动方程为

j t i t r )32(42

++=,则该质点的轨道方程为 。 4、 质点始沿X 轴作直线运动,位移方程x =t 2

-4t +3,式中t 以s 计,x 以m 计。 质点在2秒末的速度等于 ,加速度等于 。

5、 一物体悬挂在弹簧上,在竖直方向上振动,其振动方程为sin y A t ω= , 其中A 、均为常量,则

(1) 物体的速度与时间的函数关系式为___________________; (2) 物体的速度与坐标的函数关系式为___________________。

6、 质点运动的轨道方程是 x =4t (m ),y =2t 2

(m ),该质点在第3秒末的速率 为 ,加速度大小为 。

7、在x 轴上作变加速直线运动的质点,已知初速度为0V ,初始位置为0x ,加速度2

Ct

a =(其中C 为常量),则速度与时间的关系为V = ;运动方程x = 8、沿仰角θ以速度0V 斜向上抛出的物体,其切向加速度的大小(1)从抛出到到达最高点之前,越来越 ;(2)通过最高点后,越来越 。 9、一质点以)/(s m π 的速率作半径为5m 的圆周运动,则该质点在5s 内 (1)位移的大小___________________; (2)经过的路程___________________。

10、 质点作平面运动的位置矢量r =cos2t i +sin2t j ,式中t 以s 计,r 以m 计。 质点运动的切向加速度大小等于 ;法向加速度大小等于 ,轨迹方程为

11、物体沿半径0.5m 圆周运动,其角速度4t ω= ,式中t 以秒计,ω 以rad/s 计。 物体在第2秒末的切向加速度大小为 ,法向加速度大小为 12、在半径为R 的圆周上运动的质点,其速率与时间的关系为2

3ct V =(式中c 为常数),则从t = 0到t 时刻质点走过的路程s = ;t 时刻质点的切向加速度τa = ;

t 时刻质点的法向加速度n a = 。

13、 一质点在平面上做曲线运动,其速率V 与路程S 的关系为2

1S V +=则其切向加速度以路程S 来表示的表达示为a t =______________。

14、一质点从静止出发沿半径R =1m 的圆周运动,其角加速度随时间的变化规律是

t t 6122-=α(SI),则质点的角速度ω= ;切向加速度τa = 。

三、计算题

1、已知某质点的运动方程为2x t =,2

2y t =-,式中x 以m 计,t 以s 计,(1)计算并

图示质点的运动轨迹(2)求出第2s 内质点的平均速度(3)计算1s 末和2s 末质点的速度(4)计算1s 末和2s 末质点的加速度

2、质点的运动方程为2

1030x t t =-+和2

1520y t t =-,式中各字母为国际单位。试求:(1)初速度的大小和方向(2)加速的的大小和方向 3、质点沿直线运动,其速度

,如果t = 2时,x = 4,求t = 3时质点的位

置、速度和加速度.(其中v 以m/s 为单位,t 以s 为单位,x 以m 为单位)

4、质点沿直线运动,加速度

,如果当t = 3时,x = 9,v = 2,求质点的运动方

程.(其中a 以m/s 2

为单位,t 以s 为单位,x 以m 为单位,v 以m/s 为单位)

5、如图所示,从山坡底端将小球抛出,已知该山坡有恒定倾角030α=,球的抛射角0

60β=,

设球被抛出时的速率019.6m s υ=,忽略空气阻力,问球落在山坡上离山坡底端的距离为多少?此过程经历多长时间?

6、质点以不变的速率5m/s 运动,速度的方向与x 轴间夹角等于t 弧度(t 为时间的数值),当t = 0时,x = 0,y = 5m ,求质点的运动方程及轨道的正交坐标方程,并在xy 平面上描画出它的轨道.

7、A 车通过某加油站后其行驶路程x 与时间t 的关系可以表示为

,(其中t 以

s 为单位,x 以m 为单位)在A 车离开10 s 后B 车通过该加油站时速度为12 m/s ,且具有与A 车相同的加速度.求:(1)B 车离开加油站后追上A 车所需时间;(2)两车相遇时各自的速度.

9、质点从半径出发沿半径为3m 的圆周做匀速运动,切向加速度为3m.s -2

,问:(1) 经过多少时间后质点的总加速度恰于半径成450

?(2)在上述时间内,质点所经历的角位移和路程各位多少?

10、已知质点的运动学方程 (

)

22

cos sin R kt kt =+r i j ,式中R,k 均为常量,求:(1) 质点运动的速度及加速度的表达式;(2) 质点的切向加速度和法向加速度的大小

.

11、一质点作半径为r = 10 m 的圆周运动,其角加速度rad/s 2

,若质点由静止开始

运动,求质点在第1 s 末的(1)角速度;(2)法向加速度和切向加速度;(3)总加速度的大小和方向.

12、一质点沿半径0.1m 的圆周运动,其运动方程为3

24t θ=+(SI ),问: (1) 在2s 时,质点的发向和切向加速度各位多少?(2)法向加速度和切向加速度相等时,θ 角等于多少? 13、如图所示,质点P 在水平面内沿一半径为R=2 m 的圆轨道转动.转动的角速度ω

时间t 的函数关系为2

kt =ω (k 为常量)。已知s t 2= 时,质点P 的速度值为32 m/s ,试求1=t s 时,质点P 的速度与加速度的大小。

练习二 牛顿运动定律

一、选择题

1、下列关于惯性的说法中正确的是 ( ) A 物体作匀速直线运动的原因是因为它具有惯性和所受的合外力为零 B 在相同的合外力作用下,惯性小的物体获得的加速度小 C 自由下落的物体处于完全失重的状态,此时物体的惯性消失了 D 战斗机抛弃副油箱后,惯性减小了

7、 如图所示,静止在光滑水平面上的物体A ,一端靠着处于自然状态的弹簧.现对物体作用一水平恒力,在弹簧被压缩到最短这一过程中,物体的速度和加速度变化的情况是( ) A 速度增大,加速度增大 B 速度增大,加速度减小

C 速度先增大后减小,加速度先增大后减小

D 速度先增大后减小,加速度先减小后增大

8、如右图所示,m1与 m2通过细绳相连,滑轮质量及摩擦力忽略不计,设m 1:m 2=2:3,则m 2下落的加速度与重力加速度的比值为 ( ) A 3:2 B 2:3 C 1:5 D 5:1

9、一质量为10kg 的物体在力()(12040)SI t =+f i 作用下,沿x 轴运动。t=0时,其速度

6m s =i 0v ,则t=3s 时,其速度为 ( )

A 10m s i

B 66m s i

C 72m s i

D 4m s i 10、有一质点同时受到三个处于一平面上的力1f 、2f 和3f 的作用,其中

57t =-1f i j ,7t =-2f i +5j ,2(SI)t =3f i +2j ,设t=0时,质点的速度0=0v ,则质点将

( ) A 处于静止状态 B 做匀速直线运动 C 做加速运动 D 做减速运动

二、 填空题

1、质量为1kg 的物体由静止开始,从原点出发向X 轴正方向运动,所受作用力为恒力F =4N ,则物体在1秒末的位移等于 ,速度等于 。

2、一质量为1kg 的物体静止在光滑水平面上,现受到大小恒定的水平力F=1N 的作用,F 先向右,后向左,每秒钟改变一次方向,则1999s 内物体的位移是 。

4、一质量为0.25Kg 的质点,受力t =F i (SI )的作用,式中t 为时间。t=0时,该质点以

2m s =v j 的速度通过坐标原点,则该质点任意时刻的位置矢量是

5、一质量为5Kg 的物体(视为质点)在平面上运动,其运动方程为()2

63t SI =-r i j ,则

物体所受合外力的大小为 ,其方向为

6、用轻质细绳系住一小球,使其在铅直平面内作半径R =0.1m 的圆周运动,设小球在最高点时受绳的拉力等于自身重量的1.5倍,质点在最高点的运动速度等于 。

7、质量为0.1kg 的物体, 以20m/s 的速率作半径为0.5m 的匀速圆周运动, 物体在运动中所受的法向力大小等于 , 方向指向 , 切向力大小等于 。

三、计算题

2、质量为0.5kg 的物体沿x 轴作直线运动,在沿x 方向的力

的作用下,t = 0

时其位置与速度分别为x 0 =5,v 0 =2,求t = 1时该物体的位置和速度.(其中F 以N 为单位,t 以s 为单位,x 0以m 为单位,v 0以m/s 为单位.

3、在如图所示的倾角为

的斜面上,由一轻杆相连的二滑块A 、B 质量相

同,mA = mB = 2.5 kg ,与斜面间的滑动摩擦系数分别为

.求杆中的张力(或压力)以及滑块的加速度

7、一个滑轮组如图所示,其中A为定滑轮. 一根不能伸长的绳子绕过两

个滑轮,上端悬于梁上,下端挂一重物,质量为m1=1.5kg;动滑轮B 的

轴上悬挂着另一重物,其质量为m2=2kg,滑轮的质量、轴的摩擦及绳的

质量均忽略不计. 求:

(1)两重物的加速度和绳子中的张力.

(2)定滑轮A的固定轴上受到的压力.

υ的摩托车,在关闭发动机后沿直线滑行,它

9、一质量为m 、速度为

=-,其中k 为大于零的常数. 试求:(1)关闭发动机后t 时刻的速所受到的阻力为f kυ

度;(2)关闭发动机后t 时间内摩托车所走路程

10、质量为1.5 kg的物体被竖直上抛,初速度为60 m/s,物体受到的空气阻力数值与其速率成正比,,,求物体升达最高点所需的时间及上升的最大高度11、质量为1000kg的船,发动机熄火时速度为90km/h,水的阻力与船速成正比,Fr=-kv,其中k = 100kg/s.假设水面静止不流动,求(1)熄火后船速减小到45km/h所需要的时间;

(2)熄火后1分钟内船的行程,以及船的最大航程.

12、轻杆之一端系着一块石头,使石头在竖直平面内作匀速率圆周运动,如果测得杆中张力的最大值与最小值之差为4.9N,求石块的质量

13、质量为1kg的物体由静止开始作匀加速圆周运动,已知圆周半径R=1m,角加速度α=(3/π)red/s2,试求物体在通过1/4圆周时所受的切向力、法向力和合力。

14、一个质量为m 的珠子系在线的一端,线的另一端系在墙上的钉

子上,线长为l ,先拉动珠子使线保持水平静止,然后松手使珠子

下落. 求线摆下θ角时这个珠子的速率和绳子的张力.

15、一质量为m 的小球最初位于如图所示的A 点,然

后沿半径为r 的光滑圆弧的内表面ADCB 下滑。试求小

球在C 时的角速度和对圆弧表面的作用力。

练习三 动量守恒定律和能量守恒定律

一、选择题

1、一个作匀速率圆周运动的物体,在运动过程中,保持不变的物理量是( ) A .速度 B .加速度 C .动量 D .动能

2、有两个同样的物体处于同一位置,第一个物体水平抛出,第二个物体沿斜面由静止开始无摩擦地自由滑下,则两物到送地面所用时间t 1和t 2 ,到达地面时的速率1v 和2v 之间的关

系是( )

A. t 1<t 2 1v <2v B .t 1>t 2 1v >2v C .t 1<t 2 1v >2v D .t 1>t 2 1v <2v

3、用水平力F 将置于光滑水平面上的木箱向前拉动距离S ,力F 对木箱所作的功为W 1;第二次用相同的水平力F 将置于粗糙水平面上的同一木箱向前拉动相同距离S ,力F 对木箱所作的功为W 2,则( )

A .W 1 = W 2

B .W 1>W 2

C .W 1<W 2

D .无法判断

4、下列说法中正确的是( )

A .物体的动能不变,动量也不变

B .物体的动量不变,动能也不变

C .物体的动量变化,动能也一定变化

D .物体的动能变化,动量不一定变化

5、一子弹水平射入置于光滑水平面上的木块中而不穿出,从子弹开始射入到和它具有共同速度的过程中,子弹与木块所组成的系统( ) A .动量守恒,动能守恒 B .动量守恒,动能不守恒 C .动量不守恒,动能守恒 D .动量不守恒,动能不守恒

6、一个运动物体,当它动量的大小增加到原来的2倍时,其动能增加到原来的( )

A .2倍

B .4倍

C .6倍

D .8倍

7、质量为20g 的子弹沿x 轴正方向以500m/s 的速率射入一木块后,与木块一起仍沿x 轴正方向以50m/s 的速率前进,在此过程中木块所受的冲量为( )

A .9N ·S

B .-9N ·S

C .10N ·S

D .-10N ·S

8、一质量为10Kg 的物体在力f=(120t+40)i(SI)作用下,沿x 轴运动,t=0时,其速度V 0=6im/s,则t=3s 时,其速度为 ( )

A .10im/s

B .66im/s

C .72im/s

D .4im/s

9、有一质点同时受到三个处于同一平面上的力f 1,f 2和f 3的作用,其中f 1=5i-7tj, f 2=-7i+5tj, f 3=2i+2tj(SI),设t=0时,质点的速度为0,则质点将( )

A .处于静止

B .做匀速直线运动

C .做加速运动

D .做减速运动

10、一个不稳定的原子核,质量为M,开始时静止,当它分裂出一个质量为m ,速度为v 0的粒子后,原子核其余部分沿相反方向反冲,则反冲速度大小为( ) A .

0m v M m - B .0m

v M

C .0M m v m +

D .0m v M m +

11、一长为L ,质量均匀的链条,放在光滑水平面上。如使其长度的一半悬于桌边下,由静止释放,任其自由滑行,则刚好链条全部离开桌面时的速率为( )

A D.

12、一弹簧原长0.5m,劲度系数为k,上端固定在天花板上,当下端悬挂一盘子时,其长度为0.6m,然后在盘中放一物体,弹簧长度变为0.8m,则盘中放入物体后,在弹簧伸长过程中弹力做功为()

A.

0.8

0.6

kxdx

? B.0.80.6kxdx

-? C.0.30.1kxdx

? D.0.30.1kxdx

-?

二、填空题

1、甲、乙两物体的质量比M甲:M乙= 4:1,若它们具有相等的动能,则甲、乙两物体具有的动量之比为

3、质量为1.0kg的物体运动速率由2.0m·s -1增加到4.0m·s -1的过程中,合外力对它所做的功为

4、质量为2.0kg的物体自离地面0.40m处自由下落到地面上而不弹起,在撞击地面过程中重力可忽略。则地面给物体的冲量大小为,方向为。

5、一物体受力F=2x-3的作用,式中x以m为单位,F以N为单位,若物体沿0x轴从x1=1m 移动到x2=3m,则力在此过程中所做的功为。

6.一弹簧伸长了0.02m时具有20J的弹性势能,当弹簧缩短了0.01m时所具有的弹性势能为。

7、一物体质量为10Kg,受到方向不变的力F=30+40t(SI)的作用,在开始的2s内,此力的冲量大小等于,若物体的初速度大小为10m/s,方向与F同向,则在2s末物体速度大小等于。

8、从轻弹簧的原长开始第一次拉长L,在此基础上,第二次使弹簧再伸长L,继而第三次又伸长L。则第三次拉伸和第二次拉伸弹簧时做功的比值为。

10、质量为16Kg的物体放在粗糙水平面上,摩擦因数为0.30,一和水平方向成30°的力F 去推此物体,使它在水平面上匀速移动20m,则力F做的功为。

三.计算题

1.一质量为0.20kg的小球,系在长为2.0m的细绳上。绳的另一端系在天花板上,把小球移至使细绳与竖直方向成30°的位置,然后由静止放开,求:(1)绳索从30。到0。角过程中,重力和张力所作的功。(2)物体在最低位置时的动能和速率。(3)在最低位置时绳中张

力。

2.单摆摆长为l,一端所系摆锤质量为m,另一端系在O点,将单摆拉到水平位置由静止开

始释放,求(1)摆锤运动到最低点时的速度。(2)在最低位置时绳中张力

3.一质量为m的小球从内壁为半球型的容器边缘A处滑下,容器的半径为R,内壁光滑,且被固定在桌面上。求(1)小球滑至最低点B处时的速度。(2)小球在B处时对壁的压力。

4.一人从10m深的井中提水,起始桶中装有10.0kg的水,由于水桶漏水,每升高1.00m要漏

去0.20kg的水,水桶被匀速地从井中提到井口,求人所作的动.

5.质量m=0.10kg的物块自高h=5.0m处由静止沿光滑轨道下滑.(1)求滑至水平面时的速度.(2) 若继续向左运动压缩劲度系统k=1.0×103 N· m-1 的弹簧,求弹簧的最大压缩量(g 取10m·s-2 )

6.质量为0.05kg的子弹穿过一块木板.穿进前子弹的速度为820 m· S-1,穿出后的速度减为720 m· S-1, 子弹在板中经历的时间为2×10-3s, 求木板对子弹的平均作用力的大小和方向.

7. 质量m=2.0kg的滑块自1/4圆弧轨道的上端由静止滑下,圆弧半径为R=1.0m,滑至弧底时的速度为v=4.0 m· s-1, 求此过程中轨道的摩擦力对物块所作的功.

8. 质量为m 的子弹以v 水平射入质量为M 的砂箱中而不穿出.求砂箱所能摆升的最大高度。

9. 一弹簧振子置于光滑的水平面上, 弹簧的劲度系数K=900N ·m -1

, 振子质量M=0.99kg, 一质量m=0.01kg 的子弹水平射入振子M 内而不穿出,并一起向右压缩弹簧,已知弹簧的最大压缩量x m =0.10m ,求子弹射入M 前的速度V 0.

11.质量为m 的弹丸,水平射入质量为'm 的摆锤而不穿出,摆线长为l ,如果要使摆锤能在垂直平面内完成一个完全的圆周运动,弹丸速度的最小值v 应为多少?

12.有一质量略去不计的轻弹簧,其一端系在铅直放置的圆环的顶点P ,另一端系一质量为m 的小球,小球穿过圆环并可在圆环上作摩擦可以略去不计的运动。设开始时小球静止于A 点,弹簧处于自然状态,其长度为圆半径R 。当小球运动到圆环底端B 点时,小球对圆环没有压力,求此弹簧的劲度系数。

练习四 机械振动

一、选择题

1.把单摆从平衡位置拉开,使摆线与竖直方向成+40o

角,然后放手任其振动,则它们对应的相位依次为 [ ]

A.

23π . π . 2π . 0 ; B. 0 . 2

π

. π . 23π

C.

. 0 . 2

π

. 0 D. 6π+ . 0 . 6π-. 0

2.作简谐振动的弹簧振子,当振子通过平衡位置时,达到最大值的物理量是 [ ]

A. Ek 、a

B. υ、a

C. υ、Ek

D. Ek 、Ep

3.将一长为L ,劲度系数为K 的弹簧分割成等长的2段后并联作一弹簧,将一质量为m 的物体先后挂在分割前、后的弹簧下面。则分割前后两个弹簧振子振动频率之比为 [ ]

A. 1 : 2

B.2: 1

C. 1 : 2

D. 2 : 1

4. 一质点做简谐运动,周期为T 。它从平衡位置向X 轴正方向运动过程中,自二分之一最大位移处振动到最大位移处所需时间为 [ ]

A.

12T B. 8T C. 6T D. 4

T 5.一质点同时参与两个简谐振动,其振动方程分别为X 1=0.20cos(πt+3

π

)、X 2=0.10cos(πt 3

),式中物理量采用国际单位,则合振动的振幅A 、初相?分别为[ ]

A. 0.30m 、π

B. 0.10m 、

π C. 0.30m 、

3π D. 0.10m 、3

π 6、一弹簧振子作简谐振动,当位移为振幅一半时,其动能为总能量的 ( ) A 、 1/4 B 、 1/2 C 、

、 3/4

7、一个弹簧振子作简谐振动,总能量为E ,如果其振幅增加到原来的两倍,则其总能量变

为( )

A :2E ;

B :3E ;

C :4E ;

D :6

E 。

8、一个作简谐振动的物体,下列说法中正确的是( ) A :物体处于运动正方向端点时,速度和加速度都具有最大值; B :物体处于平衡位置且向负方向运动时,速度和加速度都为零。 C :物体处于平衡位置且向正方向运动时,速度最大,加速度为零。 D :物体处于运动负方向端点时,速度最大,加速度为零。

9、当质点以频率ν作简谐振动时,它的动能的变化频率为 ( )

A 4ν

B 2ν

10、一个简谐振动的振动曲线如图所示,此

振动的周期为:( )

(A)、12s ; (B)、10s ;

(C)、14s ; (D)、11s 。

12、 两个简谐振动的振动曲线如图所示,则有 ( )

(A )A 超前π/2; (B )A 落后π/2; (C )A 超前π; (D )A 落后π。

)

S

二.填空题

1.右图为一质点作简谐振动的图象,则其振动的振幅A=________,频率ω=_________,初相?=________.

2. 有一弹簧振子,振幅A=2.0×102-m,周期T=1.0S ,初

相?=

4

,其运动方程为_________________(以余弦函数表示)。 3. 某质点作简谐振动的运动方程为X=0.10cos(20πt+4

π

),式中物理量的单位均采用国际

单位,则其振幅A=_________、频率ν=__________、初相?=__________。

4. 某质点作简谐振动的运动方程为X=0.10cos(20πt+4

π

),式中物理量的单位均采用国际

单位,则t=2s 时,质点的位移X=________,速度v=_________,加速度a=__________。

5. 为了测得物体质量m ,将其挂到一弹簧下并让其自由振动,测得振动频率为ν=10HZ 。而当将另一质量m '=0.5kg 的物体单独挂在该弹簧下时,测得振动频率ν'

=2.0HZ ,则被测物体质量m=__________。

6. 有两个相同的弹簧,其倔强系数均为k ,(1)把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为 ;(2)把它们并联起来,下面挂一质量为m 的重物,此系统作简谐振动的周期为 。

7. 质量为m 的物体和一轻弹簧组成弹簧振子其固有振动周期为T ,当它作振幅为A 的自由简谐振动时,其振动能量E = 。

8.两个同方向的振动X 1=0.10cos(20πt+

4

π

)、X 2=0.10cos(20πt+?)合成时,当?=_______ 时(在一个周期内),合振幅最大;当?= 时(在一个周期内),合振幅最小。

9.弹簧振子在水平桌面上做简谐振动时,A=2.0×10

2

-m,①若t=0时,物体在平衡位置且向

正方向运动,则其初相?= 。②若t=0时,物体在A=-1.0×102

-m 处向负方向运

动,则其初相?= 。

三.计算题

1、如图所示,一轻弹簧的右端连着一物体,弹簧的劲度系数K=0.72N ·m

1

-,

物体的质量m=2.0×102-kg

(1) 把物体从平衡位置向右拉到x=0.05m 处停下后再释放,求简谐振动方程。 (2) 求物体从初位置到第一次经过x=0.025m 处时的速度。

2、一质量m=0.01kg 的物体做简谐振动,其振幅A=0.08m ,周期T=4S ,起始时刻物体在

0X =0.04m 处,向OX 轴负方向运动。

试求:(1)物体的简谐振动方程; (2)t=1.0S 时,物体所处位置和所受的力;

(3)由起始位置运动到X=

0.04m 处所需最短时间

3、质量m=0.10kg 的物体以振幅A=1.0×102-m 作简谐振动。其最大加速度a m =4.0m ·s 2

-,

求: (1) 振动周期

(2) 通过平衡位置时的动能 (3) 总能量

(4)

物体在何处其动能和势能相等

4、一放在水平桌面上的弹簧振子,振幅A=2.0×102

-m ,周期T=0.05s ,当t=0时(1)物体

在平衡位置向OX 轴负方向运动;(2)物体在X= 1.0×102

-m 处,向OX 轴正方向运动。

求以上两种情况下的运动方程

5、一个沿X 轴作简谐振动的小球,振幅A=2×10

2

-m ,速度最大值V m =3×10

2

- m ·s

1

-,若

取速度具有正的最大值时t=0 试求:(1)振动频率; (2)加速度最大值; (3)振动方程 6、一质点同时参于1X =cos πt 和2X =3cos (πt+

2

π

)两个简谐振动,式中物理量均采用国际单位。 试求:(1)合振动振幅A ; (2)合振动的初相?; (3)合振动的振动方程 7、如图所示,质量为1m =1.00×10

2

-kg 的子弹,以500 m ·s

1

-的速度射入并嵌在木块中,

同时使弹簧压缩作简谐振动。设木块质量

2m =4.99kg ,弹簧的劲度系数K=8.00×310 N ·m 1-,若以弹簧原长时物体所在处为坐标原

点,向左为X 轴正方向,求简谐振动方程。

8、某振动质点的x-t 曲线如图所示,试求 (1)简谐振动方程(用余弦函数表示) (2)点P 对应的相位

(3)从振动开始到点P 对应位置所需时间

9、一物体沿x 轴作简谐运动,振幅为0.06m ,周期为2.0s ,当t=0时,位移为0.03m ,且向x 轴正向运动。求:(1)t=0.5s 时,物体的位移、速度和加速度;(2)物体从x=-0.03m 处向x 轴负向运动开始,到平衡位置,至少需要多少时间?

10、 作简谐振动的小球,速度最大值为υm =3cm/s ,振幅A =2cm ,若从速度为正的最大值时开始计算时间,(1)求振动的周期;(2)求加速度的最大值;(3)写出振动方程表达式。

11、 一弹簧振子作简谐振动,振幅A =0.20m ,如弹簧的劲度系数k =2.0N/m ,所系物体的质量m =0.50kg ,试求:

(1)当动能和势能相等时,物体的位移是多少?

(2)设t =0时,物体在正最大位移处,达到动能和势能相等处所需的时间是多少?(在一个周期内。)

12、某质点作简谐振动的运动方程为X=0.10cos(20πt+4

π

)式中物理量的单位均采用国际单位,求其:

①振幅A 、频率ν、周期T 、初相?;

②t=2s 时,质点的位移X ,速度v ,加速度a.

13、一物体做简谐振动①当它的位置在振幅一半处时,试利用旋转矢量图计算它的相位可能为哪几个值?并作出旋转矢量。②谐振子在这些位置时,其动能与势能之比为多少?

14、一质量m=3kg 的物体与轻弹簧构成一弹簧振子,振幅A=0.04m 、周期T=2s ,求振子的最大速率及系统的总能量。

15、某质点质量m=0.1kg ,运动方程X=0.10cos(2.5πt+

4

π

)m ,求t=0.2s 时,质点受到的作用力大小及方向? 16、质量为10g 的物体做简谐振动时,其振幅为24cm 、周期为1.0s 、当t=0s 时,位移为+24cm ,求t=0.125s 时物体的位置与所受到的力的大小和方向?

练习五 波动

一、选择题

1、关于波长的概念,下列说法中错误的是 [ ] A.在一个周期内,振动所传播的距离

B.同一波线上相位差为π的两个振动的质点间的距离

C.横波的两个相邻波峰之间的距离

D.纵波的两个相邻密部对应点之间的距离

2、当波从一种介质进入另一种介质中时,保持不变的物理量是 [ ]

A.波长 频率

B.周期 波速

C.频率 周期

D.波长 波速 3、下列说法中正确的是 [ ] A.机械振动一定能产生机械波

B.质点的振动速度等于波的传播速度

C.质点的振动周期和波的周期数值上是相等的

D.波动方程中的坐标原点一定要选取在波源的位置上

4、沿X 轴正向传播的横波波形如图所示,质点A 、B 此刻的运动方向分别为

[ ]

A. A 向上 B 向下

B.A 向下B 向上

C.A 向上 B 向上

D.A 向下 B 向下

5、图中所示A 、B 为两相干波源,且初相相同。相距12m ,它们激起的两列相干波在同一介质中传播,波长为4m 、 AP=4m 、 AQ=7m ,两波的干涉结果是

[ ]

A. P 加强、Q 点减弱

B. P 点减弱、Q 点加强

C. P 点加强、Q 点加强

D. P 点减弱、Q 减弱 6、下列关于机械波能量的叙述正确的是 ( )

A 、 动能与势能相互转化,总机械能守恒

B 、 动能与势能相互转化,总机械能不守恒

C 、 动能与势能同步变化,总机械能守恒

D 、 动能与势能同步变化,总机械能不守恒 7、以速度u 沿X 轴负方向传播的横波某时刻的波形如图。该时刻的运动情况是( ) A :A 点速度大于零; B :B 点静止不动; C :C 点向下运动; D :D 点速度小于零。

8、频率为100Hz ,传播速度为300m /s 的平面简谐波,波线上两点振动的相位差为

3

π,则

此两点相距( )

(A)、2m; (B)、2.19m;

(C)、0.5m; (D)、28.6m;

9、一平面简谐波在弹性媒质中传播时,在传播方向上某质元在某一时刻处于最大位移处,则它的 ( ) (A)动能为零,势能最大;

(B)动能为零,势能也为零;

(C)动能最大,势能也最大;

(D)动能最大,势能为零。

二.填空题

1、已知波动方程y=5.0×

2

10cosπ(2.50t 1.0×4

10x)式中物理量均采用国际单位,则

此波的波长λ=_________,_周期T=_________,波速u=__________。

2、一横波在沿绳子传播时的波动方程为y=0.20cos(2.50πtπx)式中物理量均采用国际

单位,则绳上质点振动时的最大速度V m=_________,最大加速度

m

a=_________。

3、一列平面简谐波的波长λ=2m,则波线上距波源分别为16m和17m的两个质点其振动的相位差为__________。

4、图中所示为一平面简谐波某时刻的波形图线,则该波的波幅A=________,波长

λ=_________ ,周期T=_________。

5、如图所示,A、B为两相干波源,相距8m,且初相相等。它们所激起的两列相干波在同一介质中传播,波长8m,P点在AB连线的中垂线上距AB为6m处。PQ‖AB BQ⊥AB,则两列波在P、Q点的干涉结果是:P点________Q点_______(填加强或减弱)

6、一列平面简谐波的频率为100Hz,波速为250m/s,在同一条波线上,相距为0.5m的两点的相位差为

7、两列相干波的相位差Δφ= 时,出现相干加强,

Δφ= 时,出现相干减弱

8、产生机械波的必要条件是 和 。

三.计算题

1、波源作简谐运动,其运动方程为y=4.03

10-?cos240πt 式中物理量采用国际单位。它所形成的波以30m ·s 1-的速度沿一直线传播。求(1)波的周期及波长 (2)写出波动方程 2、波源作简谐运动,振幅为20.0cm ,周期为0.02s ,若该振动以100 m ·s 1-的速度沿一直线传播。设t=0时,波源处的质点经平衡位置向正方向运动。(1)写出波动方程(2)求距波源5.0m 处质点的运动方程和初相

3、有一平面简谐波沿X 轴正方向传播。已知振幅A=1.0m ,周期T=2.0s ,波长λ=2.0m ,在t=0时,坐标原点处的质点位于平衡位置沿y 轴的正方向运动。 求(1)波动方程

(2)t=1.0s 时各质点的位移分布,并画出该时刻的波形图 (3)x=0.5m 处质点的振动方程,并画出该质点的振动图线

4、 图中所示为波源的振动图线,它所激起的一列平面简谐波沿X 轴正方向传播,波长为12m 。若取波源为坐标原点,求(1)波源的振动方程 (2)波动方程

5、如图所示,P 、Q 为两相干波源,其振动的初相相同,振幅相同,它们所激发的相干波长为λ,设PQ=

2

3

λ,R 为PQ 连线上的一点。求:

(1)自P 、Q 发出的两列波在R 处的相位差 (2)两波在R 处干涉时的合振幅

6、如图所示,A 、B 两点为同一介质中两相干波,其振幅皆为52

10-?m ,频率均为100HZ ,

但当A 点为波峰时,点B 为波谷,设波速为101

·

-s m .试写出由A 、B 发出的两列波传到P 时

的干涉结果。

7、一平面简谐波以速度u=201

·-s m 沿直线传播,已知在传播路径上某点A 的简谐运动方程为y=32

10-?cos4πt (式中物理量均采用国际单位) (1)以A 点为坐标原点,写出波动方程

(2)以距A 点为5m 处的B 点为坐标原点,写出波动方程 (3)写出D 点的振动方程 (4)求C 、D 两点的相位差

8、一平面简谐波在t=0时刻的波形图如图所示。 求:(1)原点0的振动方程 (2)波动方程

(3)P 点的振动方程

9、右图所示为某平面简谐波在0=t 时的波形。此时P 点的振动速度大小为s

m π4。求该波的波动方

程。

10、波源作简谐振动,振幅为m 1

102-?,周期为0.02S 。若该振动以s

m u 100=的速度向

X 轴正方向传播,设0=t 时,波源处的质点经平衡位置向正方向运动,求该振动引起的波的波动方程。

11、质点作简谐振动,振幅为0.06m,周期为2.0s,当t=0时,质点恰好处于负向最大位

移处,求:

(1) 质点的运动方程

(2)此振动以波速u=2m/s 沿x轴正方向传播时,形成一维简谐波的波动方程

(3)该波的波长

12、波源作简谐运动,周期为0.02s,若该振动以100m/s的速度沿直线传播,设t=0时,波源处的质点经平衡位置向正方向运动,求:(1)距波源15.0m和5.0m处质点的运动方程;(2)距波源分别为16.0m和17.0m的两质点间的相位差。

13、已知一波动方程y=0.05sin[10πt-2x]m,(1)求波长、频率、波速、和周期;(2)说明x=0时方程的意义。

14、已知一波动方程y=5cosπ[2.5t-0.1x]m,求波长、波速、和周期;

15、一横波沿绳子传播时波方程为y=0.2cos [2.5πt-πx]m,求(1)振幅、波速、波长;(2)x=1.0m处质点的振动方程。

16、一物体系于弹簧下端,因重力作用,使弹簧伸长9.8cm,如果给物体一个向下的瞬时冲击力使它具有1m/s的向下速度,它将上下振动起来,求(1)角频率、振幅、初相;(2)振动方程;(3)物体从平衡位置到1/2振幅处所需的最短时间。

习题六气体动理论

一、选择题

1.以下是关于理想气体内能的叙述,其中正确的是:()A.内能是由系统传递热量多少决定的物理量;

B.内能是由系统做功多少决定的物理量;

C.内能是由系统做功和传递热量共同决定的物理量;

D.内能是宏观状态参量,是温度的单值函数;

2.设两种不同的理想气体具有相同的温度与分子数密度,则必有()

A. 压强相等;

B. 体积相等;

C. 密度相等;

D. 内能相等。

5、2mol质量氢气的温度为T,其内能为()

A.5kT; B.5RT; C.2.5kT; D.2.5RT

6. 根据经典的能量按自由度均分原理,每个自由度的平均能量为()(A)3kT/2;(B)kT/2;(C)3RT/2;(D)RT/2;

8、两种不同的理想气体若温度相同,则其一定相同的量是()(A)压强;(B)内能;(C)分子平均平动动能;(D)方均根速率。

9、有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,

那么由此可以得出下列结论,正确的是()

(A)氧气的温度比氢气的高;(B)氢气的温度比氧气的高;

(C)两种气体的温度相同;(D)两种气体的压强相同。

大学物理试卷期末考试试题答案

2003—2004学年度第2学期期末考试试卷(A 卷) 《A 卷参考解答与评分标准》 一 填空题:(18分) 1. 10V 2.(变化的磁场能激发涡旋电场),(变化的电场能激发涡旋磁场). 3. 5, 4. 2, 5. 3 8 6. 293K ,9887nm . 二 选择题:(15分) 1. C 2. D 3. A 4. B 5. A . 三、【解】(1) 如图所示,内球带电Q ,外球壳内表面带电Q -. 选取半径为r (12R r R <<)的同心球面S ,则根据高斯定理有 2() 0d 4πS Q r E ε?==? E S 于是,电场强度 204πQ E r ε= (2) 内导体球与外导体球壳间的电势差 22 2 1 1 1 2200 01211d 4π4π4πR R R AB R R R Q Q dr Q U dr r r R R εεε?? =?=?==- ????? ? r E (3) 电容 12 001221114π/4πAB R R Q C U R R R R εε??= =-= ?-?? 四、【解】 在导体薄板上宽为dx 的细条,通过它的电流为 I dI dx b = 在p 点产生的磁感应强度的大小为 02dI dB x μπ= 方向垂直纸面向外. 电流I 在p 点产生的总磁感应强度的大小为 22000ln 2222b b b b dI I I dx B x b x b μμμπππ===? ? 总磁感应强度方向垂直纸面向外. 五、【解法一】 设x vt =, 回路的法线方向为竖直向上( 即回路的绕行方向为逆时

针方向), 则 21 d cos602B S Blx klvt Φ=?=?= ? ∴ d d klvt t εΦ =- =- 0ac ε < ,电动势方向与回路绕行方向相反,即沿顺时针方向(abcd 方向). 【解法二】 动生电动势 1 cos602 Blv klvt ε?动生== 感生电动势 d 111 d [cos60]d 222d d dB B S Blx lx lxk klvt t dt dt dt εΦ=- =?=--?===?感生- klvt εεε==感生动生+ 电动势ε的方向沿顺时针方向(即abcd 方向)。 六、【解】 1. 已知波方程 10.06cos(4.0)y t x ππ=- 与标准波方程 2cos(2) y A t x π πνλ =比较得 , 2.02, 4/Z H m u m s νλνλ==== 2. 当212(21)0x k ππΦ-Φ==+合时,A = 于是,波节位置 21 0.52k x k m += =+ 0,1,2, k =±± 3. 当 21222x k A ππΦ-Φ==合时,A = 于是,波腹位置 x k m = 0,1,2, k =±± ( 或由驻波方程 120.12cos()cos(4)y y y x t m ππ=+= 有 (21) 00.52 x k A x k m π π=+?=+合= 0,1,2, k =±± 20.122 x k A m x k m π π=?=合=, 0,1,2, k =±± )

大学物理(下)期末考试试卷

大学物理(下)期末考试试卷 一、 选择题:(每题3分,共30分) 1. 在感应电场中电磁感应定律可写成?-=?L K dt d l d E φ ,式中K E 为感应电场的电场强度。此式表明: (A) 闭合曲线L 上K E 处处相等。 (B) 感应电场是保守力场。 (C) 感应电场的电力线不是闭合曲线。 (D) 在感应电场中不能像对静电场那样引入电势的概念。 2.一简谐振动曲线如图所示,则振动周期是 (A) 2.62s (B) 2.40s (C) 2.20s (D) 2.00s 3.横谐波以波速u 沿x 轴负方向传播,t 时刻 的波形如图,则该时刻 (A) A 点振动速度大于零, (B) B 点静止不动 (C) C 点向下运动 (D) D 点振动速度小于零. 4.如图所示,有一平面简谐波沿x 轴负方向传 播,坐标原点O 的振动规律为)cos(0φω+=t A y , 则B 点的振动方程为 (A) []0)/(cos φω+-=u x t A y (B) [])/(cos u x t A y +=ω (C) })]/([cos{0φω+-=u x t A y (D) })]/([cos{0φω++=u x t A y 5. 一单色平行光束垂直照射在宽度为 1.20mm 的单缝上,在缝后放一焦距为2.0m 的会聚透镜,已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.00mm ,则入射光波长约为 (A )100000A (B )40000A (C )50000A (D )60000 A 6.若星光的波长按55000A 计算,孔镜为127cm 的大型望远镜所能分辨的两颗星2 4 1

大学物理练习题(下)

第十一章真空中的静电场 1.如图所示,真空中一长为L的均匀带电细直杆,电荷为q,试求在直杆延长线上距杆的一端距离为d的P点的电场强度. L P 2.一个点电荷位于一边长为a的立方体高斯面中心,则通过此高斯面的电通量为???,通过立方体一面的电场强度通量是???,如果此电荷移到立方体的一个角上,这时通过(1)包括电荷所在顶角的三个面的每个面电通量是???,(2)另外三个面每个面的电通量是???。 3.在场强为E的均匀静电场中,取一半球面,其半径为R,E的方向和半球的轴平行,可求得通过这个半球面的E通量是() A.E R2 π B. R2 2π C. E R2 2π D. E R2 2 1 π 4.根据高斯定理的数学表达式?∑ ?= S q S E / dε ? ? 可知下述各种说法中,正确的是() (A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零. (B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零. (C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零. (D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷. 5.半径为R的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E与距轴线的距离r的关系曲线为( ) E O r (A) E∝1/r 6.如图所示, 电荷-Q均匀分布在半径为R,长为L的圆弧上,圆弧的两端有一小空隙,空隙长为图11-2 图11-3

)(R L L <

大学物理下试题库

大学物理下试题库 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

大学物理(下)试题库第九章静电场 知识点1:电场、电场强度的概念 1、、【】下列说法不正确的是: A:只要有电荷存在,电荷周围就一定存在电场; B?:电场是一种物质; C:电荷间的相互作用是通过电场而产生的; D:电荷间的相互作用是一种超距作用。 2、【】电场中有一点P,下列说法中正确的是: A:若放在P点的检验电荷的电量减半,则P点的场强减半; B:若P点没有试探电荷,则P点场强为零; C:P点的场强越大,则同一电荷在P点受到的电场力越大; D:P点的场强方向为就是放在该点的电荷受电场力的方向 3、【】关于电场线的说法,不正确的是: A:沿着电场线的方向电场强度越来越小; B:在没有电荷的地方,电场线不会中止; C:电场线是人们假设的,用以形象表示电场的强弱和方向,客观上并不存在: D:电场线是始于正电荷或无穷远,止于负电荷或无穷远。 4、【】下列性质中不属于静电场的是: A:物质性; B:叠加性; C:涡旋性; D:对其中的电荷有力的作用。

5、【 】在坐标原点放一正电荷Q ,它在P 点(x=+1, y=0)产生的电场强度为E .现 在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使P 点的电场强度等于零? (A) x 轴上x>1. (B) x 轴上00 6、真空中一点电荷的场强分布函数为:E = ___________________。 7、半径为R ,电量为Q 的均匀带电圆环,其圆心O 点的电场强度E=_____ 。 8、【 】两个点电荷21q q 和固定在一条直线上。相距为d ,把第三个点电荷3q 放在 21,q q 的延长线上,与2q 相距为d ,故使3q 保持静止,则 (A )212q q = (B )212q q -= (C )214q q -= (D )2122q q -= 9、如图一半径为R 的带有一缺口的细圆环,缺口长度为d (d<

大学物理下 试卷

大学物理(下)试卷 一、选择题 1、在静电场中,下列说法中正确的是 (D ) (A ) 带正电荷的导体其电势一定是正值 (B ) 等势面上各点的场强一定相等 (C ) 场强为零处电势也一定为零 (D )场强相等处电势不一定相等 2、一球壳半径为R ,带电量 q ,在离球心O 为 r (r < R )处一点的电势为(设“无限远”处为电势零点)(B ) (A ) 0 (B ) R q 0π4ε (C ) r q 0π4ε (D ) r q 0π4ε- 3、 两个半径相同的金属球,一为空心,一为实心,两者的电容值相比较 (C ) (A ) 空心球电容值大 (B ) 实心球电容值大 (C )两球电容值相等 (D )大小关系无法确定 4、有一外表形状不规则的带电的空腔导体,比较A 、B 两点的电场强度E 和电势U ,应该是: (A ) (A )B A B A U U E E == , (B )B A B A U U E E <= , (C ) B A B A U U E E >= , (D )B A B A U U E E =≠ , 5、一带电粒子,垂直射入均匀磁场,如果粒子质量增大到2倍,入射速度增大到2倍,磁场的磁感应强度增大到4倍,则通过粒子运动轨道包围范围内的磁通量增大到原来的(B ) (A )2 倍 (B )4 倍 (C )1/2 倍 (D )1/4 倍 6、图中有两根“无限长”载流均为I 的直导线,有一回路 L ,则下述正确的是(B ) (A )0 d =??L l B ,且环路上任意一点B= 0 (B ) d =??L l B ,且环路上任意一点B ≠ 0 (C ) d ≠??L l B ,且环路上任意一点B ≠ 0(D ) d ≠??L l B ,且环路上任意一点B= 常量 7、若用条形磁铁竖直插入木质圆环,则环中(B ) (A ) 产生感应电动势,也产生感应电流 (B ) 产生感应电动势,不产生感应电流 (C ) 不产生感应电动势,也不产生感应电流(D ) 不产生感应电动势,产生感应电流 8、均匀磁场如图垂直纸面向里. 在垂直磁场的平面内有一个边长为l 的正方形金属细线框,在周长固定的条件下,正方形变为一个圆,则图形回路中感应电流方向为 (B ) (A ) 顺时针 (B ) 逆时针 (C ) 无电流 (D ) 无法判定

2015大学物理(下)期末复习题答案

大学物理(下)期末复习题 一、选择题 [ C ] 2.关于可逆过程和不可逆过程的判断: (1) 可逆热力学过程一定是准静态过程. (2) 准静态过程一定是可逆过程. (3) 不可逆过程就是不能向相反方向进行的过程. (4) 凡有摩擦的过程,一定是不可逆过程. 以上四种判断,其中正确的是 (A) (1)、(2)、(3).(B) (1)、(2)、(4). (C) (2)、(4).(D) (1) 、(4) [ D ] 3. 理想气体卡诺循环过程的两个绝热下的面积大小(图中阴影部分) 分别为S1和S2,则两者的大小关系是 (A)S1>S2 ;(B)S1=S2 ;(C)S1

5. 一定量的的理想气体,其状态改变在P-T图上沿着直线一条沿着 一条直线从平衡态a改变到平衡态b(如图) (A)这是一个绝热压缩过程. (B)这是一个等体吸热过程. (C)这是一个吸热压缩过程. (D)这是一个吸热膨胀热过程. [D] 6.麦克斯韦速率分布曲线如图所示,图中A、B两部分面积相等, 则该图表示 (A)v0为最概然速率;(B)v0为平均速率; (C)v0为方均根速率; (D)速率大于和小于v0的分子数各占一半. [D] 7. 容器中储有定量理想气体,温度为T ,分子质量为m ,则分子速 度在x 方向的分量的平均值为:(根据理想气体分子模型和统计假设讨论) [ A ] 8. 设一部分偏振光由一自然光和一线偏振光混合构成。现通过偏振片观察到这部分偏振光在偏振 60时,透射光强减为一半,试求部分偏振光中自然光和线偏振片由对应最大透射光强位置转过 光两光强之比为 (A) 2:1 .(B) 4:3.(C) 1:1.(D) 1:2.[ C ] 9.如图,一束动量为p的电子,垂直通过缝宽为a的狭缝,问距缝为D处的荧光屏上显示出的衍射图样的中央亮纹的宽度为 (A) 2ha/(Dp).(B) 2Dh/(ap).(C) 2a2/D.(D) 2ha/p.[ B ]10.一氢原子的动能等于氢原子处于温度为T的热平衡时的平均动能,氢原子的质量为m,则此氢原子的德布罗意波长为.

青岛科技大学大学物理C下试题

2011-2012 1 大学物理(C 下)(Ⅰ卷) 数 理 学 院 10级理工科40学时各专业 考试时间:2012-1-5(答案写在答题纸上,写在试题纸上无效) 一、选择题(共36分,每题3分) 1.如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列 哪一种情况可以做到?[ ] (A) 载流螺线管向线圈靠近. (B ) 载流螺线管离开线圈. (C) 载流螺线管中电流增大. (D ) 载流螺线管中插入铁芯. 2. 如图,两根直导线ab 和cd 沿半径方向被接 到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B 沿图中闭合路径L 的积分??L l B d [ ] (A) I 0μ. (B) I 03 1μ. (C) 4/0I μ. (D) 3/20I μ. 3. 在感应电场中电磁感应定律可写成 t l E L K d d d Φ-=?? ,式中K E 为感应电场的电场强度.此式表明:[ ] (A) 闭合曲线L 上K E 处处相等. (B) 感应电场是保守力场. (C) 感应电场的电场强度线不是闭合曲线. (D) 在感应电场中不能像对静电场那样引入电势的概念. 4. 轻弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2的是弹簧又 伸长了?x .若将m 2移去,并令其振动,则振动周期为[ ] (A) g m x m T 122?π=. (B) g m x m T 2 12?π=. 课程考试试题 学期学年拟题学院(系): 适 用 专 业:

(C) g m x m T 2121?π=. (D) g m m x m T )(2212+π=?. 5. 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒.则此简谐振动 的振动方程为:[ ] (A) )3 232cos(2π+π=t x . (B) )3232cos(2π-π=t x . (C) )3234c o s (2π+π=t x . (D) )3 234c o s (2π-π=t x (E) )4 134cos(2π-π=t x . 6. 一平面简谐波表达式为 )2(πsin 10.0x t y --= (SI),则该波的频率ν (Hz), 波速u (m/s)及波线上各点振动的振幅 A (m)依次为 [ ] (A) 21,21,-0.10. (B) 2 1,1,-0.10. (C) 21,2 1,0.10. (D) 2,2,0.10. 7. 在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的长度为[ ] (A ) 1.5 λ. (B ) 1.5 λ/ n . (C ) 1.5 n λ. (D ) 3 λ. 8. 在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =8 λ的单缝上,对应 于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为[ ] (A ) 2 个. (B ) 4 个. (C ) 6 个. (D ) 8 个. 9. 如图所示,平板玻璃和凸透镜构成牛顿环装置,全部浸入n =1.60 的液体中,凸透镜可沿O O '移动,用波长λ=500 nm (1nm=10-9m )的单色光垂直入射.从上向下观察,看到中心是一个暗斑,此时凸透镜顶点距平板玻璃的距离最少是[ ] (A ) 156.3 nm (B ) 148.8 nm (C ) 78.1 nm (D ) 74.4 nm (E ) 0 . 10. 在某地发生两件事,静止位于该地的甲测得时间间隔为8s ,若相对于甲作匀速直线运动的 乙测得时间间隔为10 s ,则乙相对于甲的运动速度是(c 表示真空中光速)[ ] (A ) (4/5) c . (B ) (3/5) c . (C ) (2/5) c . (D ) (1/5) c . 11. 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则入射光光子能量ε与反冲 电子动能k E 之比/k E ε为[ ] (A ) 2. (B ) 6. (C ) 4. (D ) 5.

《大学物理 》下期末考试 有答案

《大学物理》(下)期末统考试题(A 卷) 说明 1考试答案必须写在答题纸上,否则无效。请把答题纸撕下。 一、 选择题(30分,每题3分) 1.一质点作简谐振动,振动方程x=Acos(ωt+φ),当时间t=T/4(T 为周期)时,质点的速度为: (A) -Aωsinφ; (B) Aωsinφ; (C) -Aωcosφ; (D) Aωcosφ 参考解:v =dx/dt = -A ωsin (ωt+φ) ,cos )sin(2 4/?ω?ωπA A v T T t -=+?-== ∴选(C) 2.一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的 (A) 7/6 (B) 9/16 (C) 11/16 (D )13/16 (E) 15/16 参考解:,1615)(221242122122 1221=-=kA k kA kA mv A ∴选(E ) 3.一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中: (A) 它的动能转换成势能. (B) 它的势能转换成动能. (C) 它从相邻的一段质元获得能量其能量逐渐增大. (D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小. 参考解:这里的条件是“平面简谐波在弹性媒质中传播”。由于弹性媒质的质元在平衡位置时的形变最大,所以势能动能最大,这时动能也最大;由于弹性媒质的质元在最大位移处时形变最小,所以势能也最小,这时动能也最小。质元的机械能由最大变到最小的过程中,同时也把该机械能传给相邻的一段质元。∴选(D )

4.如图所示,折射率为n 2、厚度为e 的透明介质薄膜 的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1 <n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜 上,则从薄膜上、下两表面反射的光束①与②的光程差是 (A) 2n 2 e . (B) 2n 2 e -λ / 2 . (C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2). 参考解:半波损失现象发生在波由波疏媒质到波密媒质的界面的反射现象中。两束光分别经上下表面反射时,都是波疏媒质到波密媒质的界面的反射,同时存在着半波损失。所以,两束反射光的光程差是2n 2 e 。 ∴选(A ) 5.波长λ=5000?的单色光垂直照射到宽度a=0.25mm 的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹,今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离d=12mm ,则凸透镜的焦距f 为: (A) 2m (B) 1m (C) 0.5m (D) 0.2m ; (E) 0.1m 参考解:由单缝衍射的暗纹公式, asin φ = 3λ, 和单缝衍射装置的几何关系 ftg φ = d/2, 另,当φ角很小时 sin φ = tg φ, 有 1103 310500061025.0101232==?=---?????λa d f (m ) , ∴选(B ) 6.测量单色光的波长时,下列方法中哪一种方法最为准确? (A) 双缝干涉 (B) 牛顿环 (C) 单缝衍射 (D) 光栅衍射 参考解:从我们做过的实验的经历和实验装置可知,最为准确的方法光栅衍射实验,其次是牛顿环实验。 ∴选(D ) 7.如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为 (A) I 0 / 8. (B) I 0 / 4. (C) 3 I 0 / 8. (D) 3 I 0 / 4. 参考解:穿过第一个偏振片自然光的光强为I 0/2。随后,使用马吕斯定律,出射光强 10201 60cos I I I == ∴ 选(A ) n 3

大学物理下册练习题

静电场部分练习题 一、选择题 : 1.根据高斯定理的数学表达式?∑=?0 εq s d E ,可知下述各种说法中正确的是( ) A 闭合面的电荷代数和为零时,闭合面上各点场强一定为零。 B 闭合面的电荷代数和不为零时,闭合面上各点场强一定处处不为零。 C 闭合面的电荷代数和为零时,闭合面上各点场强不一定处处为零。 D 闭合面上各点场强均为零时,闭合面一定处处无电荷。 2.在静电场中电场线为平行直线的区域( ) A 电场强度相同,电势不同; B 电场强度不同,电势相同; C 电场强度、电势都相同; D 电场强度、电势都不相同; 3.当一个带电导体达到静电平衡时,( ) A 表面上电荷密度较大处电势较高。 B 表面曲率较大处电势较高。 C 导体部的电势比导体表面的电势高; D 导体任一点与其表面上任意点的电势差等于零。 4.有四个等量点电荷在OXY 平面上的四种不同组态,所有点电荷均与原点等距,设无穷远处电势为零。则原点O 处电场强度和电势均为零的组态是( ) A 图 B 图 C 图 D 图 5.关于高斯定理,下列说法中哪一个是正确的?( ) A 高斯面不包围自由电荷,则面上各点电位移矢量D 为零。 B 高斯面上处处D 为零,则面必不存在自由电荷。 C 高斯面上D 通量仅与面自由电荷有关。 D 以上说法都不对。 6.A 和B 为两个均匀带电球体,A 带电量+q ,B 带电量-q ,作一个与A 同心的球面S 为高斯面,如图所示,则( ) S A B

A 通过S 面的电通量为零,S 面上各点的场强为零。 B 通过S 面的电通量为 εq ,S 面上各点的场强大小为2 04r q E πε= 。 C 通过S 面的电通量为- εq ,S 面上各点的场强大小为2 04r q E πε- =。 D 通过S 面的电通量为 εq ,但S 面上场强不能直接由高斯定理求出。 7.三块互相平行的导体板,相互之间的距离1d 和2d ,与板面积相比线度小得多,外面二板用导线连接,中间板上带电,设左、右两面上电荷面密度分别为1σ,2σ。如图所示,则比值1σ/2σ为( ) A 1d /2d ; B 1 C 2d /1d ; D (2d /1d )2 8.一平板电容器充电后切断电源,若改变两极板间的距离,则下述物理量中哪个保持不变?( ) A 电容器的电容量 B 两极板间的场强 C 两极板间的电势差 D 电容器储存的能量 9.一空心导体球壳,其外半径分别为1R 和2R ,带电量q ,当球壳中心处再放一电量为q 的点电荷时,则导体球壳的电势(设无穷远处为电势零点)为( )。 A 1 04R q πε B 2 04R q πε C 1 02R q πε D 2 02R q πε 10.以下说确的是( )。 A 场强为零的地方,电势一定为零;电势为零的地方,均强也一定为零; B 场强大小相等的地方,电势也相等,等势面上各点场强大小相等; C 带正电的物体,也势一定是正的,不带电的物体,电势一定等于零。 D 沿着均场强的方向,电势一定降低。 11.两个点电荷相距一定的距离,若在这两个点电荷联线的中垂线上电势为零,那么这两个点电荷为( )。

大学物理期末考试试题

西安工业大学试题纸 1.若质点的运动方程为:()2r 52/2t t i t j =+-+(SI ),则质点的v = 。 2. 一个轴光滑的定滑轮的转动惯量为2/2MR ,则要使其获得β的角加速度,需要施加的合外力矩的大小为 。 3.刚体的转动惯量取决于刚体的质量、质量的空间分布和 。 4.一物体沿x 轴运动,受到F =3t (N)的作用,则在前1秒内F 对物体的冲量是 (Ns )。 5. 一个质点的动量增量与参照系 。(填“有关”、“无关”) 6. 由力对物体的做功定义可知道功是个过程量,试回答:在保守力场中,当始末位置确定以后,场力做功与路径 。(填“有关”、“无关”) 7.狭义相对论理论中有2个基本原理(假设),一个是相对性原理,另一个是 原理。 8.在一个惯性系下,1、2分别代表一对因果事件的因事件和果事件,则在另一个惯性系下,1事件的发生 2事件的发生(填“早于”、“晚于”)。 9. 一个粒子的固有质量为m 0,当其相对于某惯性系以0.8c 运动时的质量m = ;其动能为 。 10. 波长为λ,周期为T 的一平面简谐波在介质中传播。有A 、B 两个介质质点相距为L ,则A 、B 两个质点的振动相位差=?φ____;振动在A 、B 之间传播所需的时间为_ 。 11. 已知平面简谐波方程为cos()y A Bt Cx =-,式中A 、B 、C 为正值恒量,则波的频率为 ;波长为 ;波沿x 轴的 向传播(填“正”、“负”)。 12.惠更斯原理和波动的叠加原理是研究波动学的基本原理,对于两列波动的干涉而言,产生稳定的干涉现象需要三个基本条件:相同或者相近的振动方向,稳定的位相差,以及 。 13. 已知一个简谐振动的振动方程为10.06cos(10/5)()X t SI π=+,现在另有一简谐振动,其振动方程为20.07cos(10)X t =+Φ,则Φ= 时,它们的合振动振幅最 大;Φ= 时,它们的合振动振幅最小。 14. 平衡态下温度为T 的1mol 单原子分子气体的内能为 。 15. 平衡态下理想气体(分子数密度为n ,分子质量为m ,分子速率为v )的统计压强P= ;从统计角度来看,对压强和温度这些状态量而言, 是理想气体分子热运动激烈程度的标志。

大学物理复习题52146

大学物理复习题 一、选择题: 1 下列说法中哪个或哪些是正确的 ( ) (A )作用在定轴转动刚体上的力越大,刚体转动的角加速度应越大。 (B )作用在定轴转动刚体上的合力矩越大,刚体转动的角速度越大 (C )作用在定轴转动刚体上的合力矩为零,刚体转动的角速度为零 (D )作用在定轴转动刚体上合力矩越大,刚体转动的角加速度越大 2、用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时,它( ) (A ) 将受到重力,绳的拉力和向心力的作用 (B ) 将受到重力,绳的拉力和离心力的作用 (C )绳子的拉力可能为零 (D )小球可能处于受力平衡状态 3金属球内有一点电荷q 不在球心,金属球内、外表面的电荷分布为 ( ) (A )金属球内表面带电为q -,为不均匀分布,外表面带电q ,为均匀分布 (B )金属球内表面带电为q -,为均匀分布,外表面带电q ,为不均匀分布 (C )金属球内表面带电为q -,为不均匀分布,外表面带电q ,也为不均匀分布 (D) 金属球内表面带电为q ,为均匀分布,外表面带电q ,为不均匀分布 二、计算选择题: 1、质量分别为m 和4m 的两个质点分别以E k 和4E k 的动能沿一直线相向运动,它们的总动量的大小为 ( ) () k k k k mE D mE C mE B mE A 2122)....(25)......(23).......(22)...(- 2、 一原来静止的小球受到下图2所示1F 和2F 的作用,设力的作用时间为5s ,问下列哪种情况下,小球最终获得的速度最大? ( ) (A )N 61=F ,02=F (B )01=F ,N 62=F (C )N 821==F F (D )N 61=F ,N 82=F

大学物理期末考试题库

1某质点的运动学方程x=6+3t-5t 3 ,则该质点作 ( D ) (A )匀加速直线运动,加速度为正值 (B )匀加速直线运动,加速度为负值 (C )变加速直线运动,加速度为正值 (D )变加速直线运动,加速度为负值 2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。设21t t →时间合力作功为 A 1,32t t →时间合力作功为A 2,43t t → 3 C ) (A )01?A ,02?A ,03?A (B )01?A ,02?A , 03?A (C )01=A ,02?A ,03?A (D )01=A ,02?A ,03?A 3 关于静摩擦力作功,指出下述正确者( C ) (A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。 (B )受静摩擦力作用的物体必定静止。 (C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于 零。 4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间,其平均 速度的大小和平均速率分别为(B ) (A ) , (B ) 0, (C )0, 0 (D ) T R π2, 0 5、质点在恒力F 作用下由静止开始作直线运动。已知在时间1t ?,速率由0增加到υ;在2t ?, 由υ增加到υ2。设该力在1t ?,冲量大小为1I ,所作的功为1A ;在2t ?,冲量大小为2I , 所作的功为2A ,则( D ) A .2121;I I A A <= B. 2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =< 6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直线 运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力F 的 大小和方向分别为(D ) 轴正向相反与、轴正向相同 与、轴正向相同 与、轴正向相反 与、x a m D x a m x g m x g m B B B B ,,C ,B ,A μμT R π2T R π2T R π2t

《大学物理》下册试卷及答案

第 - 1 - 页 共 6 页 《大学物理》(下)考试试卷 一、选择题(单选题,每小题3分,共30分): 1、两根无限长平行直导线载有大小相等方向相反的电流I ,I 以dI/dt 的变化率增长,一矩形线圈位于导线平面内(如图所示),则 . (A),矩形线圈中无感应电流; (B),矩形线圈中的感应电流为顺时针方向; (C),矩形线圈中的感应电流为逆时针方向; (D),矩形线圈中的感应电流的方向不确定; 2,如图所示的系统作简谐运动,则其振动周期为 . (A), k m T π 2=;(B), k m T θ π sin 2=; (C), k m T θ π cos 2=; (D), θ θ π cos sin 2k m T =; 3,在示波器的水平和垂直输入端分别加上余弦交变电压,屏上出现如图所示的闭合曲线,已知水平方向振动的频率为600Hz ,则垂直方向的振动频 率为 . (A),200Hz ;(B), 400Hz ;(C), 900Hz ; (D), 1800Hz ;

4,振幅、频率、传播速度都相同的两列相干波在同一直线上沿相反方向传播时叠加可形成驻波,对于一根长为100cm的两端固定的弦线,要形成驻波,下面哪种波长不能在其中形成驻波? . (A),λ=50cm;(B), λ=100cm;(C), λ=200cm;(D), λ=400cm; 5,关于机械波在弹性媒质中传播时波的能量的说法,不对的是 . (A),在波动传播媒质中的任一体积元,其动能、势能、总机械能的变化是同相位的; (B), 在波动传播媒质中的任一体积元,它都在不断地接收和释放能量,即不断地传播能量.所以波的传播过程实际上是能量的传播过程; (C), 在波动传播媒质中的任一体积元,其动能和势能的总和时时刻刻保持不变,即其总的机械能守恒; (D), 在波动传播媒质中的任一体积元,任一时刻的动能和势能之和与其振动振幅的平方成正比; 6,以下关于杨氏双缝干涉实验的说法,错误的有 . (A),当屏幕靠近双缝时,干涉条纹变密; (B), 当实验中所用的光波波长增加时,干涉条纹变密; (C),当双缝间距减小时,干涉条纹变疏; 处放一玻璃时,(D),杨氏双缝干涉实验的中央条纹是明条纹,当在上一个缝S 1 所在的方向移动,即向上移动. 如图所示,则整个条纹向S 1 7,波长为600nm的单色光垂直入射在一光栅上,没有缺级现象发生,且其第二级明纹出现在sinθ=0.20处,则不正确的说法有 . (A),光栅常数为6000nm;(B),共可以观测到19条条纹; (C),可以观测到亮条纹的最高级数是10; (D),若换用500nm的光照射,则条纹间距缩小; 第- 2 - 页共 6 页

大学物理期末考试试卷(含答案) 2

2008年下学期2007级《大学物理(下)》期末考试(A 卷) 一、选择题(共27分) 1. (本题3分) (2717) 距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T . (已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ] 2. (本题3分)(2391) 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v . (D) 反比于B ,反比于v . [ ] 3. (本题3分)(2594) 有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将 (A) 转动使α 角减小. (B) 转动使α角增大. (C) 不会发生转动. (D) 如何转动尚不能判定. [ ] 4. (本题3分)(2314) 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使 ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ] 5. (本题3分)(2125) 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v 移动,直导线ab 中的电动势为 (A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 6. (本题3分)(2421) 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数 c a b d N M B

大学物理(上)期末试题(1)

大学物理(上)期末试题(1) 班级 学号 姓名 成绩 一 填空题 (共55分) 请将填空题答案写在卷面指定的划线处。 1(3分)一质点沿x 轴作直线运动,它的运动学方程为x =3+5t +6t 2-t 3 (SI),则 (1) 质点在t =0时刻的速度=0v __________________; (2) 加速度为零时,该质点的速度v =____________________。 2 (4分)两个相互作用的物体A 和B ,无摩擦地在一条水平直线上运动。物体A 的动量是时间的函数,表达式为 P A = P 0 – b t ,式中P 0 、b 分别为正值常量,t 是时间。在下列两种情况下,写出物体B 的动量作为时间函数的表达式: (1) 开始时,若B 静止,则 P B 1=______________________; (2) 开始时,若B 的动量为 – P 0,则P B 2 = _____________。 3 (3分)一根长为l 的细绳的一端固定于光滑水平面上的O 点,另一端系一质量为m 的小球,开始时绳子是松弛的,小球与O 点的距离为h 。使小球以某个初速率沿该光滑水平面上一直线运动,该直线垂直于小球初始位置与O 点的连线。当小球与O 点的距离达到l 时,绳子绷紧从而使小球沿一个以O 点为圆心的圆形轨迹运动,则小球作圆周运动时的动能 E K 与初动能 E K 0的比值 E K / E K 0 =______________________________。 4(4分) 一个力F 作用在质量为 1.0 kg 的质点上,使之沿x 轴运动。已知在此力作用下质点的运动学方程为3243t t t x +-= (SI)。在0到4 s 的时间间隔内, (1) 力F 的冲量大小I =__________________。 (2) 力F 对质点所作的功W =________________。

大学物理(下)期末复习题.doc

练习一.选择题:

1- 两个均匀带电的同心球面,半径分别为川、 小球带电Q,大球带电-Q, 下列各图中哪一个正确表示了电场的分布 £\ 丨、/ O R } R 2 (B) E O R } R 2 (C) 2.如图所示,任一闭合Illi 面S 内有一点电荷q,。为S 面上任一-点,若将q 由闭合Illi 面 内的P 点移到T 点,且O P=OT,那么 (A) 穿过sifii 的电通量改变,o 点的场强大小不变; (B) 穿过S 而的电通量改变,0点的场强大小改变; (C) 穿过S 而的电通量不变,0点的场强大小改变; (D) 穿过S 面的电通量不变,。点的场强大小不变。 3.在边长为a 的正立方体中心冇一个电量为q 的点电荷,则通过该立方体任一1侨的电 场强度通量为 (A) q/&); (B) q/2e (); (C) g/4&); (D) g/6&)。 4. 如图所示,a 、b 、c 是电场中某条电场线上的三个点,由此可知 (A) E W >E/,>E (. ; (B) E“vEb

《大学物理I、II》(下)模拟试题(2)

《大学物理I 、II 》(下)重修模拟试题(2) 一、选择题(每小题3分,共36分) 1.轻弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2的物体,于是弹簧又伸长了?x .若将m 2移去,并令其振动,则振动周期为 (A) g m x m T 122?π= (B) g m x m T 212?π= (C)g m x m T 2121?π= (D) g m m x m T )(2212+π=? [ ] 2.有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成刚性分子的理想气体),它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氦气传递热量是 [ ] (A) 6 J (B) 5 J (C) 3 J (D) 2 J 3.一机车汽笛频率为750 Hz ,机车以25 m/s 速度远离静止的观察者。观察者听到的声音的频率是(设空气中声速为340 m/s )。 (A) 810 Hz (B) 685 Hz (C) 805 Hz (D) 699 Hz [ ] 4.一质点在X 轴上作简谐振动,振幅4A cm =,周期2T s =,取其平衡位置为坐标原点,若0t =时刻质点第一次通过2x cm =-处,且向X 轴负方向运动,则质点第二次通过2x cm =-处的时刻为 [ ] (A )1s (B )32s (C )3 4 s (D )2 s

5.如图所示,平板玻璃和凸透镜构成牛顿环装置,全部浸入n =1.60的液体中,凸透镜可沿O O '移动,用波长λ=500 nm(1nm=10-9m)的单色光垂直入射。从上向下观察,看到中心是一个暗斑,此时凸透镜顶点距平板玻璃的距离最少是 (A) 156.3 nm (B) 148.8 nm (C) 78.1 nm (D) 74.4 nm (E) 0 [ ] 6.一横波以波速u 沿x 轴负方向传播,t 时刻波形曲线如图所示,则该时刻 [ ] (A) A 点振动速度大于零 (B) B 点静止不动 (C) C 点向下运动 (D) D 点振动速度小于零 7.1 mol 刚性双原子分子理想气体,当温度为T 时,其内能为 [ ] (A) RT 23 (B)kT 23 (C)RT 2 5 (D) kT 2 5 (式中R 为普适气体常量,k 为玻尔兹曼常量) 8.如图所示,折射率为n 2、厚度为e 的 透明介质薄膜的上方和下方的透明介质的折 射率分别为n 1和n 3,已知n 1<n 2<n 3.若用 波长为λ的单色平行光垂直入射到该薄膜上, 则从薄膜上、下两表面反射的光束①与②的 光程差是 [ ] (A) 2n 2 e -λ / 2 (B) 2n 2 e (C) 2n 2 e + λ / 2 (D) 2n 2 e -λ / (2n 2) n=1.68 n=1.60 n=1.58 O ' O λ x u A y B C D O n 2 n 1 n 3 e ① ②

相关文档
相关文档 最新文档