文档库 最新最全的文档下载
当前位置:文档库 › Energy-Efficient Beamforming for Two-Tier Massive MIMO Downlink

Energy-Efficient Beamforming for Two-Tier Massive MIMO Downlink

Energy-Efficient Beamforming for Two-Tier Massive MIMO Downlink
Energy-Efficient Beamforming for Two-Tier Massive MIMO Downlink

波束成形

第四章智能天线自适应波束成形算法简介 4.1 引言 智能天线技术作为一种新的空间资源利用技术,自20世纪90年代初由一些学者提出后,近年来在无线通信领域受到了人们的广泛关注。它是在微波技术、自动控制理论、数字信号处理(DSP)技术和软件无线电技术等多学科基础上综合发展而成的一门新技术。智能天线技术从实质上讲是利用不同信号在空间上的差异,对信号进行空间上的处理。与FDMA,TDMA及CDMA相对应,智能天线技术可以认为是一种空分多址SDMA技术,它使通信资源不再局限于时域、频域和码域,而是拓展到了空间域。它能够在相同时隙、相同频率和相同地址码情况下,根据用户信号在空域上的差异来区分不同的用户。智能天线技术与其它通信技术有机相结合,可以增加移动通信系统的容量,改善系统的通信质量,增大系统的覆盖范围以及提供高数据率传输服务等。 4.2 智能天线技术及其优点 智能天线,即具有一定程度智能性的自适应天线阵,自适应天线阵能够在干扰方向未知的情况下,自动调节阵列中各个阵元的信号加权值的大小,使阵列天线方向图的零点对准干扰方向而抑制干扰,增强系统有用信号的检测能力,优化天线方向图,并能有效地跟踪有用信号,抑制和消除干扰及噪声,即使在干扰和信号同频率的情况下,也能成功地抑制干扰。如果天线的阵元数增加,还可以增加零点数来同时抑制不同方向上的几个干扰源。实际干扰抑制的效果,一般可达25--30dB以上。智能天线以多个高增益的动态窄波束分别跟踪多个移动用户,同时抑制来自窄波束以外的干扰信号和噪声,使系统处于最佳的工作状态。 智能天线利用空域自适应滤波原理,依靠阵列信号处理和数字波束形成技术发展起来,它主要包括两个重要组成部分,一是对来自移动台发射的多径电波方向进行到达角(DOA)估计,并进行空间滤波,抑制其它移动台的干扰;二是对基站发送信号进行数字波束形成,使基站发送信号能够沿着移动电波的到达方向发送回移动台,从而降低发射功率,减少对其它移动台的干扰。在普遍采用扩频技术的CDMA系统中,采用智能天线的优势主要体现在以下几个方面: 1) 提高了基站接收机的灵敏度 基站接收到的信号,是来自各天线单元和收信机接收到的信号之和,如果采

智能天线波束赋形GOB算法与EBB算法比较

目前比较常用的波束赋形算法有2种:GOB算法和EBB算法。GOB算法是一种固定波束扫描的方法,对于固定位置的用户,其波束指向是固定的,波束宽度也随天 线阵元数目而确定。当用户在小区中移动时,它通过测向确定用户信号DOA,然后根据信号DOA选取预先设定的波束赋形系数进行加权,将方向图的主瓣指向用户方向,从而提高用户的信噪比。EBB算法是一种自适应的波束赋形算法,方向图没有固定的形状,随着信号及干扰而变化。其原则是使期望用户接收功率最大 的同时,还要满足对其他用户干扰最小。 实际设备中采用了EBB算法,需要说明的一点是,仅下行有波束赋形技术,上行方向,手机天线无法进行波束赋形,基站多个天线此时主要用于分集接收。 简单来说就是一个天线阵的运用,上行信号到达每个天线的时间是不一致的,但天线之间的相差是可以预知的,只要将每个天线上的上行信号做一个加权处理,所得信号将是同相信号,将天线阵上的信号相加,即可增加10logN*N db(此处应为10logN db——本人注)的信噪比;同理下行时,首先根据上行信号估计 空间特性,然后在天线阵上发送具有相差的信号,使各个天线下行信号到达接受机的信号同相。上下行中相位的加权运算就是波束赋形。 注解:波束赋形工作由基站完成 GOB 与EBB算法的区别 目前智能天线的赋形算法主要有以下两种: 一、GOB(Grid Of Beam)算法(又称波束扫描法):它是基于参数模型(利用信道的空域参数)的算法,使基站实现下行指向性发射。 GOB算法的基本思路如下: 将整个空间分为L个区域,并为每个区域设置一个初始角度。以各个区域的初始角度的方向向量为加权系数,计算接收信号功率,然后找到最大功率对应的区域,再将该区域的初始角度当作估计的到达角。利用上下行信道对称的特点,确定赋形角度。 二、EBB(Eigenvalue Based Beamforming)算法(即特征向量法):通过对空间

开电源纹波噪声的产生及抑制

电源纹波噪声的产生及抑制 一、纹波 纹波(ripple)的定义是指在直流电压或电流中,叠加在直流稳定量上的交流分量。它主要有以下害处: 1.1.容易在用电器上产生谐波,而谐波会产生更多的危害; 1.2.降低了电源的效率; 1.3.较强的纹波会造成浪涌电压或电流的产生,导致烧毁用电器; 1.4.会干扰数字电路的逻辑关系,影响其正常工作; 1.5.会带来噪音干扰,使图像设备、音响设备不能正常工作。 二、纹波的表示方法 可以用有效值或峰值来表示,或者用绝对量、相对量来表示; 单位通常为:mV 例如: 一个电源工作在稳压状态,其输出为12V5A,测得纹波的有效值为10mV,这10mV 就是纹波的绝对量,而相对量即纹波系数=纹波电压/输出电压=10mv/12V=0.12%。 三、纹波的测试方法 3.1.以20M示波器带宽为限制标准,电压设为PK-PK(也有测有效值的),去除示波器控头上的夹子与地线(因为这个本身的夹子与地线会形成环路,像一个天线接收杂讯,引入一些不必要的杂讯),使用接地环(不使用接地环也可以,不过要考虑其产生的误差),在探头上并联一个10UF电解电容与一个0.1UF瓷片电容,用示波器的探针直接进行测试;如果示波器探头不是直接接触输出点,应该用双绞线,或者50Ω同轴电缆方式测量。 四、开关电源纹波的主要分类 开关电源输出纹波主要来源于五个方面: 4.1.输入低频纹波; 4.2.高频纹波; 4.3.寄生参数引起的共模纹波噪声; 4.4.功率器件开关过程中产生的超高频谐振噪声;

4.5.闭环调节控制引起的纹波噪声。 4.1、输入低频纹波: 低频纹波是与输出电路的滤波电容容量相关。电容的容量不可能无限制地增加,导致输出低频纹波的残留。 交流纹波经DC/DC变换器衰减后,在开关电源输出端表现为低频噪声,其大小由DC/DC变换器的变比和控制系统的增益决定。 电流型控制DC/DC变换器的纹波抑制比电压型稍有提高。但其输出端的低频交流纹波仍较大。要实现开关电源的低纹波输出,必须对低频电源纹波采取滤波措施。可采用前级预稳压和增大DC/DC变换器闭环增益来消除。 低频纹波抑制的几种常用的方法: a、加大输出低频滤波的电感,电容参数。 △●电容上的纹波有两个成分,一个是充放电时的电压升降量,一个是电流进出电容时ESR上的I*R电压降量。 △●通过输出纹波与输出电容的关系式:vripple=Imax/(Co×f)可以看出,加大输出电容值可以减小纹波。 △●或者考虑采用并联的方式减小ESR值,或者使用LOW ESR电容。 b、采用前馈控制方法,降低低频纹波分量。 △●feed forward control(FFC)前馈控制是按照扰动产生校正作用的一种调节方式,主要用于一些纯滞后或容量滞后较大的被控参数的控制。 △●其目的是加速系统响应速度,改善系统的调节品质。 4.2、高频纹波: 高频纹波噪声来源于高频功率开关变换电路 在电路中,通过功率器件对输入直流电压进行高频开关变换后整流滤波再实现稳压输出的,在其输出端含有与开关工作频率相同频率的高频纹波,其对外电路的影响大小主要和开关电源的变换频率、输出滤波器的结构和参数有关; 设计中尽量提高功率变换器的工作频率,可以减少对高频开关纹波的滤波要求。高频纹波抑制常用的方法有以下几种: a、提高开关电源工作频率,以提高高频纹波频率,其纹波电流△I可由下式算 出: 可以看出,增加L值,或者提高开关频率可以减小电感内的电流波动。 b、加大输出高频滤波器,可以抑制输出高频纹波。 c、采用多级滤波。 一般滤波多采用C型、LC型、CLC型,为了更好的抑制纹波,可以采用增加多一级LC滤波。 4.3、寄生参数引起的共模纹波噪声: 由于功率器件与散热器底板和变压器原、副边之间存在寄生电容,导线存在寄生

波束赋形工作原理及对TD-LTE测试的影响

波束赋形?工作原理及对TD-LTE测试的影响 ! 1 波束赋形基础知识" ? ? “波束赋形”?一词有时会被滥?用,从?而引起混淆。从技术上来说,波束赋形和波束导向?一样简单,即 两个或更多的天线以受控的延迟或相位偏移来发射信号,从?而创造出定向的建设性?干涉波瓣(见图1)。! ! 图1 简单波束导向创建的波瓣 ? ?TD-LTE系统中所?用的波束赋形是?一个相对更加复杂的命题,部分原因是终端设备具有移动的特性。?一种称为Eigen波束赋形的技术会使?用关于RF信道的信息从统计上对发射天线组件的幅度和相位参数进?行加权判断。虽然 Eigen波束赋形并?非计算最密集的波束赋形类型(还有?一种称为最?大?比率发送的?方法也会执?行相同类型的权重判断,但只针对每个?子载波),但当它被?用于组件数较?高的8 × n MIMO 系统时,?无论是在实施中,还是在系统开发的验证阶段中,都将是?一个极具挑战性的命题。 ! 2 TD-LTE与8×n MIMO" ? ? 多数计划中的TD-LTE部署都是围绕8个天线组件的发射天线?而设计的(见图2)。在这些系统中,4个有?一定距离间隔的天线组件被物理指向某个?角度。另外,4个组件的布置?方式是,每个都分别与前4个天线组件同轴,?而且后4个天线组件中每?一个都指向其各?自的配对组件。

图2 ?一个8×2波束赋形系统创造出的垂直极化波束 ? ? 由4个?方向类似的组件组成的每?一组都形成了?一个可以瞄准某个特定?方向的波束。这4个?无线电链路之间的关联程度很?高,?而两个垂直极化波束则显?示出较低程度的相互关联,形成类似2×n MIMO 的系统,因此也就可以发射多层或多个数据流。因此,这样的系统在实现MIMO系统数据速率最?大化优势的同时,还可充分发挥波束赋形优化特定?方向信号强度。这种系统通常被称为双层波束赋形系统,其中的每?一层都可以代表?一个独?立的数据流。 ? ? 双层MIMO波束赋形系统既可?用作单?用户MIMO系统(SU-MIMO),即两个数据流都被分配给单个?用户终端,也可以?用作多?用户(MU-MIMO)系统,即个数据流均被分配给不同的?用户终端。这样为?网络运营商提供巨?大的灵活性,使之能够选择性地部署覆盖能?力最?大的系统,或者是单个?用户数据吞吐量最?大的系统。 ! 3 波束赋形?工作原理" ? ? 在任何?一种波束赋形系统中,系统都必须能够估计?目标?用户终端的?方向。在FDD系统中,这是?用户终端 以预编码矩阵指标(PMI)的形式进?行反馈的功能,?而TD-LTE的信道互易性取消了这?一要求。在TD-LTE系统中,?用户终端会向基站发送?一个信道报告信号,基站通过检查相同极化天线之间的相对相位差,能估计出?用户终端的到达?方向(DoA)。需要注意的是,尽管这种估计是在上?行链路中执?行的,基站仍可利?用信道互易性,根据对上?行链路的估计在下?行链路中执?行发送任务。 ? ?接下来,根据估计出的DoA,基站会动态调整天线阵列中每个组件的“天线权重”(相对幅度和相位),将波束引向所期望的?用户,并且/或者将零信号引导?至不需要?干涉所在的?方向。图 1显?示的便是这?一基本概念。 ? ? 上?面的场景事实上只是简单的波束导向。Eigen波束赋形会加?入?一些智能处理,但其期望的基本效果是相同的:系统会利?用互易性对下?行信道的参数做出估计并据此调整天线权重(见图3)。 图3 ?自适应式波束赋形系统 ! 4 测试波束赋形"

a competitive mean squared error approach to beamforming(翻译),波束形成

一个竞争性均方误差波束形成方法 摘要:我们对待信号估计的波束的问题,其目的是从数组中观察中估计设置一个信号幅度。常规波束形成方法通常着眼于将信干噪比(SINR)最大化。然而,这并不能保证小均方误差(MSE),因此,平均产生的信号的估计会和真实信号相差甚远。在这里,我们考虑的策略是,以尽量减少估计值和未知之间的信号波形的MSE。我们建议的所有的方法都是去最大限度地提高SINR,但在同一时间里,它们都被设计为具有良好的MSE性能。由于MSE依赖于未知的的信号功率,我们开发出了具有竞争力的波束形成方法,最小化鲁棒的MSE估计。两种设计策略被提出:极小化最大MSE,极小化最大遗憾。通过数值例子表明,在一个很大的SNR范围内,我们所建议的极小化最大波束形成方法可以超越现有的一些标准鲁棒的的方法。.最后,我们应用我们的子带波束形成技术,并说明了宽带信号估计他们的优势。 关键词:极小化最大均方误差,极小化最大遗憾,稳健波束形成,子带波束形成。 Ⅰ简介 波束形成是一个为了时间估计,干扰消除,源的定位,经典谱估计的处理时间传感器阵列测量的经典方法。它已被应用于广泛的领域,无所不在,如雷达,声纳,无线通讯,语音处理和医疗成像等领域(详见,参考文献[1-4])。 依赖波束形成器而设计数据的传统方法通常试图极小化最大信号与干扰加噪声比(SINR)。最大化SINR需要干扰加噪声的协方差矩阵和阵列导向矢量的知识。由于协方差通常是未知的,它往往是由测量样本的协方差所代替,当信号在训练数据中时,这就导致了在高信噪比(SNR)的情况下,性能下降。有些波束形成技术是设计来减轻这种影响[5-8],而另一些也需要去克服导向向量的不确定性[9-13],[14]。在这里,我们假定导向矢量是确切的知道的,我们的目标是为信号估计设计一个波束形成器。 尽管事实上SINR已被用来作为衡量性能的标准和在许多波束形成设计方法的准则,最大化SINR或许也无法保证的一个很好的信号估计。在估计的环境下,我们的目标是设计一个波束形成,以获得一个信号振幅接近其真实价值的估计,使它会更有意义,选择权,并尽量减少相关的是客观的估计错误,即真实之间的信号和它的估计之间的区别,而不是SINR 的差值。此外,它可能会更翔实考虑把估计错误作为比较不同的波束形成方法的性能尺度。 如果信号功率是已知的,那么最小均方误差(MMSE)的波束可以被设计。由此产生的波束可以表示为依赖功率的常数,这个常数乘以一个固定的权重向量是在SINR内的最佳值。由于信干噪比在缩放时不敏感,最小均方误差的方法也能最大化SINR。如果比例是固定的,那么缩放选择不影响信号的波形,而只是影响它的大小。在一些应用中,实际幅度值可能是非常重要的。在子带波束形成的背景下[15-20],这些就特别重要,由于它能够减少传统的宽带战略的复杂性,近些年获得很大的关注。在这种情况下,独立执行波束形成在锐减频段和信道的输出相结合。由于不同的尺度系数在每个通道使用,MMSE的战略一般会造成信号的波形和基于SINR为的方法所产生的不同。因此,一个不错的选择缩放因子可以显著影响的估计波形。 通常情况下,信号功率为不明,MMSE波束就无法实现。在这种情况下,其他的设计标准是需要选择缩放因子。一个常用的方法是选择不会使信号失真的缩放因子,这相当于减少约束下的波束形成不偏不倚的均方误差(MSE)。这就导致了著名的最小方差无失真响应(MVDR)波束的形成。然而,就像我们解析和模拟的事实同时显示的那样,尽管MVDR方法是在一间不带偏见的MSE意义上是最优的技术,它往往会带来一个大的估计错误。另一种策

传感器的噪声及其抑制方法

传感器的噪声及其抑制方法 1 引言 传感器作为自控系统的前沿哨兵,犹如电子眼一般将被测信息接收并转换为有效的电信号,但同时,一些无用信号也搀杂在其中。这些无用信号我们统称为噪声。 应该说,噪声存在于任何电路之中,但它对传感器电路的影响却尤为突出。这是因为,传感器的输出阻抗一般都很高,使其输出信号衰减厉害,同时,传感器自容易被噪声信号淹没。因此,噪声的存在必定影响传感器的精度和分辨率,而传感器又是检测自控系统的首要环节,于是势必影响整个自控系统的性能。 由此,噪声的研究是传感器电路设计中必须考虑的重要环节,只有有效地抑制、减少噪声的影响才能有效利用传感器,才能提高系统的分辨率和精度。 但噪声的种类多,成因复杂,对传感器的干扰能力也有很大差异,于是抑制噪声的方法也不同。下面就传感器的噪声问题进行较全面的研究。 2 传感器的噪声分析及对策 传感器噪声的产生根源按噪声源分为内部噪声和外部噪声。 2.1 内部噪声——来自传感器件和电路元件的噪声 2.1.1 热噪声 热噪声的发生机理是,电阻中自由电子做不规则的热运动时产生电位差的起伏,它由温度引发且与之呈正比,由下面的奈奎斯特公式表示: 其中,Vn:噪声电压有效值;K:波耳兹曼常数(1.38×10-23J〃K-1);T:绝对温度(K);B:系统的频带宽度(Hz);R:噪声源阻值(Ω)。 噪声源包括传感器自身内阻,电路电阻元件等。 由公式(1)可见,热噪声由于来自器件自身,从而无法根本消除,宜尽可能选择阻值较小的

电阻。 同时,热噪声与频率大小无关,但与频带宽成正比,即,对应不同的频率有均匀功率分布,故,也称白噪声。因此,选择窄频带的放大器和相敏检出器可有效降低噪声。 2.1.2 放大器的噪声 2.1.3 散粒噪声 散粒噪声的噪声源为晶体管,其机理是由到达电极的带电粒子的波动引起电流的波动形成的。噪声电流In与到达电极的电流Ic及频带宽度B成正比,可表示为: 由此可见,使用双极型晶体管的前置放大器来放大传感器的输出信号的场合,选Ic取值尽可能小。同时,也可选择窄频带的放大器降低散粒噪声电流。 2.1.4 1/f噪声 1/f噪声和热噪声是传感器内部的主要噪声源,但其产生机理目前还有争议,一般认为它是一种体噪声,而不是表面效应,源于晶格散射引起。在晶体管的P-N附近是电子-空穴再复合的不规则性产生的噪声,该噪声的功率分布与频率成反比,并由此而得名。其噪声电压表示为: Hooge还在1969年提出了一个解释1/f噪声的经验公式: 式中,SRH和SVH为相应于电阻起伏和电压起伏的功率噪声密度,V为加在R上的偏压,N 为总的自由载流子数,α叫Hooge因子,是一个与器件尺寸无关的常数,它是一个判断材料性能的重要参数。 对于矩形电阻,总的自由载流子数N=PLWH,其中,P为载流子浓度,L、W、H为电阻的长、宽、厚。

波束形成基础原理总结

波束赋形算法研究包括以下几个方面: 1.常规的波束赋形算法研究。即研究如何加强感兴趣信号,提高信道处理增益,研究的是一 般的波束赋形问题。 2.鲁棒性波束赋形算法研究。研究在智能天线阵列非理想情况下,即当阵元存在位置偏差、 角度估计误差、各阵元到达基带通路的不一致性、天线校准误差等情况下,如何保证智能天线波束赋形算法的有效性问题。 3.零陷算法研究。研究在恶劣的通信环境下,即当存在强干扰情况下,如何保证对感兴趣信 号增益不变,而在强干扰源方向形成零陷,从而消除干扰,达到有效地估计出感兴趣信号的目的。 阵列天线基本概念(见《基站天线波束赋形及其应用研究_ 白晓平》) 阵列天线(又称天线阵)是由若干离散的具有不同的振幅和相位的辐射单元按一定规律排列并相互连接在一起构成的天线系统。利用电磁波的干扰与叠加,阵列天线可以加强在所需方向的辐射信号,并减少在非期望方向的电磁波干扰,因此它具有较强的辐射方向性。组成天线阵的辐射单元称为天线元或阵元。相邻天线元间的距离称为阵间距。按照天线元的排列方式,天线阵可分为直线阵,平面阵和立体阵。 阵列天线的方向性理论主要包括阵列方向性分析和阵列方向性综合。前者是指在已知阵元排列方式、阵元数目、阵间距、阵元电流的幅度、相位分布的情况下分析得出天线阵方向性的过程;后者是指定预期的阵列方向图,通过算法寻求对应于该方向图的阵元个数、阵间距、阵元电流分布规律等。对于无源阵,一般来说分析和综合是可逆的。 阵列天线分析方法 天线的远区场特性是通常所说的天线辐射特性。天线的近、远区场的划分比较复杂,一般而言,以场源为中心,在三个波长范围内的区域,通常称为近区场,也可称为感应场;在以场源为中心,半径为三个波长之外的空间范围称为远区场,也可称为辐射场。因此,在分析天线辐射特性时观察点距离应远大于天线总尺寸及三倍的工作波长。阵列天线的辐射特性取决于阵元因素和阵列因素。阵元因素包括阵元的激励电流幅度相位、电压驻波比、增益、方

LTE-TDD波束赋形

波束赋形 波束赋形原理 波束赋形的目标是根据系统性能指标,形成对基带(中频)信号的最佳组合或者分配。具体地说,其主要任务是补偿无线传播过程中由空间损耗、多径效应等因素引入的信号衰落与失真,同时降低同信道用户间的干扰。因此,首先需要建立系统模型,描述系统中各处的信号,而后才可能根据系统性能要求,将信号的组合或分配表述为一个数学问题,寻求其最优解。 1.系统模型 根据应用场合的不同,一般可以将波束赋形算法分为上行链路应用以及下行链路应用。无论是哪种情况,总可以用一个时变矢量(MIMO)信道来描述用户端与基站端的信号关系,如图2所示。对于上行链路,多个发射信号实质上是K个用户设备同时发送的信号,基站则使用多个天线单元接收信号,对其进行处理和检测,这时发送端的信号分配仅在各个支路分别进行;对于下行链路,基站仍可能使用多个天线单元向特定用户发射信号,但用户设备使用单天线检测与其有关的信号,这时接收部分降为一维,信号组合也仅对于单路信号进行。 根据图2的系统模型,就可以描述发送端的原始信号与接收端实际接收信号之间的关系,通常根据研究重点的不同,对于原始信号以及实际接收信号的位置会有不同的定义。对于波束赋形技术,一般其研究的范围从发送端扩谱与调制单元的输出端,到接收端解扩与解调单元的输入端,而研究过程中又常将信号分配单元输出端到信号组合单元输入端之间的部分合并,统称为无线移动信道,由于无线移动通信环境的极度复杂,无法得到其输入输出关系的确切描述,一般采用大量测量和理论研究相结合的方法,使用有限的参数描述该信道。采用这种方法后,就可以得到受干扰有噪信号与原始信号的关系,并据此在一定程度上恢复信号。因此,波束赋形的一般过程为: ⑴根据系统性能指标(如误码率、误帧率)的要求确定优化准则(代价函数),一般这是权重矢量与一些参数的函数; ⑵采用一定的方法获得需要的参数; ⑶选用一定的算法求解该优化准则下的最佳解,得到权重矢量的值。 可以发现,由于通信环境复杂,上述过程的每一阶段都可有不同的实现方案,因此产生了大量的波束赋形算法,如何衡量和比较其性能也成为波束赋形技术研究的一个重要方面。 2.波束赋形算法的性能

基于高速铁路通信的多波束机会波束赋形技术

Computer Engineering and Applications 计算机工程与应用 2013,49(18)铁路运输以其经济、运输量大的优势,成为各国大陆运输的主要方式,并朝着重载化、高速化和多模式运输的趋势发展。近年来,高速铁路逐渐成为世界各国主要的交通工具,高速铁路最高时速都超过300km/h ,大大缩短了列车运行时间,但对通信系统的要求越来越高。高速铁路移动通信系统一直作为广大企业、研究院所以及高校的研究热点。文献[1]介绍了高速铁路宽带无线通信的业务类型,分别为:列车控制通信业务、列车乘客通信业务和公务信息通信业务。列车控制通信业务和公务信息通信业务主要是列车调度信息的交互通信,以保证列车可以正常运行、提供必要的应急通信,目前GSM-R 通信系统已经可以实现这些需求;乘客宽带通信业务主要包括乘客在列车行驶过程中的语音传输、多媒体数据流的高质量传输,例如PIS 业务、电视和广播业务、视频监控业务、无线互联网络、无线语音等业务,GSM-R 目前尚不能正常提供这些服务。文献[2]中,作者在铁路两旁引入了分布式天线,采用MIMO 系统,提出了一种车载双天线切换流程。文献“Location information-assisted opportunistic beamforming in LTE system for high-speed railway ”(Meng Cheng ,et al.), 介绍了两种能够明显提高Opportunistic Beamforming (OBF )系统性能的算法。总体来说,基于LTE 高速铁路场景多天线技术的研究还相对较少,但选择合适的MIMO 制式对于高铁通信系统干扰消除,以及吞吐量的提升意义重大。因此,本文主要研究高速铁路环境下基于LTE 的MIMO 波束赋形技术。 波束赋形技术也称线性预编码技术,是一种接近脏纸编码(Dirty Paper Coding ,DPC )[3]信道容量的低复杂度信号处理技术。其主要应用于小间距天线阵列,在发射信号基于高速铁路通信的多波束机会波束赋形技术 高倩,张福金 GAO Qian,ZHANG Fujin 琼州学院电子信息工程学院,海南三亚572022 School of Electronic Information and Engineering,Qiongzhou University,Sanya,Hainan 572022,China GAO Qian,ZHANG Fujin.Multi-beam opportunistic beamforming for high-speed railway https://www.wendangku.net/doc/7219094562.html,puter Engineering and Applications,2013,49(18):56-60. Abstract :In the high-speed railway communication,the position information of train is predictable.However,the number of relaying antennas on the roof is limited,the feedback delay is large,Doppler effect is often serious,handover is frequent,and so on.Therefore,the traditional beamforming is not suitable for high speed railway communications.By taking the advantage of the predictability of the location information of the train,this paper proposes a kind of location information auxiliary multi-beam opportunistic beamforming,which can improve the accuracy of the weighted vector of the beam for the opportunistic beamforming algorithm.The scheme also supports multiple beam parallel transmission,so as to realize better multiuser diversity gain with multi-beam selection.Because opportunistic beamforming needs only some parameters such as SNR in the receiver,the feedback over-head is also reduced.Thus,the scheme proposed in the paper is suitable for high speed railway communications. Key words :high speed railway;multi-beam;opportunistic beamforming 摘要:鉴于高速铁路通信中,列车位置信息可预测、列车车顶中继转发天线数有限,以及反馈信息时延大、多普勒衰落较大、频繁切换等特性,传统的波束赋形并不适用于高速铁路场景。位置信息辅助的多波束机会波束赋形能够利用列车位置信息可预测的优势,在机会波束赋形算法中有效地提高发送波束随机相位与来波相位匹配的概率,同时支持多个波束并行传输,以多波束选择实现更好的多用户分集增益,且机会波束赋形无需反馈完全信道状态信息。因此位置信息辅助的多波束机会波束赋形技术适用于高速铁路通信。 关键词:高速铁路;多波束;机会波束赋形 文献标志码:A 中图分类号:TN929.53doi :10.3778/j.issn.1002-8331.1304-0259 基金项目:海南省自然科学基金(No.612167)。 作者简介:高倩(1986—),女,助教,主要研究领域为无线通信、移动通信、传感器网络;张福金(1956—),男,教授。 E-mail :gaoqian496@https://www.wendangku.net/doc/7219094562.html, 收稿日期:2013-04-18修回日期:2013-05-24文章编号:1002-8331(2013)18-0056-05 56

低频纹波高频纹波环路纹波共模噪声谐振噪声简介

低频纹波 低频纹波是与输出电路的滤波电容容量相关。由于开关电源体积的限制,电解电容的容量不可能无限制地增加,导致输出低频纹波的残留,该输出纹波频率随整流电路方式的不同而不同。 一般的开关电源由AC/DC和DC/DC两部分组成。AC/DC的基本结构为整流滤波电路,它输出的直流电压中含有交流低频纹波,其频率为输入交流电源频率的二倍,幅值与电源输出功率及滤波电容容量有关,一般控制在10%以内。该交流纹波经DC/DC变换器衰减后,在开关电源输出端表现为低频噪声,其大小由DC/DC变换器的变比和控制系统的增益决定。 低频纹波 例如:对普通24V电源来说,电压型控制DC/DC变换器的纹波抑制比一般为45~50dB,其输出端的低频交流纹波有效值为60~120mV。电流型控制DC/DC变换器的纹波抑制比稍有提高,但其输出端的低频交流纹波仍较大。若要实现开关电源的低纹波输出,则必须对低频电源纹波采取滤波措施。可采用前级预稳压和增大DC/DC变换器闭环增益来消除。 低频纹波的抑制 a、加大输出低频滤波的电感,电容参数,使低频纹波降低到所需的指标。 b、采用前馈控制方法,降低低频纹波分量。 高频纹波 高频纹波噪声来源于高频功率开关变换电路,在电路中,通过功率器件对输入直流电压进行高频开关变换而后整流滤波再实现稳压输出的,在其输出端含有与开关工作频率相同频率的高频纹波,其对外电路的影响大

小主要和开关电源的变换频率、输出滤波器的结构和参数有关,设计中尽量提高功率变换器的工作频率,可以减少对高频开关纹波的滤波要求。 高频纹波

高频纹波的抑制 a、提高开关电源工作频率,以提高高频纹波频率,有利于抑制输出高频纹波。 b、加大输出高频滤波器,可以抑制输出高频纹波。 c、采用多级滤波。 共模纹波噪声 由于功率器件与散热器底板和变压器原、副边之间存在寄生电容,导线存在寄生电感,因此当矩形波电压作用于功率器件时,开关电源的输出端因此会产生共模纹波噪声。减小与控制功率器件、变压器与机壳地之间的寄生电容,并在输出侧加共模抑制电感及电容,可减小输出的共模纹波噪声。 共模纹波噪声 a.输出采用专门设计的EMI滤波器 b.降低开关毛刺幅度 超高频谐振噪声 超高频谐振噪声主要来源于高频整流二极管反向恢复时二极管结电容、功率器件开关时功率器件结电容与线路寄生电感的谐振,频率一般为1~10MHz,通过选用软恢复特性二极管、结电容小的开关管和减少布线长度等措施可以减少超高频谐振噪声。

5G优化案例:5G波束赋形场景化应用研究

5G波束赋形场景化应用研究 XX无线维护中心 XX

XX年XX月 一、研究背景 (3) 二、技术原理 (3) 2.1波朿原理介绍 (3) 2.2波束赋形原理介绍 (12) 2.3广播波朿场景化 (23) 三、高楼场景适用性研究 (27) 3.1仿真方法 (27) 3.2仿真区域 (27) 3. 3仿真结果 (29) 3. 4仿真小结 (35) 四、经验总结及推广 (36)

5G波束赋形场景化应用研究 XX 【摘要】大规模波束赋形技术是5G NR满足增强移动宽带(eMBB)、超高可靠低时延(URLLC) 以及大规模机器类通信(mMTC)三大场景技术需求的核心技术。本文将结合标准最新进展, 介绍大规模波束赋形技术的实现原理、CSl反馈机制、波朿扫描和波束管理等关键技术:并对大规模波朿赋形的实现机制进行分析,最后给出大规模波束赋形技术在各场景中的应用和实现方式,并利用仿真技术对后续5G 分场景覆盖优化给出波朿P a ttern建议配宜,为后续5G的覆盖及波束优化提供指导思路。 【关键字】MaSSiVe MIM0、波束赋形、BeamfOrming> 5G 【业务类别】优化方法、5G NR 一、研究背景 MaSShe MIMo和波朿赋形(BeamfonniiIg BF)是5G的一项关键技术。5G将LTE时期的MIMO进行了扩展和延伸,LTE的MIMO最多8天线,到5G扩增为16/32/64/128天线,被称为“大规模”的MIM0。MaSSIVe MIMO 波束赋形(BeamfOrmmg BF)二者相辅相成,缺一不可。MaSSlVe MlMO负责在发送端和接收端将越来越多的天线聚合起来;波束赋形负责将每个信号引导到终端接收器的最佳路径上,提髙信号强度,避免信号干扰,从而改善通信质量。我们甚至可以说大规模MIMO就是大量天线的波朿。MaS S lVe MIMO通过集成更多的射频通道和天线、实现三维精准波朿赋形和多流多用户复用技术,从而达到比传统的技术方案更好的覆盖和更大的容呈:。MaSSlVe MIMO可以大幅度提升单站的容量和覆盖能力,解决运营商在同城竞争中而临的站址紧张、建站难、深度覆盖难等痛点,同时大幅度提升单用户流量满足终端用户对不同业务极致体验的诉求。本文主要开展对5G波束相关原理及不同波朿Patten I对不同场景的适用性研究,并给岀适用于现网的波朿PattenI建议。

波束赋形

TD-LTE双流波束赋形天线技术 双流波束赋形技术是TD-LTE的多天线增强型技术,是TD-LTE建网的主流技术,结合了智能天线波束赋形技术与MIMO空间复用技术,是中国移动和大唐移动共同创新的成果,也是中国通信产业技术能力的体现。 一、8天线双流波束赋形技术引入需求分析 多天线技术是天线技术发展趋势,现有TD-SCDMA已经引入了8天线,TD- LTE也引入了8发2收的天线配置,到LTE-A则将引入8发8收的天线配置。 考虑到提升覆盖能力和降低引入TD-LTE的CAPEX,TD-LTE系统中引入了8天线方案。另外,引入8天线还可以使TD-SCDMA平滑演进到TD-LTE,同时继续沿用并充分发挥TDD 系统在赋形方面的优势。 1.系统平滑演进需求 目前,TD-SCDMA网络正在全国迅速铺开。与此同时,TD-SCDMA演进技术TD-LTE也被提上了未来移动通信网络建设发展的日程。如何在进行TD-SCDMA网络建设的同时保证能够向TD-LTE实现平滑演进已经成为了运营商和设备供应商共同关注的焦点问题。 出于系统平滑演进的考虑,大唐移动提出了产品设备共平台设计的解决方案,有效的保护网络建设现有投资,保证网络升级的快速便捷。在主设备实现平滑演进的同时,从节约建网成本、降低建站难度等角度出发,需要尽可能保持TD-SCDMA网络已部署的天线系统不变,且可以在TD-LTE中继续使用。为实现天线系统的平滑演进,TD-SCDMA网络中进行宏覆盖主要采用的8天线,需要在TD- LTE网络中继续使用。 2.技术演进需求 波束赋形技术是一种基于小间距天线阵列的线性预处理技术,能够根据用户的信道特性进行波束赋形,具有扩大覆盖、提高系统容量、降低干扰的能力。作为TD-SCDMA的核心技术,波束赋形技术已在中国移动3G网络中广泛使用。 在LTE技术规范Release 8版本中,引入了单流波束赋形技术,对于提高小区平均吞吐量及边缘吞吐量、降低小区间干扰有着重要作用。但是,面对LTE Release 9以及LTE-Advanced系统的更高速率需求,有必要对波束赋形技术加以扩展。以LTE定义的最大发天线数8天线为例,由多天线理论可知,8×2天线系统的单用户MIMO至多可以同时传输两个数据流,这就意味着LTE Release 8规范中的单流波束赋形技术并没有充分开发信道容量。根据信道容量相关理论可知,信道容量为信噪比的对数函数,随着信噪比提升,容量增加趋势越来越缓;在高信噪比情况下,将某个数据流的功率降低一半并不会导致该数据流容量大幅降低,此种情况利用另一半功率来发送一个新的数据流将会极大地提升传输容量。 为满足TD-LTE系统中使用8天线以及扩展波束赋形技术以提升容量的需求,中国移动和大唐移动共同推出了采用8天线配置的双流波束赋形技术。 二、双流波束赋形技术介绍 双流波束赋形技术应用于信号散射体比较充分的条件下,是智能天线波束赋形技术(即单流波束赋形技术)和MIMO空间复用技术的有效结合,在TD-LTE系统中,利用TDD信道的对称性,同时传输两个赋形数据流来实现空间复用,并且能够保持传统单流波束赋形技术广覆盖、提高小区容量和减少干扰的特性,既可以提高边缘用户的可靠性,同时可有效提升小区中心用户的吞吐量。 根据多天线理论可知,接收天线数不能小于空间复用的数据流数。8天线双流波束赋形技术的使用,接收端至少需要有2根天线。 根据调度用户的情况不同,双流波束赋形技术可以分为单用户双流波束赋形技术和多用户双

MIMO技术的简介

TELE 9754 Coding and Information Theory Research Workshop Report

Abstract—Mobile wireless communication has become one of the most important aspects of our daily life. The continuously increasing usage has imposed great pressure upon telecommunication system where the availability of channel capacity and spectral resources are limited. Multiple Input Multiple Output (MIMO) is considered as one of the possible solutions to the above problem and has attracted considerable attention among researchers and engineers in the field of mobile communication due to the great advantages it exhibits. In recent years, MIMO technology has been developed into more sophisticated forms and utilized in some common communication devices around us. This report is intended to provide readers with a brief review of the historical and technological developments of MIMO, and its applications. I. INTRODUCTION Our wireless communication systems have undergone remarkable developments and progresses in the past 20 years, from 1G to 4G and the upcoming 5G. Such systems have provided our life with significant conveniences which were otherwise impossible and unachievable before the 1980s. However, under the condition of limited bandwidth resources and channel capacity, the developing communication scheme is unable to meet the fast growing demand from users of mobile devices. In other words, our communication system has somewhat attained its bottleneck and needs some new technology to enhance its performance. On the other hand, MIMO equipped with modern efficient signal processing techniques and processing hardware demonstrates prominent characteristics that could be taken to mitigate the above problems. MIMO can be defined, in simple terms, as a system which consists of multiple antennas at both the transmitter and receiver sides [6]. A systematic diagram of MIMO is illustrated by Figure 1. Figure 1. Systematic diagram of a MIMO system The underlying fact which enables MIMO to attract intense attention is that it could exploit the advantages of beamforming gain, spatial diversity and spatial multiplexing to enhance the performance of a communication system without extra consumption of spectral resources. The content of this report is organized in six separate sections. Section II offers readers a set of abbreviations used throughout the report. Section III illustrates the historical developments and milestones of MIMO from theory to implementations. Section IV introduces, in general sense, how MIMO functions and achieves the aforementioned advantages. Section V categorizes MIMO into various classes based on the properties it composes and some comparisons among them would be made. Section VI provides some examples of application of MIMO in modern communication scheme. Finally, a brief conclusion will be drawn in Section VI. Additional information can be found by referring to the Appendix section. II. TABLE OF ABBREVIATIONS The following table (Table 1) lists a set of commonly A BRIEF REVIEW ON MIMO TECHNOLOGY AND ITS APPLICATIONS Likai Ma z3326280

相关文档
相关文档 最新文档