文档库 最新最全的文档下载
当前位置:文档库 › 智能无刷控制器工作原理与技术大全

智能无刷控制器工作原理与技术大全

智能无刷控制器工作原理与技术大全
智能无刷控制器工作原理与技术大全

智能无刷电动车控制器工作原理及特点

一、高标科技智能型无刷电动车控制器技术特点:

1.开发最新软件来实现控制和保护电动车的电机和电池,使电动车驱动系统工作在最佳状态,从而提高产品的可靠性和使用寿命。

2.采用全智能保护系统,具有欠压保护、过流保护、堵转保护、软启动、刹车自动断电等多重保护功能,确保控制器和整车的使用安全,最大限度的降底了整车的故障率,提高了可靠性。

3.控制器主要元器件贴片安装,抗干扰、抗震动;多重防水设计,控制器可靠性高,稳定性好。

4.采用专门技术控制电流输出,自动限制最大放电电流,提供最大爬坡和起步力矩,具有爬坡力强加速快的特点。延长电池的使用时间和寿命,增加电池一次充电续航里程,同时提高电动车电气线路的可靠性和耐久性。

5.采用独特的技术,对控制器本身进行热量处理,达到最大散热率,保证了控制器可承受120度以上高温而不损坏 MOSFET 功率管,以确保控制器在高温下也能正常工作,并发挥最佳效率。

6.智能化电池管理,智能化电池欠压判断、欠压保护/过压保护,既不影响整车续行里程,又能最大程度地保护电池,延长电池使用寿命;同时确保控制器从电源欠压到过压全过程条件下,始终安全、可靠、高效地工作。

7.智能化电流管理,对电机电流进行实时监控,在确保电机足够的输入扭矩前提下降低自身功耗,同时提高电池利用效率和控制器自身的安全性。

8.优化电机设计和控制策略,使电机运行噪音低、振动小,工作平稳,输出扭矩最大化,工作电流最小化,电机匹配最佳效果,达到有效输出最高效率(82%-85%)。

二.高标科技智能型无刷电动车控制器功能特点:

1. 柔性EABS系统:具有反充电/汽车EABS刹车功能,引入了汽车级的EABS 防抱死技术,达到了EABS刹车静音、柔和的效果,完全不损伤电机,减少机械制动力和机械刹车的压力,降低刹车噪音,大大增加了整车制动的安全性;并且刹车、减速或下坡滑行时将EABS产生的能量反馈给电池,起到反充电的效果,

从而对电池进行维护,延长电池寿命,增加续行里程。

2. 1+1助力功能:用户可自行调整采用正向助力或反向助力,实现了在骑行中辅以动力,让骑行者感觉更轻松,用户可切换电动模式或助力模式。

3. 防飞车功能:解决了无刷电动车控制器由于转把或线路故障引起的飞车现象,提高了系统的安全性。

4. 电机锁系统:用户在关掉电门锁的情况下,控制器能将电机自动锁住,控制器几乎没有电力消耗,对电机没有特殊要求,在电池欠压或其它异常情况下对电动车正常推行无任何影响。

5. 堵转保护功能:自动判断电机在过流时是处于完全堵转状态还是在运行状态或电机短路状态,如过流时是处于运行状态,控制器将限流值设定在固定值,以保持整车的驱动能力;如电机处于纯堵转状态,则控制器2秒后将限流值控制在10A以下,起到保护电机和电池,节省电能;如电机处于短路状态,控制器则使输出电流控制在2A以下,以确保控制器及电池的安全。

6.功率管动态保护功能:控制器在动态运行时,实时监测功率管的工作情况,一旦出现功率管损坏的情况,控制器马上实施保护,以防止由于连锁反应损坏其它的功率管后,咬住电机,出现推车比较费力的现象,并可最大限度的降低维修费用。

7. 巡航功能:点动式,无源,具有自动巡航和手动巡航两种功能可选,4-8秒进入巡航可选,稳定行驶速度,无须手柄控制。

9. 自检保护功能:控制器对刹把、转把、EABS系统、巡航、霍尔、电机等外部接口进行实时的自检,一旦发现故障能实施保护,当故障排除时能自动恢复,对控制器本身也具有自检及保护功能,并且能监控电机电枢电流的变化,对功率器件实现动态保护及恢复,以延长控制器的使用寿命。

10.反充电功能:刹车、减速或下坡滑行时将EABS产生的能量反馈给电池,起到反充电的效果,从而对电池进行维护,延长电池寿命,增加续行里程。

11.限速功能:设计专门的限速转换,车速可分为20km/h以下限速和35Km/h 正常行驶速度。

三.高标科技智能型无刷电动车控制器接线说明:

1. 电源输入

粗红色线为电源正端黑色线为电源负端细橙色线为电门锁

2. 电机相位(u、v、w输出)

粗黄色线为U 粗绿色线为V 粗蓝色线为W

3. 转把信号输入

细红色线为+5V电源细绿色为手柄信号输入细黑色线为接地线

4. 电机霍耳(A、B、C输入)

细红色线为+5V电源细黑色线为接地线

细黄色线为 A 细绿色线为 B 细蓝色线为 C

5. 刹车(柔性EABS+机械刹)

细黄色线为柔性EABS;细蓝色线为机械刹(高电平刹车:+12V)

细黑色线为接地线(低电平刹车)

6. 传感器

细红色线为+5V电源细黑色线为接地线细绿色线为传感器信号输入

7. 仪表(转速):细紫色线

8. 巡航:细棕色线

9. 限速:细灰色线

注:我公司可根据客户需要设计特殊接线。

五.超静音智能型无刷电动车控制器使用方法和注意事项;

1、在接线前先切断电源,按接线图所示连接各根导线;

2、该控制器应安装在通风、防水、防震部位。

3、控制器限速控制插头应放置容易操作的地方。

4、控制器接插件应接插到位,禁止将控制器电源正负极反接(即严禁粗红、细橙和粗黑;细红和细黑接反

水位自动控制系统的原理是什么

水位自动控制系统就是将水位信号转换为开关信号,再用这个开关信号去控制交流接触器,交流接触器再控制一个水泵,就可以达到水位自动控制的目的。水泵有各种各样的工作方式,所以交流接触器也有多种设计方案,这些电气元件按照设计方案连接起来就是电气控制箱。现有多种成熟的设计方案,如GKY1X单台泵系统、GKY2X双台泵系统等等,在网上可以查到各种各样的设计原理图。水泵电气控制箱是很常用的控制设备,工作可靠、使用寿命长。影响水位自动控制系统可靠性和使用寿命的关键因素是液位传感器,就是将水位信号转换为开关信号这一部分。现在主要有电极式、UQK/GSK干簧管式、光电式、压力式、GKY和超声波式等几种方式。这些方式检测原理不同,因而水位自动控制的原理也不同。下面,我们根据液位传感器的检测方式来讲解水位自动控制系统的原理,这是决定水位自动控制系统使用寿命和可靠性的主要因素。 一、电极式液位控制原理 电极式是最早的液位控制方式,其控制原理很简单:因为水是导体,有水的时候两个电极间导电,交流接触器吸合,水泵就开始抽水。图1为电极式在水中控制原理示意图。但是电极在水中会分解而且会吸附很多杂质。如果不及时清理,电极就会失去作用,这是电极式液位传感器固有的缺陷。电极式液位传感器的制造非常简单,有人将导线外皮拨开,插到水里就可以做成电极式液位控制器。所以电极式液位控制器造价很低,价格便宜,但使用寿命很短。即使采用不锈钢做电极,也需要2-3个月清理一下,在污水中电极的使用寿命就更短了。 图1 二、UQK/GSK干簧管液位控制原理 干簧管将电极触点密封在玻璃管内,这样就不直接接触液体了,所以电极不会吸附杂质,使用寿命提高。干簧管的特点就是接近磁铁,触点就会吸合。所以我们将干簧管固定在管壁内固定的位置。浮子里装上磁铁,随着浮力沿着管壁上下滑动,见图2。当浮子经过干簧管时,触点吸合。干簧管触点一般直接驱动交流接触器,可以控制水泵启动。GSK上下限位置精确,但管壁不能有脏东西,安装不能倾斜(小于30°),否则会影响浮子的上下移动。

控制器的工作原理介绍

控制器的工作原理介绍 控制器是指按照预定顺序改变主电路或控制电路的接线和改变电路中电阻值来控制电动机的启动、调速、制动和反向的主令装置。由程序计数器、指令寄存器、指令译码器、时序产生器和操作控制器组成,它是发布命令的“决策机构”,即完成协调和指挥整个计算机系统的操作。 控制器的分类有很多,比如LED控制器、微程序控制器、门禁控制器、电动汽车控制器、母联控制器、自动转换开关控制器、单芯片微控制器等。 1.LED控制器(LED controller):通过芯片处理控制LED灯电路中的各个位置的开关。控制器根据预先设定好的程序再控制驱动电路使LED阵列有规律地发光,从而显示出文字或图形。 2.微程序控制器:微程序控制器同组合逻辑控制器相比较,具有规整性、灵活性、可维护性等一系列优点,因而在计算机设计中逐渐取代了早期采用的组合逻辑控制器,并已被广泛地应用。在计算机系统中,微程序设计技术是利用软件方法来设计硬件的一门技术。 3.门禁控制器:又称出入管理控制系统(Access Control System) ,它是在传统的门锁基础上发展而来的。门禁控制器就是系统的核心,利用现代的计算机技术和各种识别技术的结合,体现一种智能化的管理手段。 4.电动汽车控制器:电动车控制器是用来控制电动车电机的启动、运行、进退、速度、停止以及电动车的其它电子器件的核心控制器件,它就象是电动车的大脑,是电动车上重要的部件。 上述只是简单的介绍了几种控制器的名称和主要功能,控制器的种类繁多、技术不同、领域不同。 在控制器领域内,高标科技作为一家国家级的高新企业,其主打产品是电动车控制器,并且在电动车控制领域内占有很重要的地位,之前已经说到电动车控制器是用来控制电动车电机的启动、运行、进退、速度、停止以及电动车的其它电子器件的核心控制器件,它就象是电动车的大脑,是电动车上重要的部件。高标科技在这里为大家介绍一下高标控制器的基本工作原理: (一)高标科技电动车控制器的结构 电动车控制器是由周边器件和主芯片(或单片机)组成。周边器件是一些功能

音叉液位开关工作原理

音叉液位开关工作原理 音叉液位开关的工作原理是通过安装在音叉基座上的一对压电晶体使音叉在一定共振频率下振动。当音叉液位开关的音叉与被测介质相接触时,音叉的频率和振幅将改变,音叉液位开关的这些变化由智能电路来进行检测, 处理并将之转换为一个开关信号。 雷达液位计的测量原理 雷达液位计采用发射—反射—接收的工作模式。雷达液位计的天线发射出电磁波,这些波经被测对象表面反射后,再被天线接收,雷达液位计记录脉冲波经历的时间,而电磁波的传输速度为常数,则可算出液面到雷达天线的距离,从而知道液面的液位。 超声波物位计测量原理 超声波物位计的工作原理是由换能器(探头)发出高频超声波脉冲遇到被测介质表面被反射回来,部分反射回波被同一换能器接收,转换成电信号。超声波脉冲以声波速度传播,从发射到接收到超声波脉冲所需时间间隔与换能器到被测介质表面的距离成正比。此距离值S与声速C和传输时间T之间的关系可以用公式表示:S=CxT/2。 由于发射的超声波脉冲有一定的宽度,使得距离换能器较近的小段区域内的反射波与发射波重迭,无法识别,不能测量其距离值。这个区域称为测量盲区。盲区的大小与超声波物位计的型号有关。 双转子流量计工作原理 双转子流量计的计量室由内壳体和一对螺旋转子及上下盖板等组成,它们之间形成若干个已知体积的空腔作为流量计的计量单元。流量计的转子靠其进、出口处的微小压差推动旋转,并不断地将进口的液体经空腔计量后送到出口,转子将转动次数经密封联轴器及传动系统传递给计数机构,直接指示出流经流量计的 液体总量。 LTD-通用电子流量计 非常适用于水、污水、热水、高压水的计量,结构简单、适应性强,产品广泛应用于油田掺水、注水及石化、热电、市政、矿山、食品等行业。原理:当被测介质流过流量计时,冲击叶轮旋转,在一定的流量范围内,叶轮转速与流量成正比,而当叶轮转动时,叶轮由导磁的不锈钢的叶片,依次接近处于壳体的传感器,周期性地改变传感器磁电回路的磁阻,使通过传感器的磁通量发生变化而产生与流量成比例的脉冲电信号,此信号经过数据处理后分别显示出累计流量值和瞬时

永磁无刷直流电动机的基本工作原理

永磁无刷直流电动机的基本工作原理 无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。 1. 电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。 无刷直流电动机的原理简图如图一所示: 永磁无刷直流电动机的基本工作原理 主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ调制波的对称交变矩形波。 永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组件处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。每种状态下,仅有两相绕组通电,依次改变一种状态,定子绕组产生的磁场轴线在空间转动60°电角度,转子跟随定子磁场转动相当于60°电角度空间位置,转子在新位置上,使位置传感器U、V、W按约定产生一组新编码,新的编码又改变了功率管的导通组合,使定子绕组产生的磁场轴再前进60°电角度,如此循环,无刷直流电动机将产生连续转矩,拖动负载作连续旋转。正因为无刷直流电动机的换向是自身产生的,而不是由逆变器强制换向的,所以也称作自控式同步电动机。 2. 无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始位置处在何处,电动机在启动瞬间就会产生足够大的启动转矩,因此转子上不需另设启动绕组。 由于定子磁场轴线可视作同转子轴线垂直,在铁芯不饱和的情况下,产生的平均电磁转矩与绕组电流成正比,这正是他励直流电动机的电流-转矩特性。 电动机的转矩正比于绕组平均电流: Tm=KtIav (N·m) 电动机两相绕组反电势的差正比于电动机的角速度: ELL=Keω (V) 所以电动机绕组中的平均电流为: Iav=(Vm-ELL)/2Ra (A) 其中,Vm=δ·VDC是加在电动机线间电压平均值,VDC是直流母线电压,δ是调制波的占空比,Ra为每相绕组电阻。由此可以得到直流电动机的电磁转矩: Tm=δ·(VDC·Kt/2Ra)-Kt·(Keω/2Ra) Kt、Ke是电动机的结构常数,ω为电动机的角速度(rad/s),所以,在一定的ω时,改变占空比δ,就可以线性地改变电动机的电磁转矩,得到与他励直流电动机电枢电压控制相同的控制特性和机械特性。

无刷电机工作及控制原理(图解)

无刷电机工作及控制原理(图解) 左手定则,这个就是电机转动受力分析得基础,简单说就就是磁场中得载流导体,会受到力得作用。 让磁感线穿过手掌正面,手指方向为电流方向,大拇指方向为产生磁力得方向,我相信喜欢玩模型得人都还有一定物理基础得哈哈.

让磁感线穿过掌心,大拇指方向为运动方向,手指方向为产生得电动势方向。为什么要讲感生电动势呢?不知道大家有没有类似得经历,把电机得三相线合在一起,用手去转动电机会发现阻力非常大,这就就是因为在转动电机过程中产生了感生电动势,从而产生电流,磁场中电流流过导体又会产生与转动方向相反得力,大家就会感觉转动有很大得阻力。不信可以试试. 三相线分开,电机可以轻松转动 三相线合并,电机转动阻力非常大 右手螺旋定则,用右手握住通电螺线管,使四指弯曲与电流方向一致,那么大拇指所指得那一端就就是通电螺旋管得N极。

状态1 当两头得线圈通上电流时,根据右手螺旋定则,会产生方向指向右得外加磁感应强度B(如粗箭头方向所示),而中间得转子会尽量使自己内部得磁感线方向与外磁感线方向保持一致,以形成一个最短闭合磁力线回路,这样内转子就会按顺时针方向旋转了。 当转子磁场方向与外部磁场方向垂直时,转子所受得转动力矩最大.注意这里说得就是“力矩”最大,而不就是“力”最大。诚然,在转子磁场与外部磁场方向一致时,转子所受磁力最大,但此时转子呈水平状态,力臂为0,当然也就不会转动了。补充一句,力矩就是力与力臂得乘积。其中一个为零,乘积就为零了. 当转子转到水平位置时,虽然不再受到转动力矩得作用,但由于惯性原因,还会继续顺时针转动,这时若改变两头螺线管得电流方向,如下图所示,转子就会继续顺时针向前转动, 状态2 如此不断改变两头螺线管得电流方向,内转子就会不停转起来了。改变电流方向得这一动作,就叫做换相。补充一句:何时换相只与转子得位置有关,而与其她任何量无直接关系。 第二部分:三相二极内转子电机 一般来说,定子得三相绕组有星形联结方式与三角联结方式,而“三相星形联结得二二导通方式”最为常用,这里就用该模型来做个简单分析。

温度控制器的工作原理

温度控制器的工作原理 据了解,很多厂家在使用温度控制器的过程中,往往碰到惯性温度误差的问题,苦于无法解决,依靠手工调压来控制温度。创新,采用了PID模糊控制技术,较好地解决了惯性温度误差的问题。传统的温度控制器,是利用热电偶线在温度化变化的情况下,产生变化的电流作为控制信号,对电器元件作定点的开关控制器。电脑控制温度控制器:采用PID模糊控制技术*用先进的数码技术通过Pvar、Ivar、Dvar(比例、积分、微分)三方面的结合调整形成一个模糊控制来解决惯性温度误差问题。 传统的温度控制器的电热元件一般以电热棒、发热圈为主,两者里面都用发热丝制成。发热丝通过电流加热时,通常达到1000℃以上,所以发热棒、发热圈内部温度都很高。一般进行温度控制的电器机械,其控制温度多在0-400℃之间,所以,传统的温度控制器进行温度控制期间,当被加热器件温度升高至设定温度时,温度控制器会发出信号停止加热。但这时发热棒或发热圈的内部温度会高于400℃,发热棒、发热圈还将会对被加热的器件进行加热,即使温度控制器发出信号停止加热,被加热器件的温度还往往继续上升几度,然后才开始下降。当下降到设定温度的下限时,温度控制器又开始发出加热的信号,开始加热,但发热丝要把温度传递到被加热器件需要一定的时候,这就要视乎发热丝与被加热器件之间的介质情况而定。通常开始重新加热时,温度继续下降几度。所以,传统的定点开关控制温度会有正负误差几度的现象,但这不是温度控制器本身的问题,而是整个热系统的结构性问题,使温度控制器控温产生一种惯性温度误差。 要解决温度控制器这个问题,采用PID模糊控制技术,是明智的选择。PID模糊控制,是针对以上的情况而制定的、新的温度控制方案,用先进的数码技术通过Pvar、Ivar、Dvar三方面的结合调整,形成一个模糊控制,来解决惯性温度误差问题。然而,在很多情况下,由于传统的温度控制器温控方式存在较大的惯性温度误差,往往在要求精确的温控时,很多人会放弃自动控制而采用调压器来代替温度控制器。当然,在电压稳定工作的速度不变、外界气温不变和空气流动速度不变的情况下,这样做是完全可以的,但要清楚地知道,以上的环境因素是不断改变的,同时,用调压器来代替温度控制器时,必须在很大程度上靠人力调节,随着工作环境的变化而用人手调好所需温度的度数,然后靠相对稳定的电压来通电加热,勉强运作,但这决不是自动控温。当需要控温的关键很多时,就会手忙脚乱。这样,调压器就派不上用场,因为靠人手不能同时调节那么多需要温控的关键,只有采用PID模糊控制技术,才能解决这个问题,使操作得心应手,运行畅顺。例如烫金机,其温度要求比较稳定,通常在正负2℃以内才能较好运作。高速烫金机烫制同一种产品图案时,随着速度加快,加热速度也要相应提高。这时,传统的温度控制器方式和采用调压器操作就不能胜任,产品的质量就不能保证,因为烫金之前必须要把烫金机的运转速度调节适当,用速度来迁就温度控制器和调压器的弱点。但是,如果采用PID模糊控制的温度控制器,就能解决以上的问题,因为PID中的P,即Pvar功率变量控制,能随着烫金机工作速度加快而加大功率输出的百分量。 有机械式的和电子式的, 机械式的采用两层热膨胀系数不同金属亚在一起,温度改变时,他的弯曲度会发生改变,当弯曲到某个程度是,接通(或断开)回路,使得制冷(或加热)设备工作。

液位开关_液位开关原理_液位开关接线图

液位开关种类及原理 1浮球液位开关 浮球液位开关结构主要基于浮力和静磁场原理设计生产的。带有磁体的浮球(简称浮球)在被测介质中的位置受浮力作用影响:液位的变化导致磁性浮子位置的变化。浮球中的磁体和传感器(磁簧开关)作用,产生开关信号。 2音叉液位开关 音叉液位开关的工作原理是通过安装在基座上的一对压电晶体使音叉在一定共振频率下振动。当音叉液位开关的音叉与被测介质相接触时,音叉的频率和振幅将改变,音叉液位开关的这些变化由智能电路来进行检测,处理并将之转换为一个开关信号,达到液位报警或控制的目的。为了让音叉伸到罐内,通常使用法兰或者带螺纹的工艺接头将音叉开关安装到罐体的侧面或者顶部。 3电容式液位开关 电容式液位开关的测量原理是:固体物料的物位高低变化导致探头被覆盖区域大小发生变化,从而导致电容值发生变化。探头与罐壁(导电材料制成)构成一个电容。探头处于空气中时,测量到的是一个小数值的初始电容值。当罐体中有物料注入时,电容值将随探头被物料所覆盖区域面积的增加而相应地增大,开关状态发生变化。 4外测液位开关 外测液位开关是一种利用“变频超声波技术”实现的非接触式液位开关,广泛使用于各种液体的液体检测。其测量探头安装在容器外壁上,属于一种从罐外检测液位的完全非接触检测仪表。仪表测量探头发射超声波,并检测其在容器壁中的余振信号,当液体漫过探头时,此余振信号的幅值会变小,这个改变被仪表检测到后输出一个开关信号,达到液位报警的目的。 万联芯城-电子元器件采购网https://www.wendangku.net/doc/8013361230.html,一直秉承着以良心做好良芯的服务理念,为广大客户提供一站式的电子元器件配单服务,客户行业涉及电子电工,智能工控,自动化,医疗安防等多个相关研发生产领域,所售电子元器件均为原厂渠道进货的原装现货库存。只需提交BOM表,即可为您报价。万联芯城同时为长电,顺络,先科ST等知名原厂的指定授权代理商,采购代理品牌电子元器件价格更有优势,欢迎广大客户咨询,点击进入万联芯城。

无刷直流电机的组成及工作原理

无刷直流电机的组成及工作原理 2.1 引言 直流无刷电动机一般由电子换相电路、转子位置检测电路和电动机本体三部分组成,电子换相电路一般由控制部分和驱动部分组成,而对转子位置的检测一般用位置传感器来完成。工作时,控制器根据位置传感器测得的电机转子位置有序的触发驱动电路中的各个功率管,进行有序换流,以驱动直流电动机。下文从无刷直流电动机的三个部分对其发展进行分析。 2.2 无刷直流电机的组成 2.2.1 电动机本体 无刷直流电动机在电磁结构上和有刷直流电动机基本一样,但它的电枢绕组放在定子上,转子采用的重量、简化了结构、提高了性能,使其可*性得以提高。无刷电动机的发展与永磁材料的发展是分不开的,磁性材料的发展过程基本上经历了以下几个发展阶段:铝镍钴,铁氧体磁性材料,钕铁硼(NdFeB)。钕铁硼有高磁能积,它的出现引起了磁性材料的一场革命。第三代钕铁硼永磁材料的应用,进一步减少了电机的用铜量,促使无刷电机向高效率、小型化、节能的方向发展。 目前,为提高电动机的功率密度,出现了横向磁场永磁电机,其定子齿槽与电枢线圈在空间位置上相互垂直,电机中的主磁通沿电机轴向流通,这种结构提高了气隙磁密,能够提供比传统电机大得多的输出转矩。该类型电机正处于研究开发阶段。 2.2.2 电子换相电路 控制电路:无刷直流电动机通过控制驱动电路中的功率开关器件,来控制电机的转速、转向、转矩以及保护电机,包括过流、过压、过热等保护。控制电路最初采用模拟电路,控制比较简单。如果将电路数字化,许多硬件工作可以直接由软件完成,可以减少硬件电路,提高其可靠性,同时可以提高控制电路抗干扰的能力,因而控制电路由模拟电路发展到数字电路。 驱动电路:驱动电路输出电功率,驱动电动机的电枢绕组,并受控于控制电路。驱动电路由大功率开关器件组成。正是由于晶闸管的出现,直流电动机才从有刷实现到无刷的飞跃。但由于晶闸管是只具备控制接通,而无自关断能力的半控性开关器件,其开关频率较低,不能满足无刷直流电动机性能的进一步提高。随着电力电子技术的飞速发展,出现了全控型的功率开关器件,其中有可关断晶体管(GTO)、电力场效应晶体管(MOSFET)、金属栅双极性晶体管IGBT 模块、集成门极换流晶闸管(IGCT)及近年新开发的电子注入增强栅晶体管(IEGT)。随着这些功率器件性能的不断提高,相应的无刷电动机的驱动电路也获得了飞速发展。目前,全控型开关器件正在逐渐取代线路复杂、体积庞大、功能指标低的普通晶闸管,驱动电路已从线性放大状态转换为脉宽调制的开关状态,相应的电路组成也由功率管分立电路转成模块化集成电路,为驱动电路实现智能化、高频化、小型化创造了条件。 2.2.3 转子位置检测电路

基于单片机的温度控制器附程序代码

生产实习报告书 报告名称基于单片机的温度控制系统设计姓名 学号0138、0140、0141 院、系、部计算机与通信工程学院 专业信息工程10-01 指导教师 2013年 9 月 1日

目录 1.引言.................................. 错误!未定义书签。 2.设计要求.............................. 错误!未定义书签。 3.设计思路.............................. 错误!未定义书签。 4.方案论证.............................. 错误!未定义书签。方案一................................................. 错误!未定义书签。方案二................................................. 错误!未定义书签。 5.工作原理.............................. 错误!未定义书签。 6.硬件设计.............................. 错误!未定义书签。单片机模块............................................. 错误!未定义书签。 数字温度传感器模块 .................................... 错误!未定义书签。 DS18B20性能......................................... 错误!未定义书签。 DS18B20外形及引脚说明............................... 错误!未定义书签。 DS18B20接线原理图................................... 错误!未定义书签。按键模块............................................... 错误!未定义书签。声光报警模块........................................... 错误!未定义书签。数码管显示模块......................................... 错误!未定义书签。 7.程序设计.............................. 错误!未定义书签。主程序模块............................................. 错误!未定义书签。 读温度值模块.......................................... 错误!未定义书签。 读温度值模块流程图: ................................. 错误!未定义书签。

锅炉水位控制器

河南科技学院新科学院 单片机课程设计报告题目:基于单片机的锅炉水位控制器 专业班级:电气工程及其自动化104 姓名: _ 时间:2012.12.03~2012.12.21 指导教师:邵峰、徐君鹏、张素君 2012年12月20日

基于单片机控制的锅炉水位控制器设计任务书 一. 设计要求 (一) 基本功能 1.具有手动和自动两种操作模式 2.能够实现多点水位数据采集,并实时进行水位状态显示 3.具有多种连锁保护和报警功能 具体工作过程如下: 控制器上电后,首先处于自动工作模式,程序开始扫描当前锅炉的水位和压力状态,如果水位低于正常水位,发出报警信后,同时启动水泵上水,经过一定时间后,如水位到达正常水位,报警将自冻结除,同时如果压力为低压状态则马上启动鼓风机和引风机,否则控制器自动关闭鼓风机和引风机。如果水位达到最高水位和压力超过设定压力时自动报警,同时关闭水泵和风机。系统时刻跟踪显示水位和压力状态。如果你想手动操作,你可以通过手动/自动转换键把系统置为手动工作模式,此时可由人工控制水泵和风机的运行,水位和压力检测由控制器自动完成,且当水位过低时不能手动停止水泵,过高时不能启动水泵,压力过低不能停止风机,过高不能启动风机,从而实现安全联锁保护控制。 (二)扩展功能 1.系统具备一定的硬件抗干扰能力 2.系统增加软件看门狗功能 二.计划完成时间三周 1.第一周完成软件和硬件的整体设计,同时按要求上交设计报告一份。 2.第二周完成软件的具体设计和硬件的制作。 3.第三周完成软件和硬件的联合调试。

目录 1引言 (1) 2总体设计方案.............................................................................. 1 2.1设计思路.............................................................................. 2 2.2设计方框图 (2) 3设计组成及原理分析..................................................................... 3 3.1水位检测电路设计..................................................................... 3 3.2驱动电路设计 (4) 3.3报警电路设计 (4) 3.4复位电路 (5) 3.5振荡电路 (5) 3.6水位指示电路 (6) 3.7手动自动路 (6) 4总结与体会 (7) 参考文献…………………………………………………………………………… 8附录1 …………………………………………………………………………… 9附录 2 …………………………………………………………………………… 10附录 3 …………………………………………………………………………… 11附录 4 (12)

无刷直流电机的工作原理(带霍尔传感器)

无刷直流电机的工作原理 无刷直流电机的控制结构 无刷直流电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子极数(P)影响: N=120.f / P。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。无刷直流电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说无刷直流电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。 无刷直流驱动器包括电源部及控制部如图 (1) :电源部提供三相电源给电机,控制部则依需求转换输入电源频率。 电源部可以直接以直流电输入(一般为24V)或以交流电输入(110V/220 V),如果输入是交流电就得先经转换器(converter)转成直流。不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器(inverter)转成3相电压来驱动电机。换流器(inverter)一般由6个功率晶体管(Q1~Q6)分为上臂(Q1、Q3、Q5)/下臂(Q2、Q4、Q6)连接电机作为控制流经电机线圈的开关。控制部则提供PWM(脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。无刷直流电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall-sensor),做为速度之闭回路控制,同时也做为相序控制的依据。但这只是用来做为速度控制并不能拿来做为定位控制。

(图一) 无刷直流电机的控制原理 要让电机转动起来,首先控制部就必须根据hall-sensor感应到的电机转子目前所在位置,然后依照定子绕线决定开启(或关闭)换流器(inverter)中功率晶体管的顺序,如 下(图二) inverter中之AH、BH、CH(这些称为上臂功率晶体管)及AL、BL、CL(这些称为下臂功率晶体管),使电流依序流经电机线圈产生顺向(或逆向)旋转磁场,并与转子的磁铁相互作用,如此就能使电机顺时/逆时转动。当电机转子转动到hall-sensor感应出另一组信号的位置时,控制部又再开启下一组功率晶体管,如此循环电机就可以依同一方向继续转动直到控制部决定要电机转子停止则关闭功率晶体管(或只开下臂功率晶体管);要电机转子反向则功率晶体管开启顺序相反。 基本上功率晶体管的开法可举例如下: AH、BL一组→AH、CL一组→BH、CL一组→BH、AL一组→CH、AL一组→CH、BL 一组, 但绝不能开成AH、AL或BH、BL或CH、CL。此外因为电子零件总有开关的响应时间,所以功率晶体管在关与开的交错时间要将零件的响应时间考虑进去,否则

温度控制器的工作原理

温度控制器的工作原理文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

温度控制器的工作原理 据了解,很多厂家在使用温度控制器的过程中,往往碰到惯性温度误差的问题,苦于无法解决,依靠手工调压来控制温度。创新,采用了PID模糊控制技术,较好地解决了惯性温度误差的问题。传统的温度控制器,是利用热电偶线在温度化变化的情况下,产生变化的电流作为控制信号,对电器元件作定点的开关控制器。电脑控制温度控制器:采用PID 模糊控制技术 *用先进的数码技术通过Pvar、Ivar、Dvar(比例、积分、微分)三方面的结合调整形成一个模糊控制来解决惯性温度误差问题。 传统的温度控制器的电热元件一般以电热棒、发热圈为主,两者里面都用发热丝制成。发热丝通过电流加热时,通常达到1000℃以上,所以发热棒、发热圈内部温度都很高。一般进行温度控制的电器机械,其控制温度多在0-400℃之间,所以,传统的温度控制器进行温度控制期间,当被加热器件温度升高至设定温度时,温度控制器会发出信号停止加热。但这时发热棒或发热圈的内部温度会高于400℃,发热棒、发热圈还将会对被加热的器件进行加热,即使温度控制器发出信号停止加热,被加热器件的温度还往往继续上升几度,然后才开始下降。当下降到设定温度的下限时,温度控制器又开始发出加热的信号,开始加热,但发热丝要把温度传递到被加热器件需要一定的时候,这就要视乎发热丝与被加热器件之间的介质情况而定。通常开始重新加热时,温度继续下降几度。所以,传统的定点开关控制温度会有正负误差几度的现象,但这不是温度控制器本身的问题,而是整个热系统的结构性问题,使温度控制器控温产生一种惯性温度误差。 要解决温度控制器这个问题,采用PID模糊控制技术,是明智的选择。PID模糊控制,是针对以上的情况而制定的、新的温度控制方案,用先进的数码技术通过Pvar、Ivar、Dvar 三方面的结合调整,形成一个模糊控制,来解决惯性温度误差问题。然而,在很多情况下,由于传统的温度控制器温控方式存在较大的惯性温度误差,往往在要求精确的温控

控制器工作原理

控制器(英文名称:controller)是指按照预定顺序改变主电路或控制电路的接线和改变电路中电阻值来控制电动机的启动、调速、制动和反向的主令装置。由程序计数器、指令寄存器、指令译码器、时序产生器和操作控制器组成,它是发布命令的“决策机构”,即完成协调和指挥整个计算机系统的操作。 电动车控制器是用来控制电动车电机的启动、运行、进退、速度、停止以及电动车的其它电子器件的核心控制器件,它就象是电动车的大脑,是电动车上重要的部件。电动车就目前来看主要包括电动自行车、电动二轮摩托车、电动三轮车、电动三轮摩托车、电动四轮车、电瓶车等,电动车控制器也因为不同的车型而有不同的性能和特点。 电动车控制器近年来的发展速度之快使人难以想象,操作上越来越“傻瓜”化,而显示则越来越复杂化。比如,车速的控制已经发展到“巡航锁定”、驱动方面,有的同时具有电动性能和助力功能,诸多的新型技术让很多消费者在使用的时候感觉“摸不着北”,高标科技在这里讲解一下电动车控制器的基本工作原理: 一、高标科技电动车控制器简介: 电动车控制器是由周边器件和主芯片(或单片机)组成。周边器件是一些功能器件:如执行、采样等,它们是电阻、传感器、桥式开关电路、以及辅助单片机或专用集成电路完成控制过程的器件;单片机也称微控制器,是在一块集成片上把存贮器、有变换信号语言的译码器、锯齿波发生器和脉宽调制功能电路以及能使开关电路功率管导通或截止、通过方波控制功率管的的导通时间以控制电机转速的驱动电路、输入输出端口等集成在一起,而构成的计算机片。 控制器的设计品质、特性、所采用的微处理器的功能、功率开关器件电路及周边器件布局等,直接关系到整车的性能和运行状态,也影响控制器本身性能和效率。不同品质的控制器用在同一辆车上,配用同一组相同充放电状态的电池,有时也会在续驶能力上显示出较大差别。 二、高标科技电动车控制器的形式: 1.分离式:所谓分离,是指控制器主体和显示部分分离。后者安装在车把上,控制器主体则隐藏在车体包厢或电动箱内,不露在外面。这种方式使控制器与电源,电机间连线距离缩短,车体外观显得简洁。

液位控制器工作原理

西安祥天和电子科技有限公司详情咨询官网https://www.wendangku.net/doc/8013361230.html, 主营产品:液位传感器水泵控制箱报警器GKY仪表液位控制系统,液位控制器,无线传输收发器等 液位控制器工作原理 液位控制器是简单的液位控制系统,接线简单、使用灵活。常见的有GKY通用液位控制器和水位报警器,可以接入GKY液位传感器、电极探头(如GKYC-DJ)、UQK01等液位传感器。以下,以GKY传感器为例来说明其工作原理。 一、GKY通用液位控制器工作原理 通用液位控制器外形尺寸长150宽90高70mm,继电器输出I、输出II同步工作,在低水位吸合高水位断开,继电器触点负荷均为220V10A。用于供水时选择4端接入控制回路,用于排水时选择5端接入控制回路。以下为UGKY典型的电气控制接线方案,其中KA为中间继电器或交流接触器: 供水接线方案排水接线方案 二、GKY液位报警器工作原理

水位报警器外形尺寸长150宽90高70mm,可以配一个或两个液位传感器。配一个传感器时,报警器为水满报警:即在这个传感器有水时发出声光报警,同时上限继电器吸合。如果将报警器设置1(7、8端子)用一段导线连接(即短路),则报警器为缺水报警:即在这个传感器无水时发出声光报警,同时下限继电器吸合。如果配两个传感器时,则报警器在下限无水或上限有水时发出声光报警,同时相应的继电器吸合。继电器触点负荷均为220V10A。如果不需要声音报警则把设置2(9、10端子)用一段导线连接即可。以下为GKY-BJ典型的电气控制接线方案,其中KA为中间继电器或交流接触器: 以上是最简单电气控制方案,复杂的控制功能可以通过电气控制的设计来实现。具体可在https://www.wendangku.net/doc/8013361230.html,的“资料免费下载”栏目中下载所需的电气控制柜设计方案。

简易温度控制器的设计(DOC)

" 简易温度控制器的设计 摘要 简易温度控制器是采用热敏电阻作为温度传感器,由于温度的变化而引起电压的变化,再利用比较运算放大器与设置的温度值对应的电压进行比较,输出高或低电平从而对控制对象即加热器进行控制。其电路可分为三大部分:测温电路,比较/显示电路,控制电路。 关键词:测温,显示,加热 ! }

目录 一、设计任务和要求 0 设计内容 0 设计要求 0 二、系统设计 0 系统要求 0 系统工作原理 0 方案设计 0 三.单元电路设计 (1) 温度检测电路 (1) 电路结构及工作原理 (1) 电路仿真 (2) 、元器件的选择及参数的确定 (3) 比较/显示电路 (3) 电路结构及工作原理 (3) 电路仿真 (4) 元件的选择及参数的确定 (5) 、温度控制单元电路 (5) 电路结构及工作原理 (5) 温度控制单元仿真电路 (6) 电源部分 (7) 四.系统仿真 (9) 结论 (9) 致谢 (9) 参考文献 (9)

一、设计任务和要求 设计内容 采用热敏电阻作为温度传感器,由于温度变化而引起电压的变化,再利用比较运算放大器与设置的温度值对应的电压进行比较,从而通过输出电平对加热器进行控制。 设计要求 首先通过电源变压器把220V的交流电变成所需要的5V电压;当水温小于40℃时,H1、H2两个加热器同时打开,将容器内的水加热;当水温大于50℃,但小于70℃时,H1加热器打开,H2加热器关闭;当水温大于50℃时,H1、H2两个加热器同时关闭;当水温小于30℃,或者大于80℃时,红色发光二极管报警;当水温在30℃~80℃之间时,用绿色发光二极管指示水温正常[2]。 二、系统设计 系统要求 系统主要要求将温度模拟量转化为数字量,再将其转化为控制信号,从而对显示电路和控制电路进行控制,从而自动的调节水温, 系统工作原理 通过对水温进行测量,将所测量的温度值与给定值进行比较,利用比较后的输出信号至加热部分,让加热部分调控水温,从而实现对水温控制的目的。同时也反应到显示部分,让其正确的表示温度的状态。温度值的变化引起电阻值的变化,从而最终引起测温电路输出的电压值的变化,经过后边比较电路进行比较,从而控制显示电路和加热电路。 方案设计 为了使信号输出误差很小,选用桥式测压电路,这样可以得出较为准确的与温度相对应的电压值,关于比较部分可以选用比较器LM339构成窗口比较器,再利用滑动变阻

PID控制器的工作原理

PID控制器的工作原理 PID控制器广泛应用于工业过程控制。工业自动化领域的大约95%的闭环操作使用PID控制器。控制器以这样一种方式组合,即产生一个控制信号。作为反馈控制器,它将控制输出提供到所需的水平。在微处理器发明之前,模拟电子元件实现了PID控制。但是今天所有的PID控制器都是由微处理器处理的。可编程逻辑控制器也有内置的PID控制器指令。 通过使用低成本的简单开关控制器,只有两种控制状态是可能的,例如全开或全关。它用于有限的控制应用,这两个控制状态足够控制目标。然而,这种控制的振荡特性限制了其使用,因此正在被PID控制器所取代。 PID控制器保持输出,使得通过闭环操作在过程变量和设定点/期望输出之间存在零误差。PID使用三种基本的控制行为,下面将对此进行说明。 P-控制器: 比例或P-控制器给出与电流误差e(t)成比例的输出。它将期望值或设定值与实际值或反馈过程值进行比较。得到的误差乘以比例常数得到输出。如果错误值为零,则该控制器输出为零。 此控制器在单独使用时需要偏置或手动重置。这是因为它从来没有达到稳定状态。它提供稳定的操作,但始终保持稳定状态的错误。当比例常数Kc增加时,响应速度会增加。

I-控制器 由于p-控制器在过程变量和设定点之间总是存在偏差,所以需要I-控制器,这就提供了必要的动作来消除稳态误差。它集成了一段时间的误差,直到误差值达到零。它对最终控制装置的误差为零的值保持不变。 当发生负面误差时,积分控制会降低其输出。它限制了响应速度,影响了系统的稳定性。响应的速度通过减小积分增益Ki而增加。 在上图中,随着I控制器的增益减小,稳态误差也逐渐减小。对于大多数情况下,PI 控制器尤其适用于不需要高速响应的场合。 当使用PI控制器,I-控制器输出被限制在一定程度的范围内,克服了积分饱和,其中积分输出的推移,即使在零误差状态增加时,由于在所述植物的非线性的条件。 d-控制器

常用20种液位计工作原理

本文通过对常用20种液位计工作原理的解读,从各液位计安装使用及注意事项的分析,来判断液位计可能出现的故障现象以及如何来处理,系统的了解液位计,从而为遇到工况能够在选择液位计上,做出准确的判断提供依据。常见液位计种类1、磁翻板液位计2、浮球液位计3、钢带液位计4、雷达物位计5、磁致伸缩液位计6、射频导纳液位计7、音叉物位计8、玻璃板/玻璃管液位计9、静压式液位计10、压力液位变送器11、电容式液位计12、智能电浮筒液位计13、浮标液位计14、浮筒液位变送器15、电接点液位计16、磁敏双色电子液位计17、外测液位计18、静压式液位计19、超声波液位计20、差压式液位计(双法兰液位计)常用液位计的工作原理1、磁翻板液位计磁翻板液位计:又叫磁浮子液位计,磁翻柱液位计。原理:连通器原理,根据浮力原理和磁性耦合作用研发而成,当被测容器中的液位升降时,浮子内的永久磁钢通过磁耦合传递到磁翻柱指示面板,使红白翻柱翻转180°,当液位上升时翻柱由白色转为红色,当液位下降时翻柱由红色转为白色,面板上红白交界处为容器内液位的实际高度,从而实现液位显示。2、浮球液位计浮球液位计结构主要基于浮力和静磁场原理设计生产的。带有磁体的浮球(简称浮球)在被测介质中的位置受浮力作用影响:液位的变化导致磁性浮子位置的变化。浮球中的磁体和传感器(磁簧开关)作用,使串连入电路的元件(如定值电阻)的数量发生变化,进而使仪表电路系统的电学量发生改变。也就是使磁性浮子位置的变化引起电学量的变化。通过检测电学量的变化来反映容器内液位的情况。3、钢带液位计它是利用力学平衡原理设计制作的。当液位改变时,原有的力学平衡在浮子受浮力的扰动下,将通过钢带的移动达到新的平衡。液位检测装置(浮子)根据液位的情况带动钢带移动,位移传动系统通过钢带的移动策动传动销转动,进而作用于计数器来显示液位的情况。4、雷达液位计雷达液位计是基于时间行程原理的测量仪表,雷达波以光速运行,运行时间可以通过电子部件被转换成物位信号。探头发出高频脉冲并沿缆式探头传播,当脉冲遇到物料表面时反射回来被仪表内的接收器接收,并将距离信号转化为物位信号。5、磁致伸缩液位计磁致伸缩液位计的传感器工作时,传感器的电路部分将在波导丝上激励出脉冲电流,该电流沿波导丝传播时会在波导丝的周围产生脉冲电流磁场。在磁致伸缩液位计的传感器测杆外配有一浮子,此浮子可以沿测杆随液位的变化而上下移动。在浮子内部有一组永久磁环。当脉冲电流磁场与浮子产生的磁环磁场相遇时,浮子周围的磁场发生改变从而使得由磁致伸缩材料做成的波导丝在浮子所在的位置产生一个扭转波脉冲,这个脉冲以固定的速度沿波导丝传回并由检出机构检出。通过测量脉冲电流与扭转波的时间差可以精确地确定浮子所在的位置,即液面的位置。6、射频导纳液位计射频导纳料位仪由传感器和控制仪表组成,传感器可采用棒式、同轴或缆式探极安装于仓顶。传感器中的脉冲卡可以把物位变化转换为脉冲信号送给控制仪表,控制仪表经运算处理后转换为工程量显示出来,从而实现了物位的连续测量。7、音叉物位计音叉式物位控制器的工作原理是通过安装在音叉基座上的一对压电晶体使音叉在一定共振频率下振动。当音叉与被测介质相接触时,音叉的频率和振幅将改变,这些变化由智能电路来进行检测,处理并将之转换为一个开关信号。8、玻璃板液位计(玻璃管液位计)玻璃板式液位计是通过法兰与容器连接构成连通器,透过玻璃板可直接读得容器内液位的高度。9、压力液位变送器压力式液位计采用静压测量原理,当液位变送器投入到被测液体中某一深度时,传感器迎液面受到的压力的同时,通过导气不锈钢将液体的压力引入到传感器的正压腔,再将液面上的大气压Po与传感器的负压腔相连,以抵消传感器背面的Po,使传感器测得压力为:ρ.g.H,通过测取压力P,可以得到液位深度。10、电容式液位计电容式液位计是采用测量电容的变化来测量液面的高低的。它是一根金属棒插入盛液容器内,金属棒作为电容的一个极,容器壁作为电容的另一极。两电极间的介质即为液体及其上面的气体。由于液体的介电常数ε1和液面上的介电常数ε2不同,比如:ε1>ε2,则当液位升高时,电容式液位计两电极间总的介电常数值随之加大因而电容量增大。反之当液位下降,ε值减小,电容量也减小。所以,电容式液位计可通过两电极间的电容量的变化来测量液位的高低。11、智能电浮筒液位计智能电浮筒液位计是根据阿基米德定律和磁藕合原理设计而成的液位测量仪表,仪表可用来测量液位、界位和密度,负责上下限位报警信号输出。12、浮标液位计它是利用力学平衡原理设计制作的。当液位改变时,原有的力学平衡在浮子受浮力的扰动下,将通过钢带(绳)的移动达到新的平衡。液位检测装置(浮子)根据液位的情况带动钢带(绳)移动,位移

相关文档
相关文档 最新文档