文档库 最新最全的文档下载
当前位置:文档库 › 高温纳米陶瓷涂层在锅炉防结渣上的应用

高温纳米陶瓷涂层在锅炉防结渣上的应用

高温纳米陶瓷涂层在锅炉防结渣上的应用
高温纳米陶瓷涂层在锅炉防结渣上的应用

高温纳米陶瓷涂层在锅炉防结渣上的应用

【摘要】宜兴华润热电有限公司通过对#2炉实施高温纳米陶瓷防结渣喷涂,有效解决了长期以来一直存在锅炉结焦严重、炉内掉大焦问题。因炉内结渣严重被迫投用吹灰器的频次大幅下降,吹灰器周围水冷壁吹损速率快问题得到有效解决。锅炉运行的安全、经济性得以提升,脱硝效率也有一定的提升,取得了较好的效果。

【关键词】锅炉结渣;高温纳米陶瓷;防结渣;喷涂

前言

受热面结焦渣严重一直困扰着许多燃煤的电站锅炉,对锅炉的安全经济运行带来一系列难以解决的问题。宜兴华润热电有限公司通过采用在受热面上实施高温纳米陶瓷材料喷涂的方法,有效攻克了长期以来存在的锅炉受热面结焦难题,为锅炉的安全经济运行提供了保障。

1 概述

宜兴华润热电有限公司2×60MW机组,锅炉是无锡锅炉厂制造的UG-260/9.8-M型高温、单锅筒、自然循环、“Ⅱ”型布置的固态排渣煤粉炉。制粉系统采用中间储仓式热风送风,脱硝采用SNCR+SCR耦合脱硝技术。

2 项目背景

宜兴华润两台锅炉自投产以来结焦一直较严重,运行中经常掉大焦,炉膛冒正压最大+1400Pa,减温水用量大,炉膛吹灰器投运频繁,每天最多时达9次,严重影响到了锅炉的安全经济运行。

锅炉结焦部位多发生在燃烧器及以上区域,有时呈液态下流,严重时过热器发生结焦停炉,冷渣斗部位堆积液态焦堵塞排渣口停炉打焦。

2014年后煤种的结焦性得到改善,并随着低氮燃烧器的改造,燃烧器区域水冷壁粘焦渣情况较少,在三次风上部后墙与侧墙部位能看到少量结渣,在炉膛出口部位的看火孔部位基本上看不到结渣情况,但是#2炉运行中仍存在经常掉大渣炉膛冒正压情况,且减温水用量大,主汽温度难控制易超温,运行人员被迫频繁投用炉膛吹灰器,吹灰器缺陷大量发生,2014年8月曾发生吹灰器卡在炉内未及时发现水冷壁被吹爆管事故。

2010年至2013年锅炉燃烧用易结焦煤种时炉内结焦情况见图1

图1 2010年至2013年锅炉燃烧用易结焦煤种时炉内结焦情况

纳米陶瓷涂层的典型应用领域

纳米陶瓷涂层的一些典型应用领域: 飞机发动机、燃气轮机零部件: 热障涂层(TBC)被广泛地应用在飞机发动机、涡轮机和汽轮机叶片上,保护高温合金基体免受高温氧化、腐蚀,起到隔热、提高发动机进口温度和发动机推重比作用的一种陶瓷涂层材料。8YSZ材料被用做热障涂层材料在军用发动机已应用几十年了,它的缺点是不能突破1200o C的使用温度,但现在军用发动机的使用温度已经超过1200o C,因此急需材料方面的突破。另外,地面燃气轮机的热障涂层材料基本受制于国外,也亟待国产化。国内外研究指出含锆酸盐的双陶瓷热障涂层被认为是未来发展长期使用温度高于1200o C的最有前景的涂层结构之一。用纳米结构锆酸盐粉体喂料制备的纳米结构双陶瓷型n-LZ/8YSZ热障涂层的隔热效果明显好于其它现有涂层,与相同厚度的传统微米结构单陶瓷型8YSZ 热障涂层相比,隔热效果提高了70%。而且,纳米结构的双陶瓷型涂层具有比其它两种涂层层更好的热震性能。 军舰船舶零部件: 纳米结构的热喷涂陶瓷涂层早已广泛应用于美国海军装备(包括军舰、潜艇、扫雷艇和航空母舰)上的数百种零部件。纳米结构陶瓷涂层的强度、韧性、耐磨性、耐蚀性、热震抗力等均比目前国内外商用陶瓷涂层材料中质量好、销量大的美科130涂层的性能显著提高。有着高出1倍的韧性,高出4-8倍的耐磨性,高出1-2倍的结合强度和抗热震性能和高出约10倍的疲劳性能。表1给出了纳米结构的热喷涂陶瓷涂层在美国海军舰船上的一些典型应用。 表1 一些美国海军舰船上应用的热喷涂纳米Al2O3/TiO2陶瓷涂层 零部件船上系统基体材料使用环境 水泵轴储水槽NiCu合金盐水 阀杆主柱塞阀不锈钢蒸汽 轴主加速器碳钢盐水 涡轮转子辅助蒸汽碳钢油 端轴主推进发动机青铜盐水 阀杆主馈泵控制不锈钢蒸汽 膨胀接头弹射蒸汽装置CuNi合金蒸汽 支杆潜艇舱门不锈钢盐水 流量泵燃料油碳钢燃料油 柴油机、工程机械零部件: 高性能纳米结构陶瓷涂层可以大幅度提高材料或零部件的硬度、韧性、耐磨性、抗腐蚀性和耐高温性能,因此可广泛应用于柴油发动机、工程机械等领域。如缸体、泵轴、机轴、曲轴、凸轮轴、轴瓦、连杆瓦、柱塞、阀杆、阀座、液压支杆、缸盖、活塞销、活塞和活塞环等零部件。如:纳米陶瓷涂层来大幅度提高曲轴的抗疲劳强度、硬度和耐磨性;纳米陶瓷涂层用于活塞无疑会是最具有高性价比的工艺技术;纳米陶瓷涂层将给与主轴瓦及连杆瓦以更高的强度、硬度和韧性,显著提高其耐磨性能,极大地减小曲轴的磨损、有效地防止烧瓦、抱瓦及烧

纳米涂层的应用

产品应用简介 Parylene应用领域简介: Parylene是一种对二甲苯的聚合物。用独特的真空气相沉积工艺制备,由活性小分子在基材表面“生长”出完全敷形的聚合物薄膜涂层,它能涂敷到各种形状的表面,包括尖锐棱边、裂缝和内表面。这种室温沉积制备的0.1-100微米薄膜涂层,厚度均匀、致密无针孔、透明无应力、不含助剂、不损伤工件、有优异的电绝缘性和防护性,是当代最有效的防潮、防霉、防盐雾涂层材料。精细的尺寸和优异的性能结合,使Parylene在要求高性能和高可靠性的当代高新技术产品中得到了越来越多的应用。 Parylene二聚体涂料有Parylene N、Parylene C和Parylene D型。 Parylene N是其基础成员,具有很好的介电性能、极低的介质损耗、高绝缘强度以及不随频率变化的介电常数。它是所有Parylene中穿透能力最高的一种。 Parylene C是第二个商业化的成员,由一个氯原子替代了单体上芳香烃的一个氢原子而形成的。Parylene C将良好的电性能,物理性能结合在一起,并且对于潮湿和其它腐蚀性气体具有低渗透性,可以提供真正的无针孔敷形隔离,是涂敷重要电路板的首选材料

Parylene D是第三个商业化的成员,由两个氯原子替代了单体上芳香烃的两个氢原子而形成的。性能与Parylene C相似,但是具有更高的耐热能力。 Parylene HT,最新的商业化成员,由替代N型二聚体的所有的α氢原子而形成。具有更低的介电常数(即透波性能好) 、更好的稳定性和防水、防霉、防盐雾性能。短期耐温可达450摄氏度,长期耐温可达350摄氏度,并具有很强的抗紫外线能力,适合作为高频微波器件的防护材料。 目前,从普通领域到不为人知的领域,Parylene都有应用,其所涵盖的应用市场从太空深处的飞行器、汽车发动机一直到心脏调搏器、军事电子产品等。可以预见,得益于自动化沉积设备的出现,不同技术领域对这种聚合物的日益熟悉,以及涂敷效率的不断改进等等,Parylene的应用广度将进一步得到拓宽。以下是目前几种有代表性的应用: 1、Parylene在磁芯上的应用 2、Parylene在微电子/微马达上的应用 3、Parylene在SMD上的应用 4、Parylene在文物/标本上的应用 5、Parylene在医学上的应用 6、Parylene在橡胶制品上的应用。

高硬耐磨防腐纳米复合陶瓷涂料

高硬耐磨防腐纳米复合陶瓷涂料 产品特性及使用方法 产品型号:701(系列) 产品外观:(标准颜色) 黑色、白色、灰黑色(颜色可调,根据客户需求调) 适用基材: 碳钢、不锈钢、铸铁、钛合金、铝合金、铜合金、陶瓷、人造石、陶瓷纤维、木材等。 备注:不同基材对应的涂料配方也不同。在一定范围内,可根据基材不同使用工况调节匹配。 适用温度 长期使用温度-50℃—200℃ 备注:不同基材对应的产品会有所不同。良好的耐冷热冲击抗热震。 产品特性: 1、纳米涂料单组份,环保无毒害,施工方便省涂料,性能稳定,重涂性能良好,维护方 便。 2、涂层高硬度,最高可达9H,致密耐磨,可耐泥沙磨损,表面光滑度可调,也可打磨 加工。 3、涂层有一定的自润滑功能,摩擦系数相对较低,越磨越光滑,耐磨性能良好。 4、涂层耐酸碱,耐腐蚀,耐盐雾,抗老化,可用于户外或高湿高热工况。 5、涂层与底材结合良好,结合强度4MPa左右。 6、纳米无机复合涂层,电绝缘性能良好,绝缘电阻大于200MΩ。 7、涂层(陶瓷化后)导热散热良好,热导率6W/M.K左右。 8、涂层本身不燃,具有良好的阻燃功效。 产品存储:避光密封保存,5℃—30℃环境中,纳米涂料保质期6个月。开盖后建议1月内用完,效果更佳(纳米颗粒表面能高,活性高,易团聚。在分散剂以及表面处理的作用下, 在一定时间内纳米颗粒保持稳定)。 特别备注: 1、本纳米涂料为直接使用,不可添加其它任何组份(尤其是水),否则会严重影响该纳米 涂料功效甚至快速报废。 2、操作人员防护:跟普通涂料施工防护一样,涂布过程远离明火、电弧、电火花,具体参 照本产品的MSDS报告。 产品净重:标准包装:20 KG /桶;最小包装:5.0KG/桶。 产品图片:

水性耐高温涂料

耐高温涂料高温环境节能好材料 陶瓷水性耐高温涂料是指各种特殊用途耐温高的涂料的总称,所谓特殊用途,是指除了防护作用以外,这类涂料还兼有某些特别的功能,以满足被涂覆产品设计上的需要的特种涂料,耐高温是涂料功能具体应用其中之一。 可以说,正是一些在特殊环境里应用的产品功能方面的需要,促进了陶瓷水性耐高温涂料的研制和开发,在有些场合,陶瓷水性耐高温涂料的防护性能已不是其主要的用途,新型耐高温功能涂料可以改变工艺,提升生产技术。在现代科技进步,已经开发出的具有特殊功能的涂料,其独特的性能使许多产品和设备的功能得以充分发挥,成为涂料工业中不可缺少的新品种。一般来说,功能涂料可以分为两大部分:民用功能涂料和工业能涂料,按照一般的定义,功能涂料不仅涵盖汽车、建筑、冶金、制造、医药、交通、船舶和集装箱涂料、航天、交通标识系统涂料等众多领域,还包含在人们日常所使用的各种生活生产用品当中,例如家具、家电、生产设备,乃至一只小小的铅笔、一个铝制饮料瓶子等等涂料,可以说功能涂料与人们的日常生活、工业生产息息相。 陶瓷水性耐高温涂料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。世界各国均十分重视功能涂料的研发与应用。从功能涂料市场的水平看,北京志盛威华陶瓷水性耐高温涂料拥有独家研发技术、市场处于国内领先水平和较高的市场占有率。陶瓷水性耐高温涂料的未来市场将向中高端市场集中(其中高端市场还应该包括新兴功能领域的涂料市场),是否能够满足中高端市场的需求可以检验一个涂企的真实实力。另外,中高端领域功能涂料产品的技术附加值高,向来为众多涂料企业所觊觎。比照中国功能涂料企业普遍在低端市场“叱咤风云”的状况,假若不改变技术上的劣势将难以在未来的功能涂料市场竞争中立足。 北京志盛威华化工有限公司经过十几年的科技攻关,研发出技术世界领先耐高温功能涂料,打破了耐高温涂料的国际市场格局,为国内化工企业树立了榜样。北京志盛威华化工有限公司的耐高温功能涂料的类型有:

什么是纳米、纳米材料、纳米涂层及纳米涂层的组成及功能

什么是纳米、纳米材料、纳米涂层及纳米涂层的组成及功能 一、什么是纳米? 纳米是长度单位,原称"毫微米",就是10-9(10亿分之一米)。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。 二、什么是纳米材料? 纳米材料是指由尺寸小于100nm(0.1-100nm)的超细颗粒构成的具有小尺寸效应的零维、一维、二维、三维材料的总称。纳米材料的概念形成于80年代中期,由于纳米材料会表现出特异的光、电、磁、热、 力学、机械等性能,纳米技术迅速渗透到材料的各个领域,成为当前世界科学研究的热点。 三、纳米材料涂层的组成与体系 根据纳米涂层的组成将其分为三类:完全为一种纳米材料体系、两种(或以上)纳米材料构成的复合体系,称0—0复合;添加纳米材料的复合体系,称为O—2复合。 传统涂层技术添加纳米材料,可使传统涂层的功能得到飞跃提高,技术上勿需增加太大的成本。这种 纳米添加的复合体系涂层很快就可走向市场展示出强劲的应用势头。 利用现有的涂层技术,针对涂层的性能,添加纳米材料,都可以获得纳米复合体系涂层。纳米涂层的 实施对象既可以是传统材料基体,也可以是粉末颗粒或是纤维,用于表面修饰、包覆、改性或增添新的特性。 四、纳米材料涂层产生与功能 凡是传统表面涂层技术,都可以用来或者稍加改造,实现纳米材料复合涂层。 在硬度高的,耐磨涂层中添加纳米相,可进一步提高涂层的硬度和耐磨性能,并保持较高的韧性。 将纳米颗粒加入到表面涂层中,可以达到减小摩擦系数的效果,形成自润滑材料,甚至获得超润滑功能。在一些涂层中复合C60,巴基管等,制备出超级润滑新材料。涂层中引入纳米材料,可显著地提高材 料的耐高温、抗氧化性。如,在PCBA的表面沉积青山新材TIS氟系纳米材料涂层,由于纳米颗粒的作用,有效降低了PCB表面能量,形成的纳米防水涂层阻止了水分子对电子元器件的破坏风险,疏水能力明显 增强,改善了氧化层的生长机制和力学性质,抗腐蚀抗氧化能力更强。 纳米材料涂层可以提高基体的腐蚀防护能力,达到表面修饰、装饰目的。在油漆或涂料中加入纳米颗粒,可进一步提高其防护能力,能够耐大气,紫外线侵害,从而实现防降解,防变色等功效;另外,还可 以在建材产品,如卫生洁具、室内空间、用具等中运用纳米材料涂层,产生杀菌、保洁效果。 纳米材料涂层具有广泛变化的光学性能。它的光学透射谱可从紫外波段一直延伸到远红外波段。纳米 多层组合涂层经过处理后在可见光范围内出现荧光,用于多种光学应用需要,如传感器等器件。在各种标 牌表面施以纳米材料涂层,成为发光、反光标牌;改变纳米涂层的组成和特性,得到光致变色,温致变色,电致变色等效应,产生特殊的防伪,识别手段。80nm的氧化钇可作为红外屏蔽涂层,反射热的效率很高。在诸如玻璃等产品表面上涂纳米材料涂层,可以达到减少光的透射和热传递效果,产生隔热作用;在涂料 中加入纳米材料,能够起到阻燃,隔热,起到防火作用。

陶瓷涂料综述

国内陶瓷涂料研究进展综述 摘要: 随着涂料工业的发展,一些有机涂料已经不能满足人们的绿色环保、多功能化和优良性能的理念,而陶瓷涂料的发展开启了向高新涂料领域的进展和研究,进一步满足了人们对于提升涂料性能的愿景。本文主要基于目前现有的国内多种有关陶瓷涂料的研究成果,简明地阐述了各种陶瓷涂料的优良性能,以及其最新的研究发展,同时对这些陶瓷涂料的制备方法和机理进行了归纳,总结,并且进一步提出了一些有关陶瓷涂料的设想和改进。 关键词: 耐高温;陶瓷;瓷膜;涂料;涂膜;环保; 0前言: 陶瓷涂料属于功能涂料领域[1],是一种新型的水性无机涂料。它是以纳米无机化合物为主要成分,并且以水为分散质,涂装后通常经过低温加热方式固化,形成性能和陶瓷相似的涂膜。其原料蕴藏丰富,便于开采且价格低廉,进而使其成本也相对传统涂料较低。其中一些采用了硅烷偶联剂,氢氧化铝胶体制备的陶瓷涂料,具有耐高温、高硬度、不燃无烟、超耐候、环保无毒、色彩丰富、涂装简便等诸多优势。经过各种新型的改良和增进后,其各种优越的性能和廉价的成本也讲逐渐取代传统涂料。 而传统的有机涂料等,对环境的影响颇为巨大,不仅成品经常排放温室气体导致气候变暖,而且还释放有毒物质于空气中,导致人或动植物的疾病和死亡,其在生产的过程之中也耗能大,不满足我国低碳的理念,并产生各种工业污水或有毒气体。 本文试图对各种陶瓷涂料相关的文献资料进行归纳,分类并总结,从各种试剂的配比及制备方案中分析出陶瓷涂料的一些发展和改进,并进行一些相关的理论设想。 1陶瓷涂料概述 1.1成膜机理 一般由多种纳米级氧化物,通过改进的溶胶-凝胶[2]等反应,并且在低温下,以水为分散介质,水解固化行成类似陶瓷和玻璃的漆膜。 1.2原料来源 陶瓷涂料的原材料来自于极普通的、储量极为丰富的天然矿石和金属氧化物(如:石灰石、粘石英砂),而且生产工艺也不复杂,能耗相对较低。因而原材料资源十分丰富,这与完全依赖石油化学工业、并以石油为主要原料的有机涂料相比较,不仅具有很大的资源优势,而且更加符合低碳要求。 1.3应用领域

钛合金高温防护陶瓷涂层的制备与性能

钛合金高温防护陶瓷涂层的制备与性能本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 引言 钛合金因具有比强度高的特点而在航空航天等领域得到了广泛的应用。由于金属钛的化学活性较高,在高温环境中极易被氧化,生成脆性的无保护性疏松氧化层,氧分子可以透过氧化层继续氧化钛合金基体,钛合金器件在高温环境中迅速失效,因而在高温环境中使用的钛合金器件需要对其进行抗高温氧化防护处理。 表面改性处理是提高钛合金抗高温氧化性能的重要途径之一,其原理主要是在钛合金表面形成一层阻隔层来阻挡高温腐蚀空气与钛合金基体接触。目前针对钛合金抗高温氧化表面防护技术主要可分为扩散涂层、气相沉积陶瓷涂层、溅射涂层、搪瓷涂层等,但是制备过程中温度较高,工艺较为复杂,制备温度一般在1 000 ℃以上,较高的温度会影响基体组织,进而恶化基体的力学性能,降低制备温度成为高温防护陶瓷涂层技术亟须解决的问题之一。 1 试验部分

试验材料 涂料配方及配制方法 经过前期正交试验优化,得到的涂料配方所列。 无机陶瓷涂料的配制步骤如下:将g 磷酸二氢铝溶液溶于g 蒸馏水中,形成均匀溶液后加入g 正硅酸四乙酯后密封搅拌24 h,形成均匀透明的溶液,随后加入g 氧化锌与g 氧化镁,使之完全溶解。加入g 纳米六方氮化硼粉末,分散均匀后加入g 纳米氧化铝粉末,分散均匀后在超声震荡的条件下搅拌15 min。 样品制备 用砂布将TC18 钛合金表面打磨光亮,去除表层氧化皮。采用空气喷涂的方式在钛合金表面喷涂配制好的涂料,喷涂完成后涂料应完全覆盖合金表面,随后将喷涂好的试样转移到烘箱中固化,固化工艺为:120℃保温2 h、200 ℃保温5 h、350 ℃保温5 h。 性能检测方法 试样制备完成后,采用上海中奕KSY-6D-16K 箱式电阻炉进行抗热震性试验以及高温氧化试验。抗热震性试验采用急冷裂纹判定法进行,将试样从900℃电阻炉中取出后分别置于室温环境中进行空冷和水冷却,冷却后重新加热,一直循环到试样出现明显缺陷。高温氧化试验采用增重法进行,试验温度为

透明密封防水纳米复合陶瓷涂料

透明密封防水纳米复合陶瓷涂料 产品特性及使用方法 产品型号:705(系列) 产品外观:(标准颜色) 透明(颜色可调,根据客户需求调) 适用基材: 碳钢、不锈钢、铸铁、钛合金、铝合金、铜合金、陶瓷、人造石、混泥土、陶瓷纤维、木材等。 备注:不同基材对应的涂料配方也不同。在一定范围内,可根据基材不同使用工况调节匹配。 适用温度 长期使用温度-50℃—200℃ 备注:不同基材对应的产品会有所不同。良好的耐冷热冲击抗热震。 产品特性: 1、纳米涂料单组份,环保无毒害,施工方便,性能稳定。 2、涂层通过SGS检测以及美国FDA检测,食品级。 3、纳米涂料超强渗透,通过渗透、包覆、填充、密封、表面成膜,可稳定高效实现立体化 密封防水性能。 4、涂层硬度可达6—7H,耐磨耐用,耐酸碱,耐腐蚀,耐盐雾,抗老化,可用于户外或高 湿高热工况。 5、涂层与底材结合良好,结合强度大于4MPa。 6、纳米无机复合涂层,电绝缘性能良好,绝缘电阻大于200MΩ。 7、涂层本身不燃,涂层具有一定的阻燃性能。 8、涂层耐高温冷热冲击,抗热震良好。 产品存储:避光密封保存,5℃—30℃环境中,纳米涂料保质期6个月。开盖后建议1月内用完,效果更佳(纳米颗粒表面能高,活性高,易团聚。在分散剂以及表面处理的作用下, 在一定时间内纳米颗粒保持稳定)。 特别备注: 1、本纳米涂料为直接使用,不可添加其它任何组份(尤其是水),否则会严重影响该纳米 涂料功效甚至快速报废。 2、操作人员防护:跟普通涂料施工防护一样,涂布过程远离明火、电弧、电火花,具体参 照本产品的MSDS报告。 产品净重:标准包装:20 KG /桶;最小包装:5.0KG/桶。 产品图片:

纳米陶瓷及其主要性能简析

纳米陶瓷 及其主要性能简析 [摘要] 纳米陶瓷的超细晶粒、高浓度晶界以及晶界原子邻近状况决定了它们具有明显区别于普通陶瓷的特异性能。本文对纳米陶瓷的这些主要的特异性能进行了阐述。 [关键词] 纳米陶瓷、显微结构、晶界、扩散、烧结、强度、韧性、超塑性 [引言] 陶瓷材料作为材料的三大支柱之一 ,在日常生活及工业生产中起着举足轻重的作用。但是 ,由于传统陶瓷材料质地较脆 ,韧性、强度较差 ,因而使其应用受到了较大的限制。随着纳米技术的广泛应用 ,纳米陶瓷随之产生 ,希望以此来克服陶瓷材料的脆性 ,使陶瓷具有象金属一样的柔韧性和可加工性。英国著名材料专家 Cahn 在《自然》杂志上撰文说:纳米陶瓷是解决陶瓷脆性的战略途径。 一、纳米陶瓷及其结构简介 所谓纳米陶瓷是指在陶瓷材料的显微结构中,晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸等都是纳米水平的一类陶瓷。 我们知道陶瓷的烧结中粉料的粒度是重要的影响因素。粒度越小,粉粒的表面积越大,表面能越大,烧结的推动力越大;同时晶界所占体积越大,扩散越容易,因而烧结速度越快。当陶瓷中晶粒尺寸减小一个数量级,晶粒的表面积及晶界的体积亦以相应的倍数增加。如晶粒尺寸为nm 6~3,晶界的厚度为nm 2~1时,晶界的体积约占整个体积的%50。由于晶粒细化引起表面能的急剧增加。 纳米陶瓷由纳米量级的粉料烧结而成,是晶粒尺寸在nm 100~1之间的多晶陶瓷。所以结构中包含纳米量级的晶粒、晶界和缺陷。由于晶粒细化,晶界数量大幅度增加。当晶粒尺寸在nm 25以下,若晶界厚度为nm 1,则晶界处原子百分数达%50~%15,单位体积晶界的面积达32/600cm m ,晶界浓度达3 19/10cm 。 纳米陶瓷这样的特殊结构,使得其具有特殊的性能。 二、纳米陶瓷的主要性能及其简析 纳米陶瓷中纳米量级的晶粒、晶界和缺陷决定了它们具有区别于普通陶瓷的特殊性能,是纳米陶瓷性能优于普通陶瓷的根本原因所在。 1、 较低的烧结温度和较快的致密化速度

注塑模具纳米陶瓷涂层

注塑成型过程中由于大量使用加玻纤材料及工程塑料的使用给模具带来严重的磨损和腐蚀, 以及模具在运行时产生与模具钢材本身的摩擦磨损,XR-I系列涂层的高硬度、坑腐蚀性及很 好的耐磨性,帮助塑胶模具在对抗磨损与腐蚀至关重要,以提高模具使用效率的高韧性、耐 磨性、抗腐蚀性及低摩擦特性。 XR-I系列涂层主要应用在注塑模具的模腔、模芯、顶针、斜顶、喷射器、热流道系统、进给 系统、浇注口衬套、注塑机螺杆等。 涂层的优势 改善模具填充 减少脱模阻力 更强的耐磨性 现代注塑加工中由于玻纤及工程塑料的广泛应用这些材料具有很高的硬度及腐蚀性对模具的 抗磨损和抗腐蚀性提出了更高的要求针对这些情况霖晨研发了XR-I涂层此涂层具有高硬度、耐腐蚀、低摩擦系数,而且还有多种颜色可选,在提升注塑模具有出色的表现。 技术参数: 涂层名称:XR-I 涂层厚度:2-3μm 抗氧化温度:400℃-700℃ 沉积温度:400℃ 涂层硬度HV0.05:2800-3500 沉积方式:PVD 对钢材的干摩擦:0.10-0.30 颜色:黑色/金色/灰色/银色 应用领域:注塑模具及配件,注塑机配件(如:螺杆)等。 使用效果:举例说明:(汽车高强度支架部件)无涂层前生产不到100模次就需要修模,经 过XR-S涂层处理后生产8000模次涂层才被磨损,经抛光后再涂层,像新模具一样使用。 .提升生产效率 .提升产品表明质量,减少产品后加工工序 .节能环保 涂层注意事项 可涂层材料: 各类模具钢材、工具钢、高速钢、不锈钢;硬质合金(钨钢);钛合金、镍合金;铍铜。 涂层部位: 待涂层的工件需要有可以装夹的部位,不太可能实现全部涂覆。如果有特殊部位不能涂层, 需要提前告知,建议您在工件上明确标识出以下部位:必须涂层的功能部位;不能涂层的部位;可涂可不涂的部位。 涂层工件表面要求:

纳米材料在涂料中的应用

纳米材料在涂料中的应用 纳米材料是近年来发展起来的一种新型高性能材料,认识这种材料的性能和拓展其应用领域,是许多材料工作者非常感兴趣的课题。着重介绍了近年来国内外有关纳米材料在涂料中的应用和研究开发情况,并对其发展方向提出了一些建议。 纳米材料的晶粒尺寸、晶界尺寸、缺陷尺寸均在100nm以下,随着晶格数量大幅度增加,材料的强度、韧性和超塑性都大为提高,对材料的电学、磁学、光学等性能产生重要的影响。 纳米材料有四个基本的效应,即小尺寸效应、表面与界面效应、量子尺寸效应、宏观量子隧道效应,因而出现常规材料所没有的一些特别性能,如高强度和高韧性、高热膨胀系数、高比热和低熔点、奇特的磁性和极强的吸波性等,从而使纳米材料已获得和正在获得广泛的应用,如以纳米二氧化铁改性做成的陶瓷,其硬度和强度是普通陶瓷的3-4倍;以纳米碳管作为金属表面上的复合镀层,其耐磨性要比轴承钢高100倍,摩擦系数为0.06-0.1;用纳米材料制造电子器件,可使电子产品的体积大大缩小,电子元件信息存储量大为增加;以纳米材料做成的磁性材料在高频场中具有巨磁阻抗效应,已成为铁氧体用于功能变压器、脉冲变压器、高频变压器、扼流圈、互感器磁头、传感器等的有力竞争者。 以无机纳米材料与有机高分子树脂复合,通过精细控制无机纳米粒子均匀分散在高聚物基体中以制备性能更加优异的新型涂料是近几年的事,国内外有关这方面的报道正在不断增加。 1 国外研究概况 国外将无机纳米材料用于涂料中的一个最成功例子莫过于军事隐身涂料,用纳米级的碳基铁粉、镍粉、铁氧体粉末改性的有机涂料到飞机、导弹、军舰等武器上,使该装备具有隐身性能,因为纳米超细粉末具有很大的比表面积,能吸收电磁波,同时纳米粒子尺寸远小于红外及雷达波波长,对波的透过率很大,因此不仅能吸收雷达波,也能吸收可见光和红外线,由它制成的涂层在很宽的频带范围内可以逃避雷达的侦察,同时也有红外隐身作用。现在,隐身涂料作为隐身技术的关键技术之一,已不仅仅用于飞航导弹等飞行器上,最新的发展是几个主要工业化国家和军事强国已开始将隐身涂料技术应用于海军舰艇、隐身装甲车、隐身水雷、隐身火炮、隐身坦克、隐身车辆、隐身雷达、隐身通讯系统、隐身

高温反射隔热纳米复合陶瓷涂料

高温反射隔热纳米复合陶瓷涂料 产品特性及使用方法 产品型号:302(系列) 产品外观:(标准颜色) 白色(颜色可调,根据客户需求调) 适用基材: 碳钢、不锈钢、铸铁、铝合金、钛合金、高温合金钢、耐火隔热砖、隔热纤维、玻璃、陶瓷、高温浇注料、高温混泥土均可。 说明:不同基材不同的热膨胀系数,结合产品使用工况,对应的涂料配方也不同。在一定范围内,可根据基材不同膨胀系数调节涂料膨胀系数达到匹配。 适用温度: 最高耐受温度1300℃,耐火焰或高温气流直接冲刷。 根据不同底材的耐温情况,涂层的耐温有会有相应的变化;耐冷热冲击抗热震。 产品特性: 1、纳米涂料为单组份,醇体系无机纳米复合陶瓷涂料。施工方便,省涂料,环保无毒害。 2、涂层隔热保温性能稳定良好,热导率0.03W/M·K左右,可实现薄涂层(0.1mm以下) 良好的反射隔热。 3、涂层对热辐射反射率大于85%,有效提高热利用率 4、纳米涂料有相应规格的气凝胶复合,加强隔热保温性能。 5、涂层附着良好,耐高温冷热冲击,抗热震良好,隔热防腐一体完成,具有一定强度。 6、涂层具有良好的电绝缘性能,耐湿热 7、涂层酸碱腐蚀,氢氟酸和浓盐酸除外。 8、与配套的高温密封纳米复合陶瓷加强剂(型号:GN—F2A,后简称“高温密封加强剂”) 使用性能更稳定,具体使用见使用方法。 产品存储:避光密封保存,5℃—30℃环境中,纳米涂料保质期6个月。开盖后建议1月内用完,效果更佳(纳米颗粒表面能高,活性高,易团聚。在分散剂以及表面处理的作用下, 在一定时间内纳米颗粒保持稳定)。 特别备注: 1、本纳米涂料与配套的高温密封加强剂均为直接使用,不可添加其它任何组份(尤其是水), 否则该纳米涂料和配套的高温密封加强剂均会严重影响其功效甚至快速报废。 2、操作人员防护:跟普通涂料施工防护一样,涂布过程远离明火、电弧、电火花,具体参 照本产品的MSDS报告。 产品净重:标准包装:20 KG /桶;最小包装:5.0KG/桶。 产品图片:

纳米陶瓷技术

纳米陶瓷技术 摘要:纳米陶瓷粉体是介于固体与分子之间的具有纳米数量级尺寸的亚稳态中间物质。随着粉体的超细化,其表面电子结构和晶体结构发生变化,产生了块状材料所不具有的特殊的效应。纳米陶瓷的超细晶粒、高浓度晶界以及晶界原子邻近状况决定了它们具有明显区别于普通陶瓷的特异性能。本文对纳米陶瓷的这些主要的特异性能及其制备进行了阐述。 关键词:纳米陶瓷;性能;制备 陶瓷材料作为材料的三大支柱之一,在日常生活及工业生产中起着举足轻重的作用。但是,由于传统陶瓷材料质地较脆,韧性、强度较差,因而使其应用受到了较大的限制。所以随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服陶瓷材料的脆性,使陶瓷具有像金属一样的柔韧性和可加工性。 一、纳米陶瓷 纳米陶瓷是80年代中期发展起来的先进材料。利用纳米技术开发的纳米陶瓷材料是指在陶瓷材料的显微结构中,晶粒、晶界以及它们之间的结合都处在纳米水平,使得材料的强度、韧性和超塑性大幅度提高,克服了工程陶瓷的许多不足,并对材料的力学、电学、热学、磁学、光学等性能产生重要影响,为替代工程陶瓷的应用开拓了新领域。 二、纳米陶瓷材料的性能研究 2.1 力学性能 研究表明当陶瓷材料成为纳米材料后,材料的力学性能得到极大改善,主要表现在以下三个方面: 1)断裂强度大大提高;2)断裂韧性大大提高;3)耐高温性能大大提高。与此同时,材料的硬度、弹性模量、热膨胀系数都会发生改变。 不少纳米陶瓷材料的硬度和强度比普通陶瓷材料高出4~5倍。在陶瓷基体中引入纳米分散相并进行复合,不仅可大幅度提高其断裂强度和断裂韧性,明显改善其耐高温性能,而且也能提高材料的硬度、弹性模量和抗热震、抗高温蠕变的性能。 2.2 低温超塑性 陶瓷的超塑性是由扩散蠕变引起的晶格滑移所致,扩散蠕变率与扩散系数成正比,与晶粒尺寸的3次方成反比,普通陶瓷只有在很高的温度下才表现出明显的扩散蠕变。而纳米陶瓷的扩散系数提高了3个数量级,晶粒尺寸下降了3个数量级,因而其扩散蠕变率较高,在较低的温度下,因其较高的扩散蠕变速率而对外界应力做出迅速反应,造成晶界方向的平移,表现出超塑性,使其韧性大为提高。

纳米陶瓷材料的应用与发展

纳米陶瓷材料的应用与发展 新材料技术是介于基础科技与应用科技之间的应用性基础技术。而军用新材料技术则是用于军事领域的新材料技术,这部分技术是发展高技术武器的物质基础。目前,世界范围内的军用新材料技术已有上万种,并以每年5%的速 度递增,正向高功能化、超高能化、复合轻量和智能化的方向发展。常见的军用新材料技术:高级复合材料,先进陶瓷材料,高分子材料,非晶态材料,功能材料。 先进陶瓷材料是当前世界上发展最快的高技术材料,它已经由单相陶瓷发展到多相复合陶瓷,由微米级陶瓷复合材料发展到纳米级陶瓷复合材料。先进陶瓷材料主要有功能陶瓷材料和结构陶瓷材料两大类。其中,在结构材料中,人们已经研制出氮化硅高温结构陶瓷,这种材料不仅克服了陶瓷的致命的脆弱性,而且具有很强的韧性、可塑性、耐磨性和抗冲击能力,与普通热燃气轮机相比,陶瓷热机的重量可减轻 30%,而功率则提高 30%,节约燃料 50%。 陶瓷是人类最早使用的材料之一, 在人类发展史上起着重要的作用。但是, 由于传统的陶瓷材料脆性大, 韧性和强度较差、可靠性低, 使陶瓷材料的应用领域受到较大限制。随着纳米技术的广泛应用, 纳米陶瓷随之产生。所谓纳米陶瓷, 是指陶瓷材料的显微结构中, 晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸都是在纳米级的水平上。纳米陶瓷复合材料通过有效的分散、复合而使异质纳米颗粒均匀弥散地保留于陶瓷基质结构中, 这大大改善了陶瓷材料的韧性、耐磨性和高温力学性能。纳米陶瓷材料不仅能在低温条件象金属材料那样可任意弯曲而不产生裂纹, 而且能够象金属材料那样进行机械切削加工甚至可以做成陶瓷弹簧。纳米陶瓷材料的这些优良力学性能, 使其在切削刀具、轴承、汽车发动机部件等多方面得到广泛应用并在许多超高温、强腐蚀等苛刻的环境下起着其他材料不可替代的作用。纳米陶瓷在人工关节、人工骨、人工齿以及牙种植体、耳听骨修饰体等人工器官制造及临床应用领域有广阔的应用前景。此外, 纳米陶瓷的高磁化率、高矫顽率、低饱和磁矩、低磁耗, 特别是光吸收效应都成为材料开拓应用的新领域, 是当今材料科学研究的热点。 表1 纳米陶瓷材料力学性能的改善

纳米涂层喷涂操作说明解析

8、U-Spray系列喷涂产品使用说明 使用说明 1. 设备及材料要求: 以下为诺曼克U-Spray喷涂体系所需的设备及材料。(见图1,图2和图3) 筒式喷枪 双筒式包装喷涂材料 流量限制器 混合器/喷嘴 诺曼克底漆 采用正确的表面预处理程序非常重要。为确保获得最好的涂装质量和涂层表 面效果,请严格按照程序的每一步进行操作。同时需考虑到安全健康规范方面具体要求。 图一:U-Spray胶枪图二:双筒式包装喷涂材料图三:诺曼克底漆 2. 表面预处理: 诺曼克喷涂材料应该在经过恰当预处理的,清洁,脱脂且干燥的基材表面上进行涂装作业。尖角以及拐角应先加工处理成半径不小于3mm的圆角。 金属/塑料:采用喷钢砂方式对基材表面进行金属白色化处理,使基材表面形成深度在50μm以上的锚纹,这样有利于达到最好的粘接效果。详细信息请参照诺曼克表面预处理手册。以下规格的喷砂均可以达到预期效果: SSPC-SP5 Nace No. 1 SSPC-SP10 Nace No. 2

喷砂的媒介应该为形状不规则且具有棱角的材料如如渣绒,钢砂等。这种喷砂媒介应该能够在基材表面处理出70到100μm厚的锚纹。 对于非关键部件,可以使用数控机床清洗方式对基材表面进行预处理,如研磨和砂磨等均可以接受。 对于暴露在潮湿环境或表面沾有油、盐及其他化学物质的基材表面应该按照以下预处理步骤以达到最好的粘接效果: 喷砂处理(初步净化) 蒸气清洁(中和氯化氢) 火焰处理(干燥处理) 喷砂(表面粗燥化) 真空清洗(去除灰尘) 脱脂(实现最终净化) 铸钢件,不锈钢铸件,铸铁件及灰口铸铁件等基材:这些基材具有多孔性,表面很容易吸附油脂以及其他一些脏污。通过对这类基材的加热使油脂和脏污转移到基材表面,然后再用溶剂清洗去除掉这些油脂和脏污。此步骤处理完后请立即按照上面的步骤进行喷砂处理。如果金属表面出现一些暗淡的区域,这就说明在这些区域仍然存在油脂或脏污。此时需要再对基材进行加热然后清洗,喷砂,直到被预处理的基材表面呈现出一致的颜色。 合成橡胶/聚氨酯类基材:这类基材表面需要先进行粗化,建议使用低速(转速低于2000RPM)砂磨机,砂磨材料可以使用粒子精度为16,36,26,或50的氧化铝砂纸。砂磨机的转速过快可能会导致基材表面过热进而影响到粘接效果。 同样可以使用其他一些方法对此类基材表面进行粗化处理,如将硬毛刷安装到电钻、砂磨盘以及上对其它一些在橡胶轮胎行业用于修理轮胎的钻床配件上对基材表面进行打磨。 现行混凝土材质:先去除基材表面涂料等残余,然后用油质黏结剂去除残渣、油脂等,接着用水或者清洁剂的蒸汽清洗基材表面;之后采用机械方式粗化表面;最后用水冲洗基质表面来去除清洁剂残余。让混凝土结构表面有足够时间干燥,进行喷涂作业前水分残余需低于3%。 新型混凝土材质:至少允许涂层有28天的时间进行固化。需要对表面进行湿度测量以确保基材表面的残余水分低于3%。去除表面松弛的颗粒和混凝土泥浆。然后用机械方式粗化基材表面并进行除尘操作。在此种混凝土结构及才上U-Spray涂层的厚度应不低于1.5mm.

纳米耐高温绝热涂料的研制

纳米耐高温绝热涂料的研制 刘成楼,郑德莲,刘昊天 (北京国泰瑞华精藻硅特种材料有限公司,北京100037)摘要:以改性六钛酸钾晶须(PTW)、纳米SiO2 气凝胶、超细空心陶瓷微珠、纳米TiO2 和Al2O3为主要隔热填料,以耐高温有机硅树脂乳液和丙烯酸乳液为基料,在多种功能助剂的配合下制备成纳米耐高温绝热涂料。涂层具有薄层、绝热、防水、抗裂、防腐、隔音、耐高温、耐候等特性。 关键词:纳米涂料;绝热涂料;耐高温涂料;节能中图分类号:TQ 630.7 文献标识码:A 文章编号:1009-1696(2015)01-0010-04 0·引言 为了达到生态环保、节能减排的目标,对民用建筑物、输热管道、工业热力设施等必须采取有效的隔热保温措施。传统的隔热保温材料中,如岩棉毡、无机保温砂浆、聚苯泡沫板、发泡聚氨酯等厚度必须达到一定要求,才能有较好的保温性能,且在防水、抗裂、施工性等方面存在不足;有机高分子发泡材料耐燃性差,存在火灾隐患。近年来,国内外以空心微珠为主要填料开发的轻质、薄层、高效隔热涂料成为该领域的研究热点。 本研究以改性六钛酸钾晶须(PTW)、纳米SiO2气凝

胶、超细空心陶瓷微珠、纳米TiO2 和Al2O3 为主要隔热填料,以耐高温有机硅树脂乳液和丙烯酸乳液为基料,在多种功能助剂的配合下制备成耐600℃高温的纳米真空绝热保温涂料,涂层具有薄层、绝热、防水、抗裂、防腐、隔音、耐高温和耐候等特性。 1 ·实验部分 1.1 原材料 SiO2 气凝胶,因素高科(北京)科技发展有限公司;六钛酸钾晶须,唐山晶须复合材料制造公司;超细陶瓷微珠,上海汇精亚纳米新材料有限公司;纳米TiO2、Al2O3,江苏海泰;有机硅树脂乳液,德国瓦克;丙烯酸乳液,美国陶氏;硅烷偶联剂,南京曙光;分散剂、润湿剂、消泡剂、防腐剂、增稠剂、成膜助剂等,美国陶氏。 1.2 基本配方 纳米耐高温绝热涂料的基本配方见表1。 1.3 制备工艺 (1)改性六钛酸钾晶须浆的制备 将适量硅烷偶联剂、分散剂、润湿剂、消泡剂、pH 调节剂等加入去离子水中,搅拌均匀后加入六钛酸钾晶须,高速分散1 h,制成80% 的六钛酸钾晶须浆; (2)SiO2 气凝胶浆的制备 将适量分散剂、润湿剂、消泡剂,稳定剂、pH 调节剂

纳米技术在涂料中的应用

涂料与涂装论文 材物(实验)1301 侯全刚 1309000208

纳米技术在涂料中的应用 摘要:本文从纳米材料的力学性能,光学性能等方面概括了纳米技术在涂料中的应用前景,并指出了纳米涂料发展中存在的问题,对纳米涂料技术的进一步研究提出了建议。 关键词:纳米技术;纳米复合涂料;纳米 TiO;抗菌涂料;耐老化涂料; 2 引言: 纳米涂料是由纳米材料与有机涂料复合而成的,因此一般称为纳米复合涂料(Nanocomposite coating)。纳米涂料必须满足两个条件: 一是至少含一相尺寸在1~100 nm之间,二是由于纳米相的存在而使涂料性能得到显著提高或有新功能,两者缺一不可。 纳米涂料在常规的力学性能(如附着力、抗冲击、柔韧性)方面会得到提高,还有可能提高涂料的耐老化、耐腐蚀、抗辐射性能。此外,纳米涂料还可能呈现出某些特殊功能如:自清洁、抗静电、隐身吸波、阻燃等性能。 纳米涂料力学性能的研究 颜料是涂料的重要组成物,当颜料颗粒以纳米级的大小分布在涂膜中时,因为纳米粒子与树脂的比界面很大,结合力强,对有机涂层起到增强作用,从而提高硬度、抗冲击性,另外,纳米粒子的存在还可降低涂膜干燥过程中的残余内应力,从而提高涂膜的附着力。 根据研究表明,纳米 SiO在紫外光固化涂料中可明显提高涂膜的硬度与附 2 SiO表面含有大量羟基,亲水性较强,与树脂(4~5%)时,涂料硬度明显提高,着力。 2 原因是当纳米粒子均匀分散在有机材料中时,与材料的比界面大,结合力强,对有机材料具有增强效应,提高了有机复合材料的硬度。 此外,纳米CaCO3在纸张涂料中的应用也提高了纸张的折曲性和柔软度,纳米建筑涂料的耐磨性、耐擦洗性都有明显改善。纳米改性的家具面漆、汽车面漆的耐磨性、硬度、耐刮伤性也极优越。 在纳米涂料机械性能的研究方面,目前主要研究纳米CaC03、Si02.滑石粉、硅酸铝、铁系颜料等对涂膜耐擦洗、耐磨、附着力、抗冲击、柔韧性的改进。这方面的研究重点是探索纳米粒子与树脂界面的相互作用机理和混合机理,以期为

高温防腐纳米复合陶瓷涂料

高温防腐纳米复合陶瓷涂料 产品特性及使用方法 产品型号:201(系列) 产品外观:(标准颜色) 黑色、白色、灰黑色、透明液体(颜色可调,根据客户需求调) 适用基材: 碳钢、不锈钢、铸铁、铝合金、钛合金、高温合金钢、耐火隔热砖、隔热纤维、玻璃、陶瓷、高温浇注料均可。 说明:不同基材不同的热膨胀系数,结合产品使用工况,对应的涂料配方也不同。在一定范围内,可根据基材不同膨胀系数调节涂料膨胀系数达到匹配。 适用温度: 最高耐受温度1300℃,耐火焰或高温气流直接冲刷。 根据不同底材的耐温情况,涂层的耐温有会有相应的变化;耐冷热冲击抗热震。 产品特性: 1、单组份,醇体系无机纳米复合陶瓷涂料。施工方便,省涂料,环保无毒害。 2、纳米无机涂层,致密,具有一定的电绝缘性能。 3、涂层耐酸碱腐蚀,氢氟酸和浓盐酸除外。 4、涂层可后加工,达到涂层所需厚度和精度。 5、耐高温腐蚀,抗热震(耐冷热交换,涂层使用寿命内不开裂不剥落)。 6、涂层结合强度良好,表面具有一定硬度和强度。 7、与配套的高温密封纳米复合陶瓷加强剂(型号:GN—F2A,后简称“高温密封加强剂”) 使用性能更稳定,具体使用见使用方法。 产品存储:避光密封保存,5℃—30℃环境中,纳米涂料保质期6个月。开盖后建议1月内用完,效果更佳(纳米颗粒表面能高,活性高,易团聚。在分散剂以及表面处理的作用下, 在一定时间内纳米颗粒保持稳定)。 特别备注: 1、本纳米涂料与配套的高温密封加强剂均为直接使用,不可添加其它任何组份(尤其是水), 否则该纳米涂料和配套的高温密封加强剂均会严重影响其功效甚至快速报废。 2、操作人员防护:跟普通涂料施工防护一样,涂布过程远离明火、电弧、电火花,具体参 照本产品的MSDS报告。 产品净重:标准包装:20 KG /桶;最小包装:5.0KG/桶。 产品图片:

纳米陶瓷的应用前景及存在的问题

纳米陶瓷的应用前景及存在的问题 学院:纺织与材料工程学院 专业班级: 学生姓名: 教师: 2013年5月19日

纳米陶瓷的发展前景及存在的问题 前言:纳米陶瓷——所谓纳米陶瓷是指陶瓷材料的显微结构中,晶粒、晶界以及它们之间的结合都处于纳米尺寸水平。包括晶粒尺寸、晶界宽度、第二相分布、气孔尺寸、缺陷尺寸都是纳米级。 一、纳米陶瓷的发展前景 未来纳米陶瓷发展的方向主要有以下几个方面: (1)在设备技术方面,应该向低温烧结、纳米材料的调控和复合、小型化方向发展,完善和发展陶瓷粉体、纳米陶瓷结构和性能表征方法。研究制备过程中纳米粉体的形成、生长机制及各种条件的影响、纳米粉体在化学制备过程中的团聚体形成机理等(2)在性能方面,应该向开发制备高效率、低成本、多功能和智能化的方向发展。纳米陶瓷粉体新的制备方法和工艺条件的研究与开发;开发高效率、低成本的制备技纳米陶瓷粉体新的制备方法和工艺条件的研究与开发;开发高效率、低成本的制备技术。 (3)在应用方面,应该向着智能化敏感陶瓷元件计算机用光纤陶瓷材料、计算机硬盘和高稳定性陶瓷电容器、纳米粉体对环境的污染机理等方向发展 (4)纳米粉体形成纳米陶瓷的反应机理研究;加速纳米粉体工业生产和应用的进程(5)在环境方面,研究纳米粉体对环境的污染机理,做好应用过程中的环境保护;(6)在经济方面,加速纳米粉体的工业化生产和应用进程。在21世纪,纳米陶瓷粉体将飞速发展,在各领域的应用将全面展开,并将产生一批新技术、新产品;在电子、通信等高技术领域的广泛应用,将成为经济发展的新的增长点。 二、纳米陶瓷存在的问题 (1)纳米陶瓷基础理论存在的问题: 1)纳米材料的结构、成分、制造等科学技术问题; 2)纳米材料的物理性质、化学性质及其测定方法的研究; 3)量子力学、量子化学对纳米陶瓷的结构和性质的影响; 4)纳米复相陶瓷的形成机理。 (2)纳米陶瓷应用中存在的问题: 1)纳米陶瓷材料特性产生的原理与其形成机制研究不深入; 2)在纳米陶瓷粉体的制备过程中,团聚的形成机理研究与分析不完善; 3)纳米陶瓷的烧结动力学分析和相应的物理化学反应机理研究有所欠缺; 4)未能研究开发出简便易行、生产成本较低的制备工艺。 结束语:根据上课所学的纳米陶瓷的知识,纳米陶瓷将解决陶瓷的强化和增韧问题。在生物医疗方面也应用颇多,解决纳米陶瓷最主要解决团聚问题。以及在经济中如何控制低成本产业化的问题。还有安全也是一个重要的问题,据《自然》杂志报道,纳米颗粒可以通过呼吸系统、皮肤接触、食用、注射等途径,进入人体组织内部。纳米颗粒进入人体后,由于其体积小,白由度大,反应活性高等特性,几乎不受任何阻碍就可以进入细胞,与体内细胞发生反应,引起发炎、病变等症状。同时,纳米颗粒也可能进入人的神经系统,影响大脑,导致更严重的疾病发生。纳米颗粒长期停留在人体内,同样会引发病变,如停留在肺部的石棉纤维会导致肺部纤维化。要使纳米材料的发展真正造福于人类,安全问题不可忽视。最后是环境问题,我们要研究出对环境无污染,最好能循环利用的纳米产品,使纳米材料真正服务大众。

高温纳米陶瓷涂层在锅炉防结渣上的应用

高温纳米陶瓷涂层在锅炉防结渣上的应用 【摘要】宜兴华润热电有限公司通过对#2炉实施高温纳米陶瓷防结渣喷涂,有效解决了长期以来一直存在锅炉结焦严重、炉内掉大焦问题。因炉内结渣严重被迫投用吹灰器的频次大幅下降,吹灰器周围水冷壁吹损速率快问题得到有效解决。锅炉运行的安全、经济性得以提升,脱硝效率也有一定的提升,取得了较好的效果。 【关键词】锅炉结渣;高温纳米陶瓷;防结渣;喷涂 前言 受热面结焦渣严重一直困扰着许多燃煤的电站锅炉,对锅炉的安全经济运行带来一系列难以解决的问题。宜兴华润热电有限公司通过采用在受热面上实施高温纳米陶瓷材料喷涂的方法,有效攻克了长期以来存在的锅炉受热面结焦难题,为锅炉的安全经济运行提供了保障。 1 概述 宜兴华润热电有限公司2×60MW机组,锅炉是无锡锅炉厂制造的UG-260/9.8-M型高温、单锅筒、自然循环、“Ⅱ”型布置的固态排渣煤粉炉。制粉系统采用中间储仓式热风送风,脱硝采用SNCR+SCR耦合脱硝技术。 2 项目背景 宜兴华润两台锅炉自投产以来结焦一直较严重,运行中经常掉大焦,炉膛冒正压最大+1400Pa,减温水用量大,炉膛吹灰器投运频繁,每天最多时达9次,严重影响到了锅炉的安全经济运行。 锅炉结焦部位多发生在燃烧器及以上区域,有时呈液态下流,严重时过热器发生结焦停炉,冷渣斗部位堆积液态焦堵塞排渣口停炉打焦。 2014年后煤种的结焦性得到改善,并随着低氮燃烧器的改造,燃烧器区域水冷壁粘焦渣情况较少,在三次风上部后墙与侧墙部位能看到少量结渣,在炉膛出口部位的看火孔部位基本上看不到结渣情况,但是#2炉运行中仍存在经常掉大渣炉膛冒正压情况,且减温水用量大,主汽温度难控制易超温,运行人员被迫频繁投用炉膛吹灰器,吹灰器缺陷大量发生,2014年8月曾发生吹灰器卡在炉内未及时发现水冷壁被吹爆管事故。 2010年至2013年锅炉燃烧用易结焦煤种时炉内结焦情况见图1 图1 2010年至2013年锅炉燃烧用易结焦煤种时炉内结焦情况

相关文档
相关文档 最新文档