文档库 最新最全的文档下载
当前位置:文档库 › 速度加速度练习题(带答案)

速度加速度练习题(带答案)

速度加速度练习题(带答案)
速度加速度练习题(带答案)

速度?加速度练习题(带答案)

1下列物理量为矢量的是()

A. 速度

B. 位移

C. 质量

D.

2、下列说法正确的是()

A.位移是描述物体位置变化的物理量加速度

B.速度是描述运动快慢的物理量

C.加速度是描述速度变化大小的物理量

3.关于加速度的概念,下列说法中正确的是

A. 加速

度就是加出来的速度B

C.加速度反映了速度变化的快慢D

丄也v

4?由a .可知()

Lt

A. a与厶v成正比B

C. a的方向与△ v的方向相同

5?关于加速度的方向,下列说法正确的是

A、一定与速度方向一致;

C. 一定与位移方向一致;

6. 关

于速度和加速度的关系,以下说法中正确的

是(

A. 加速度大的物体,速度一定大 B .加速度为零时,速度一定为零C .速度不为零时,加速度一定不为零 D.速度不变时,加速度一定为零7?右图为A、B两个质点做直线运动的位移-时间图线.则().

A、在运动过程中,A质点总比B质点快

B在0-t i时间内,两质点的位移相同

C当t=t i时,两质点的速度相等

D当t=t i时,A、B两质点的加速度都大于零

8. 若物体做匀加速直线运动,加速度大小为2m/s2,则(

A. 物体在某秒末的速度一定是该秒初速度的

B. 物体在某秒末的速度一定比该秒初速度大

C. 物体在某秒初的速度一定比前秒初速度大

D. 物体在某秒末的速度一定比前秒初速度大

9. 关于加速度,下列说法中正确的是

A.速度变化越大,加速度一定越大

B.

C.速度变化越快,加速度一定越大

D.

10. 物体在一直线上运动,用正、负号表示方向的不同,根据给出速度和加速度的

正负

,下列对

运动情况判断错误的是()A. v o>0, a<0,物体的速度越来越大C. v o0,物体的速度越来越小11. 以下对加速度的理解正确的是(

A.加速度等于增加的速度B

B. v o

D. 加速度是描述速度变化快慢的物理量

.加速度反映了速度变化的大小

.加速度为正值,表示速度的大小一定越来越大

?物体加速度大小由△v 决定

D . A v/ △ t叫速度变化率,就是加速度

()

B 、一定与速度变化方向一致;

D 、一定与位移变化方向一致。

2倍

2m/s

2m/s

2m/s

速度变化率越大,加速度一定越大

速度越大,加速度一定越大

D. v o>O, a>0,物体的速度越来越大)

.加速度是描述速度变化快慢的物理量

c.—10m s2比io m s2小D.加速度方向可与初速度方向相同,也可相反

12、关于速度,速度改变量,加速度,正确的说法是:()

A、物体运动的速度改变量很大,它的加速度一定很大

B速度很大的物体,其加速度可以很小,可以为零

C某时刻物体的速度为零,其加速度可能不为零

D 加速度很大时,运动物体的速度一定很大

13. 物体某时刻的速度为 5m/s ,加速度为—3m/s 2,这表示() A.物体的加速度方向与速度方向相同,而速度在减小 B. 物体的加速度方向与速度方向相同,而速度在增大 C. 物体的加速度方向与速度方向相反,而速度在减小 D. 物体的加速度方向与速度方向相反,而速度在增大 14.

关于加速度的概念,正确的是( )

A. 加速度反映速度变化的快慢

B. 加速度反映速度变化的大小

C. 加速度为正值,表示物体速度一定是越来越大

D. 加速度为负值,表示速度一定是越来越小 A. 加速度在数值上等于单位时间里速度的变化

B. 当加速度与速度方向相同且又减小时,物体做减速运动

C. 速度方向为负,加速度方向为正,物体做减速运动

D. 速度变化越来越快,加速度越来越小 18. 下列描述的运动中,可能存在的有( )

19. 一物体以5m/s 的初速度,-2m/s 2的加速度在粗糙的水平面上滑行,经过 4s 后物体的速 率为(

A 、5m/s

B 、4m/s

C 、3m/s

D 、0

20.

某人爬山,从山脚爬上山顶,然后又从原路返回到山脚,上山的平均速率为 V 1,下山

的平均速率为V 2,则往返的平均速度的大小和平均速率是

( )

2V 1V 2 V 1 + V 2

21. 计算物体在下列时间段内的加速度: (1) 一辆汽车从车站出发做匀加速直线运动,经

10s 速度达到108 km /h o

(2)以40 m /s 的速度运动的汽车,从某时刻起开始刹车,经 8 s 停下。

(3)沿光滑水平地面以 10 m /s 的速度运动的小球,撞墙后以同样的速率反方向弹回,与 墙接触的时间为0.2 s o

15. 下列关于加速度的说法中,正确的是: ( A.加速度越大,速度变化越大; B C.

加速度的方向和速度方向相同; D

16?关于加速度,以下说法正确的是

() A.加速度增大,速度就一定增大 B 17、下列关于加速度的描述中,正确的是 .加速度越大,速度变化越快; .加速度的方向和速度变化的方向相同。

.速度的改变量越大,加速度就越大

?速度很大的物体,其加速度有可能很小 A.速度变化很大,加速度很小 B

.速度变化的方向为正,加速度方向为负

C.速度变化越来越快,加速度越来越小 D .速度越来越大,加速度越来越小 V 1 + V 2 V 1 + V 2

2 , 2

V 1 — V 2 B.

2 , V 1 — V 2

2

C . 0,

V 1 — V 2

V 1+ V 2

22. 一子弹用0.02s的时间穿过一木板.穿入时速度是800m/s,穿出速度是300m/s,则子

弹穿过木板过程的加速度为 ________ . 23.

以10m )/s 速度前进的汽车,制动后经 4s 停下来,则

汽车的加速度是

24.(20分)如图所示为一物体沿直线运动 x-t 图象,根据图象求:

(1)第2s 内的位移,第4s 内的位移,前5s 的总路程和位移 (2) 各段的速度

(3) 画出与x-t 图象对应的v-t 图象

答案:

16、D 17、AC 18、AD 19、D

20、D 解析:位移为零,故平均速度为零.设路程为

2S ,有平均速

2s v = = s s —+ — V 1 V 2

21、(1)3 m/s 2 (2)5 m/s 2 (3)100 m/s 2

22

、2500 m/s 2

24. (1)在第 2s 内,由 x 1=20m 运动到 X 2=30m ,

位移△ X 1 =x 2- X 1=10 (m )

在第4s 内,由x/=30m 运动到x 2/=15m , 位移△ x ?=x 2/- x/=-15 ( m )

在前5s 内,先由X 1〃=10m 到x 2〃=30m ,再返回到X 3〃=0,

1、ABD

2、ABD

3、A

4、CD

5、B

6、D

7、

AD 8、BC 9、BC 10、A 11、BD 12、BC 13、C

14 、A

15 、BD 2V 1V 2

V 1 +

V 率为:

总路程1=20+30=50 (m)

前 5s 内的位移厶 X 3= x 3〃-x i 〃=-10 (m ) (2) 0?2s 内的平均速度玄弓=罗=1。皿) 2?3s 内物体静止,速度v 2 =0

(3) v-t 图象如图所示

V/JR. S °】

10

5 0 -S

-10

T5

7、D

8 D 解析:速度变化最快即加速度最大的是

①,加速度最小的是④?

10、B 解析:若以流动的水为参考系可知,箱子从落水到被船追上共用时间 2h ,

x 7.2

…v 水=-=—km/h = 3.6km/h.

、填空题:

3?5s 内的平均速度V 3二

0 -30 2

基于压电加速度计速度测量信号调理电路设计要点

课程设计报告 题目基于单片机的压电加速度传感器 低频信号采集系统的设计 2014-2015 第二学期 专业班级2012级电气5班 姓名赵倩 学号201295014196 指导教师马鸣 教学单位电子电气工程学院 2015年7月6日

课程设计任务书 1.设计目的: ①掌握电子系统的一般设计方法和设计流程;并完成加速器低频信号的理论设计。 ②掌握应用电路的multisim等软件对所设计的电路进行仿真,通过仿真结果验 证设计的正确性,完成电路设计。 2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等):压电式加速度传感器作为一种微型传感器,其输出信号比较微弱,通常为几十个毫伏或几百个微伏。所以有必要对其输出电压进行信号调理。主要包括电源模块、放大模块、滤波模块等组成。 3.设计工作任务及工作量的要求: (1)查阅相关资料,完成系统总体方案设计; (2)完成系统硬件设计; (3)对所设计的电路进行仿真; (4)按照要求撰写设计说明书;

一、压电式加速度传感器的概要 (4) 二、信号采集系统的总设计方案 (5) 三、信号采集系统分析 (6) 1、电荷转换部分: (6) 2、适调放大部分 (6) 3、低通滤波部分: (7) 4、输出放大部分 (7) 5、积分器部分: (8) 四、单片机软件设计 (8) 五、Multisim仿真分析 (10) 1.仿真电路图 (10) 2.仿真波形及分析 (11) 六、误差分析 (11) 1、连接电缆的固定 (11) 2、接地点选择 (12) 3、湿度的影响 (12) 4、环境温度的影响 (12) 七、改进措施 (12) 六、心得体会 (12) 七、参考文献 (13)

重力加速度多种测量方法的讨论汇总

分类号: 密级:毕业论文(设计) 题目:重力加速度多种测量方法的讨论系别: 专业年级: 姓名: 学号: 指导教师: 2015年06月03日

原创性声明 本人郑重声明:本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。毕业论文中凡引用他人已经发表或未发表的成果、数据、观点等,均已明确注明出处。除文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的科研成果。对本文的研究成果做出重要贡献的个人和集体,均已在文中以明确方式标明。 本声明的法律责任由本人承担。 论文作者签名:日期:

关于毕业论文使用授权的声明 本人在指导老师指导下所完成的论文及相关的资料(包括图纸、试验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属吕梁学院。本人完全了解吕梁学院有关保存、使用毕业论文的规定,同意学校保存或向国家有关部门或机构送交论文的纸质版和电子版,允许论文被查阅和借阅;本人授权吕梁学院可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存和汇编本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为吕梁学院。本人离校后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为吕梁学院。 论文作者签名:日期: 指导老师签名:日期:

摘要 物理学的产生和发展都离不开实验,而对于一个相同的物理量来说,可以有不同的测量方法和测量途径。本论文主要是研究用弹簧测力计和天平组合测量法、水滴法、单摆法、打点计时器法来测量重力加速度。并分别从以下几个方面来对这四种实验进行讨论:实验原理理解的难易程度、操作过程的繁易程度、是否适合自身条件、是否适合测量当地的重力加速度、每个实验所产生误差的原因。通过对前边四种实验的理解,结合自己的实验条件,设计出了一个用小球和细管的组合来测量重力加速度的方法。并多次做了这个实验,并把实验的结果与前边四种实验方法进行比较,比较了这几种方法的优点缺点以及测量的精确度。最后对这几种测量方法进行分析归纳,总结出这几种实验方法的利与弊,找出了一种既方便又能精确测量当地重力加速度的方法。 关键词:重力加速度;实验;测量方法

基于单片机的重力加速度测量

基于单片机的重力加速度测量 王磊 摘要:重力加速度通常使用重力加速度测量仪进行测量,其测量过程是通过两个光电门检测物体的下降时刻,由数字毫秒计显示物体所经历的时间,最后通过繁琐的手工计算求得,主要缺点是效率较低且不可避免粗大误差的影响。为了提高实验效率以及实验结果的准确度,我们对传统重力加速度测量仪进行了改进,主要是利用单片机对原实验的光电信号进行检测,通过VC编程完成较精确的计算、存储、显示以及数据处理等一系列工作,极大的改善了实验环境、丰富了实验内容以及提高了实验效率。 关键词:重力加速度;单片机;VC++ 0 引言 在力学实验中,通常测量重力加速度所用的重力加速度测量仪[1],是通过光电门得到物体的下降时间,并由数字毫秒计显示,通过设定不同的距离进行多次测量,然后按最小二乘法进行手工计算求得重力加速度值。其主要缺点是手工计算不方便,会引入计算误差,实验效率较低。 为了精确、有效地测量出重力加速度,设计了以上位PC机VC++程序作为主控制机,以AT89C51单片机作为辅助的重力加速度测量装置,所测时间以10μs 计,误差小,精度高,功耗低,比较适合物理实验用。 1 基本测量原理 物理上测量重力加速度的方法有很多,比如落体法、摆球法、液体测量法等等[2]。本文采用落体法测量重力加速度。基本原理如下: (1)根据自由落体运动,测下落的高度和时间.高度可由米尺测出。测量时间可用手表、秒表、打点计时、闪光照片、滴水法(自来水、滴定管)、光电门、单片机等。 (2)利用小球在保证初速度不变的情况下下落两个不同的高度,则有 , 。 是小球经过上光电门时的初速度。由上两式得:

(3)针对上个方案。采用多种数据处理,实验方案也不同,如多次测量、逐差法、作图法、最小二乘法等。 其结构简图如图1所示。开始时小刚球7被电磁铁6吸住,测量时断开电磁铁,使钢球以初速度为零下落,钢球依次通过二只光电管4和5,落到球座2中的球窝内,测量过程结束。 1—底座 2—球座 3—立柱及标尺 4—移动光 电管 5—固定光电管 6—电磁铁 7—小钢球 图1 测量装置简图 2 系统硬件电路及程序 2.1 硬件电路 本系统采用AT89C51芯片,完成从光电门接收数据,并把接收到的数据发送到PC机,而其他外围设备或芯片都起到辅助作用。AT89C51的最小系统电路图如图2中间部分所示,它由三部分组成:复位电路、时钟电路、中断指示电路[3]。复位电路和时钟电路都是使单片机正常工作所必须的电路,而对于指示灯电路是为了说明有外部中断信号。 AT89C51外部中断电路的作用是实现外部中断信号,也就是在遮光杆通过光电门时要单片机产生外部中断。

压电式传感器测量加速度

压 电 式 加 速 度 测 试 系 统 姓名:张书峰 学号:201003140125 学院:机电学院 班级:机自101 指导教师:王玮

一设计概论 压电传感器是一种可逆性传感器,既可以将机械能转换为电能,又可以将机械能转换为电能。它是利用某些物质(如石英、钛酸钡或压电陶瓷、高分子材料等)的压电效应来工作的。在外力作用下,在电介质表面产生电荷,从而实现非电量测量的目的。因此是一种典型的自发电式传感器。压电传感器是力敏感元件,它可以测量最终能变换为力的那些非电物理量,例如,动态力、动态压力、振动加速度等 现有测试系统的各个组成部分常常以信息流的过程来划分。一般可以分为:信息的获得,信息的转换,信息的显示、信息的处理。作为一个完整的非电量电测系统,也包括了信息的获得、转换、显示和处理等几个部分。因为它首先要获得被测量的信息,把它变换成电量,然后通过信息的转换,把获得的信息变换、放大,再用指示仪或记录仪将信息显示出来,有的还需要把信息加以处理。因此非电量电测系统,具体来说,一般包括传感器(信息的获得)、测量电路(信息的转换)、放大器、指示器、记录仪(信息的显示)等几部分有时还有数据处理仪器(信息的处理)。它们间的 关系可 用右框 图来表 示。 其中传感器是一个把被测的非电物理变换成电量的装置,因此是一种获得信息的手段,它在非电量电测系统中占有重要的位 置。它获得信息 的正确与否,直 接影响到整个 测量系统的测 量效果。测量电 路的作用是把 传感器的输出

变量变成易于处理的电压或电流信号,使信号能在指示仪上显示或在记录仪中记录。测量电路的种类由传感器的类型而定。压电加速度传感器常用的测量电路是电荷放大器。常用的压电加速度传感器的动态测量系统如图1.2 二整体设计方案 1、测量的示意图 2、设计的原理 压电式加速度传感器属于惯性式传感器,工作原理是以某些物质的压电效应为基础,在加速度计受振时,加在压电元件上的力也随之变化。当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加速度成正比,可以把被测的非电物理量加速度转化为电量。由于压电式传感器的输出电信号是微弱的电荷,而且传感器本身有很大内阻,故输出能量甚微,这给后接电路带来一定困难。为此,通常器信号选用电荷放大器作为电信号的测量电路。 3、方框图

重力加速度的测量及应用

重力加速度的测量及应用 重力加速度g值的准确测定对于计量学、精密物理计量、地球物理学、地震预报、重力探矿和空间科学等都具有重要意义。 测量: 最早测定重力加速度的是伽利略。约在1590年,他利用倾角为θ的斜面将g的测定改为测定微小加速度a=gsinθ,。1784年,G?阿特武德将质量同为M的重物用绳连接后,挂在光滑的轻质滑轮上,再在另一个重物上附加一重量小得多的重物m,使其产生一微小加速度a =mg/(2M+m),测得a后,即可算出g。 1888年,法国军事测绘局使用新的方法进行了g值的计量.它的原理简述为:若一个物体如单摆那样以相同的周期绕两个中心摆动,则两个中心之间的距离等于与上述周期相同的单摆的长度。当时的计量结果为:g=9.80991m/s2。 1906年,德国的库能和福脱万勒用相同的方法在波茨坦作了g值的计量,作为国际重力网的参考点,即称为“波茨坦重力系统”的起点,其结果为g(波茨坦)=9.81274m/s2。 根据波茨坦得到的g值可以通过相对重力仪来求得其他地点与它的差值,从而得出地球上各地的g值,这样建立起来的一系列g值就称为波茨坦重力系统。国际计量局在1968年10月的会议上推荐,自1969年1月1日起,g(波茨坦)减小到9.81260m/s2。根据上述修正了的波茨坦系统,在地球上的一级点位置的g值的不确定度可小于5×10-7。 应用: 地球对表面物体具有吸引力,重力加速度是度量地球重力大小的物理量。按照万有引力定律,地球各处的重力加速度应该相等。但是由于地球的自转和地球形状的不规则,造成各处的重力加速度有所差异,与海拔高度、纬度以及地壳成分、地幔深度密切相关。 重力预震:地球物理学研究中要求观测重力长期的细微的变化,即所谓g的长度;这种变化可能是由于地壳运动,地球的内部结构和形状的演变,太阳系中动力常数的长度以及引力常数G的变化等等。观测这些变化要求g值的计量不确定度达10-8至10-9量级。观测g值的变化可能对预报地震有密切的关系.据有关方面报道,七级地震相对应的g值变化约为0.1×10-5m/s2。目前,许多国家都在探索用g值的变化作临震预报。 重力探矿:利用地下岩石和矿体密度的不同而引起地面重力加速度的相应的变化。故根据在地面上或海上测定g的变化,就可以间接地了解地下密度与周围岩石不同的地质构造、矿体和岩体埋藏情况,圈定它们的位置。所用的仪器是重力仪和扭秤(目前已为高精度重力仪所代替)。

速度、加速度的测定和牛顿运动定律的验证

中国石油大学(华东)现代远程教育 实验报告 课程名称:大学物理() 实验名 称: 速度、加速度的测定和牛顿运动定律的验证 实验形式:在线模拟+现场实践 提交形式:提交书面实验报告 学生姓学号: 年级专业层次:高起专 学习中心:________ 提交时间:2016 年6 月15 日

、实验目的 1.了解气垫导轨的构造和性能,熟悉气垫导轨的调节和使用方法。 2?了解光电计时系统的基本工作原理,学会用光电计时系统测量短暂时间的方法。 3.掌握在气垫导轨上测定速度、加速度的原理和方法。 4?从实验上验证F=ma的关系式,加深对牛顿第二定律的理解。 5?掌握验证物理规律的基本实验方法。 二、实验原理 1速度的测量 一个作直线运动的物体,如果在t~t+ △时间内通过的位移为\x x~x+ Ax ,则该物体在 1F =—— At时间内的平均速度为亠,△越小,平均速度就越接近于t时刻的实际速度。当 A t T 时,平均速度的极限值就是t时刻(或x位置)的瞬时速度 ir = lim ------------------——— (1) 实际测量中,计时装置不可能记下 A t T0勺时间来,因而直接用式(1)测量某点的速 度就难以实现。但在一定误差范围内,只要取很小的位移Ax测量对应时间间隔At就可 以用平均速度订近似代替t时刻到达x点的瞬时速度r。本实验中取Ax为定值(约10mm ), 用光电计时系统测出通过Ax所需的极短时间A,较好地解决了瞬时速度的测量问题。 2.加速度的测量 在气垫导轨上相距一定距离S的两个位置处各放置一个光电门,分别测出滑块经过这两 个位置时的速度v1和v2。对于匀加速直线运动问题,通过加速度、速度、位移及运动时间之间的关系,就可以实现加速度a的测量。 (1)由■- "-+■-测量加速度 在气垫导轨上滑块运动经过相隔一定距离的两个光电门时的速度分别为v1和v2,经过 两个光电门之间的时间为t21,则加速度a为 (2) (2)根据式(2)即可计算出滑块的加速度。 (3)由厂测量加速度 设v1和v2为滑块经过两个光电门的速度,S是两个光电门之间距离,则加速度a为 根据式(3)也可以计算出作匀加速直线运动滑块的加速度。

重力加速度测量设计性试验

重力加速度测量(设计性实验) 【实验目的】 (1)推导单摆测量重力加速度的公式。 (2)掌握单摆测量重力加速度实验的实验设计方法及验证方法。 (3)掌握间接测量量不确定度的计算方法。 (4)了解单摆测量重力加速度实验的主要误差来源。 (5)估算实验仪器的选取参数并设计实验数据记录表格。 【设计实验】 设计性实验的设计过程主要有以下几步: (1)根据待测的物理量确定出实验方法(理论依据),推导出测量的数学公式;判定方法误差给测量结果带来的影响。 (2)根据实验方法及误差设计要求,分析误差来源,确定所需要采用的测量仪器(包括量程、精度等)以及测量环境应达到的要求(如空气、电磁、振动、温度、海拔高度等)。 (3)确定实验步骤、需要测量的物理量、测量的重复次数等。 (4)设计实验数据表格及要计算的物理量。 (5)实验验证。要用测得的实验数据,采用误差理论来验证实验结果。若不符合测量要求,则需对上述步骤中的有关参数做出适当调整并重做实验,据测得的实验数据进行实验验证,以此类推直到符合要求为止。 设计实验的原则应在满足设计要求的前提下,尽可能选用简单、精度低的仪器,并能降低对测量环境的要求,尽量减少实验测量次数。 【设计要求】 (1)测定本地区的重力加速度,要求重力加速度的相对不确度小于0.5%,即 g 0.5u g ≤%。确 定所需仪器的量程和精度,以及测量参数(摆长和摆动次数)。 (2)本实验是测量重力加速度的设计性实验,但考虑到设计难度、仪器资源的限制等因素,规定其实验方法采用单摆法。 (3)可用仪器有:钢卷尺(1 mm/2 m ,表示最小分度值为1 mm ,量程为2 m ,下同)、钢直尺(1 mm/1 m )、游标卡尺(0.02 mm/20 cm )、普通直尺(1 mm/20 cm )、电子秒表(0.01 s )、单摆实验仪(含摆线、摆球等)。 【实验内容】 (1)原理分析。写出单摆法测量公式完整的推导过程及近似要求,并画出原理图(查阅相关书籍及网站)。 (2)误差分析。分析实验过程中的主要误差来源并估算。 (3)不确定度的推导与计算。 (4)估算实验参数(摆长和摆动次数)。 (5)设计实验步骤与数据表格。 (6)实验与验证。 【设计提示】

重力加速度测量的十种方法

重力加速度测量的十种方法 方法一、用弹簧秤和已知质量的钩码测量 将已知质量为m的钩码挂在弹簧秤下,平衡后,读数为G.利用公式 G=mg得g=G/m. 方法二、用滴水法测重力加速度 调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2. 方法三、用单摆测量(见高中物理学生实验) 方法四、用圆锥摆测量.所用仪器为:米尺、秒表、单摆. 使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆球n转所用的时间t,则摆球角速度ω=2πn/t 摆球作匀速圆周运动的向心力F=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r由以上几式得:

g=4π2n2h/t2. 将所测的n、t、h代入即可求得g值. 方法五、用斜槽测量,所用仪器为:斜槽、米尺、秒表、小钢球. 按图2所示装置好仪器,使小钢球从距斜槽底H处滚下,钢球从水平槽底末端以速度v作平抛运动,落在水平槽末端距其垂足为H′的水平地面上,垂足与落地点的水平距离为S,用秒表测出经H′所用的时间t,用米尺测出S,则钢球作平抛运动的初速度v=S/t.不考虑摩擦,则小球在斜槽上运动时,由机械能守恒定律得:mgH=mv2/2.所以g=v2/2H=S2/2Ht2,将所测代入即可求得g值. 方法六、用打点计时器测量.所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等. 将仪器按图3装置好,使重锤作自由落体运动.选择理想纸带,找出起始点0,数出时间为t的P点,用米尺测出OP的距离为h,其中t=0.02 秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g.

自由落体重力加速度测量仪

自由落体重力加速度测量仪/重力加速度测量仪型号:HAD-LG-2 利用自由落体(条形物体)测定重力加速度,比球体测量准确.方便.配有数字毫秒计,五位半数显. 自由落体实验仪 1 自由落体重力加速度测量仪概述 自由落体实验仪是基础力学教学实验的必备仪器,利用自由落体实验仪可进行定性观测和定量研究物体在自由落体状态下的运动规律。从而达到教学演示实验的目的。 HAD-LG-2型为:主体高度1.6m,铸铁腿三脚支架,底座稳固,抗震动好,利于实验室摆放操作。 从教学使用出发,HAD-LG-1型为:主体高度1.2m,便携式三脚支架,底座轻巧,便于移动,利于课堂演示教学。 以上两种自由落体实验仪均可与J0201-G-2型计时器, J0201-CC存贮式计时器,J0201-CHJ存贮式数字毫秒计,J0416-2型多用大屏幕数字显示测试仪配合使用,适用于中学进行物理教学的演示实验或分组实验。 本仪器还可以与J02015-2型简易频闪光源和照相机同步配合使用,用频闪照像法研究自由落体运动的规律。 2 重力加速度测量仪技术性能 2.1 仪器总高: HAD-LG-1型≥1.2m ;HAD-LG-2型≥1.6m 2.2 实验有效高度: HAD-LG-1型≥1.0m ;xe77FT-LG-2型≥1.4m 2.3 电磁铁电源: DC6V 2.4 钢球直径: 18mm 2.5 g值实验相对误差:≤ 2% 3 结构与特点 3.1 见图一。仪器由带有标尺的铝合金型材为主体,顶端装有电磁铁吸球器,中间装有两个可任意移动的光电门光电传感器,下端装有接球架网,立柱下端固定在可调节的三脚支架上。 3.2 钢球的起始位置由电磁铁的固定支架端板的下端“ ”形的下边沿作为位置指针,能方便地调节确定钢球自由下落的起始刻度基准。 3.3 立柱上端装有电磁铁吸球器,当电磁铁线圈接通直流6V电源时,电磁铁吸住钢球,切断电源时,钢球下落作自由落体运动。电磁铁的支架上还装有两个接线柱,可以与频闪光源的同步输入开关及学生实验电源直流6V相连接用于频闪照相实验用。(注:原接电缆的接线端子可卸下不用) 3.4 两个光电门由小型聚光电珠和光敏接收管组成。两个光电门可以上下任意移动,在立柱上的位置由光电门支架的凹型槽底边所对标尺的刻度决定。

用三种方法测量重力加速度

用三种方法测量重力加速度 朱津纬1 (1.复旦大学物理学系,上海市200433) 摘要:本实验通过手机phyphox软件,用三种方法测量了重力加速度。分别将落币法、复摆法和弹簧法所得的重力加速度结果与实际值比较,误差不超过4%。 1 引言 随着科技的发展,如今智能手机功能越来越丰富。许多应用软件全面地利用手机中传感器,可以用来实施物理实验[1,2]。其中,“phyphox”是集合了很多实验项目的应用软件。本实验将利用它来测量重力加速度。 重力加速度可通过多种方法进行测得。如单摆法[3],多管落球法[4],和利用自由落体的方法[5]等。在本实验中,重力加速度利用落币法、复摆法和弹簧法三种方法被测量,并与标准值比较。 2 实验原理 首先,分别介绍三种方法的理论原理。 2.1 落币法 该实验将利用“phyphox”中的“声控秒表”项目,测量硬币从不同高度?自由落体所 需的时间t。通过对t?√?数据线性拟合,得到重力加速度g=2 斜率2 。 如图1所示,硬币自由落体下落的高度为?。用水笔敲击直尺发出敲击声,设该时刻为t0。经过微小时间差Δt(与高度无关,假设为常量),硬币开始下落,设该时刻为t1。一段时间后,硬币落到地上,并发出与地面的碰撞声,设该时刻为t2。“声控秒表”测量了两次声响的时间差t=t2?t0。 由自由落体公式可知 ?=1 2g(t2?t1)2=1 2 g(t?Δt)2,(2.1) 即 t=√2 g √?+Δt。(2.2) 因此t?√?呈线性关系,斜率为√2 g 。 2.2 复摆法 图1 落币法实验示意图

该实验将利用“phyphox ”中的“单摆”项目,测量不同摆长L 复摆的摆动周期T 。通过 对T 2? L 2+bL+ b 23 (L+b 2) 数据线性拟合,得到重力加速度g = 4π 2 斜率 。 如图2所示,长度为L 的细线与宽度为b 的手机组成复摆,以杆子为轴前后摆动。设复摆的转动惯量为I ,手机(过中心水平轴)的转动惯量为I c = mb 212 。则由平行轴定理得 I =I c +m(L +b 2)2。 (2.3) 由复摆摆动周期公式得 T =2π√ I mg(L+b 2 ) =2π√ L 2+bL+ b 23 g(L+b 2 ) 。 (2.4) 因此T 2? L 2+bL+ b 23 (L+b 2) 呈线性关系,斜率为4π2g 。 2.3 弹簧法 该实验将利用“phyphox ”中的“弹簧”项目,测量悬挂不同质量重物弹簧的(平衡时的)下端位置x 和振动周期T 。通过对x ?T 2数据线性拟合,得到重力加速度g =斜率。之后,将考虑空气阻力,得到修正结果。 如图3所示,弹簧悬挂重物。设弹簧不悬挂重物时的平衡位置为x 0(是常量)、弹簧的弹性系数为k 、塑料袋重物的总质量为m 。 由受力平衡,得 mg =k (x ?x 0)。 (2.5) 再由弹簧的周期公式 T =2π√m k , (2.6) 消去m ,得 x =g (T 2π)2+x 0。 (2.7) 图3 弹簧法实验示意图 图2 复摆法实验示意图

用凯特摆测量重力加速度实验报告

用凯特摆测量重力加速度 实验目的:学习凯特摆的实验设计思想和技巧,掌握一种比较精确的测量重力加速度的方法。 实验原理:1、当摆幅很小时,刚体绕O轴摆动的周期: 刚体质量m,重心G到转轴O的距离h,绕O轴的转动惯量I,复 摆绕通过重心G的转轴的转动惯量为I G 。 当G轴与O轴平行时,有I=I G+mh2 ∴ ∴复摆的等效摆长l=( I G+mh2 )/mh 2、利用复摆的共轭性:在复摆重心G旁,存在两点O和O′,可使 该摆以O为悬点的摆动周期T?与以O′为悬点的摆动周期T?相同, 可证得|OO′|=l,可精确求得l。 3、对于凯特摆,两刀口间距就是l,可通过调节A、B、C、D四摆 锤得位置使正、倒悬挂时得摆动周期T?≈T?。 ∴4π2/g=(T?2+T?2)/2l + (T?2-T?2)/2(2h?-l) = a + b 实验仪器:凯特摆、光电探头、米尺、数字测试仪。 实验内容:1、仪器调节 选定两刀口间得距离即该摆得等效摆长l,使两刀口相对摆杆基本 对称,并相互平行,用米尺测出l的值,粗略估算T值。 将摆杆悬挂到支架上水平的V形刀承上,调节底座上的螺丝,借 助于铅垂线,使摆杆能在铅垂面内自由摆动,倒挂也如此。 将光电探头放在摆杆下方,让摆针在摆动时经过光电探测器。

让摆杆作小角度摆动,待稳定后,按下reset钮,则测试仪开始 自动记录一个周期的时间。 2、测量摆动周期T?和T? 调整四个摆锤的位置,使T?和T?逐渐靠近,差值小于0.001s, 测量正、倒摆动10个周期的时间10T?和10T?各测5次取平均 值。 3、计算重力加速度g及其标准误差σg 。 将摆杆从刀承上取下,平放在刀口上,使其平衡,平衡点即重心G。 测出|GO|即h?,代入公式计算g。 推导误差传递公式计算σg 。 实验数据处理:1、l的值 l=?(l?+l?+l?)=74.17cm σ=0.03055cm,u A =σ/=0.01764cm, ∴ΔA =t P?u A =1.32*0.01764=0.02328cm u B=ΔB /C=0.1/3=0.03333cm ∴u L ==0.04066cm T e ==1.729s 2、T?和T?的值 T?=1.72746s σ=2.525*10ˉ?s,u A =σ/=1.129*10ˉ?s ∴ΔA =t P?u A =1.14*0.0001129=1.287*10ˉ?s u B=ΔB /C=0.0001/3=0.3333*10ˉ?s ∴u T1 ==1.329*10ˉ?s

加速度测试系统设计

机械工程测试技术基础

目录 1.简介 2.测试方案设计 3.测试系统组成 3.1压电加速度传感器 3.1.1组成 3.1.2工作原理 3.1.3灵敏度 3.2电荷放大器 3.2.1测试电路图 3.2.2数据计算处理 3.3动态信号分析仪 4.实验测试流程 5.说明总结 6.参考文献

压电加速度测试系统 1.简介 现代工业和自动化生产过程中,非电物理量的测量和控制技术会涉及大量的动态测试问题。所谓动态测试是指量的瞬时值以及它随时间而变化的值的确定,即被测量为变量的连续测量过程。它以动态信号为特征,研究了测试系统的动态特性问题,而动态测试中振动和冲击的精确测量尤其重要。振动与冲击测量的核心是传感器,常用压电加速度传感器来获取冲击和振动信号。 压电式传感器是基于某些介质材料的压电效应,当材料受力作用而变形时,其表面会有电荷产生,从而实现非电量测量。压电式传感器具有体积小,质量轻,工作频带宽,结构简单,成本低,性能稳定等特点,因此在各种动态力、机械冲击与振动的测量以及声学、医学、力学、宇航等方面都得到了非常广泛的应用。 所以在此设计了一种压电式加速度测试系统,能够满足测试0—3G的低频率加速度测试。 2.测试方案设计 系统组成:压电加速度传感器、电荷放大器、动态信号分析仪 被测对象的振动加速度信号经传感器拾振,由传感器电缆将加速度信号送入该系统电荷放大器,电荷放大器将信号转换成电压信号并放大,通过数据采集测试仪采样,便实现对信号的采集。

最后在PC 端对实验数据进行处理并显示。 如下图所示 3.测试系统组成 3.1压电加速度传感器 3.1.1组成 由质量块、压电元件、支座以及引线组成 如下图所示 3.1.2工作原理 压电加速度传感器采用具有压电效应的压电材料作基本元件,是以压电材料受力后在其表面产生电荷的压电效应为转换原理的传感器。这些压电材料,当沿着一定方向对其施力而使它变形时,内部就产生极化现象 ,同时在它的两个相对的表面上便 产生符号相反的电荷;当外力去掉后,又重新恢复不带电的状质压电 元件支座输出引线

测重力加速度

设计性实验 重力加速度的测量 重力加速度g 是一个反映地球引力强弱的地球物理常数,它与地球上各个地区的经纬度、海拔高度及地下资源的分布有关,一般说来,两极的g 最大,赤道附近的g 最小,两者相差约1/300。重力加速度的测定在理论、生产和科学研究中都具有重要意义。 实验研究课题 1、测定本地区重力加速度g 值,测量结果至少有4 位有效数字,并要求百分误差小于1%。 2、试比较各种实验测量方法的优缺点。讨论各种实验测量方法中,哪些量可测得精确?哪些量不易测准?并说明如何减小或消除影响精确测量的各种因素等。 可选择的仪器 单摆、三线摆、复摆、圆球、重锤、米尺、游标卡尺、光电门、数字毫秒计(手机秒表代替)、杨氏模量测量仪等。 设计方案举例: 测量重力加速度的方法很多,有单摆、复摆、开特摆、三线摆、气垫导轨法和自由落体仪法等等,它们各有特点。 下面例举几种比较典型的方案。 方案一、单摆法 一、实验目的: 1、掌握实验原理及方法,进一步熟悉根据什么以及如何选择实验仪器和测量工具; 2、利用单摆测定重力加速度g 值; 3、分析受力情况,讨论误差原因,评价测量结果。 二、实验原理 单摆是用重量可忽视的细线吊起一质量为m 的小重锤,使其左右摆动,当摆角为θ时,重锤所受合外力大小sin =-f mg θ(图1),其中g 为当地的重力 加速度,这时锤的线加速度为sin -g θ。设单摆长为 L ,则摆的角 加速度 sin /=-g L αθ。当摆角很小时(小于 5°),可认为 ,这 时sin ≈θθ,即振动的角加速度和角位移成比例,式中的负号表示 角加速度和角位移的方向总是相反。此时单摆的振动是简谐振动。 从理论分析得知,其振动周期 T 和上述比例系数的关系是 2=T π ω,所以 2=T (2),式中L 为单摆摆长,是摆锤重心到悬点的距离, g 为当地的重力加速度。 将测出的摆长L 和对应和周期 T 代入上

加速度测量仪的设计

<<综合课程设计>> 课程设计报告 题目:加速度测量仪的设计专业:电子信息工程 年级:2010级 学号: 学生姓名: 联系电话: 指导老师: 完成日期:2013年 12月10日

摘要 利用ADXL345模块、STC89C52RC、LCD1602、12MHZ晶振等元件,制作加速度测量仪,实现能够测量静态下的重力加速度值和物体的倾角。经测试,系统达到课程设计的基本要求,具有易于操作,制作成本低的优点。 关键词:ADXL345模块;STC89C52RC;LCD1602;加速度测量仪;重力加速度;倾角

ABSTRACT Using the ADXL345 module, STC89C52RC, LCD1602, 12MHZ crystal element, making acceleration measurement instrument, and can dip angle acceleration of gravity measuring static values and objects. After testing, the system to meet the basic requirements of curriculum design, has the advantages of easy operation, advantages of low production cost. Key Words:the ADXL345 module; STC89C52RC; LCD1602; accelerometer; gravity acceleration; angle

大学物理仿真实验凯特摆测量重力加速度

福建工程学院 实验报告 专业:通信工程 班级:1002 座号:3100205219 姓名:郑智勇 日期:2011-10-20

凯特摆测量重力加速度 实验目的: 1. 学习凯特摆的实验设计思想和技巧。 2. 掌握一种比较精确的测量重力加速度的方法。 3. 利用凯特摆测量重力加速度的方法 实验内容: 一.实验原理 图一是复摆的示意图,设一质量为m 的刚体,其重心G 到转轴O的距离为h ,绕O 轴的转动惯量为I ,当摆幅很小时,刚体绕O 轴摆动的周期T 为 mgh I T π 2= (1) 式中g 为当地的重力加速度。 设复摆绕通过重心G 的轴的转动惯量为I G ,当G 轴与O 轴平行时,有 2 mh I I G += (2) 代入式(1)得 mgh mh I T G 2 2+=π (3) 对比单摆周期的公式g l T π 2=,可得 mh mh I l G 2+= (4) l 称为复摆的等效摆长。因此只要测出周期和等效摆长便可求得重力加速度。 复摆的周期我们能测得非常精确,但利用mh mh I l G 2 +=来确定l 是很困难的。因为 重心G 的位置不易测定,因而重心G 到悬点O 的距离h 也是难以精确测定的。同时由于复摆不可能做成理想的、规则的形状,其密度也难绝对均匀,想精确计算I G 也是不可能的。我们利用复摆上两点的共轭性可以精确求得l 。在复摆重心G 的两旁,总可找到两点

O和 O’,使得该摆以O悬点的摆动周期T1与以O’为悬点的摆动周期T2相同,那么可以证明' OO就是我们要求的等效摆长l。 图一复摆示意图图二凯特摆摆杆示意图图二是凯特摆摆杆的示意图,对凯特摆而言,两刀口间的距离就是该摆的等效摆长l。在实验中当两刀口位置确定后,通过调节A、B、C、D四摆锤的位置可使正、倒悬挂时的摆动周期T1和T2基本相等,即T1≈T2。由公式(3)可得 1 2 1 1 2 mgh mh I T G + =π (5) 2 2 2 2 2 mgh mh I T G + =π (6)其中T1和h1为摆绕O轴的摆动周期和O轴倒重心G的距离。当T1≈T2时,h1+h2=l即为等效摆长。由式(5)和(6)消去I G,可得 ()b a l h T T l T T g + = - - + + = 1 2 2 2 1 2 2 2 1 2 2 2 2 4π (7)式中,l、T1、T2都是可以精确测定的量,而h1则不易测准。由此可知,a项可以精确求得,而b项不易精确求得。但当T1=T2以及l h- 1 2的值较大时,b项的值相对a项是非常小的,这样b项的不精确对测量结果产生的影响就微乎其微了。 二.实验内容 1.实验仪器 本实验装置包括凯特摆、光电探头和多用数字测试仪。 实验中将光电探头放在摆杆下方,调整它的位置和高度,让摆针在摆动时经过光电探测器。电信号由B插口输入到数字测试仪中,数字测试仪的功能选择旋钮放在“振动计数”档,时标旋钮放在“0.1ms”档,计停开关置于“停止”,然后接通电源。

压电式传感器测量加速度的课程设计

题目应用压电式传感器测量加速度的电 路设计 姓名徐健学号201003130214 院(系)电子电气工程学院 班级P10电子信息2班 指导教师朱相磊职称教授 二O一二年七月二日

摘要 现代工业和自动化生产过程中,许多的设备都用到传感器,传感器的应用已经普及到很多的生产车间和生活当中。此次设计是利用某些物质如石英晶体的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加速度成正比。 本文介绍了一种压电式加速度传感器,利用压电式传感器来测量运动物体的加速度,本设计的操作简单,具有较高的灵敏度,准确的测量加速度。根据不同的测量需要可以进行智能调整,以达到提高性价比的目的。 关键字:压电加速度传感器电荷转换电路放大电路A\D转换电路显示电路

目录 摘要............................................. 目录............................................... 第一章设计概论.................................... 1.1 应用的传感器 .............................................................................................. 1.2课题的目的和意义 ....................................................................................... 第二章整体设计方案................................. 2.1测量的示意图 ............................................................................................... 2.2 设计的原理 .................................................................................................. 2.3方框图 ........................................................................................................... 第三章单元电路设计................................. 3.1 测量电路 ...................................................................................................... 3.2 放大电路 ...................................................................................................... 3.3 A\D转换电路................................................................................................ 3.4 显示电路 ...................................................................................................... 第四章整机电路图................................... 4.1 整机电路介绍 第五章总结与展望................................... 参考文献 ...........................................

测重力加速度的九种方法

测重力加速度的九种方法 河南省信阳高级中学 陈庆威 2014.10.1 6 下面是学生探究的测定重力加速度的方法,仅供参考。 方法一: 重力大小的公式是G=mg ,测定重力加速度m G g = ,因而利用天平和弹簧秤我们便容易测出重力加速度。先用天平测出物体的质量m ,在用弹簧秤测出物体的重力F ,F=G,则重力加速度的值为m g F =。 方法二: 利用相邻的,相等的时间间隔的位移差相等,为一定值即2 x aT =?,则2 T x a ?= 方法三: 可由位移公式2 21gt x = 求得,利用刻度尺量出从初始位置到某点的位移,若已知发生这段位移的时间,则22t x g =,可以找出多个点,多次求出g 值,再求平均值。 方法四: 可利用速度公式v=gt 求得。利用平均速度求某一点的瞬时速度,并已知自由下落的物体经过这一点的时间,则由t v = g 解得。当然亦可多找点,多次求平均速度,多次求g ,再求平均值。 方法五: 利用多次求得的瞬时速度画出v-t 图像,根据图像的斜率求得g. 方法六: 用滴水法测定重力加速度的值。方法是:在自来水龙头下面固定一个盘子,使水一滴一滴连续地滴到盘子里,仔细调节水龙头,使得耳朵刚好听到前一个水滴滴到盘子里声音的同时,下一个水滴刚好开始下落。首先量出水龙头口离盘子的高度h ,再用停表计时。计时方法是:当听到某一水滴滴在盘子里的声音的同时,开启停表开始计时,并数“1”,以后每听到一声水滴声,依次数“2、3……”一直数到“n ”,按下停表按钮停止计时,读出停表的示数t 。根据以上数据可求g 。 方法七: 迁移的方法。借用一道测定木块与斜面之间动摩擦因数进行知识的迁移与转换,运用牛顿第二定律及运动学公式可测定出重力加速度。 实验器材:倾角固定的斜面(倾角未知)、木块、秒表、米尺。 实验方法: (1)测出斜面的高h 、斜面的长L, (2)在B 点给木块一初速度让其沿斜面匀减速上滑,记下到达最高点的时间1t ,并测出BD 长度s 。 (3)将木块由D 点静止释放让其沿斜面匀加速下滑,记下到达B 点的时间2t 。由牛顿第二定律易知上滑、

压电加速度测量系统的设计

收稿日期:2007 10 17 作者简介:邢丽娟(1973 ),女,内蒙古包头市人,讲师,硕士,主要从事智能仪器及计算机过程控制的研究与应用。 文章编号:1004 2474(2009)02 0215 03压电加速度测量系统的设计 邢丽娟,杨世忠 (青岛理工大学自动化工程学院,山东青岛266520) 摘 要:现代工业和自动化生产过程中,动态测试中振动和冲击的精确测量很重要。常用压电加速度传感器 来获取冲击和振动信号。在研究压电加速度传感器的基础上,分析了测量的工作原理,提出加速度测量的设计方法;加入温敏元件,进行温度补偿,使其应用温度范围扩大。给出适合该类传感器的信号检测电路和加速度测量系统组成。此设计方法具有较高的准确性和应用推广价值,并具有结构简单,成本低,性能稳定等优点。 关键词:压电加速度传感器;测量;设计中图分类号:T P212 文献标识码:A Design for Piezoelectric Accelerometer Measurement System XING Li juan,YANG Shi zhong (College of Automation En gineering,Qingdao T echnological University,Qingdao 266520,Chin a) Abstract:In modern industry and automatic pro ductio n,the accurate measurement of the v ibration and str ike in test ing dynamically seems especially import ant.Fo r the acquisit ion of signal,the mo st co mmon used sensor is piezoe lect ric accelero meter.On the basis o f researching piezo electric acceler ometer senso r,this paper analyzed the w o rk pr inciple o f measurement,pro po sed a kind o f acceler ometer measur ement desig n method.A dding temperature sensor to com pensat e t emperat ur e,the applied temperature rang could be w ider.Detectio n cir cuit suiting this kind of sensor and the sy stem co mpo sitio n o f acceler ometer measurement was also g iv en in the paper.T his desig n metho d w as ac curate w ith hig h v alue for application and ext ensio n.A lso the st ruct ur e w as simple,the pr ice was lo wer and the per fo rmance w as stable. Key words:piezoelect ric accelero meter senso r;measurement;design 现代工业和自动化生产过程中,非电物理量的测量和控制技术会涉及大量的动态测试问题。所谓动态测试是指量的瞬时值以及它随时间而变化的值的确定,即被测量为变量的连续测量过程。它以动态信号为特征,研究了测试系统的动态特性问题,而动态测试中振动和冲击的精确测量尤其重要。振动与冲击测量的核心是传感器,常用压电加速度传感器来获取冲击和振动信号。压电式传感器是基于某些介质材料的压电效应[1],当材料受力作用而变形时,其表面会有电荷产生,从而实现非电量测量。压电式传感器具有体积小,质量轻,工作频带宽等特点,因此在各种动态力、机械冲击与振动的测量以及声学、医学、力学、宇航等方面都得到了非常广泛的应用。 1 测量原理 压电加速度传感器采用具有压电效应的压电材料作基本元件,是以压电材料受力后在其表面产生电荷的压电效应为转换原理的传感器。这些压电材料,当沿着一定方向对其施力而使它变形时,内部就 产生极化现象,同时在它的两个相对的表面上便产生符号相反的电荷;当外力去掉后,又重新恢复不带电的状态;当作用力的方向改变时,电荷的极性也随 着改变。 压电加速度传感器的原理如图1所示。实际测量时,将图中的支座与待测物刚性地固定在一起。当待测物运动时,支座与待测物以同一加速度运动,压电元件受到质量块与加速度相反方向的惯性力的作用,在晶体的两个表面上产生交变电荷(电压)。当振动频率远低于传感器的固有频率时,传感器的 图1 压电加速度传感器原理图 第31卷第2期压 电 与 声 光 Vo l.31No.22009年4月 PI EZO EL ECT ECT RI CS &ACO U ST OO PT ICS Apr.2009

相关文档
相关文档 最新文档