文档库 最新最全的文档下载
当前位置:文档库 › 河南省2018-2019年高三阶段性测试(五)数学理

河南省2018-2019年高三阶段性测试(五)数学理

河南省2018-2019年高三阶段性测试(五)数学理
河南省2018-2019年高三阶段性测试(五)数学理

髙中毕业班阶段性测试

数学(理科)

考生注意:

1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号;回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结東后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项最符合题目要求的。

1.已知集合A={3<1|≤-x x x},B={x y x ln |=},则=?B A A. {0<1|x x ≤-x} B. {3x <0|≤x x} C. {0x <1|≤-x x} D. {3x 0|≤≤x x}

2.复数i

i

z -=

1(i 为虚数单位)在复平面内关于虚轴对称的点位于 A.第一象限 B. 第二象限 C.第三象限 D.第四象限 3.已知变量x 和y 的统计数据如下表:

根据上表可得回归直线方程25.0-=bx y ,据此可以预测当8=x 时,y = A. 6.4 B.6.25 C. 6.55 D.6.45 4.设R ∈θ,则“2

2

cos =

θ”是“1tan =θ”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 5.已知a >b >0,则下列不等式中成立的是

A.b a 1>1

B. b l l 22og a <og

C. b

a )31(<)31( D. 2

121b >--a

6.已知抛物线C: px y 22= (p>0)的焦点为F ,点M 在抛物线C 上,且2

3

|MF ||MO |== (0为坐标原点),则△M0F 的面积为 A.

22

B. 21

C. 41

D. 2

7.执行如图所示的程序框图,如果输出结果为4

21

4,则输入的正整数N 为 A.3 B.4

C.5

D.6

8.某几何体的三视图如图所示,则该几何体的体积是 A.π3 B.

π38 C. π310

D. π

311

9.函数)0>(cos sin 3)(ωωωx x x f +=图象的相邻对称轴之间的距离为

2

π

,则下列结论正确的是

A. )(x f 的最大值为1

B.

)(x f 的图象关于直线 125π

=x 对称

C.

)(2π+x f 的一个零点为3π

-=x

D.

)(x f 在区间[3π,2π

]上单调递减

10.在三棱锥P - ABC 中,△ABC 和△PBC 均为等边三角形,且二面角P-BC-A 的大小为0

120,则异面

直线PB 和AC 所成角的余弦值为 A.

85 B. 43 C. 87

D. 41 11.已知)3)(2(112++--=--x e e x e x f x x )(,在区间[-2,4]上的值域为[m,M],则m+M= A.2 B.4 C.6 D.8

12.在锐角△ABC 中,3,sin 32

cos

322==BC A A

,则△ABC 面积的取值范围为 A. ]32,233(

B. ]32,32(

C. ]4

3

9,233( D. ]439,32( 二、填空题:本题共4小题,每小题 5分,共20分。 13.已知n

x

x )13(2

-

展开式中所有二项式系数之和为64,则展开式中的常数项为 . 14.设y ,x 满足约束条件,,02062,022??

?

??≤-≥-+≤--y y x y x 若41≤+≤y ax 恒成立,则a 的取值范围为 .

15.在平行四边形ABCD 中,E 为BC 的中点,AE 交BD 于点F ,μλ+=,

则=+μλ . 16.已知F1(-c,0),F2(c,0)为双曲线C:122

22=-b

y a x (a>0, b>0)的左、右焦点,过双曲线C 的左焦

点的直线与双曲线C 的左支交于Q ,R 两点(Q 在第二象限)。连接RO (O 为坐标原点)并延长交C 的右支于点P ,若|F 1P|丄|F 1Q|,∠F 1PF 2=

π3

2

,则双曲线C 的离心率为 . 三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤。第17-21 题为必考题。每个试题考生都必须作答,第22,23 题为选考题,考生根据要求作答。 (一)必考题:共60分。 17.(12 分)

已知数列{a n }为等比数列,满足b 1 =3, b 2 =5,且a 1b 1+ a 2b 2+ a 1b 1+…+ a n b n =n ·3n

(I)求数列{a n }和{b n -a n }的通项公式; (Ⅱ)若1

1

+=

n n n b b c ,求数列{c n }的前n 项和S n .

高三数学试题及答案

x 年高三第一次高考诊断 数 学 试 题 考生注意: 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分为150分,考试时间120分钟。 所有试题均在答题卡上作答,其中,选择题用2B 铅笔填涂,其余题用0.5毫米黑色墨水、签字笔作答。 参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中发生的概率是P ,那么它在n 次独立重复试验中恰好发 生k 次的概率P n (k )=k n k k n P P C --)1((k=0,1,2,…,n )。 球的体积公式:3 3 4R V π= (其中R 表示球的半径) 球的表面积公式S=4πR 2(其中R 表示球的半径) 第Ⅰ卷(选择题,共60分) 一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.(理科)如果复数2()1bi b R i -∈+的实部和虚部互为相反数,则b 的值等于 ( ) A .0 B .1 C .2 D .3 (文科)设全集{1,2,3,4,5,6,7,8},{1,2,3},{6,7,8}U A B ===集合,则 ()() U U C A C B = ( ) A .φ B .{4,5} C .{1,2,3,6,7,8} D .U 2.已知4(,),cos ,tan()254 π π απαα∈=--则等于 ( ) A . 17 B .7 C .17 - D .-7

3.在等差数列{}n a 中,若249212,a a a ++=则此数列前11项的和11S 等于 ( ) A .11 B .33 C .66 D .99 4.(理科)将函数3sin(2)y x θ=+的图象F 1按向量( ,1)6 π-平移得到图像F 2,若图象F 2 关于直线4 x π=对称,则θ的一个可能取值是 ( ) A .23 π - B . 23 π C .56 π- D . 56 π (文科)将函数cos 2y x =的图像按向量(,2)4 a π =-平移后的函数的解析式为 ( ) A .cos(2)24 y x π =+ + B .cos(2)24 y x π =- + C .sin 22y x =-+ D .sin 22y x =+ 5.(理科)有一道数学题含有两个小题,全做对者得4分,只做对一小题者得2分,不做或 全错者得0分。某同学做这道数学题得4分的概率为a ,得2分的概率为b ,得0分的 概率为c ,其中,,(0,1)a b c ∈,且该同学得分ξ的数学期望12 2,E a b ξ=+则 的最小值是 ( ) A .2 B .4 C .6 D .8 (文科)某高中共有学生2000名,各年级男、女生人数如表所示。已知 在全校学生中随机抽取1名,抽到高三年级男生的概率是0.16,现用分 层抽样的方法在全校抽取64名学生,则应在高一年级抽取的学生人数 为 ( ) A .19 B .21 C .24 D .26 6.在ABC ?中,若(2),(2)A B A B A C A C A C A B ⊥-⊥-,则ABC ?的形状为 ( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .等腰直角三角形 7.上海世博园区志愿者部要将5名志愿者分配到三个场馆服务,每个场馆至少1名,至多 2名,则不同的分配方案有 ( ) A .30种 B .90种 C .180种 D .270种 8.已知α,β是两个不同的平面,l 是一条直线,且满足,l l αβ??,现有:①//l β;②l α⊥;

高三年级数学高三第一次调研测试

南通市高三第一次调研测试 一、填空题:本大题共14小题,每小题5分,共70分. 1. 已知集合U ={1, 2, 3, 4},M ={1, 2},N ={2, 3},则U (M ∪N ) = ▲ . 2.复数 2 1i (1i)-+(i 是虚数单位)的虚部为 ▲ . 3.设向量a ,b 满足:3||1,2 =?= a a b ,22+=a b ,则||=b ▲ . 4.在平面直角坐标系xOy 中,直线(1)2x m y m ++=-与直线28mx y +=-互相垂直的充要条件是 m = . 5.函数()cos (sin cos )()f x x x x x =+∈R 的最小正周期是 ▲ . 6.在数列{a n }中,若对于n ∈N *,总有 1 n k k a =∑=2n -1,则 21 n k k a =∑= ▲ . 7.抛掷甲、乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记所得的数字分别为x ,y ,则 x y 为整数的概率是 ▲ . 8.为了解高中生用电脑输入汉字的水平,随机抽取了部分学生进行每分钟输入汉字个数测试,下图是根 据抽样测试后的数据绘制的频率分布直方图,其中每分钟输入汉字个数的范围是[50,150],样本数据分组为[50,70),[70,90), [90,110),[110,130),[130,150],已知样本中每分钟输入汉字个数小于90的人数是36,则样本中每分钟输入汉字个数大于或等于70个并且小于130个的人数是 ▲ . 9.运行如图所示程序框图后,输出的结果是 ▲ . 10.关于直线, m n 和平面,αβ,有以下四个命题: ∈若//,//,//m n αβαβ,则//m n ;∈若//,,m n m n αβ?⊥,则αβ⊥; ∈若,//m m n α β=,则//n α且//n β;∈若,m n m αβ⊥=,则n α⊥或n β⊥. 其中假命题的序号是 ▲ . (第8题字数/分 频率 组距 0.005 0.0070.0100.0120.015 50 70 90 110 130 150 k ≥-3 开始 k 1 S S S – 2k k k -1 结束 输出S Y N (第9题图)

2020届高三数学摸底考试试题 文

2019届高三摸底考试 数 学(文科) 得分:______________ 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页。时量120分钟。满分150分。 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集U =R ,集合M ={x |-4≤x -1≤4}和N ={x |x =2k -1,k =1,2,…}的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有 A .2个 B .3个 C .1个 D .无穷多个 2.已知点P (tan α,cos α)在第三象限,则角α在 A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.设i 为虚数单位,m ∈R ,“复数z =(m 2 -1)+(m -1)i 是纯虚数”是“m =±1”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件 4.已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的离心率为3,则其渐近线的方程为 A .22y ±x =0 B .22x ±y =0 C .8x ±y =0 D .x ±8y =0 5.下列函数的最小正周期为π的是 A .y =cos 2 x B .y =|sin x 2| C .y =sin x D .y =tan x 2 6.如图是某空间几何体的三视图其中主视图、侧视图、俯视图依次为直角三角形、直角梯形、等边三角形,则该几何体的体积为

A.33 B.32 C. 23 3 D. 3 7.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2 (a >0,a ≠1),若g (2)=a ,则f (2)= A .2 B.154 C.174 D .a 2 8.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ= A .-4 B .-3 C .-2 D .-1 9.已知某程序框图如图所示,当输入的x 的值为5时,输出的y 的值恰好是1 3,则在空 白的赋值框处应填入的关系式可以是 A .y =x 3 B .y =13x C .y =3x D .y =3-x 10.设x ,y 满足约束条件???? ?3x -y -6≤0x -y +2≥0x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值 为12,则2a +3 b 的最小值为 A .4 B.83 C.113 D.25 6 11.过点P ()-1,1作圆C :()x -t 2 +()y -t +22 =1()t ∈R 的切线,切点分别为A 、 B ,则PA →·PB → 的最小值为 A. 103 B.403 C.21 4 D .22-3 12.已知函数f ()x = ln x +() x -b 2 x (b ∈R ).若存在x ∈???? ??12,2,使得f (x )>- x ·f ′(x ),则实数b 的取值范围是

【2018】河南省天一大联考2018届高三阶段性测试(五)数学文(word版有答案)

2018届河南省天一大联考高三阶段性测试(五)(2018.04) 数学(文科) 考生注意: 1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号;回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结東后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项最符合题目要求的。 1.已知集合A={3<1|≤-x x x},B={x y x ln |=},则=?B A A. {0<1|x x ≤-x} B. {3x <0|≤x x} C. {0x <1|≤-x x} D. {3x 0|≤≤x x} 2.复数i i z -= 1(i 为虚数单位)在复平面内关于虚轴对称的点位于 A.第一象限 B. 第二象限 C.第三象限 D.第四象限 3.已知变量x 和y 的统计数据如下表: 根据上表可得回归直线方程25.0-=bx y ,据此可以预测当8=x 时,y = A. 6.4 B.6.25 C. 6.55 D.6.45 4.设R ∈θ,则“2 2 cos = θ”是“1tan =θ”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 5.已知a >b >0,则下列不等式中成立的是

A.b a 1>1 B. b l l 22og a <og C. b a )31(<)31( D. 2 121b >--a 6.已知抛物线C: px y 22= (p>0)的焦点为F ,点M 在抛物线C 上,且2 3 |MF ||MO |== (0为坐标原点),则△M0F 的面积为 A. 22 B. 21 C. 41 D. 2 7.执行如图所示的程序框图,如果输出结果为4 21 4,则输入的正整数N 为 A.3 B.4 C.5 D.6 8.某几何体的三视图如图所示,则该几何体的体积是 A.π3 B. π38 C. π310 D. π 311 9.函数)0>(cos sin 3)(ωωωx x x f +=图象的相邻对称轴之间的距离为 2 π ,则下列结论正确的是 A. )(x f 的最大值为1 B. )(x f 的图象关于直线 125π =x 对称 C. )(2π+x f 的一个零点为3π -=x D. )(x f 在区间[3π,2π ]上单调递减 10.在非等腰△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,)cos 2sin()cos 2(sin b A a B A -=-,

高三理科数学综合测试题附答案

数学检测卷(理) 姓名----------班级----------总分------------ 一. 选择题 : 本大题共12小题, 每小题5分, 共60分. 在每小题给出的四个选项中, 只有一项是符合题目要求的 . 1.若集合{}{} 2 ||,0A x x x B x x x ===+≥,则A B = ( ) (A )[1,0]- (B )[0,)+∞ (C ) [1,)+∞ (D) (,1]-∞- 2.直线0543=+-y x 关于x 轴对称的直线方程为( ) (A )0543=++y x (B )0543=-+y x (C )0543=-+-y x (D )0543=++-y x 3. 若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法计算, 其参考数据如下: 那么方程32220x x x +--=的一个近似根(精确到0.1)为( )。 A .1.2 B .1.3 C .1.4 D .1.5 4. 设)1,0(log )(≠>=a a x x f a , 若 ++)()(21x f x f ) ,,2,1,(,1)(n i R x x f i n =∈=+, 则 )()()(2 2221n x f x f x f +++ 的值等于( ) (A) 2 1 (B) 1 (C) 2 (D)22log a 5.在等差数列{}n a 中,1815296a a a ++=则9102a a -= A .24 B .22 C .20 D .-8 6. 执行如图的程序框图,如果输入11,10==b a ,则输出的=S ( ) (A)109 (B) 1110 (C) 1211 (D) 13 12 7. .直线21y x =-+上的点到圆2 2 4240x y x y + +-+=上的点的最近距离是 A B 1+ C 1- D .1 8. 已知{(,)|6,0,0}x y x y x y Ω=+≤≥≥,{(,)|4,0,20}A x y x y x y =≤≥-≥,若向区 (第6题)

高三摸底测试(数学文)

上海市奉贤区 高三摸底测试 数学试题(文) 一、填空题(本大题满分48分)本大题共有12题,只要求直接填写结果,每个空格填对得 4分,否则一律得零分. 1.设全集U ={a 、b 、c 、d 、e}, 集合A={a 、b},B={b 、c 、d},则A∩C U B=________. 2.已知f (x ),则=____________. 3.等差数列{a n }中,a 5+a 8+ a 11+ a 14+ a 17=50,则S 21= . 4.向量 、满足||=2,||=3,且|+|=,则.= . 5.现有形状特征一样的若干个小球,每个小球上写着一个两位数,一个口袋里放有标着所 有不同的两位数的小球,现任意取一个小球,取出小球上两位数的十位数字比个位数字大的概率是 . 6.方程2cos2x = 1的解是 . 78.设方程x 2–2x+m=0的两个根为α、β,且|α–β|=2,则实数m 的值是 . 9.圆(x+2)2+(y –1)2 = 5关于原点对称的圆的方程为 . 10.给出下列命题:(1)常数列既是等差数列,又是等比数列;(2)实数等差数列中,若 公差d<0,则数列必是递减数列;(3)实数等比数列中,若公比q>1,则数列必是递 增数列;(4);(5)首项为a 1,公比为q 的等比数列的前n 项和为S n =.其中正确命题的序号是 . 11.若点满足不等式组:则目标函数K=6x+8y 的最大值是 . 12.若在由正整数构成的无穷数列{a n }中,对任意的正整数n ,都有a n ≤ a n+1,且对任意的 正整数k ,该数列中恰有k 个k ,则a= . 二、选择题(本大题满分16分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结 论,其中有且只有一个结论是正确的,必本大题满分16分)须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分. 1 1 2+-= x x )3(1 -f 71)4142( lim =-+∞ →n n n n q q a n --1) 1(1),(y x P ,0,0625?? ? ??≥≥≤+≤+y x y x y x

河南省天一大联考高三阶段性测试 数学(理)

天一大联考 高中毕业班阶段性测试 数学(理科) 考生注意: 1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置. 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效. 3.考试结束后,将本试卷和答题卡一并交回. 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合 A= {022 ≥-x x },B={1>|-y y },则 A.( -1,0] B. ( -1,0]U[+∞,2 1 ) c.( -1, 21] D.[ +∞,2 1 ) 2.设复数)(231R m i mi z ∈+-=,若z z =,则=m A. 32- B. 32 C. 23 D. 2 3- 3.某公司将20名员工工作五年以来的迟到次数统计后得到如下的茎叶图,则从中任取1名员工,迟到次数在[20,30)的概率为 A. 207 B. 103 C. 53 D. 2 1 4.记等差数列{n a }的前n 项和为n S ,若17S = 272,则=++1593a a a A. 24 B.36 C. 48 D. 64 5.《九章算术》卷第七——盈不足中有如下问题;“今有垣高九尺.瓜生其上,蔓日长七 寸.瓤生其下,蔓日长一尺.问几何日相逢.”翻译为 “今有墙高9

尺。瓜生在墙的上方,瓜蔓每天向下长7寸.葫芦生在墙的下方,葫芦蔓每天向上长1尺。问需要多少 日两蔓相遇。”其中1尺=10寸。为了解决这一问题,设计程序框图如右所示,则输出的A 的值为 A. 5 B. 6 C.7 D. 8 6.设双曲线C: 18 2 2=-m y x 的左、右焦点分别为,过F1的直线与双曲线C 交于M ,N 两点,其中M 在左支上,N 在右支上。若NM F MN F 22∠=∠乙,则=||MN A. 8 B. 4 C. 28 D. 24 7.为了得到函数)3 cos(2)(π +=x x g 的图象,只需将函数x x x f 4cos 4sin 3)(-=的图象 A.横坐标压缩为原来的 41,再向右平移2π 个单位 B.横坐标压缩为原来的4 1 ,再向左平移π个单位 C.横坐标拉伸为原来的4倍,再向右平移2 π 个单位 D.横坐标拉伸为原来的4倍,再向左平移π个单位 8.如图,小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体 的体积为 A. 68 B.72 C. 84 D. 106 9.若函数1 31 )(-- =x m x f 的图象关于原点对称,则函数)(x f 在(+∞,0)上的值域为 A.(21,+∞) B.(21-,+∞) C.(1,+∞) D.(3 2 ,+∞) 10.已知抛物线C: px y 22 = (p >0)的焦点为F ,准线为l ,l 与x 轴的交点为P ,点A 在抛物线C 上,过点A 作AA'丄l ,垂足为A',若四边形的面积为14,且5 3 'cos = ∠FAA ,则抛物线C 的方程为 A. x y =2 B. x y 22 = C. x y 42 = D. x y 82 = 11.如图所示,体积为8的正方体中ABCD-A1B1C1D1,分别过点A1,C1,B 作A1M1C1N 垂直于平面ACD , 垂足分别为M ,N ,P ,则六边形D1MAPCN 的面积为 A. 212 B. 12 C. 64 D. 34 12.已知函数x e x f e x ln )(= ,若函数a x f x g +=)()(无零点,则实数a 的取值范围为

最新高三数学综合测试题试题以及答案教学内容

高三数学综合测试题 一、选择题 1 、设集合{}U =1,2,3,4,{} 25M =x U x x+p =0∈-,若{}2,3U C M =,则实数p 的值 为( B ) A .4- B . 4 C .6- D .6 2. 条件,1,1:>>y x p 条件1,2:>>+xy y x q ,则条件p 是条件q 的 .A 充分不必要条件 .B 必要不充分条件 .C 充要条件 .D 既不充分也不必要条件 }2,1,0,1.{-B }3,2,0,1.{-C }3,2,1,0.{D 3. 设函数()1x f x e =-的图象与x 轴相交于点P, 则曲线在点P 的切线方程为( C ) (A )1+-=x y (B )1+=x y (C )x y -= (D )x y = 4.设a =12 0.6,b =12 0.7,c =lg0.7,则 ( C ) A .c <b <a B .b <a <c C .c <a <b D .a <b <c 5.函数f (x )=e x -x -2的零点所在的区间为 ( C ) A .(-1,0) B .(0,1) C .(1,2) D .(2,3) 6、设函数1()7,02(),0 x x f x x x ?-

2019-2020年高三第一次诊断性测试数学(理)试题

山东省实验中学 2019-2020年高三第一次诊断性测试 数学(理)试题说明:本试卷分第I 卷(选择题)和第 II 卷(非选择题)共两卷.其中第l 卷共60分,第II 卷共90分,两卷合计I50分.答题时间为120分钟. 第1卷(选择题 共60分)一、选择题:(本大题共12小题,每小题 5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.如果命题“(p 或q)”为假命题,则 ( )A .p ,q 均为真命题 B .p ,q 均为假命题 C .p ,q 中至少有一个为真命题 D .p, q 中至多有一个为真命题 2.下列函数图象中,正确的是 ()3.不等式3≤l5 - 2xl<9的解集是 ( )A .(一∞,-2)U(7,+co) B .【1,4】 C .[-2,1】U 【4,7】 D .(-2,l 】U 【4,7) 4.已知向量(3,1),(0,1),(,3),2,a b c k a b c k 若与垂直则()A .—3 B .—2 C .l D .-l 5.一已知倾斜角为的直线与直线x -2y 十2=0平行,则tan 2a 的值为()A . B . C . D .6.在各项均为正数的等比数列中,则()A .4 B .6 C .8 D .7.在△ABC 中,内角A 、B 、C 的对边分别为 a 、 b 、 c ,且,则△ABC 是( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .等边三角形8.设x 、y 满足则()A .有最小值2,最大值 3 B .有最小值2,无最大值 C .有最大值3,无最大值 D .既无最小值,也无最大值9.已知双曲线的两条渐近线均与相切,则该双曲线离心率等于( )A .B .C .D .

江西省南昌市2021届高三摸底测试数学(理)试题

2021届高三摸底测试卷 理科数学 一、选择题: 1. 已知i 为虚数单位,则3 1i +=( ) A. 2 B. 1 C. 0 D. D 由复数的运算可得311i i +=-,再由复数模的概念即可得解. 因为311i i +=-,所以311i i +=-==故选:D. 2. 命题:“0x ?≥,都有sin x x ≤”的否定为( ) A. 0x ?<,使得sin x x > B. 0x ?≥,使得sin x x > C. 0x ?≥,都有sin x x > D. 0x ?<,都有sin x x ≤ B 根据全称命题的否定形式判断即可. 由全称命题的否定为特称命题可知:“0x ?≥,都有sin x x ≤”的否定为:“0x ?≥,使得 sin x x >”.故选:B. 3. 爱美之心,人皆有之.健身减肥已成为很多肥胖者业余选择的项目.为了了解运动健身减肥的效果,某健身房调查了40名肥胖者,健身之前他们的体重(单位:kg )情况如柱状图1所示,经过四个月的健身后,他们的体重情况如柱状图2所示.对比健身前后,关于这40名肥胖者,下面结论不正确的是( )

A. 他们健身后,体重在区间[)90,100内的人数增加了4个 B. 他们健身后,体重在区间[)100,110内的人数没有改变 C. 因为体重在[)100,110内所占比例没有发生变化,所以说明健身对体重没有任何影响 D. 他们健身后,原来体重在区间[)110,120内的肥胖者体重都有减少 C 根据给定的柱状图分别求得健身前后各个区间上的人数,进行比较,即可求解. 根据给定的健身前后的体重柱状图,可得健身前体重在区间有4030%12?=人,健身后有 4040%16?=,所以体重在区间[)90,100内的人数增加了4个,所以A 正确; 由健身前体重在[)100,110的人数为4050%20?=人,健身后有4050%20?=,所以健身前后体重在[)100,110的人数不变,所以B 正确; 由健身前后体重再[)90,100和[)110,120的人数有明显变化,所以健身对体重有明显效果,所以C 不正确; 由健身前体重在[)110,120的人数为4020%8?=人,健身后为0人,所以原来体重在区间 [)110,120内的肥胖者体重都有减少,所以D 正确.故选:C. 4. n S 为等差数列{}n a 的前n 项和,满足3235a a =,10100S =,则1a =( )

安徽省安庆市梧桐市某中学2020届高三阶段性测试数学试卷(文)

高三数学试卷(文) 一、选择题(本大题共12小题,共60.0分) 1.设集合,0,1,2,,则集合为 A. 0,1, B. 0,1, C. 0,1,2, D. 0,1,2, 2.若复数z满足,则z的虚部为 A. B. C. i D. 1 3.下列函数中是偶函数,且在是增函数的是 A. B. C. D. 4.设为等差数列的前n项和,若,则的值为 A. 14 B. 28 C. 36 D. 48 5.是衡量空气质量的重要指标,我国采用世卫组织的最宽值限定值,即日均 值在以下空气质量为一级,在空气质量为二级,超过为超标.如图是某地12月1日至10日的单位:的日均值,则下列说法正确的是 A. 10天中日均值最低的是1月3日 B. 从1日到6日日均值逐渐 升高

C. 这10天中恰有5天空气质量不超标 D. 这10天中日均值的中位 数是43 6.已知抛物线上点在第一象限到焦点F距离为5,则点B坐标为 A. B. C. D. 7.设,是非零向量,则“”是“的 A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 即不充分也不必要条件 8.如图是函数的部 分图象,则,的值分别为 A. 1, B. C. D. 9.设数列的前n项和为若,,,则值为 A. 363 B. 121 C. 80 D. 40 10.已知,,,则的最小值为 A. B. C. 2 D. 4 11.已知a,b是两条直线,,,是三个平面,则下列命题正确的是

A. 若,,,则 B. 若,,则 C. 若,,,则 D. 若,,则 12.某人5次上班途中所花的时间单位:分钟分别为x,y,10,11,已知这组数据的平 均数为10,方差为2,则的值为 A. 1 B. 2 C. 3 D. 4 二、填空题(本大题共4小题,共20.0分) 13.已知x,y满足约束条件则的最大值为______. 14.已知双曲线的渐近线方程为,则该双曲线的离心率为 ______. 15.定义在上的函数满足下列两个条件:对任意的恒有 成立;当时,则的值是______. 16.已知矩形ABCD中,点,,沿对角线BD折叠成空间四边形ABCD,则 空间四边形ABCD的外接球的表面积为______. 三、解答题(本大题共7小题,共82.0分) 17.设函数 Ⅰ求的单调递增区间; Ⅱ在锐角中,角A,B,C的对边分别为a,b,c,若,,,求b.

高三复习数学试题(附答案)

高三复习数学试题 时间:120分钟 满分:150分 【一】选择题(本大题共10小题,每小题5分,共50分) 1.在ABC ?中, 已知0 60,34,4===B b a ,则角A 的度数为 ( ) A . 030 B .045 C .060 D .0 90 2.在数列{}n a 中,1a =1,12n n a a +-=,则51a 的值为 ( ) A .99 B .49 C .101 D . 102 3.已知0x >,函数4 y x x = +的最小值是 ( ) A .5 B .4 C .8 D .6 4.(文科选做)在等比数列中,112a =,12q =,132 n a =,则项数n 为 ( ) A. 3 B. 4 C. 5 D. 6 (理科选做)各项均为正数的等比数列{}n a 的前n 项和为Sn ,若10s =2,30s =14,则40s 等于 A .80 B .26 C .30 D .16 5.不等式13 ()()022x x +-≥的解集是 ( ) A. 13{|}22x x -≤≤ B. 13 {|}22x x x ≤-≥或 C. 13{|}22x x -<< D. 13 {|}22 x x x <->或 6.设,x y 满足约束条件1 2x y y x y +≤?? ≤??≥-? ,则3z x y =+的最大值为 ( ) A . 5 B. 3 C. 7 D. -8 7.不等式2 0(0)ax bx c a ++<≠的解集为R ,那么 ( ) A. 0,0a ?≥ D. 0,0a >?> 8.ABC ?中,若?===60,2,1B c a ,则ABC ?的面积为 ( ) A . 2 1 B . 2 3 C.1 D.3 9. 等差数列{}n a 的前m 项和为20,前2m 项和为70,则它的前3m 的和为( )

2020-2021学年高三数学(理科)第一次质量调研测试及答案解析

2018学年高三年级第一次质量调研 数学试卷(理) 考生注意: 1.答题前,务必在答题纸上将姓名、学校、班级等信息填写清楚,并贴好条形码. 2.解答试卷必须在答题纸规定的相应位置书写,超出答题纸规定位置或写在试卷、草稿纸上的答案一律不予评分. 3.本试卷共有23道试题,满分150分,考试时间120分钟. 一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分. 1.=+-+∞→2 21 lim 22n n n n ____________. 2.设集合},02{2R ∈>-=x x x x A ,? ?? ???∈≤-+=R x x x x B ,011, 则=B A I __________. 3.若函数x a x f =)((0>a 且1≠a )的反函数的图像过点)1,3(-,则=a _________. 4.已知一组数据6,7,8,9,m 的平均数是8,则这组数据的方差是_________. 5.在正方体1111D C B A ABCD -中,M 为棱11B A 的中点,则异面直线AM 与C B 1所成的 角的大小为__________________(结果用反三角函数值表示). 6.若圆锥的底面周长为π2,侧面积也为π2,则该圆锥的体积为______________. 7.已知 3 1 cos 75sin sin 75cos = ? -?α α,则=+?)230cos(α_________. 8.某程序框图如图所示,则该程序运行后 输出的S 值是_____________. 9.过点)2,1(P 的直线与圆42 2 =+y x 相切,且与直线01=+-y ax 垂直,则实数a 的值 为___________. 10.甲、乙、丙三人相互传球,第一次由甲将球传出,每次传球时,传球者将球等可能地传 给另外两人中的任何一人.经过3次传球后,球仍在甲手中的概率是__________. 11.已知直角梯形ABCD ,AD ∥BC ,?=∠90BAD .2=AD ,1=BC ,P 是腰AB 上的动点,则||PD PC +的最小值为__________. 12.已知* N ∈n ,若4022221123221=+++++---n n n n n n n C C C C Λ,则=n ________. 13.对一切实数x ,令][x 为不大于x 的最大整数,则函数][)(x x f =称为取整函数.若

广西南宁市普通高中2021届高三10月摸底测试 数学(理)试卷 含答案

2021届南宁市普通高中毕业班摸底测试 理科数学 (考试时间:120分钟满分:150分) 第I卷 一、选择题:本大题共12个小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合A={x|-10)交于D,E两点,若OD⊥OE(O为坐标原点)。则C的焦点坐标为 A.(1 4 ,0) B.( 1 2 ,0) C.(1,0) D.(2,0) 5.一组数据的平均数为m,方差为n,将这组数据的每个数都乘以a(a>0)得到一组新数据,则下列说法正确的是 A.这组新数据的平均数为m B.这组新数据的平均数为a+m C.这组新数据的方差为an D.这组新数据的标准格为a n 6.在△ABC中,角A,B,C的对边为a,b,c着a=4,b=5,c=6,则sin2 sin A C = A.1 2 B. 2 3 C. 3 4 D.1 7.如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的表面积为

A.4+ B.2+ C.3+ D.8 8.已知a ∈(0,π),cos(α+ 6 π )=35,则sin α的值为 A. 310 B.310 C.310 D.3 5 9.射线测厚技术原理公式为I =I 0e -ρμt ,其中I 0,I 分别为射线穿过被测物前后的强度,e 是自然对数的底数, t 为被测物厚度,ρ为被测物的密度,μ是被测物对射线的吸收系数。工业上通常用镅241(241Am)低能γ射线测量钢板的厚度。若这种射线对钢板的半价层厚度为0.8(单位:cm),钢的密度为7.6(单位:g/cm 3),则这种射线的吸收系数为 (注:半价层厚度是指将已知射线强度减弱为一半的某种物质厚度,ln2=0.6931,结果精确到0.001) A.0.110 B.0.112 C.0.114 D.0.116 10.已知过定点A(O ,b)(b>0)的直线l 与圆O :x 2+y 2=1相切时,与y 轴夹角为45°。则直线l 的方程为 A.x -y +=0 B.x +y -1=0 C.x +y =0或x -y =0 D.x +y -1=0或x -y +1=0 11.已知双曲线C 的中心为坐标原点O ,焦点在x 轴上,设双曲线C 的左焦点为F ,右顶点为B ,点P 为C 上一点,且PF ⊥x 轴,若|PF|=2|BF|,则双曲线C 的离心率为 A.3 B.2 C. 32 D.4 3 12.已知函数f(x)=x e x +12 x 2 -x ,若a =f(20.3),b =f(2),c =f(log 25),则a ,b ,c 的大小关系为 A.ca>b D.b>c>a 第II 卷 本卷包括必考题和选考题两部分。第13~21题为必考题,每个试题考生都必须作答。第22,23题为选考题,考生根据要求作答。 二、填空题:本大题共4小题,每小题5分,共20分。 13.设x ,y 满足约束条件2x 3y 30 2x 3y 30y 30+-≤?? -+≥??+≥? ,则z =2x +y 的最小值是 。 14.若(x +2)5=x 5+ax 4+bx 3+cx 2+dx +e ,则a +b +c +d +e 的值为 。 15.已知球在底面半径为1、高为 的圆锥内,则该圆锥内半径最大的球的体积为 。 16.已知a> 13,函数f(x)=sinx +2x -1 x ,若f(1-3a)+f(a 2-2a +3)≤0,则实数a 的取值范围是 。

2021-2022年高三数学1月阶段性测试试题

2021-2022年高三数学1月阶段性测试试题 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合A={y|y=2x,x>0},集合B={x∈Z|x2-3x-10≤0},则AB(). A.x|1

8.在三棱锥P-ABC中,PA平面ABC,ABBC,则下列命题是真命题的个数为(). ①BC平面PAC;②平面PAB平面PBC;③平面PAC与平面PBC不可能垂直;④三棱锥P-ABC 的外接球的球心一定是棱PC的中点. A.1 B.2 C.3 D.4 9.已知抛物线y2=4x的焦点为F,过点F的直线l交抛物线于A,B两点,若,则点A的横坐标为(). A.1 B. C.2 D.3 10.已知数列{a n }满足a 1 =2, ,则 = (). A.2 B.-6 C.3 D.1 11.已知某四棱锥的三视图及尺寸如图所示,则该棱锥的表面积为(). A.4+2+2 B.6+2 C.6+2 D.6+2+2 12.已知函数f(x)= ,若函数g(x)= f2(x)+m f(x)有三个不同的零点,则实数m的取值范围为().

人教版高三数学一轮复习练习题全套—(含答案)及参考答案

高考数学复习练习题全套 (附参考答案) 1. 已知:函数()()2411f x x a x =+-+在[)1,+∞上是增函数,则a 的取值范围是 . 2. 设,x y 为正实数,且33log log 2x y +=,则 11 x y +的最小值是 . 3. 已知:()()()()50050A ,,B ,,C cos ,sin ,,αααπ∈. (1)若AC BC ⊥,求2sin α. (2)若31OA OC +=OB 与OC 的夹角. 4. 已知:数列{}n a 满足()2 1 123222 2 n n n a a a a n N -+++++= ∈……. (1)求数列{}n a 的通项. (2)若n n n b a =,求数列{}n b 的前n 项的和n S .

姓名 作业时间: 2010 年 月 日 星期 作业编号 002 1. 2 2 75157515cos cos cos cos ++的值等于 . 2. 如果实数.x y 满足不等式组22 110,220x x y x y x y ≥??-+≤+??--≤? 则的最小值是 . 3. 北京奥运会纪念章某特许专营店销售纪念章,每枚进价为5元,同时每销售一枚这种纪念章还需向北京奥组委交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为x 元(x ∈N *). (1)写出该特许专营店一年内销售这种纪念章所获得的利润y (元)与每枚纪念章的销售价格x 的函数关系式(并写出这个函数的定义域); (2)当每枚纪念销售价格x 为多少元时,该特许专营店一年内利润y (元)最大,并求出这个最大值. 4. 对于定义域为[]0,1的函数()f x ,如果同时满足以下三条:①对任意的[]0,1x ∈,总有()0f x ≥;②(1)1f =;③若12120,0,1x x x x ≥≥+≤,都有1212()()()f x x f x f x +≥+成立,则称函数()f x 为理想函数. (1) 若函数()f x 为理想函数,求(0)f 的值; (2)判断函数()21x g x =-])1,0[(∈x 是否为理想函数,并予以证明; (3)若函数()f x 为理想函数,假定?[]00,1x ∈,使得[]0()0,1f x ∈,且00(())f f x x =,求证 00()f x x =.

高三数学上学期第一次诊断测试试题文

达州市2017届高三上学期第一次诊断测试 数学试卷(文科) 第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的. 1.已知集合{1,1,2}A =-,集合{10}B x x =->,集合A B 为( ) A .φ B .{1,2} C .{1,1,2}- D .{2} 2.已知i 是虚数单位,复数21i i =+( ) A .1i - B .i C .1i + D .i - 3.将函数sin()3y x π=+的图象向x 轴正方向平移 6 π个单位后,得到的图象解析式是( ) A .sin()6y x π=+ B .sin()6y x π=- C .2sin()3y x π=- D .2sin()3y x π=+ 4.已知AB 是直角ABC ?的斜边,(2,4)CA =,(6,)CB x =-,则x 的值是( ) A .3 B .-12 C .12 D .-3 5.已知,x y 都是实数,命题:0p x =;命题22:0q x y +=,则p 是q 的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分又不必要条件 6.抛物线24y x =的焦点坐标是( ) A .(0,2) B .(2,0) C .(1,0) D .(0,1) 7.已知直线l ?平面α,直线m ?平面α,下面四个结论:①若l α⊥,则l m ⊥;②若//l α,则//l m ;③若l m ⊥,则l α⊥;④若//l m ,则//l α,其中正确的是( ) A .①②④ B .③④ C .②③ D .①④ 8.已知344π πα<<,4sin()45 πα-=,则cos α=( ) A 2 B .272 D .2 9.一几何体的三视图如图所示,三个三角形都是直角边为2的等腰直角三角形,该几何体的顶点都在球O 上,球O 的表面积为( )

相关文档
相关文档 最新文档