文档库 最新最全的文档下载
当前位置:文档库 › 应用UCSCEnsembl查找基因启动子(promoter)内含子外显子序列

应用UCSCEnsembl查找基因启动子(promoter)内含子外显子序列

应用UCSCEnsembl查找基因启动子(promoter)内含子外显子序列
应用UCSCEnsembl查找基因启动子(promoter)内含子外显子序列

应用UCSC/Ensembl查找基因启动子(promoter)、内含子、

外显子序列

启动子的甲基化,转录因子与启动子的结合调控基因的表达等研究领域一直较为热门。本文图文形式讲解了启动子的概念,利用UCSC如何查找一个基因的启动子序列,以及外显子和内含子序列的显示。有很多关于此方面的文章由于写作在早期,近年来查询数据库网站的改版使得这些文章有些落伍,使用起来也不方便。本文是最新的关于查询启动子方法的文章,创作于2009/10/14,大家可以完全按此操作。在讲述某个基因的启动子查询之间,我们有必要对基础知识进行一下复习和总结。先看一下中心法则:

启动子是在DNA转录为RNA这一步过程中发挥作用的,在此要与DNA 自身复制起始点(称作复制子)和由mRNA翻译为蛋白质时的翻译起始点(以起始密码子ATG为标志)区别开来。

定义:启动子是参与特定基因转录及其调控的DNA序列。包含核心启动子区域和调控区域。核心启动子区域产生基础水平的转录,调控区

域能够对不同的环境条件作出应答,对基因的表达水平做出相应的调节。

启动子是RNA聚合酶特异性识别和结合的部位。启动子方向性,位于转录起始点上游,本身并不被转录。DNA链上与RNA链的第一个核苷酸对应的碱基标记为+1(如下图),由此碱基向上游(5’端)数的碱基顺序数为负(-1,-2,……),向下游(3’端)数的碱基为正(+2,+3,……)

区域:启动子的范围非常大,可以包含转录起始位点上游2000bp,有些特定基因的转录区内部也存在着转录因子的结合位点,因此也属于启动子范围。

总结起来,也就是说启动子约在与mRNA所对应的DNA序列之前约2000个左右的碱基。

明白了启动子的含义之后,我们以大鼠(rattus norvegicus)的结缔组织生长因子(CTGF)为例,应用UCSC基因组浏览器开始查找该基因的启动子序列。网址为https://www.wendangku.net/doc/8f2836935.html,/。

进入UCSC的主页后,在其左侧(如上图)点击第一项GenomeBrowser,进入基因组浏览器入口,如下图

在Organism的下拉菜单中选择Rat,在assembly的下拉菜单中选择最新日期Nov. 2004,在position框中键入CTGF,image width选择默认即可,如下图所示:

然后点击Submit,返回的页面如下:

结果显示该基因的已知序列和相关mRNA序列,点击Known Gene中的第一个序列,出现包含这序列的图解概要。为了获得这个区域更清晰的图像,可以点击紧靠zoom out的1.5X按钮,如下图:

对于Known Genes(已知基因)和预测的基因路径来说,一般的惯例是以一个高的垂直线或块状表示每个编码外显子,以短的垂直线或块状表示5′端和3′端非翻译区。起连接作用的内含子以非常细的线条表示。翻译的方向由沿着细线的箭头指示。

本例的搜寻目的来说,默认设置不是理想的设置。按照视图利用页面

底部的Track Controls按钮,将一些路径设置为hide模式(即不显示),其他设置为dense模式(所有资料密集在一条直线上);另一些路径设置为full模式(每个特征有一个分开的线条,最多达300)。在考虑这些路径内究竟存在那些资料之前,对这些路径的内容和表现做一个简要的讨论是必要的,许多这些讨论是由外界提供给UCSC的。Ensembl Gene Predictions路径由Ensembl提供。Ensembl基因通过许多方法来预测,包括与已知mRNA和蛋白质进行同源性比较。若查询启动子区域,我们需要将Ensembl Genes选择为dense或full模式,点击Refresh,即刷新,出现下图:

图中多出了Ensembl Genes的预测路径,我们在红框中圈出。点击用于表达该序列的任何方块出现以下页面:

点击红框中的条形深色方块(不是Ensembl Genes文字)

在此,我们选择并点击Link to sequence中的Genomic Sequence,即显示基因组序列,出现以下窗口:

在该窗口中,终于出现了promoter的字样了,哈哈,快要大功告成了啊。在此我们当然要选择它了,并将其改为2000bp(具体多少bp合适,可根据文献资料和实验目的获取,有的基因可能在其上游戏几百bp

就可以了),其他的几个选项分别为5’端非编码区,编码区外显子,3’端非编码区,内含子(我把内含子用绿框圈了起来,突出说明一下用同样的方法可以显示该基因的内含子与外显子,显示出来的结果一目了然,看以下的结果便知道了)等。

同时另外一个非常重要的就是序列显示方式了,这里我们在Sequence Formatting Options选项里进行选择。我们选择上图红框里的内容,即外显子大写,其余的小写,也就是说mRNA的外显子大写,其余上下游非编码区以及内含子均为小写。

选择完后提交,返回如下序列页面:

第一个大写字母以后就是mRNA序列,之前的小写字母序列即为启动子区域了。大家在做后序的甲基化分析、转录因子结合位点分析等便可以复制下来了。

刚才我们提到第一个大写字母以后就是mRNA序列,但该序列包含外显

子和内含子,是未经剪切修饰的mRNA, 我们在上面也提到了用此同样方法也可显示出外显子和内含子,我们接着看该页面的序列就可以了,与上幅图紧挨着截个图看一下,图中两段大写字母中间的小写字母便为内含了序列。

结语:关于启动子区域和外显子、内含子的查找方法有很多,如利用NCBI,其实都使用的是基本相同的工具,大家可以根据具体的情况和个人偏好来决定使用哪种方法。个人觉得,利用上述方法还是比较简便的。

一步一步教你使用 NCBI 查找DNA、mRNA、cDNA、Protein、promoter、引物设计、BLAST 序列比对等

一步一步教你使用NCBI 查找DNA、 mRNA、cDNA、Protein、promoter、引 物设计、BLAST 序列比对等 最近看到很多战友在论坛上询问如何查询基因序列、如何进行引物设计、如何使用 BLAST 进行序列比对……,这些问题在NCBI 上都可以方便的找到答案。现在我就结合我自 己使用NCBI的一些经历(经验)跟大家交流一下BCBI 的使用。希望大家都能发表自己的使 用心得,让我们共同进步! 我分以下几个部分说一下NCBI 的使用: Part one 如何查找基因序列、mRNA、Promoter Part two 如何查找连续的mRNA、cDNA、蛋白序列 Part three 运用STS 查找已经公布的引物序列 Part four 如何运用BLAST 进行序列比对、检验引物特异性 特别感谢本版版主,将这个帖子置顶! 从发帖到现在,很多战友对该帖给与了积极的关注,在此向给我投票的(以及想给我 投票却暂时不能投票的)各位战友表示真诚的感谢,谢谢各位战友! 请大家对以下我发表的内容提出自己的意见。关于NCBI 其他方面的使用也请水平较高 的战友给予补充 First of all,还是让我们从查找基因序列开始。 第一部分利用Map viewer 查找基因序列、mRNA 序列、 启动子(Promoter) 下面以人的IL6(白细胞介素6)为例讲述一下具体的操作步骤 1.打开Map viewer 页面,网址为:https://www.wendangku.net/doc/8f2836935.html,/mapview/index.html 在search 的下拉菜单里选择物种,for 后面填写你的目的基因。操作完毕如图所示:

基因启动子分析基本流程

“螺旋讲堂”2008 年第十一课----“基因启动子分析基本流程”
“螺旋讲堂”2008年第十一课----“基因启动子分析基本流程”
螺旋 亲爱的螺友们,大家好!欢迎光临螺旋讲堂,很高兴有机会和大家相聚螺旋网,让 我们一同在讨论中学习,在交流中成长! 分子生物学发展迅猛,新方法新技术新发现层出不穷,但是我想,我们的基础研究从 某种意义上来说,可以简单的分为两大部分,一个是基因的表达,另一个是基因的功能。当 然,这个基因的概念现在已经不仅仅是指编码蛋白的 DNA 序列了。 我们这期主要探讨基因的表达。而转录调控在基因表达中占有很重要的地位。基因 的转录调控机制非常复杂,这些理论有机会我们再详细探讨,这里就不多介绍了,我们主要 谈一下对于一个新的基因,如何开始他的转录调控研究,第一步到底该怎么做呢? 这里提供一些简单的入门级别的方法,希望对大家有用。相信还有更多更好更实用 的方法,也希望螺友们能够拿出来和大家分享,共同进步! 本次讲座共分为五个部分主要是讲第一部分,因为这个一般的文献和书籍都很少有 详细说明.
一:克隆目的基因基本启动子序列 我们都知道, 基因的基本启动子一般是在基因转录起始位点上游, 当一个基因在没有 确定其转录起始位点的时候,我们假定 NCBI 上提交的序列就是他的完整转录本,那么他的 第一个碱基就是他的转录起始位点。而基因的基本启动子一般就是在转录起始位点的上游 2000bp 左右和下游200bp 左右,当然,这个是一般情况,具体问题还要具体分析.尤其现在发 现一般的基因都是有几个转录起始位点的. 我们通过该基因 mRNA 序列和基因组序列 BLAST, 就能够在染色体上找到这段基因 组序列。我这里用 human 的 AGGF1基因做个例子给大家具体演示一下.
https://www.wendangku.net/doc/8f2836935.html,

DNA启动子概述

启动子概述 启动子是DNA链上一段能与RNA聚合酶结合并能起始mRNA合成的序列,它是基因表达不可缺少的重要调控序列。启动子是一段位于结构基因5’-端上游区的DNA序列,能活化RNA聚合酶,使之与模板DNA准确地结合,并具有转录起始的特异性。基因的特异性转录取决于酶与启动子能否有效地形成二元复合物。启动子分三类:启动子Ⅰ、启动子Ⅱ、启动子Ⅲ.只有启动子Ⅱ指导mRNA的转录。真核生物启动子Ⅱ由两大部分组成:上游元件(upstream element)和启动子核心(core promoter)。上游元件与转录的效率有关;启动子核心包括3部分:TATA 盒、起始子(initinator)及下游元件(downstream element)。TATA盒为转录调控因子包括各种调节蛋白的结合区,与转录起始位点的精确选择及转录有关,起始子是转录起始所必须,下游元件作用尚不清楚。原核生物启动子区范围较小,包括TATAAT区(Pribnow区)及其上游的TTGACA区。 启动子是一段提供RNA聚合酶识别和结合位点的DNA序列,位于基因上游。启动子具有如下特征: 1序列特异性。在启动子的DNA序列中,通常含有几个保守的序列框,序列框中碱基的变化会导致转录启动活性的改变。 2方向性。启动子是一种有方向性的顺式调控元件,有单向启动子和双向启动子两类。 3位置特性。启动子一般位于所启动转录基因的上游或基因内的前端。处于基因的下4种属特异性。原核生物的不同种、属,真核生物的不同组织都具有不同类型的启动 没有启动子,基因就不能转录。原核生物启动子是由两段彼此分开且又高度保守的核苷酸序列组成,对mRNA的合成极为重要。启动子区域:(1)Pribnow盒,位于转录起始位点上游5—10bp,一般由6~8个碱基组成,富含A和T, 故又称为TATA盒或—10区。启动子来源不同,Pribnow盒的碱基顺序稍有变化。(2)—35区,位于转录起始位点上游35bp处,故称—35区,一般由10个碱基组成。 质粒设计时都需要加入启动子序列,以保证目的基因的表达。启动子可分为诱导型启动子和组成型启动子两大类,后者包括CMV,SV40,T7,pMC1,PGK启动子等。一下介绍几个常见的启动子。 (1)U6启动子 U6是二型启动子,一般发现是启动小片段,不带PolyA尾的序列。由Ⅲ类RNA聚合酶启动子U6启动子转录产生shRNA,经剪切后产生成熟siRNA,产生干扰效果。这一类 启动子在腺病毒和慢病毒干扰载体的构建中应用很多。U6更多的是用在shRNA的启动,来达到敲低一个基因的作用。

找一个基因的启动子

1、UCSC (1)网址:https://www.wendangku.net/doc/8f2836935.html,/cgi-bin/hgNear 在Genome里选择物种,比如human,search里输入你的基因名PTEN,点击Go (2)出现新的页面,看到“Known Gene Names”下面的PTEN了吧,点它 (3)又回到了和(1)类似的页面,此时,点击sequence (4)出现一个新的页面,选中promoter,同时可以输入数值修改具体的序列区域,比如Promoter including 2000 bases upstream and 100 downstream,即表示启动子-2000~+100区域 (5)点击“get sequence”,出现页面中最上面的序列“>uc001kfb.1 (promoter 2000 100) PTEN - phosphatase and tensin homolog”就是你要的人PTEN启动子-2000~+100区域的序列了 2、Ensembl (1)网址:https://www.wendangku.net/doc/8f2836935.html,/index.html 在“Search Ensembl“标题下search后的下拉框中选中物种名homo sapiens(人),for框中输入基因名PTEN,点击Go (2)出现的新页面中比较乱,但不要管它,直接寻找“Ensembl protein coding gene ”字样的,对,也就是第二个,点击它 (3)新出现的页面也很乱,不过依然不用管它,看到左侧有点肉色(实在不知道怎么描述了)的那些选项了吗,对,就是“Your Ensembl”下面那一堆,在里面找“Genomic sequence”,点它 (4)现在的界面就一目了然了,在“5' Flanking sequence”中输入数值确定启动子长度(默认为600),比如1000,点击update; (5)出现的序列中,标为红色的就是基因的外显子,红色之间黑色的序列就是内含子,而第一个红色自然就是第一外显子了,那么从开始的碱基一直到第一个红色的碱基间自然就是启动子-1000~+1的序列啦 这样,你不仅查到了启动子,连它的外显子、内含子序列也全部搞定了

如何查找一个基因的启动子序列

如何查找一个基因的启动子序列 发表者:刘小丰 (访问人次:6102) 刘小丰收集整理 定义:启动子是参与特定基因转录及其调控的DNA序列。包含核心启动子区域和调控区域。核心启动子区域产生基础水平的转录,调控区域能够对不同的环境条件作出应答,对基因的表达水平做出相应的调节。 区域:启动子的范围非常大,可以包含转录起始位点上游2000bp,有些特定基因的转录区内部也存在着转录因子的结合位点,因此也属于启动子范围。 这项搜寻要从UCSC基因组浏览器开始,网址为 https://www.wendangku.net/doc/8f2836935.html,/cgi-bin/hgGateway。以编码pendrin (PDS)的基因为例来说明上述问题。PDS与耳蜗的异常发育、感觉神经性听力下降以及弥散性甲状腺增大(甲状腺肿)有关。 进入UCSC的主页后,在Organism的下拉菜单中选择Human,然后点击Browser。使用者现在到了人类基因组浏览器入口。本例的搜寻很简单:在assembly的下拉菜单中选择Dec. 2001,在position框中键入pendrin,然后点击Submit。返回的页面结果显示一个已知的基因和两个mRNA序列。继续点击mRNA序列的登录号AF030880,出现包含这个mRNA区域的图解概要。为了获得这个区域更清晰的图像,点击紧靠zoom out的1.5X按钮。最后点击页面中部的reset all按钮,使各个路径的设置恢复默认状态。 然而,对于本例的搜寻目的来说,默认设置不是理想的设置。按照视图利用页面底部的Track Controls按纽,将一些路径设置为hide模式(即不显示),其他设置为dense模式(所有资料密集在一条直线上);另一些路径设置为full模式(每个特征有一个分开的线条,最多达300)。在考虑这些路径内究竟存在那些资料之前,对这些路径的内容和表现做一个简要的讨论是必要的,许多这些讨论是由外界提供给UCSC的。下面是对基因预测方法的更进一步讨论,这些信息也可以在其他地方找到。 对于Known Genes(已知基因)和预测的基因路径来说,一般的惯例是以一个高的垂直线或块状表示每个编码外显子,以短的垂直线或块状表示5′端和3′端非翻译区。 起连接作用的内含子以非常细的线条表示。翻译的方向由沿着细线的箭头指示。 Known Genes来自LocusLink内的mRNA参照序列,已经利用BLAT程序将这些序列与基因组序列进行比对排列。 Acembly Gene Predictions With Alt-splicing路径是利用Acembly程序将人类mRNA 和EST序列数据与人类基因组序列进行比对排列而来的。Acembly程序试图找到mRNA与基因组序列的最好的比对排列以及判断选择性剪接模型。假如有多于1个的基因模型具有统计学意义,则它们都全部显示出来。有关Acembly的更多信息可以在NCBI的网站找到(https://www.wendangku.net/doc/8f2836935.html,/IEB/Research/Acembly/)。 Ensembl Gene Predictions路径由Ensembl提供。Ensembl基因通过许多方法来预测,包括与已知mRNA和蛋白质进行同源性比较,ab initio基因预测使用GENSCAN和基因预测HMMs。 https://www.wendangku.net/doc/8f2836935.html,/ensembl/ Fgenesh++ Gene Predictions路径通过寻找基因的结构特征来预测基因内部的外显子,例如剪接位点的给位和受位的结构特征,利用一

如何查找一个基因的启动子序列

定义:启动子是参与特定基因转录及其调控的DNA序列。包含核心启动子区域和调控区域。核心启动子区域产生基础水平的转录,调控区域能够对不同的环境条件作出应答,对基因的表达水平做出相应的调节。一般查阅外文文献,老外从转录起始位点(Transcription Strart Site,TSS,记为+1位)开始上溯2K -3K的区间算做是启动子 区域:启动子的范围非常大,可以包含转录起始位点上游2000bp,有些特定基因的转录区内部也存在着转录因子的结合位点,因此也属于启动子范围。 票数 Do One Thing, And Do It Well. mybbff edited on 2005-07-22 08:41 ? ? ? ? 2005-05-07 11:23 分享 分享到哪里? ? ?

??? ? ? ? ? 下面以BCL-2基因为例,查找查找该基因的启动子区域,首先要找到该基因的基因组序列。去NCBI吧,在Search的下拉菜单里找到Gene,在检索项里输入Bcl-2,检索第一项就是bcl-2 for human,点进去看看啥样。。。 票数 Do One Thing, And Do It Well. ??

???2005-05-07 11:29 分享 分享到哪里? ? ? ? ? ? ? 首先你可以看到该基因的参考序列(reference sequence),然后看到bcl-2的位置和基因组背景。bcl-2上游是 PHLPP,下游是FVT1基因。在这个长长的网页的最后是已经注册的Bcl-2基因的信息。

票数 Do One Thing, And Do It Well. Revelation edited on 2005-05-07 11:59 ? ???2005-05-07 11:35 分享 分享到哪里? ? ? ? ? ? ? 看到基因组序列了么,点进去,根据序列信息自己就能定位转录起始位点,上游就是promoter了,简单吧。不!我觉得麻烦。有更简单的方法么?有!注意到在网页的开头有这么个链接么?HGNC:990

人全外显子组序列捕获及第二代测序

人全外显子组序列捕获及第二代测序 概述 外显子组是指全部外显子区域的集合,该区域包含合成蛋白质所需要的重要信息,涵盖了与个体表型相关的大部分功能性变异。外显子组序列捕获及第二代测序是一种新型的基因组分析技术:外显子序列捕获芯片(或溶液)可在同一张芯片上以高特异性和高覆盖率捕获研究者感兴趣的目标外显子区域,后续利用Solexa/SOLiD/Roche 454测序直接解析数据。 与全基因组重测序相比,外显子组测序只需针对外显子区域的DNA 即可,覆盖度更深、数据准确性更高,更加简便、经济、高效。可用于寻找复杂疾病(如:癌症、糖尿病、肥胖症等)的致病基因和易感基因等的研究。同时,基于大量的公共数据库提供的外显子数据,我们能够结合现有资源更好地解释我们的研究结果。 目前,SBC提供的外显子组序列捕获芯片是NimbleGen Sequence Capture 2.1M Human Exome Array及Agilent SureSelect Target Enrichment System(Human Exome)。 技术路线 以Nimblegen外显子捕获结合Solexa测序为例加以说明:基因组DNA首先被随机打断成500bp左右的片段,随后在DNA片段两端分别连接上接头。经过PCR库检合格后的DNA 片段与NimbleGen 2.1M Human Exome Array芯片进行杂交。去除未与芯片结合的背景DNA 后,将经过富集的外显子区域的DNA片段洗脱下来。这些DNA片段又随机连接成长DNA片段

后,再次被随机打断并在其两端加上测序接头,经过LM-PCR的线性扩增,在经qPCR质量检测合格后即可上机测序。 外显子组测序的实验流程示意图(https://www.wendangku.net/doc/8f2836935.html,) 生物信息学分析流程图 研究内容 1.外显子组捕获与测序 将基因组DNA随机打断成片段,通过与人全外显子捕获芯片杂交富集外显子区域,通过第二代测序技术对捕获的序列进行测序。 2.基本数据分析 数据产出统计:对测序结果进行图像识别(Base calling),去除污染及接头序列;统计结果包括:测定的序列(Reads)长度、Reads数量、数据产量。 3. 高级数据分析 高级数据分析内容包括: (1)Clean reads序列与参考基因组序列比对; (2)目标外显子区域测序深度分析; (3)目标外显子区域一致序列组装;

基因启动子分析

基因启动子分析 一:克隆目的基因基本启动子序列 我们都知道,基因的基本启动子一般是在基因转录起始位点上游,当一个基因在没有确定其转录起始位点的时候,我们假定NCBI上提交的序列就是他的完整转录本,那么他的第一个碱基就是他的转录起始位点。而基因的基本启动子一般就是在转录起始位点的上游2000bp左右和下游200bp左右,当然,这个是一般情况,具体问题还要具体分析.尤其现在发现一般的基因都是有几个转录起始位点的. 我们通过该基因mRNA序列和基因组序列BLAST,就能够在染色体上找到这段基因组序列。我这里用human的AGGF1基因做个例子给大家具体演示一下. 1 首先需要在NCBI里面查找到AGGF1基因的mRNA序列,这个我想大家都应该很清楚,如下图.

2 然后就是用这段mRNA序列和人类的基因组序列BLAST 3 BLAST得到了很多结果,我们往往选择最上面那个最匹配的结果。

4 点击之后就可以看到下图,这个基因的14个外显子和13个内含子在5号染色体上的位置一目了然,第一个外显子在上面,说明这个基因在染色体上是正向的,基本启动子就应该在第一外显子上面,我用红色的方框标明了。 5 大家有没有注意到左上方有个数据框,我把数值改为76,360K 到 76,362.200 ,刚好2200BP,包括了第一个外显子的前200BP左右. 然后点击红色框标明的Download/view sequence.

6 然后就到了这个界面, Sequence Format 选择GenBank, 然后点击 Display. 就得到我们所需要的序列了. 7 这里我们可以看到1989到2201是AGGF1的mRNA序列,说明我们的确找到了该基因5'非翻译区的上游启动子序列.建议将这2200bp都克隆下来. 以上的步骤就是基因基本启动子的查找,其实还有很多调控序列是在基因内含子区域或者是基因的3'非翻译区等,序列查找的步骤和上面是一样的.

寻找基因外显子、内含子的几种方法

寻找基因外显子、内含子的几种方法 以人类的wnt3a基因为例 一、https://www.wendangku.net/doc/8f2836935.html,/entrez/query.fcgi?CMD=search&DB=gene 1、进入ncbi的gene数据库【网址: https://www.wendangku.net/doc/8f2836935.html,/entrez/query.fcgi?CMD=search&DB=gene】 2、在for栏输入wnt3a,点击limits 3、在All fields 栏选择Gene Name,在Homo sapiens前打勾,点击go 4、出现下图,点击wnt3a 5、鼠标左键点击NC-000001.9,选择Genbank

或在Genomic栏下点击Genbank【图中圈出的部分】 6、出现下图,图中画线部分就是外显子的位点【注意不是图中圆圈的部分】外显子分别为1~149 15617~15858 43606~43871 51936~54210

二、https://www.wendangku.net/doc/8f2836935.html,/ 1、进入https://www.wendangku.net/doc/8f2836935.html,/的网页 2、点击Gene Sorter 3、在genome栏输入human,在search栏输入wnt3a,点击go

4、出现下图,点击图中圈出来的部分: 5、出现下图,点击sequence 6、出现下图,点击Genomic 7、出现下图,点击submit

8、出现序列,其中外显子用大写字母,内含字用小写字母。 9、将其拷贝到word中,鼠标定位到大小写接头的位点,进行定位统计。 疑问:奇怪的是得出的结果与方法一、方法三不符,不知是什么原因?请大家指点,看看是哪里错了。 这种方法的介绍见:https://www.wendangku.net/doc/8f2836935.html,/bbs/actions/archive/post/6145797_1.html 三、https://www.wendangku.net/doc/8f2836935.html,/

如何查找一个基因的启动子序列

如何查找一个基因的启动子序列 关键词:基因启动子序列软 件 定义:启动子是参与特定基因转录及其调控的DNA序列。包含核心启动子区域和调控区域。核心启动子区域产生基础水平的转录,调控区域能够对不同的环境条件作出应答,对基因的表达水平做出相应的调节。 区域:启动子的范围非常大,可以包含转录起始位点上游2000bp,有些特定基因的转录区内部也存在着转录因子的结合位点,因此也属于启动子范围。 这项搜寻要从UCSC基因组浏览器开始,网址为https://www.wendangku.net/doc/8f2836935.html,/。以编码pendrin (PDS)的基因为例来说明上述问题。PDS与耳蜗的异常发育、感觉神经性听力下降以及弥散性甲状腺增大(甲状腺肿)有关。 进入UCSC的主页后,在Organism的下拉菜单中选择Human,然后点击Browser。使用者现在到了人类基因组浏览器入口。本例的搜寻很简单:在assembly的下拉菜单中选择Dec. 2001,在position框中键入pendrin,然后点击Submit。返回的页面结果显示一个已知的基因和两个mRNA序列。继续点击mRNA序列的登录号AF030880,出现包含这个mRNA区域的图解概要。为了获得这个区域更清晰的图像,点击紧靠zoom out的1.5X按钮。最后点击页面中部的reset all按钮,使各个路径的设置恢复默认状态。 然而,对于本例的搜寻目的来说,默认设置不是理想的设置。按照视图利用页面底部的Track Controls按纽,将一些路径设置为hide模式(即不显示),其他设置为dense模式(所有资料密集在一条直线上);另一些路径设置为full 模式(每个特征有一个分开的线条,最多达300)。在考虑这些路径内究竟存在那些资料之前,对这些路径的内容和表现做一个简要的讨论是必要的,许多这些讨论是由外界提供给UCSC的。下面是对基因预测方法的更进一步讨论,这些信息也可以在其他地方找到。 对于Known Genes(已知基因)和预测的基因路径来说,一般的惯例是以一个高的垂直线或块状表示每个编码外显子,以短的垂直线或块状表示5′端和3′端非翻译区。 起连接作用的内含子以非常细的线条表示。翻译的方向由沿着细线的箭头指示。 Known Genes来自LocusLink内的mRNA参照序列,已经利用BLAT程序将这些序列与基因组序列进行比对排列。

华大智造外显子捕获测序解决方案

华大智造外显子捕获测序解决方案 概述 随着测序技术发展和成本降低,临床外显子组测序(cWES)和全外显子测序(WES)在遗传病检测领域崭露头角。外显子测序借助捕获探针(DNA或RNA)对人基因组约1-2%的区域测序,可覆盖绝大多数基因的编码序列和>99%(临床基因组资源库,ClinGen)疾病相关区域。华大智造基于自有的探针合成平台和高通量测序仪(MGISEQ/BGISEQ 系列),能为客户提供外显子测序一站式解决方案。 图1 外显子测序示意图(以MGI测序平台为例)

MGIEasy 外显子组捕获V5探针试剂套装 MGIEasy 外显子组捕获V5探针试剂套装除了涵盖传统外显子探针覆盖的区域,还有针对性的做了探针优化,保证了生育健康、新生儿、心脑血管、遗传性肿瘤、单基因病、安全用药、个人基因组、遗传性耳聋、免疫缺陷、线粒体缺陷等致病基因的全覆盖。 产品亮点 ●探针区域69Mb ●更多的疾病致病位点 ●更优的数据利用率 ●稳定而高效的捕获效率 技术优势 数据库覆盖情况 MGI V5与竞品(Vendor A6/N3/I)比,有更多的独有区域,涵盖了华大自主研发的 图2 CCDS、GENCODE、UCSC、miRBase和RefSeq数据库基因数量覆盖情况 基因覆盖更全面

MGI V5能100%覆盖的基因数达到455个,远高于A5 (125个)、N3 (33个)和I (357个),其独有100%覆盖基因数达到160个,是A5和N3之和。 BBS10基因是巴比二氏综合征的致病基因,MGI V5完整涵盖了基因区和内含子区,其中包括ClinVar数据库中报道的已知临床突变位点。 基因覆盖均一性更优 MGI V5在测序深度达到100x时,96%的区域覆盖度均能达到20X以上。与竞品N3和I共有的区域,MGI V5显示了更优秀的覆盖均一性。 性能比较 图3 100%覆盖的基因数和BBS10基因覆盖情况 图4 >96%区域达到20X覆盖图5 共有区域的覆盖更均一

外显子捕获结题报告

外显子捕获结题报告2010-11-22

内容 1 项目信息 (1) 2 工作流程介绍 (2) 2.1 Agilent液相捕获平台 (2) 2.2 NimbleGen 液相捕获平台 (3) 2.3 生物信息分析流程 (4) 3 分析报告 (5) 结果 (5) 3.1 标准生物信息分析 (5) 3.1.1 数据产出统计 (5) 3.1.2 目标区域单碱基深度分布图 (6) 3.1.3外显子捕获测序的均一性 (7) 3.1.4一致序列组装和SNP检测 (7) 3.1.5 SNP注释 (8) 3.1.6插入/缺失(indels)检测 (9) 3.1.7插入/缺失(indels)注释 (9) 3.2个性化分析 (9) 3.2.1氨基酸替换预测 (9) 3.2.2群体SNP检测和等位基因频率估计 (12) 3.2.3孟德尔遗传病分析 (13) 3.2.4 NGS-GW AS 分析 (14) 3.2.5正向选择信号的检测 (14) 4 数据分析方法说明 (15) 4.1信息分析软件及常用参数介绍 (15) 4.2参考数据库 (16) 4.3数据文件格式 (17)

1 项目信息 PROJECT NAME CONTRACT NUMBER SAMPLE INFORMATION Species Information Genome Information Additional Information CUSTOMER INFORMATION PI Contact Person Company Name Contact Methods Name Tel E-mail Name Tel E-mail CONTACT INFORMATION (BGI) Sales Information Name Tel E-mail Name Tel E-mail Customer Service Name Tel E-mail Name Tel E-mail PROJECT DIRECTOR APPROVAL THE RESULTS HAVE BEEN APPROVED AND CAN BE SUBMITTED Signature: Date:

如何查找基因的启动子区

如何查找一个基因的启动子序列 定义:启动子是参与特定基因转录及其调控的DNA序列。包含核心启动子区域和调控区域。核心启动子区域产生基础水平的转录,调控区域能够对不同的环境条件作出应答,对基因的表达水平做出相应的调节。区域:启动子的范围非常大,可以包含转录起始位点上游2000bp,有些特定基因的转录区内部也存在着转录因子的结合位点,因此也属于启动子范围。这项搜寻要从UCSC基因组浏览器开始,网址为https://www.wendangku.net/doc/8f2836935.html,/。以编码pendrin (PDS)的基因为例来说明上述问题。PDS与耳蜗的异常发育、感觉神经性听力下降以及弥散性甲状腺增大(甲状腺肿)有关。 进入UCSC的主页后,在Organism的下拉菜单中选择Human,然后点击Browser。使用者现在到了人类基因组浏览器入口。本例的搜寻很简单:在assembly的下拉菜单中选择Dec. 2001,在position 框中键入pendrin,然后点击Submit。返回的页面结果显示一个已知的基因和两个mRNA序列。继续点击mRNA序列的登录号AF030880,出现包含这个mRNA区域的图解概要。为了获得这个区域更清晰的图像,点击紧靠zoom out的1.5X按钮。最后点击页面中部的reset all按钮,使各个路径的设置恢复默认状态。 然而,对于本例的搜寻目的来说,默认设置不是理想的设置。按照视图利用页面底部的Track Controls 按纽,将一些路径设置为hide模式(即不显示),其他设置为dense模式(所有资料密集在一条直线上);另一些路径设置为full模式(每个特征有一个分开的线条,最多达300)。在考虑这些路径内究竟存在那些资料之前,对这些路径的内容和表现做一个简要的讨论是必要的,许多这些讨论是由外界提供给UCSC 的。下面是对基因预测方法的更进一步讨论,这些信息也可以在其他地方找到。对于Known Genes(已知基因)和预测的基因路径来说,一般的惯例是以一个高的垂直线或块状表示每个编码外显子,以短的垂直线或块状表示5′端和3′端非翻译区。起连接作用的内含子以非常细的线条表示。翻译的方向由沿着细线的箭头指示。 Known Genes来自LocusLink内的mRNA参照序列,已经利用BLAT程序将这些序列与基因组序列进行比对排列。Acembly Gene Predictions With Alt-splicing路径是利用Acembly程序将人类mRNA和EST 序列数据与人类基因组序列进行比对排列而来的。Acembly程序试图找到mRNA与基因组序列的最好的比对排列以及判断选择性剪接模型。假如有多于1个的基因模型具有统计学意义,则它们都全部显示出来。有关Acembly的更多信息可以在NCBI的网站找到(https://www.wendangku.net/doc/8f2836935.html,/IEB/Research/Acembly/)。 Ensembl Gene Predictions路径由Ensembl提供。Ensembl基因通过许多方法来预测,包括与已知mRNA和蛋白质进行同源性比较,ab initio基因预测使用GENSCAN和基因预测HMMs。https://www.wendangku.net/doc/8f2836935.html,/ensembl/ Fgenesh++ Gene Predictions路径通过寻找基因的结构特征来预测基因内部的外显子,例如剪接位点的给位和受位的结构特征,利用一种动态的程序算法推定编码区域和推定外显子5′端和3′端的内含子区域;这个方法也考虑到蛋白质相似性的资料。Genscan Gene Predictions路径由GENSCAN方法衍生而来,通过这个方法,可以确定内含子、外显子、启动子区域和poly(A)信号。此时,这个方法并不期望查询的序列只出现1个基因,因此可以对部分基因或被基因之间的DNA分隔的多个基因进行准确的预测。Human mRNAs from Genbank路径显示基因库的人类mRNAs与基因组序列的比对排列。Spliced ESTs和Human EST路径显示来自GenBank的ESTs序列与基因组的序列对齐比较。由于ESTs通常代表了转录基因的片断,一个EST很有可能对应于某个外显子区。 最后,Repeating Elements by RepeatMasker这个路径显示的是重复元件,例如散在的或长或短的核元素(SINEs和LINEs),长末端重复序列(LTRs)和低复杂性区域(https://www.wendangku.net/doc/8f2836935.html,/cgi-bin/RepeatMasker)。一般来说,在将基因预测方法应用于核苷酸序列之前,需要去掉或掩饰这些成分。 回到视图显示的例子,可以看到大多数路径返回了几乎同样的基因预测结果。作为一个规则,通过多种方法预测的外显子提高了预测的正确率而不会出现“假阳性”结果。多数方法显示3′端非翻译区,以左侧大而短的块状表示。Acembly路径显示除了全长序列产物(如这个部分第3条线所示)之外还有3个可能的选择性剪接,其它大多数路径显示与此预测结果相符。Genscan路径从左、右方向往远处延伸:GENSCAN可以被用于预测多个基因。

人外显子测序

人外显子测序 药明康德基因中心,陆桂1. 什么是外显子测序(whole exon sequencing)? 外显子组测序是指利用序列捕获技术将全基因组外显子区域DNA捕捉并富集后进行高通量测序的基因组分析方法。外显子测序相对于基因组重测序成本较低,对研究基因的SNP、Indel 等具有较大的优势,但无法研究基因组结构变异如染色体断裂重组等。 2. 外显子捕获试剂盒有哪些? 目前主要有Roche、Illumina和Agilent三家的外显子捕获试剂。Nimblegen和Illumina的捕获试剂盒中的探针是DNA探针,化学性质稳;Agilent的捕获试剂盒是RNA探针,有可能RNA 不是很稳定。 3. 外显子捕获效率是什么? 外显子测序过程中要用到杂交过程。在人的染色体上有许多与外显子有同源性的部分,这些有同源性的部分很可能在杂交过程中也被捕获下来。所以,测到的序列中,有一部分不是外显子序列。我们把测序得是外显子的部分占全部测序序列的比列称为捕获效率。 Nimblegen大约是70% Agilent大约是60% Illumina大约是50% 4. 外显子测序一般建议做多少倍的覆盖? 一般做100X或者150X。较高的覆盖倍数,对于测异质性的遗传变质,可以发现小比例的突变。另外,外显子测序的覆盖不是很均匀,这样较高的平均覆盖率有利于保证大部分的区域有足够的覆盖倍数。 5. 外显子测序能够测出多大的片段缺失? 大致能测出50bp的片段缺失。目前的测序主要还是用Hiseq 2000,单侧的测长就是100bp。由于外显子测序的覆盖很不平均,所以如果有大段的缺失,无法判断是因为杂交没有捕获到,还是因为缺失。目前能够测到的,就是在一个read中发现的缺失。一个read的长度也就是100bp,所以大到50bp以下的片段缺失可以从外显子测序中测出来。 6. 外显子捕获可以做CNV吗? 外显子测序因为有一个杂交捕获的过程,这样就会有一个杂交捕获效率的问题。各个外显子的杂交效率是不同的,其同源竞争的情况也不同,所以不同的外显子的覆盖率的差异就很大。所以一般情况下,外显子测序不能用于CNV的检测。但在癌症研究中,利用癌组织和癌旁组织对照,可以检测CNV。 现在我们有另外两种常规方法来检测CNV,一种是全基因组重测序,另外一种是用Affymetrix SNP6.0的芯片来测。其中Affymetrix SNP6.0的检测费用大约只有全基因测序费用的1/10,是一个相对经济的手段。 7. 外显子测序的优点是什么?

真核生物三类启动子

真核生物启动子有三类,分别由RNA 聚合酶Ⅰ、Ⅱ和Ⅲ进行转录。 类别Ⅰ(class Ⅰ)启动子: 只控制rRNA 前体基因的转录,转录产物经切割和加工后生成各种成熟rRNA 。 类别Ⅰ启动子由两部分保守序列组成: 核心启动子(core promoter ):位于转录起点附近,从-45至+20; 上游控制元件(upstream control element ,UCE ):位于-180至-107; RNA 聚合酶Ⅰ对其转录需要2种因子参与: UBF1:一条M 为97000的多肽链,结合在上述两部分的富含GC 区; 1个TBP ,即TATA 结合蛋白(TA TA-binding protein ,TBP ); SL1:一个四聚体蛋白,含有 3个不同的转录辅助因子TAF Ⅰ; 在SL1因子介导下RNA 聚合酶Ⅰ结合在转录起点上并开始转录。 类别Ⅱ(class Ⅱ)启动子: 类别Ⅱ启动子涉及众多编码蛋白质的基因表达的控制。 该类启动子包含4类控制元件: 基本启动子(basal promoter ):序列为中心在-25至-30左右的7 bp 保守区,TA TAAAA/T , 称为TATA 框或Goldberg-Hogness 框。与RNA 聚合酶的定 位有关,DNA 双链在此解开并决定转录的起点位置。失去 TATA 框,转录将在许多位点上开始。 起始子(initiator ):转录起点位置处的一保守序列,共有序列为:P y P y ANT(A)P y P y P y 为嘧啶碱(C 或T ),N 为任意碱基,A 为转录的起点。DNA 在此 解开并起始转录。 上游元件(upstream factor ):普遍存在的上游元件有CAAT 框、GC 框和八聚体(octamer ) 框等。CAAT 框的共有序列是GCCAATCT ,GC 框的共有序 列为GGGCGG 和CCGCCC ,八聚体框含有8bp ,共有序列 为ATGCAAA T ; 应答元件(response element ):诱导调节产生的转录激活因子与靶基因上的应答元件结合。 如热休克效应元件HSE 的共有序列是 CNNGAANNTCCNNG ,可被热休克因子HSF 识别和作用; 血清效应元件SRE 的共有序列CCA TATTAGG ,可被血清效 应因子SRF 识别和作用。 +1

基因捕获

什么是基因陷阱或基因捕获 (gene trap)? 基因陷阱或基因捕获(gene trap)是通过在基因组中创造随机插入突变,来直接获得分子特征。基因陷阱或基因捕获载体包含一个无启动子的报告基因或选择标记,它能在插入位置(内含子)激活所在基因表达。因这系列方法酷似以报道基因为诱饵来捕获基因,故得名基因陷阱或基因捕获。换言之,它主要依靠报告基因的随机插入来产生融合转录物或融合蛋白,通过检测报道基因而推知基因及其功能。一般常用的报道基因有GUS、绿色荧光蛋白(GFP)、Lc基因。 在此基础上,还发展了启动子陷阱或启动子捕获(promoter trap)与增强子陷阱或增强子捕获(enhancer trap)。启动子陷阱或启动子捕获是通过将报道基因插入到细胞基因组的外显子上,如果发现它与细胞基因组基因被共同转录或表达,则可推知该报道基因附近有启动子。增强子陷阱或增强子捕获是将某报道基因与一个精巧的启动子相连,组成增强子陷阱重组体,它不会自主起始转录,需要由被插入的细胞基因组中的增强子帮助才可转录。若报道基因得以表达,则可推知插入位点附近有增强子或有基因。 图1:在被“捕获”基因的启动子的转录控制下,报告基因与插入位置的内源基因整合。融合的转录体由上游外显子和报告基因组成。在载体中,多聚腺苷酸信号限制到内源转录单位的最后一个外显子。通常采

用外显子陷阱和内含了陷阱两类。内含子陷阱包括一个剪接接受子序列(splice acceptor,SA)(在无启动子报告基因最上游)。外显子陷阱没有剪接接受子序列,在插入外显子后激活报告基因表达。(Figure 1.Integration within an endogenous gene places the reporter gene under the transcriptional control of the "trapped" gene's promoter. A fusion transcript is generated between upstream exons and the reporter gene. The polyadenylation signal (pA) within the vector defines the final exon of the endogenous transcription unit. Two types of vectors are commonly used, each of which can be introduced by electroporation or retroviral infection. The "intron trap" includes a splice acceptor sequence immediately upstream of a promoterless reporter gene that is activated following insertions in introns of genes. The "exon trap" lacks a splice acceptor and is designed to activate the reporter following insertions in exons.) 更多的信息参阅国际基因陷阱或基因捕获联合会(IGTC, International Gene-Trap Consortium)网站:http://www.igtc.ca/FAQ.html 基因陷阱或基因捕获有什么特点、优 势和劣势? 基因陷阱和启动子陷阱都有位置限制。基因陷阱重组体由报道基因和剪接接受子或部位(splice acceptor,SA)组成(接受体剪接部位在报道基因上游),该重组体需要插入到细胞基因组的内含子中随着基因转录和表达。如能检测到融合转录物或融合蛋白,就可证明插入位置附近有基因存在。启动子陷阱或启动子捕获需插入到内含子。因为增强子的作用特点,其位置与基因的位置可近可远,所以增强子陷阱不易定位基因。另外,对启动子陷阱和基因陷阱而言,插入可能导致基因失活。基因陷阱的优势在于它只在表达水平上定位基因,细胞基因本身的转录和

基因捕获技术

基金项目:国家重点基础研究发展计划(973)项目(N o. 2001C B509901) 作者单位:200025,上海交通大学医学院遗传学教研室 通讯作者:王铸钢(E2mail:zhugangw@https://www.wendangku.net/doc/8f2836935.html,)?综述? 基因捕获技术 党素英 王铸钢 【摘要】 基因捕获技术是一种产生大规模基因突变的便利手段,对于揭示大量基因序列所对应的基因功能具有重要应用价值。本文综述了基因捕获技术的基本原理和研究方法、发展现状及远景。 【关键词】 基因捕获; 基因捕获载体; 表达筛选 “G ene2trapping”T echnique. DANG Su2ying,WANG Zhu2gang. (Department o f Medical G enetics,Shanghai Jiao Tong Univer sity Medical School,Shanghai200025,P.R.China) Corresponding author:WANG Zhu2gang. E2mail:zhugangw@https://www.wendangku.net/doc/8f2836935.html, 【Abstract】 G ene2trapping is an advantageous technique for generating gene mutations massively which is im2 portant to identify the functions of large quantities of gene sequence.In this review,the basic theory,study strategies, the development and future directions of gene2trap mutagenesis are discussed. 【K ey w ords】 G ene2trapping; G ene2trapping vector; Expression screens 随着人类和其他一些重要动、植物序列数据的快速积累,我们面临着如何鉴定这些序列数据所代表的生物学功能的巨大挑战。基因捕获(gene2trap2 ping)技术通过报告载体随机整合到基因组、标签插入位点、产生插入失活突变并揭示基因表达模式及其功能,已成为建立高通量、大规模基因突变模型的一种便利手段。随着多种新型载体及捕获策略的出现,基因捕获技术已被成功应用于克隆诸如特异组织发育相关基因、特殊信号传导途径相关基因等多种研究中,在功能基因组学研究中具有广阔的应用前景。 1 基因功能研究的策略 基因芯片、组织表达谱分析等多种传统的分子遗传学方法对于揭示基因功能及复杂的发育事件具有重要意义,但阐释某一基因功能的直接策略是基于对该基因突变后细胞或动物模型的表型分析。因此,X射线、化学诱变、逆转录病毒转染及转基因技术等多种产生突变的方法相继出现并被应用于基因功能研究。但这些方法都带有不稳定性,如经常影响多个基因或引起染色体重排,或不能提供分子标记来克隆突变基因[1]。在胚胎干细胞(embry onic stem cell,ES)内利用同源重组产生特定基因突变的基因打靶技术,即基因敲除和敲进技术(knock2out or knock2in)是目前被用来研究结构信息明确的基因功能的最重要的手段之一。然而,由于同源重组几率低、动物繁育耗时费力且产生的功能失活突变(无义突变,null mutations)常常与疾病中发现的分子损伤类型不同,因此,随机突变筛选策略更受研究者青睐。 基因捕获是一种结合随机突变与对分子信息明确的基因突变二者之优势的突变策略,即“随机基因打靶”,广泛应用于植物、线虫、果蝇及小鼠的研究中。 2 基因捕获的基本原理 基因捕获的方法酷似以报告基因为诱饵来捕获基因。其基本过程是将一含报告基因的DNA载体随机插入基因组,从而产生内源基因失活突变,并通过报告基因的表达激活提示插入突变的存在,及突变内源基因表达特点。通过筛选得到的插入突变的ES细胞克隆经囊胚注射转化为基因突变动物模型,进而分析表型来研究突变基因功能。每一种ES细胞克隆中含有不同的突变基因,在短期内可建立大量含不同基因突变的ES细胞克隆库。突变基因的序列可通过基于PCR的一些方法鉴定,同时还可能

相关文档
相关文档 最新文档