文档库 最新最全的文档下载
当前位置:文档库 › 圆轴扭转里分析

圆轴扭转里分析

圆轴扭转里分析
圆轴扭转里分析

6.1 圆轴扭转的概念扭转变形Torsion

轴Shaft ——发生扭转变形的杆件。

圆轴扭转Torsional Loads on Circular Shafts

工程背景Background:

力学模型model

扭转变形的特点:

1)受力特点在杆件两端垂直于杆轴线的平面内作用一对大小相等,方向相反的外力偶。

2)变形特点横截面绕轴线发生相对转动,出现扭转变形。

6.2 扭矩和扭矩图

首先计算作用于轴上的外力偶矩,再分析圆轴横截面的内力,然后计算轴的应力和变形,最后进行轴的强度及刚度计算。

6.2.1外力偶矩的计算

式中,M e 为外力偶矩Torque (N·mm );

P Power 为功率(kW );

n为转速Rotational velocity (r/min )。

主动轮的输入功率所产生的力偶矩转向与轴的转向相同;

从动轮的输出功率所产生的力偶矩转向与轴的转向相反。

6.2.2圆轴扭转时的内力——扭矩torque

截面法求横截面的内力

规定扭矩的正负(右手螺旋法则):

以右手手心对着轴,四指沿扭矩的方向屈起,拇指的方向离开截面,扭矩为正,反之为负。

6.2.3扭矩图

例输入一个不变转矩Me1 ,不计摩擦,轴输出的阻力矩为Me2 =2Me1 /3,Me3 =Me1 /3,外力偶矩Me1 、Me2 、Me3 将轴

分为AB和BC两段,应用截面法可求出各段横截面的扭矩。

扭矩图——用平行于杆轴线的x 坐标表示横截面的位置,用垂直于x 轴的坐标M T 表示横截面扭矩的大小,描画出截面扭矩随截面位置变化的曲线。

6.3 圆轴扭转时横截面上的应力和强度计算

6.3.1圆轴扭转时横截面上的应力

?受扭圆轴横截面上有何应力?

?应力如何计算?

应力与变形有关,观察变形:Torsion Shaft Deformation

在小变形的情况下:

(1)各圆周线的形状、大小及圆周线之间的距离均无变化;各圆周线绕轴线转动了不同的角度。

(2)所有纵向线仍近似地为直线,只是同时倾斜了同一角度g 。

扭转变形的平面假设:圆轴扭转时,横截面保持平面,并且只在原地发生刚性转动。

在平面假设的基础上,扭转变形可以看作是各横截面像刚性平面一样,绕轴线作相对转动,由此可以得出:(1)扭转变形时,由于圆轴相邻横截面间的距离不变,即圆轴没有纵向变形发生,所以横截面上没有正应力。

(2)扭转变形时,各纵向线同时倾斜了相同的角度;各横截面绕轴线转动了不同的角度,相邻截面产生了相对转动并相互错动,发生了剪切变形,所以横截面上有切应力。

根据静力平衡条件,推导出截面上任一点的切应力计算公式

式中,t r 为横截面上任一点的切应力(MPa );M T 为横截面上的扭矩(N mm );r 为欲求应力的点到圆心的距离(mm );I r 为截面对圆心的极惯性矩(mm 4 )。

圆轴扭转时,横截面边缘上各点的切应力最大( r= R ),其值为

式中,Wp 为抗扭截面系数(mm 3 )

极惯性矩与抗扭截面系数表示了截面的几何性质,其大小与截面的形状和尺寸有关。

(1) 实心轴Solid Shaft 设直径为D,则

(2)空心轴Hollow Shaft 设外径为D ,内径为d ,a = d / D

6.3.2圆轴扭转时的强度计算

对于阶梯轴,因为抗扭截面系数W p 不是常量,最大工作应力t max 不一定发生在最大扭矩M Tmax 所在的截面上。要综合考虑扭矩M T 和抗扭截面系数W p ,按这两个因素来确定最大切应力t max 。

6.4 圆轴扭转时的变形和刚度计算

6.4.1圆轴扭转时的变形Torsion Shaft Deformation

扭角Angle of Twist ——圆轴扭转时,任意两横截面产生的相对角位移。

扭角 f 是扭转变形的变形度量。

两横截面相距越远,它的扭角就越大。

等直圆轴的扭角f 的大小与扭矩M T及轴的长度L成正比,与横截面的极惯性矩I p 成反比,引入比例常数G

f为扭角(rad);G为材料的切变模量(GPa)。

当扭矩M T及杆长L一定时,GI p越大,扭角f就越小,GI p 反映了圆轴抵抗扭转变形的能力,称为轴的抗扭刚度。如果两截面之间的扭矩值有变化,或轴径不同,则应分段计算出相应各段的扭角,然后叠加。

6.4.2扭转时的刚度计算

等直圆轴的刚度条件:最大单位长度扭角小于或等于许用单位长度扭角。

应用扭转强度条件:校核强度、设计截面和确定许可载荷。

圆轴扭转练习带答案

第六章圆轴的扭转 一、填空题 1、圆轴扭转时的受力特点是:一对外力偶的作用面均_______于轴的轴线,其转向______。 2、圆轴扭转变形的特点是:轴的横截面积绕其轴线发生________。 3、在受扭转圆轴的横截面上,其扭矩的大小等于该截面一侧(左侧或右侧)轴段上所有外力偶矩的 _______。 4、圆轴扭转时,横截面上任意点的切应力与该点到圆心的距离成___________。 5、试观察圆轴的扭转变形,位于同一截面上不同点的变形大小与到圆轴轴线的距离有关,显然截面边缘上各点的变形为最_______,而圆心的变形为__________。 6、圆轴扭转时,在横截面上距圆心等距离的各点其切应力必然_________。 7、从观察受扭转圆轴横截面的大小、形状及相互之间的轴向间距不改变这一现象,可以看出轴的横截面上无____________力。 8、圆轴扭转时,横截面上切应力的大小沿半径呈______规律分布。 10、圆轴扭转时,横截面上内力系合成的结果是力偶,力偶作用于面垂直于轴线,相应的横截面上各点的切应力应垂直于_________。 11、受扭圆轴横截面内同一圆周上各点的切应力大小是_______的。 12、产生扭转变形的一实心轴和空心轴的材料相同,当二者的扭转强度一样时,它们的_________截面系数应相等。 13、横截面面积相等的实心轴和空心轴相比,虽材料相同,但_________轴的抗扭承载能力要强些。16、直径和长度均相等的两根轴,其横截面扭矩也相等,而材料不同,因此它们的最大剪应力是 ________同的,扭转角是_______同的。 17、产生扭转变形的实心圆轴,若使直径增大一倍,而其他条件不改变,则扭转角将变为原来的 _________。 18、两材料、重量及长度均相同的实心轴和空心轴,从利于提高抗扭刚度的角度考虑,以采用 _________轴更为合理些。 二、判断题 1、只要在杆件的两端作用两个大小相等、方向相反的外力偶,杆件就会发生扭转变形。() 2、一转动圆轴,所受外力偶的方向不一定与轴的转向一致。() 3、传递一定功率的传动轴的转速越高,其横截面上所受的扭矩也就越大。() 4、受扭杆件横截面上扭矩的大小,不仅与杆件所受外力偶的力偶矩大小有关,而且与杆件横截面的形状、尺寸也有关。() 5、扭矩就是受扭杆件某一横截面在、右两部分在该横截面上相互作用的分布内力系合力偶矩。()

扭转实验报告

浙江大学材料力学实验报告 (实验项目:扭转) 1. 验证扭转变形公式,测定低碳钢的切变模量G 。; 2. 测定低碳钢和铸铁的剪切强度极限b τ。 3. 比较低碳钢和铸铁试样受扭时的变形规律及其破坏特性。 二、设备及试样: 1. 扭转试验机,如不进行破坏性试验,验证变形公式合测定G 的实验也可在小型扭转试验 机装置上完成; 2. 扭角仪; 3. 游标卡尺; 4. 试样,扭装试样一般为圆截面。 三、实验原理和方法: 1、测定切变模量G A 、机测法:0p T l G I φ= ,其中b δ φ=,δ为百分表读数,p I 为圆截面的极惯性矩; 选取初扭矩To 和比例极限内最大试验扭矩Tn,从To 到Tn 分成n 级加载,每级扭矩增量为 T ?,每一个扭矩Ti 都可测出相应的扭角φi ,与扭矩增量T ?对应的扭角增量是 1i i i φφφ-?=-,则有0 i p i T l G I φ?= ?,i=1,2,3,…n,取Gi 的平均值作为材料的切变模量即: 1 i G G n = ∑,i=1,2,3,…n ; B 、电测法:t r t T T G W W γε= =,应变仪读数为r ε,t W 为抗扭截面系数; 选取初扭矩To 和比例极限内最大试验扭矩Tn,从To 到Tn 分成n 级加载,每级扭矩增量为T ?,每一个扭矩Ti 都可测出相应的读数εi ,与扭矩增量T ?对应的读数增量是1i i i εεε-?=-,则有i t i T G W ε?= ?,i=1,2,3,…n,取Gi 的平均值作为材料的切变模量即: 1 i G G n =∑, i=1,2,3,…n 2、测定低碳钢和铸铁的剪切强度极限b τ

扭转破坏实验实验报告

篇一:扭转实验报告 一、实验目的和要求 1、测定低碳钢的剪切屈服点?s、剪切强度?b,观察扭矩-转角曲线(t??曲线)。 2、观察低碳钢试样扭转破坏断口形貌。 3、测定低碳钢的剪切弹性模量g。 4、验证圆截面杆扭转变形的胡克定律(??tl/gip)。 5、依据低碳钢的弹性模量,大概计算出低碳钢材料的泊松比。 二、试验设备和仪器 1、微机控制扭转试验机。 2、游标卡尺。 3、装夹工具。 三、实验原理和方法 遵照国家标准(gb/t10128-1998)采用圆截面试样的扭转试验,可以测定各种工程材料在纯剪切情况下的力学性能。如材料的剪切屈服强度点?s和抗剪强度?b等。圆截面试样必须按上述国家标准制成(如图1-1所示)。试验两端的夹持段铣削为平面,这样可以有效地防止试验时试样在试验机卡头中打滑。 图 1-1 试验机软件的绘图系统可绘制扭矩-扭转角曲线,简称扭转曲线(图1-2中的曲线)。图3-2 从图1-2可以看到,低碳钢试样的扭转试验曲线由弹性阶段(oa段)、屈服阶段(ab段)和强化阶段(cd段)构成,但屈服阶段和强化阶段均不像拉伸试验曲线中那么明显。由于强化阶段的过程很长,图中只绘出其开始阶段和最后阶段,破坏时试验段的扭转角可达10?以上。从扭转试验机上可以读取试样的屈服扭矩破坏扭矩由算材料的剪切屈服强度抗剪强度式中:试样截面的抗扭截面系数。 ts和tb。和?s?3ts/4wt计?s和?b,wt??d0/16为 3?s?3ts/4wt计算材料的剪切屈服强度?s和抗剪强度?b,式中:wt??d0/16 3 为试样截面的抗扭截面系数。 当圆截面试样横截面的最外层切应力达到剪切屈服点?s时,占横截面绝大部分的内层切应力仍低于弹性极限,因而此时试样仍表现为弹性行为,没有明显的屈服现象。当扭矩继续增加使横截面大部分区域的切应力均达到剪切屈服点?s时,试样会表现出明显的屈服现象,此时的扭矩比真实的屈服扭矩ts要大一些,对于破坏扭矩也会有同样的情况。 图1-3所示为低碳钢试样的扭转破坏断口,破坏断面与横截面重合,断面是最大切应力作用面,断口较为平齐,可知为剪切破坏。 图 1-3材料的剪切弹性模量g遵照国家标准(gb/t10128-1988)可由圆截面试样的扭转试验测定。在弹性范围内进行圆截面试样扭转试验时,扭矩和扭转角之间的关系符合扭转变形的胡克定律 ??tlp 4 i??d0为截,式中:p 面的极惯性矩。当试样长度l和极惯性矩ip均为已知时,只要测取扭矩增量 ?t和相应的扭转角增量??,可由式 g? ?t?l ???ip 计算得到材料的剪切弹性模量。实验通常采用多级等增量加载法,这样不仅可以避免人为读取数据产生的误差,而且可以通过每次载荷增量和扭转角增量验证扭转变形的胡克定律。 四、实验步骤 1、测量低碳钢试样直径d1,长度l; 2、装夹试样;在试样上安装扭角测试装置,将一个定

第八章 杆件的扭转

第八章杆件的扭转 一、判断题 8-1、在材料和横截面积相同的情况下,空心圆截面杆的抗扭能力高于实心圆杆。 ()8-2、直径、长度相同,而材料不同的两根圆轴,在相同的扭矩作用下,它们的最大切应力相同。()8-3、圆轴扭转时,横截面同一圆周上各点的切应力大小不全相同。()8-4、从节省材料和减少重量考虑,汽车传动轴都采用空心轴。() 二、单项选择题 8-1、直径为d的实心圆轴抗扭截面系数W t=()。 A、πd3/16 B、πd3/32 C、πd4/16 D、πd4/32 8-2、圆轴扭转时,横截面同一圆周上各点的切应力大小()。 A、部分相同 B、全相同 C、全不同 D、以上全不正确 8-3、用铝和钢制成的两根圆截面轴,尺寸相同,所受外力偶矩相同,则两轴上的最大切应力()。 A、相同 B、钢轴大 C、铝轴大 D、不能确定 三、计算题 8-1、作出图8-1所示各轴的扭矩图。 图8-1

8-2、某传动轴(图8-2)转速n=400r/min,主动轮2的输入功率为60KW,从动轮1、3、4和5的输入功率分别为18KW,12KW,22KW,8KW。试画出该轴的扭矩图。 图8-2 8-3、阶梯轴AB如图8-3所示。AC段d1=40mm,BC段直径为d2=70mm,B轮输入功率P B=35kW,A轮的输出功率P A=15kW,轴匀速转动,转速n=200r/min,G=80GPa,[τ]=60MPa,轴的[θ]=2°/m。试校核轴的强度和刚度。 图8-3

图 8-4 8-4、如图8-4所示,AB 轴的转速n=120r/min ,从B 轮输入功率P=44kW ,此功率一半通过齿轮传给垂直轴,另一半 由水平轴输出。已知[ ]=20MPa , D 1=24cm ,d 1=10cm ,d 2=8cm ,d 3=6cm 。 试对各轴进行强度校核。

扭转实验报告

浙江大学材料力学实验报告 (实验项目:扭转) 1. 验证扭转变形公式,测定低碳钢的切变模量G 。; 2. 测定低碳钢和铸铁的剪切强度极限b τ。 3. 比较低碳钢和铸铁试样受扭时的变形规律及其破坏特性。 二、设备及试样: 1. 扭转试验机,如不进行破坏性试验,验证变形公式合测定G的实验也可在小型扭转试验 机装置上完成; 2. 扭角仪; 3. 游标卡尺; 4. 试样,扭装试样一般为圆截面。 三、实验原理和方法: 1、测定切变模量G A、机测法:0p T l G I φ= ,其中b δ φ=,δ为百分表读数,p I 为圆截面的极惯性矩; 选取初扭矩T o和比例极限内最大试验扭矩Tn,从To 到Tn 分成n级加载,每级扭矩增量为T ?,每一个扭矩Ti 都可测出相应的扭角φi ,与扭矩增量T ?对应的扭角增量是1i i i φφφ-?=-,则有0 i p i T l G I φ?= ?,i =1,2,3,…n,取Gi 的平均值作为材料的切变模量即: 1 i G G n = ∑,i=1,2,3,…n ; B 、电测法:t r t T T G W W γε= =,应变仪读数为r ε,t W 为抗扭截面系数; 选取初扭矩To 和比例极限内最大试验扭矩T n,从To 到Tn 分成n 级加载,每级扭矩增量为T ?,每一个扭矩Ti 都可测出相应的读数εi ,与扭矩增量T ?对应的读数增量是1i i i εεε-?=-,则有i t i T G W ε?= ?,i=1,2,3,…n,取Gi 的平均值作为材料的切变模量即: 1 i G G n = ∑,i=1,2,3,…n 2、测定低碳钢和铸铁的剪切强度极限b τ

圆轴扭转时的应力与强度计算 许秀兰

教学设计--圆轴扭转时的应力与强度计算学 校 潍坊工商职业学校 执教人许秀兰授课 班级 13机电一、二班 课程名 称工程力学课 时 2节(90分钟) 课题第九章第二节 圆轴扭转时的应 力与强度计算 课 型 新授课 一、教材及教学内容分析 1.使用教材21世纪高职高专规划教材《工程力学》机械工业出版社张秉荣等主编 2.本章教材处理本章共三节:从扭转概念入手,对圆轴扭转时的内力、应力和变形进行分析,并给出扭转变形的强度和刚度的计算与校核方法。根据教学过程以及学生构建知识的思维方式,将本章五节的知识内容融为一体,安排6个课时如下: 第一、二课时扭转的概念、扭矩与扭矩图 第一部分 第三、四课时圆轴扭转时的应力与强度计算 第五、六课时圆轴扭转时的变形与刚度计算 3.教学内容分析第九章第二节圆轴扭转时的应力与强度计算 圆轴扭转时的应力 惯性矩I p和抗扭截面系数W p 圆轴发生扭转时强度计算 (1)教材的缺陷:教材中本节内容中的圆轴扭转时的应力分布规律及切应力公式的推导,理论性较强,且用到高等数学中相关的积分与求导知识,不便于学生理解与学习。 (2)教学内容的处理:为此对本节教学内容进行重新整合,力求以应用为导向,在基础理论的学习上,坚持必需、够用的原则,简化理论推导过程,注重理论应教材本节内容结构

用。 二、教学对象分析 1.学情分析 ①学生对学习工程力学有一定的热情,能在老师的引导下展开学习活动;但对学习缺乏主动性,在学习过程中对自己的学习进行调节、监控的能力较弱; ②学生分析问题、解决问题能力较差,抽象思维水平较低;但喜欢动手操作,习惯于直观性较强的学习方式; ③该班学生初步形成了民主、平等、互助的学习气氛,有利于老师在课堂上展开形式多样的教学活动。 2.分组方式全班学生分成五个小组。把学习成绩最好及学习积极性高的学生分成两组,其余的学生分为三个小组,每组由成绩中等的学生带领成绩较差的学生进行学习。 三、教学目标 1、知识目标:①掌握圆轴扭转的内力分布规律及切应力的求解; ②掌握圆轴扭转的强度条件; ③能灵活运用圆轴扭转的强度条件进行相关计算。 2、能力目标:①具有将工程实例简化成力学计算模型的能力 ②具有对构件进行承载能力验算的能力 ③具有观察问题、分析问题和解决问题的能力 3、情感目标:①善于思考,具有创新意识 ②具有一定的沟通知识和技巧 ③具有与人合作的精神和认真严谨的学习态度

圆轴扭转仿真

此项的应力分析: 圆轴扭转仿真 实验 班级____机设1214_____ 姓名_____吴志和______ 学号___09121537______ 指导老师____曾德江鲍仲辅 完成时间___2013-10-27_____

目录 目录 (2) 图表清单 (3) 模型信息 (4) 算例属性 (4) 单位 (4) 材料属性 (4) 载荷和约束 (5) 网格信息 (5) 传感器结果 (6) 反作用力 (6) 自由实体力 (6) 横梁.......................................................................... 错误!未定义书签。算例结果.. (6) 结论 (9)

图表清单 圆轴扭转仿真实验-圆轴扭转仿真-应力-应力1 (7) 圆轴扭转仿真实验-圆轴扭转仿真-位移-位移1 (8) 圆轴扭转仿真实验-圆轴扭转仿真-应变-应变1错误!未定义书签。

假设 模型信息 文档名称配置文档路径修改日期 圆轴扭转仿真实验默认C:\Users\Administrator\Desktop\ 圆轴扭转仿真实验.SLDPRT Sat Nov 02 20:19:01 2013 算例属性 算例名称圆轴扭转仿真 分析类型Static 网格类型: 实体网格 解算器类型FFEPlus 平面内效果: 关闭 软弹簧: 关闭 惯性卸除: 关闭 热力效果: 输入温度 零应变温度298.000000 单位Kelvin 包括SolidWorks Flow Simulation 中的液压效 应 关闭 摩擦: 关闭 为表面接触忽略间隙关闭 使用自适应方法: 关闭 单位 单位系统: 公制 长度/位移mm 温度Kelvin 角速度rad/s 应力/压力N/m^2 材料属性 号数实体名称材料质量体积 1 SolidBody 1(凸台 -拉伸1) 1023 碳钢板 (SS) 17.3362 kg 0.00220618 m^3 材料名称: 1023 碳钢板(SS)

金属材料的扭转实验报告

金属材料的扭转实验报告 1.实验目的 (1)测定低碳钢扭转时的强度性能指标:剪切屈服极限和剪切强度极限 (2)测定灰铸铁扭转时的强度性能指标:剪切强度极限。 (3)绘制低碳钢和灰铸铁的扭转图,比较低碳钢和灰铸铁的扭转破坏形式。(4)了解电子式扭转实验机的构造,原理和操作方法。 2.实验设备和仪器 (1)扭转实验机 (2)游标卡尺 3.实验试样 按照国家标准GB10128-2007《金属室温扭转实验方法》,金属扭转试样的形状随着产品的品种、规格以及实验目的的不同而分别为圆形截面试样和管形截面试样两种。其中最常用的是圆形截面试样。 4.实验步骤 (1)测量试样的直径。 (2)将试样安装到扭转实验机上,运行应用软件,预制实验条件、参数。(3)开始“实验”按钮,匀速缓慢加载,跟踪观察试样的屈服现象和实时曲线,待屈服过程之后,提高实验机的加载速度,直至试样被扭断为止。 (4)取下拉断的试样,进行实验数据和曲线及实验报告处理。 (5)测定灰铸铁扭转时的强度性能指标步骤与低碳钢扭转基本一致,但只需要测量扭断值。 5.实验原理与方法 (1)扭转力学性能试验 式样在外力偶矩的作用下,其上任意一点处于纯剪切应力状态。随着外力偶矩的增加,力矩与扭转角呈线性关系,直至力矩的示数值出现一个维持的平台,这是所指示的外力偶矩的数值即为屈服扭矩Te。按弹性扭转公式计算的剪切屈服应力为τe=Te/Wp,式中:Wp=πd3/16为式样在标距内的抗扭截面系数。在测出

屈服扭矩Te后,可加快实验机加载速度,直到式样被扭断为止。实验机记录下最大扭矩Tm,剪切强度极限为τm=Tm/Wp。如上所述,名义剪切应力τe,τm等,是按弹性公式计算的,他是假设式样横截面上的剪切应力为线性分布,外表最大,形心为零,这在现行弹性阶段是对的。 (2)测定灰铸铁扭转时的强度性能指标 对于灰铸铁式样,只需测出其承受的最大外力偶矩Mem,抗扭强度为Τm=Mem/Wp,低碳钢式样的断口与轴线垂直,表明破坏是由切应力引起的;而灰铸铁式样的断口则沿螺旋线方向与轴线约成45°角,表明破坏是由拉应力引起的。 6.实验数据 (1)低碳钢:剪切屈服极限τe=3M es/4W p=122.422MPa 剪切强度极限τm=3M em/4W p=373.110MPa (2)铸铁:剪切强度极限τm=M em/4W p =144.396MPa 试样材料试件直径 d/mm 抗扭截面模量 W p/mm2 屈服时扭矩 T e=M es/(N·m m) 最大扭矩 T m=M em(N·m m) 低碳钢10196.349532.0597680铸铁10196.349528352

轴扭转计算

第5章扭转 5.1 扭转的概念及外力偶矩的计算 5.1.1、扭转的概念 在工程实际中,有很多以扭转变形为主的杆件。例如图示 5.1,常用的螺丝刀拧螺钉。 图5.1 图示5.2,用手电钻钻孔,螺丝刀杆和钻头都是受扭的杆件。 图5.2 图示5.3,载重汽车的传动轴。 图5.3 图示5.4,挖掘机的传动轴。 图5.4 图5.5所示,雨蓬由雨蓬梁和雨蓬板组成(图5.5a),雨蓬梁每米的长度上承受由雨蓬板传来均布力矩,根据平衡条件,雨蓬梁嵌固的两端必然产生大小相等、方向相反的反力矩(图5.5b),雨蓬梁处于受扭状态。 图5.5 分析以上受扭杆件的特点,作用于垂直杆轴平面内的力偶使杆引起的变形,称扭转变形。变形后杆件各横截面之间绕杆轴线相对转动了一个角度,称为扭转角,用 表示,如图5.6所示。以扭转变形为主要变形的直杆称为轴。 图5.6

本章着重讨论圆截面杆的扭转应力和变形计算。 5.1.2、外力偶矩的计算 工程中常用的传动轴(图)是通过转动传递动力的构件,其外力偶矩一般不是直接给出的,通常已知轴所传递的功率和轴的转速。根据理论力学中的公式,可导出外力偶矩、功率和转速之间的关系为: n N m 9550= (5.1) 式中 m----作用在轴上的外力偶矩,单位为m N ?; N-----轴传递的功率,单位为kW ; n------轴的转速,单位为r/min 。 图5.7 5.2 圆轴扭转时横截面上的内力及扭矩图 5.2.1 扭矩 已知受扭圆轴外力偶矩,可以利用截面法求任意横截面的内力。图5.8a 为受扭圆轴,设外力偶矩为e M ,求距A 端为x 的任意截面n m -上的内力。假设在n m -截面将圆轴截开,取左部分为研究对象(图5.8b ),由平衡条件0=∑x M ,得内力偶矩T 和外力偶矩e M 的关系 内力偶矩T 称为扭矩。 扭矩的正负号规定为:自截面的外法线向截面看,逆时针转向为正,顺时针转向为负。 图5.8 图示5.8的b 和c ,从同一截面截出的扭矩均为正号。扭矩的单位是m N ?或m kN ?。 5.2.2 扭矩图 为了清楚地表示扭矩沿轴线变化的规律,以便于确定危险截面,常用与轴线平行的x 坐标表示横截面的位置,以与之垂直的坐标表示相应横截面的扭矩,把计算结果按比例绘在图上,

圆轴扭转时的变形和刚度条件

第10讲教学方案 ——圆轴扭转时的变形和刚度条件 非圆截面杆的扭转 基 本 内 容 圆轴扭转时的变形和刚度条件、矩形截面杆扭转时的应力与变形 教 学 目 的 1、掌握圆轴扭转时变形及变形程度的描述与计算。 2、掌握刚度条件的建立及利用刚度条件进行相关计算。 3、了解圆柱形密圈螺旋弹簧的应力和变形计算。 4、了解矩形截面杆扭转时的横截面上的应力分布与变形计算。 重 点 难 点 本节重点:圆轴扭转时变形及变形程度的描述与计算,刚度条件的建立及相关计算。 本节难点:对圆轴变形程度的理解。

§4-6 圆轴扭转时的变形和刚度条件 扭转角是指受扭构件上两个横截面绕轴线的相对转角。对于圆轴,由式(4-10) p GI Tdx d =φ 所以 p l 0p l GI Tl dx GI T d ===∫ ∫φφ(rad ) (4-17) 式中称为圆轴的抗扭刚度,它为剪切模量p GI 与极惯性矩乘积。越大,则扭转角p GI φ越小。 让dx d φ ?= ,为单位长度相对扭角,则有p GI T = ?(rad/m ) 扭转的刚度条件: []??≤= P max GI T (rad/m ) (4-18) 或 []?π ?≤×= 180GI T P max (°/m ) (4-19) 例4-3 如图4-13的传动轴,500=n r/min ,5001=N 马力,2002=N 马力,马力,已知[]300 3=N 70=τMPa ,[]1=?°/m ,GPa 。求:确定AB 和BC 段直径。 80=G 解: 1)计算外力偶矩 70247024 1 ==n N m A (N ·m ) 6.28097024 2 ==n N m B (N ·m ) 4.42147024 3 ==n N m C (N ·m ) 作扭矩T 图,如图4-13b 所示。 2)计算直径 d AB 段:由强度条件,

范钦珊版材料力学习题全解第4章圆轴扭转时的强度与刚度计算.

解:1、轴的强度计算M T τ 轴max = x = 1 3 ≤ 60 × 10 6 Wp1 π d 16 T1 ≤ 60 × 10 6 × 2、轴套的强度计算π × 66 3 × 10 ?9 = 3387 N ? m 16 习题 4-6 图τ 套 max = Mx T2 = ≤ 60 × 106 3 68 4 ? Wp2 πD ??1 ? ( ? 16 ? 80 ? 6 ?? 17 ? 4 ? π × 80 3 ?9 T2 ≤ 60 × 10 × × 10 ?1 ? ??? = 2883 N ? m 16 ??? 20 ??? 3、结论Tmax ≤ T2 = 2883 N ? m = 2.883 kN ? m 4-7 图示开口和闭口薄壁圆管横截面的平均直径均为 D、壁厚均为δ ,横截面上的扭矩均为 T = Mx。试:习题 4-7 图1.证明闭口圆管受扭时横截面上最大剪应力 6 τ max ≈ τ max ≈ 2M x δπ D2 3M x 2.证明开口圆管受扭时横截面上最大剪应力δ 2πD 3.画出两种情形下,剪应力沿壁厚方向的分布。解:1.证明闭口圆管受扭时横截面上最大剪应力由于是薄壁,所以圆环横截面上的剪应力可以认为沿壁厚均匀分布(图 a1),于是有习题 4-7 解图Mx = ∫ A D D ? τd A = ? τ ? π Dδ 2 2 由此得到δπ D 2 δπ D2 2.证明开口圆管受扭时横截面上最大剪应力根据狭长矩形扭转剪应力公式,有3M x 3M x 3M x τ max = = = 2 2 hb π D ?δ δ 2π D τ= 2M x 即:τ max = 2M x 3.画出两种情形下,剪应力沿壁厚方向的分布两种情形下剪应

圆轴的扭转

第八章 圆轴的扭转 工程构件一般可分为三类。第四章已指出:杆是某一方向尺寸远大于其它二方向尺寸的构件,若杆件的轴线为直线,则称为直杆。此外,若构件在某一方向的尺寸远小于其它二方向的尺寸,称之为板。若构件在x 、y 、z 三个方向的尺寸具有相同的数量级,则称为块体。本课程主要讨论直杆,这是一种最简单的构件。 如同4.4节所述,在空间任意力系的作用下,杆件截面内力的最一般情况是六个分量都不为零,其变形是很复杂的。为了简化讨论,我们将杆的基本变形分成为三类,即拉压、扭转、弯曲,如图4.3所示。 前面已经讨论了在轴向载荷作用下杆的拉伸和压缩;现在再来研究杆的另一类基本变形,即扭转问题。 §8.1 扭转的概念和实例 工程中承受扭转的构件是很常见的。如图8.1所示的汽车转向轴,驾驶员操纵方向盘将力偶作用于转向轴AB 的上端,转向轴的下端B 则受到来自转向器的阻抗力偶的作用,使转向轴AB 发生扭转。又如图8.2中的传动轴,轮C 上作用着主动力偶矩,使轴转动;轮D 输出功率,受到阻力偶矩的作用,轴CD 也将发生扭转。 以上二例都是承受扭转的构件实例。由于工程中承受扭转的构件大多为圆截面直杆,故称之为轴。本章亦仅限于讨论直圆轴的扭转问题。 图8.2 传动轴

图8.3所示为等截面直圆轴扭转问题的示意图。 扭转问题的受力特点是:在各垂直于轴线的平面内承受力偶作用。如在图8.3中,圆轴AB 段两端垂直于轴线的平面内,各作用有一个外力偶M 0,此二力偶的力偶矩相等而转向相反,故是满足平衡方程的。圆轴扭转问题的变形特点是:在上述外力偶系的作用下,圆轴各横截面将绕其轴线发生相对转动;任意两横截面间相对转过的角度,称为相对扭转角,以φ表示。图8.3中,φAB 表示截面B 相对于截面A 的扭转角。必须指出,工程中的传动轴,除受扭转作用外, 往往还伴随有弯曲、拉伸(压缩)等其它形式的变形。这类问题属于组合变形,将在以后研究。 §8.2 扭矩与扭矩图 已知轴所传递的功率、转速,可利用6.3节提供的“功率、转速与传递的扭矩之关系”来计算作用于传动轴上的外力偶矩M 0。M 0给出以后,即可用截面法确定扭转轴各横截面上的内力。显然,对于承受扭转作用的轴,横截面上的内力是作用于截面上的内力偶矩,称之为扭矩。 为确定图8.4(a )所示之扭转轴内任意横截面C 上的内力,可截取左段为研究对象,如图8.4(b)所示。截面C 上的内力(扭矩)记为M T ,由平衡方程有: M x =M T -M 0=0 图8.3 扭转及扭转角 (b) (c) 图8.4 截面上的扭矩

第 4 章 圆轴扭转时的强度与刚度计算

基础篇之四 第4章 圆轴扭转时的强度与刚度计算 杆的两端承受大小相等、方向相反、作用平面垂直于杆件轴线的两个力偶,杆的任意两横截面将绕轴线相对转动,这种受力与变形形式称为扭转(torsion )。 本章主要分析圆轴扭转时横截面上的剪应力以及两相邻横截面的相对扭转角,同时介绍圆轴扭转时的强度与刚度设计方法。 4-1 外加扭力矩、扭矩与扭矩图 作用于构件的外扭矩与机器的转速、功率有关。在传动轴计算中,通常给出传动功率P 和转递n ,则传动轴所受的外加扭力矩M e 可用下式计算: [][] e kw 9549 [N m]r /min P M n =? 其中P 为功率,单位为千瓦(kW );n 为轴的转速,单位为转/分(r/min )。如功率P 单位用马力(1马力=735.5 N ?m/s ),则 e [] 7024 [N m][r /min] P M n =?马力 外加扭力矩M e 确定后,应用截面法可以确定横截面上的内力—扭矩,圆轴两端受外加扭力矩M e 作用时,横截面上将产生分布剪应力,这些剪应力将组成对横截面中心的合力矩,称为扭矩(twist moment ),用M x 表示。 图4-1 受扭转的圆轴 用假想截面m -m 将圆轴截成Ⅰ、Ⅱ两部分,考虑其中任意部分的平衡,有 M x -M e = 0 由此得到

图4-3 剪应力互等 M x = M e 与轴力正负号约定相似,圆轴上同一处两侧横截面上的扭矩必须具有相同的正负号。因此约定为:按右手定则确定扭矩矢量,如果横截面上的扭矩矢量方向与截面的外法线方向一致,则扭矩为正;相反为负。据此,图4-1b 和c 中的同一横截面上的扭矩均为正。 当圆轴上作用有多个外加集中力矩或分布力矩时,进行强度计算时需要知道何处扭矩最大,因而有必要用图形描述横截面上扭矩沿轴线的变化,这种图形称为扭矩图。绘制扭矩图的方法与过程与轴力图类似,故不赘述。 【例题4-1】 变截面传动轴承受外加扭力矩作用,如图4-2a 所示。试画出扭矩图。 解:用假想截面从AB 段任一位置(坐标为x )处截开,由左段平衡得: M x = -2M e 0x l ? ≥≥ 因为扭矩矢量与截面外法线方向相反,故为负。 同样,从BC 段任一位置处将轴截为两部分,由右段平衡得到BC 段的扭矩: M x = +3M e 2l x l + ≥≥ 因为这一段扭矩矢量与截面外法线方向相同,故为正。 建立OM x x 坐标,将上述所得各段的扭矩标在坐标系中,连图线即可作出扭矩图,如图4-2b 所示。 从扭矩图可以看出,在B 截面处扭矩有突变,其突变数值等于该处的集中外加扭力矩的数值。这一结论也可以从B 截面处左、右侧截开所得局部的平衡条件加以证明。 4-2 剪应力互等定理 剪切胡克定律 4-2-1 剪应力互等定理 考察承受剪应力作用的微元元体(图4-3),假设作用在微元左、右面上的剪应力为τ ,这两个面上的剪应力与其作用面积的乘积,形成一对力,二者组成一力偶。为了平衡这一力偶,微元的上、下面上必然存在剪应力τˊ,二者与其作用面积相乘 后形成一对力,组成另一力偶,为保持微元的平衡 图4-2 例题4-1图

圆轴扭转实验

圆轴扭转实验 一、实验目的和内容 1、测定低碳钢的剪切屈服极限s τ及剪切强度极限b τ。 2、测定铸铁的剪切强度极限b τ。 3、观察并分析低碳钢和铸铁试件的扭转破坏形式。 二、试验设备 1、扭转试验机(K-50型或NJ-100B 型)。 2、游标卡尺。 三、实验原理 由实心圆试件进行扭转试验,记录了?-n M 图,见图6-5须经过作图计算才能或得较正确的γτ-图(参见第二章),从而确定有关的强度指标,如屈服极限s τ及强度极限b τ。下面根据实验过程,介绍计算s τ及b τ的近似方法。 图6-5 当外力偶较小时,试件上的扭矩和扭转角成正比关系。随着外力偶的不断增加,试件横截面外边缘各点的应力首先达到材料的剪切屈服极限,横截面内部各点仍然处于弹性范围。此时?-n M 关系开始偏离直线,我们就把图6-5所示的B 点的纵坐标作为s n M ,按第二章所述的近似理论公式计算得 p n s W M s 43= τ (6.2) 式中16 2 d W p π= ,是试件抗扭截面模量。 继续增加外力偶,试件横截面上,由边缘向里应力逐步达到屈服极限进而发生强化现象,应力达到强度极限,直到扭断。这时,可以近似认为整个横截面上的剪应力都达到材料的强度极限b τ,由此可得到下面的计算公式 p n W M b 43b = τ (6.3) 式中b n M 是试件扭转过程最大的扭矩值。 对于铸铁,认为试件直到破坏?-n M 近似保持直线关系,因此有 p n W b M b = τ (6.4)

四、实验方法和步骤 1、测量试件直径 d,打开试验机电源预热仪器。 2、将试件安装于机器夹头中,并夹紧。 3、打开实验软件,点击试样录入按钮输入试验材料、试验方法、试验编号、试样参数等。点击参数设置按钮,输入试验速度和转动夹头的转动方向、选择是否计算、试验结束条件等。 4、选择试验编号,将扭矩、扭角、转角清零。点击试验开始按钮开始试验。对于低碳钢试件在过屈服阶段后可逐渐加快试验速度。 5、当试件被扭断时,停止试验,将试件取下。 6、查看并保存数据。 7、点击“脱机”按钮,关闭实验软件。关闭试验机及计算机。 五、试验结果处理 1、试验数据记录

圆轴扭转时的应力与强度计算 许秀兰

教学设计--圆轴扭转时的应力与强度计算

1.学情分析 学生对学习工程力学有一定的热情,能在老师的引导下展开学习活动;但对学习缺乏主动性,在学习过程中对自己的学习进行调节、监控的能力较弱; 学生分析问题、解决问题能力较差,抽象思维水平较低;但喜欢动手操作,习惯于直观性较强的学习方式; 该班学生初步形成了民主、平等、互助的学习气氛,有利于老师在课堂上展开形式多样的教学活动。 2.分组方式全班学生分成五个小组。把学习成绩最好及学习积极性高的学生分成两组,其余的学生分为三个小组,每组由成绩中等的学生带领成绩较差的学生进行学习。 1、知识目标:掌握圆轴扭转的内力分布规律及切应力的求解; 掌握圆轴扭转的强度条件; 能灵活运用圆轴扭转的强度条件进行相关计算。 2、能力目标:具有将工程实例简化成力学计算模型的能力 具有对构件进行承载能力验算的能力 具有观察问题、分析问题和解决问题的能力 3、情感目标:善于思考,具有创新意识 具有一定的沟通知识和技巧 具有与人合作的精神和认真严谨的学习态度

八、教学程序 阶 段 教学内容教师活动学生活动教学意图 创 设 情 境,导入新课(5分钟)圆轴扭转时横截面上的应力 (模拟薄壁圆筒扭转实验) 教师展示 课件,模拟 薄壁圆筒 扭转实验, 积极引导 学生观 察思考, 学生根 据常识 及上节 课所学 内容回 答问题。 正式教学内容 之前,创设情 境,引起学生 的好奇与思 考,激发学生 的求知欲和内 在动机,产生 学习的愿望和 意向。

模拟练兵 提高技能 技能训练 例1:某一传动轴所传递的功率 P=80kW,其转速n=582r/min, 直径d=55mm,材料的许用切 应力MPa, 试校核该轴的强度。 例2:如图所示的实心传动轴, N k1=50KW,N k2=150KW, N k3=100KW,n=300r/min,许 用应力[τ]=100MPa,试设计此轴 的直径D。 明确提出所 求问题,巡堂 指导学生思 考、分析; ②引导学生逆 向推导所求各 项问题; ③注意根据实 际情况作出及 时的指导或提 出新的要求。 学生在 老师的引 导下,思 考所求问 题及应用 到的原理 与公式 对所求 结果能灵 活分析、 判断。 结合工程实例, 讲解圆轴扭转 强度条件应用, 培养学生分析 问题、解决问题 的能力,提高学 生的职业素养。

第八章 轴的扭转

第八章 轴的扭转 判断题: 1. 传动轴的转速越高,则轴横截面上的扭矩也越大。(错) 2. 扭矩是指杆件受扭时横截面上的内力偶矩,扭矩仅与杆件所收的外力偶矩有关,而与杆件的材料和横截面的形状大小无关。(对) 3圆截面杆扭转时的平面假设,仅在线弹性范围内成立。(错) 4. 一钢轴和一橡皮轴,两轴直径相同,受力相同,若两轴均处于弹性范围,则其横截面上的剪应力也相同。(对) 5. 铸铁圆杆在扭转和轴向拉伸时,都将在最大拉应力作用面发生断裂。(错) 6.木纹平行于杆轴的木质圆杆,扭转时沿横截面与沿纵截面剪断的可能性是相同的。(错) 7. 受扭圆轴横截面之间绕杆轴转动的相对位移,其值等于圆轴表面各点的剪应变。(错) 习题八 1.直径D =50mm 的圆轴,受到扭矩T =2.15kN.m 的作用。试求在距离轴心10mm 处的剪应 解: 4.实心轴与空心轴通过牙嵌式离合器连在一起,已知轴的转速n =1.67r/s ,传递功率N =7.4kW ,材料的[]40t =MPa ,试选择实心轴的直径1d 和内外径比值为1/2的空心轴的外径2D 。 N.m 5.机床变速箱第Ⅱ轴如图所示,轴所传递的功率为N=5.5 kW,转速n=200r/min ,材料为45钢,[]40 t =MPa ,试按强度条件设计轴的直径。

6.某机床主轴箱的一传动轴,传递外力偶矩T=5.4N.m,若材料的许用剪应力[]30 t= MPa ,G=80GN/2 m, []0.5 q= /m,试计算轴的直径。 7.驾驶盘的直径520 f=mm,加在盘上的力P=300N []60 t= MPa。(1)当竖轴为实心轴时,试设计轴的直径;(2)如采用空心轴, 试设计轴的内外直径;(3)比较实心轴和竖心轴的重量。 解:方向盘传递的力偶矩 m P? = 3 30052010- =??156 =N.m 8

扭转实验报告

(实验项目:扭转) 1. 验证扭转变形公式,测定低碳钢的切变模量G 。; 2. 测定低碳钢和铸铁的剪切强度极限b τ。 3. 比较低碳钢和铸铁试样受扭时的变形规律及其破坏特性。 二、设备及试样: 1. 扭转试验机,如不进行破坏性试验,验证变形公式合测定G 的实验也可在小型扭转试验 机装置上完成; 2. 扭角仪; 3. 游标卡尺; 4. 试样,扭装试样一般为圆截面。 三、实验原理和方法: 1、测定切变模量G A 、机测法:0p T l G I φ= ,其中b δ φ=,δ为百分表读数,p I 为圆截面的极惯性矩; 选取初扭矩To 和比例极限内最大试验扭矩Tn,从To 到Tn 分成n 级加载,每级扭矩增量为 T ?,每一个扭矩Ti 都可测出相应的扭角φi ,与扭矩增量T ?对应的扭角增量是 1i i i φφφ-?=-,则有0 i p i T l G I φ?= ?,i=1,2,3,…n,取Gi 的平均值作为材料的切变模量即: 1 i G G n = ∑,i=1,2,3,…n ; B 、电测法:t r t T T G W W γε= =,应变仪读数为r ε,t W 为抗扭截面系数; 选取初扭矩To 和比例极限内最大试验扭矩Tn,从To 到Tn 分成n 级加载,每级扭矩增量为 T ?,每一个扭矩Ti 都可测出相应的读数εi ,与扭矩增量T ?对应的读数增量是 1i i i εεε-?=-,则有i t i T G W ε?= ?,i=1,2,3,…n,取Gi 的平均值作为材料的切变模量即: 1 i G G n = ∑,i=1,2,3,…n 2、测定低碳钢和铸铁的剪切强度极限b τ 对于低碳钢:34b b t T W τ= , 而对于铸铁,变形很小即突然断裂,b τ可按线弹性公式计算,即 b b t T W τ=

圆轴扭转时的应力与强度条件

圆轴扭转时的应力与强度条件 扭转是杆件的基本变形形式之一。工程中有些杆件,因承受作用平面垂直 于杆轴线的力偶作用,而发生扭转变形。通常将这种杆件称为轴,如传动轴等。本讲主要分析圆截面杆的扭转。非圆截面杆受扭时,不能用材料力学的理论求解。 图1 圆轴的扭转 扭转变形和受力特点:杆件受到大小相等、方向相反且作用平面垂直于杆件轴线的力偶作用,杆件的横截面绕轴线产生相对转动。 ● 外力特征:力偶矩矢平行于杆的轴线。力偶矩矢方向按右手螺旋法则确定。 ● 力偶变形特点:各轴线仍为直线,杆件的任意两个横截面发生绕轴线的相对转动。 一、圆轴扭转的应力 图2 圆轴扭转的剪应力分布图 图2中, t W T =max τ (1) 式(1)中,t W 为抗扭截面模量,是仅与横截面尺寸有关的量。实心圆轴 16 3 D W n π= ,空心圆轴D d D W n 16) (44-= π。 二、扭转强度分析 为了保证圆轴安全可靠地工作,应使轴内的最大剪应力不超过材料的许用剪应力[]τ,即 A B m ax m τ

][max ττ≤= t W T (9-7) 根据圆轴扭转的强度条件,可以进行强度校核、截面设计和确定许可载荷等三大类强度计算问题。 例:传动轴上有三个齿轮,齿轮2为主动轮,齿轮1和齿轮3输出扭矩分别为N.m 3.391=m 和N.m 1553=m 。若轴的材料为45钢,[]a MP 40=τ。根据强度确定轴的直径。 解: (1) 计算力偶距m 2 。 m N m m m .3.194312=+= (2)画扭矩图。 (3)根据强度条件计算直径。 从扭矩图上可以看出,齿轮2与3 间的扭矩绝对值最大。 ][163 max max max τπτ≤== D T W T t [] m 0272.010 4014.3155 16163 6 3 max =???= ≥ τπT D 1 2 3 1 m 2 m 3 m 0.3 0.4m x T 155N.m 39.3N.m

圆轴扭转

一、填空题 1、圆轴扭转时的受力特点是:一对外力偶的作用面均_______于轴的轴线,其转向______。 2、圆轴扭转变形的特点是:轴的横截面积绕其轴线发生________。 3、在受扭转圆轴的横截面上,其扭矩的大小等于该截面一侧(左侧或右侧)轴段上所有外力偶矩的_______。 4、在扭转杆上作用集中外力偶的地方,所对应的扭矩图要发生________,_________值的大小和杆件上集中外力偶之矩相同。 5、圆轴扭转时,横截面上任意点的剪应变与该点到圆心的距离成___________。 6、试观察圆轴的扭转变形,位于同一截面上不同点的变形大小与到圆轴轴线的距离有关,显然截面边缘上各点的变形为最_______,而圆心的变形为__________。 7、圆轴扭转时,在横截面上距圆心等距离的各点其剪应变必然_________。 8、从观察受扭转圆轴横截面的大小、形状及相互之间的轴向间距不改变这一现象,可以看出轴的横截面上无____________力。 9、圆轴扭转时,横截面上剪应力的大小沿半径呈______规律分布。 10、圆轴扭转时,横截面上内力系合成的结果是力偶,力偶作用于面垂直于轴线,相应的横截面上各点的剪应力应垂直于_________。 11、受扭圆轴横截面内同一圆周上各点的剪应力大小是_______的。 12、产生扭转变形的一实心轴和空心轴的材料相同,当二者的扭转强度一样时,它们的_________截面系数应相等。 13、横截面面积相等的实心轴和空心轴相比,虽材料相同,但_________轴的抗扭承载能力要强些。 14、对于_______性材料的圆杆,扭转破坏断面是与丁轴线成45°的螺旋面,对于______性材料,扭转破坏断面是垂直于杆轴线的横截面。 15、一级减速箱中的齿轮直径大小不等,在满足相同条件的强度条件下,高速齿轮轴的直径要比低速齿轮轴的直径_________。 16、直径和长度均相等的两根轴,其横截面扭矩也相等,而材料不同,因此它们的最大剪应力是________同的,扭转角是_______同的。 17、产生扭转变形的实心圆轴,若使直径增大一倍,而其他条件不改变,则扭转角将变为原来的_________。 18、两材料、重量及长度均相同的实心轴和空心轴,从利于提高抗扭刚度的角度考虑,以采用_________轴更为合理些。 二、判断题 1、只要在杆件的两端作用两个大小相等、方向相反的外力偶,杆件就会发生扭转变形。() 2、一转动圆轴,所受外力偶的方向不一定与轴的转向一致。() 3、传递一定功率的传动轴的转速越高,其横截面上所受的扭矩也就越大。() 4、受扭杆件横截面上扭矩的大小,不仅与杆件所受外力偶的力偶矩大小有关,而且与杆件横截面的形状、尺寸也有关。() 5、扭矩就是受扭杆件某一横截面在、右两部分在该横截面上相互作用的分布内力系合力偶矩。() 6、只要知道了作用在受扭杆件某横截面以左部分或以右部分所有外力偶矩的代数和,就可以确定该横截面上的扭矩。() 7、扭矩的正负号可按如下方法来规定:运用右手螺旋法则,四指表示扭矩的转向,当拇指指向与截面外法线方向相同时规定扭矩为正;反之,规定扭矩为负。()

相关文档