文档库 最新最全的文档下载
当前位置:文档库 › 凸轮机构 (教案1)

凸轮机构 (教案1)

凸轮机构   (教案1)
凸轮机构   (教案1)

凸 轮 机 构

凸轮机构是机械中的一种常用机构,在自动化、半自动化机械中应用较为广泛。

6.1凸轮机构的特点、应用和分类

6.1.1特点

凸轮机构 是由凸轮1、从动件2和机架3所组成,如图6-1所示。

可以使从动件得到预定的运动规律;

且结构紧凑。但凸轮机构中包含有高副,不宜传递较大的动力;

同时由于凸轮具有曲线轮廓,它的加工制造比较复杂。

6.1.2应用

凸轮机构 应用于各类机械中。

图6-2所示为内燃机的配气机构;

图6-3所示为自动车床上使用的走刀机构;

此外,凸轮机构还应用于其他机械中,不一一列举。

6.1.3类型

凸轮机构的类型是多种多样的,其基本类型可由凸轮和从动件的不同型式来区分。

1.按凸轮的型式分

按凸轮型式分,各类凸轮机构如表6-1所示。

图5-1凸轮机构 图5-3自动车床走刀机构

图5-2内燃机配气机构

2.按从动件的型式分

根据从动件的运动和端部型式区分,基本类型如表6-2所示。

表6-2 凸轮机构从动件的基本类型

表6-1 凸轮的类型

6.2 从动件的运动规律

6.2.1凸轮机构的工作过程

图6-4(a )所示为对心尖顶移动从动件盘形凸轮机构。

在尖顶移动从动件盘形凸轮机构的凸轮

上以向径0r 为半径所绘的最大圆称为凸轮的

基圆。

当凸轮以ω等速沿逆时针方向回转Φ

时,从动件尖顶被凸轮轮廓推动,以一定运

动规律由离回转中心最近位置A 到达最远位

置B 的过程称为推程,这时它所走过的距离

h 称为从动件的升程;而与推程对应的凸轮

转角Φ称为推程角。

当凸轮继续回转s Φ时,以O 点为中心的

圆弧BC 与尖顶相作用,从动件在最远位置停

留不动,这一过程称为远休止,对应的凸轮转角s Φ称为远休止角;

当凸轮继续回转'Φ时,从动件在弹簧力或重力作用下,以一定运动规律回到起始位置,这个过程称为回程,对应的转角'Φ称为回程角。

当凸轮继续回转'Φs 时,从动件在最近位置停留不动为近休止,'Φs 称为近休止角。

如果以直角坐标系的纵坐标代表从动件位移S ,横坐标代表凸轮转角?(转动时间t ),则可以画出S 与?之间的曲线,它简称为从动件位移线图,见图6-4(b )。A 点为起始点. 由以上可知,从动件的位移线图取决于凸轮轮廓曲线的形状。从动件的不同运动规律,要求凸轮具有不同的轮廓曲线。因此,设计凸轮时必须首先确定从动件的运动规律。从动件的运动规律通常是根据机械的工作要求确定。

6.2.2常用从动件的运动规律

1、等速运动规律

当凸轮等速回转时,从动件上升或下降的速度为一常数,这种运动称为等速运动。图5-5为从动件等速运动时,其位移S 、速度v 和加速度a 是随时间t 变化的曲线(推程)。 由于凸轮作等速运动时,t ω?=,故横坐标也可以用?表示。其运动方程见表5-3。 由于速度V 0为常数,所以从动件的速度线图为一平行于横轴的直线。

对速度线图积分,可以得到S= V 0t ,它是一条斜直线。又由图6-5可知,

当速度为常数时,加速度为零,惯性力也等于零,但是在运动开始和终止的瞬间,由于速度突变,此时理论上的加速度为无穷大,其惯性力将引起刚性冲击。

2、等加速、等减速运动规律

这种运动规律推程前半行程作等加速运动,而后半行程作等减速运动;回程则相反,其位移S 、速度V 和加速度a 是随时间t 变化的曲线如图6-6所示。其运动方程见表6-3。

图6-4凸轮机构的运动过程及位移曲线

因加速度或减速度的绝对值相等,且等于常数a 0,故加速度线图为平行于横坐标轴的直线图;V=a 0t ,所以速度线图为两斜线;故位移线图由两段抛物线组成。

这种运动规律的特点是:加速度有突变,但为一有限值,产生的惯性力也是有限,结果表6-3 从动件运动方程

等加速、等减速运动

对凸轮机构产生柔性冲击。

3、余弦加速度运动规律

质点在圆周上作匀速运动,它在这个圆的直径上的投影所构成的运动,加速度符合余弦

规律,称为余弦加速度运动,又称简谐运动。其运动

方程见表6-3。

图6-7为余弦加速度运动规律图。由加速度线图

可知,这种运动规律的从动件在始点、终点有柔性冲

击。

4、正弦加速度运动规律

加速度按正弦规律变化的称为正弦加速度运动规

律。如图5-8所示. 其运动方程见表6-3。

推杆作正弦加速运动时,其加速度没有突变,因

而有加速度引起柔性冲击。

采用多种运动规律组合可以改善其运动特性。如

在工作中要求从动件作等速运动规律,然而等速运动

规律有刚性冲击,这时可在行程始末端拼接正弦加速

度运动规律,使其动力性能得到改善,如图6-9,选

择从动件运动规律时,应根据机器的工作要求确定,并考虑动力性能,加工等因素。

图6-9

组合型运动规图6-7余弦加速度运动 图6-8正弦加速度运动

6.3 用图解法设计凸轮

当从动件运动规律确定之后,凸轮轮廓曲线便可以用图解法和解析法得到。图解法比较简便、直观、但精度不是很高。本节介绍用图解法绘制几种常见的凸轮轮廓。

“反转法” 根据相对运动原理:如果给整个机构加绕凸轮轴心O 的公共角速度-ω,机构各构件间的相对运动不变。凸轮不动,而从动件一方面随导路以角速度-ω绕O 点转动,另一方面又在导路中往复移动。由于尖顶从动件始终与凸轮轮廓相接触,所以反转后尖顶从动件的运动轨迹就是凸轮轮廓。

6.3.1移动从动件盘形凸轮轮廓的绘制

已知 从动件位移线图6-10(b ),凸轮基圆半径0r 以及凸轮以等角速度ω顺时针回转,绘制图6-10(a )尖顶对心移动从动件盘形凸轮机构。

根据反转法原理,作图法如下:

(1)以0r 为半径作基圆,此基圆与导路的交点B 0便是从动件尖顶的起始位置。

(2)将位移曲线的推程段和回程段分别划分成若干等份

(3)从0OB 开始沿ω的相反方向在基圆上划出推程运动角Φ、远休止角s Φ、回程运动角'Φ和近休止角'Φs ,并在相应段与位移曲线对应划出若干等分,得分点'1B ,'

2B ,

图6-10尖顶对心移动从动件盘形凸轮轮廓设计

'3B …,'10B 。

(4)过各分点'1B ,'2B ,'3B …,'10B 作径向线,得反转后从动件导路线的各个位置。

(5)在各导路线上,从基圆开始往外量取各个位移量,即1111'='B B ,2222'='

B B , 3333'='B B ,…,得反转后尖顶的一系列位置1B ,2B ,3B ,…。

(6)将1B ,2B ,3B ,…连成光滑的曲线,便中所要求的凸轮轮廓。

滚子从动件凸轮轮廓的绘制方法,如图6-11所示,可以把滚子中心看作尖顶从动件的尖顶。

按照上面的方法求出理论轮廓曲线η;

再以η上各点为中心、以滚子半径为半径画一系列圆,得包络线η',它便是使用滚子从动件时凸轮的实际轮廓。

由作图过程可知,凸轮的基圆半径0r 应当在理论轮廓上度量。

平底从动件的凸轮轮廓的绘制方法也与上述相似,如图6-12所示.

首先确定平底与导路线交点0B ,按照尖顶从动件凸轮绘制的方法,求出理论轮廓, 再 取得一系列点1B ,2B ,3B ,…;

其次过这些点画出各个位置的平底,得到包络线即凸轮的实际轮廓曲线。

偏心移动从动件盘形凸轮机构的轮廓设计,请参考有关资料。

6.3.2摆动从动件盘形凸轮轮廓的绘制

已知 从动件的角位移线图如图6-13(b )所示。凸轮与摆动从动件的中心距l OA 摆动从动件长度l AB ,凸轮的基圆半径min r ,凸轮以等角速度ω1顺时针回转,要求绘出此凸轮的轮廓。

图6-11移动滚子从动件盘形凸轮轮廓设计 图6-12移动平底从动件盘形凸轮轮廓设计

仍用反转法求凸轮轮廓。给整个凸轮机构加以角速度-ω1绕O 点回转,结果凸轮不动而摆动从动件一方面随机架以等角速度-ω1绕O 点回转,同时又绕A 点摆动。

尖顶摆动从动件盘形凸轮轮廓曲线的绘制可按以下步骤进行:

(1)根据l OA 定出O 点与A 0点的位置,以O 为圆心及以0r 为v 半径作基圆,再以A 0为中心及l AB 为半径作圆弧交基圆于B 0点,该点即为从动件尖顶的起始位置。δ20

称为从动件的初始角。

(2)以O 点为中心及OA 0为半径画圆,并沿-ω1的方向取角r δ,f δ,s

δ',再将r δ,f δ各分为与图6-13(b )相对应的若干等份,得射线OA 1,OA 2,OA 3……,这些线即为机架OA 0在反转过程中所对应的各个位置。

(3)由图6-13(b )求出各位置的摆角δ2,据此画出摆动从动件相对于机架的一系列

位置A 1B 1,A 2B 2,A 3B 3……,即∠OA 1B 1=δ20+δ2Ⅰ,∠OA 2B 2=δ20+δ2Ⅱ,∠OA 3B 3=δ20+δ2Ⅲ……。

(4)以A 1,A 2,A 3……为中心,以l AB 为半径画圆弧截A 1B 1于B 1点,A 2B 2于B 2点,A 3B 3于B 3点……。最后将B 0,B 1,B 2 ,B 3……点连成光滑曲线,便得到尖顶从动件的凸轮轮廓。

滚子或平底从动件凸轮轮廓,那么上述凸轮轮廓即为理想轮廓,只要在理论轮廓上选一系列点作滚子或平底 ,最后作它们的包络线,便可求出相应的实际轮廓曲线。

6.3.3圆柱凸轮的设计

图6-14(a )为直动从动件圆柱凸轮机构,在这种机构中,从动件运动的导路与凸轮的运动平面相垂直,所以它属于空间凸轮机构。表达空间凸轮曲面比较困难,如果将圆柱凸轮的圆柱面沿平均半径(即凹槽深度一半处)展开,圆柱凸轮的转动便可视为展开的平面凸轮的移动,因而可用设计平面凸轮的方法来绘制其展开轮廓。

图6-13摆动从动件盘形凸轮轮廓的设计

已知凸轮以等角速度ω1沿顺时针回转,凸轮的平均半径为R ,从动件的位移线图如图6-13(c )所示,要求绘制此凸轮的展开轮廓。

如图6-14(b )所示,取长度2πR 的线段表示圆柱面展开的周长,按照反转法,将其上水平线段OO 沿ν1=R ω1相反方向分成与图6-14(c )对应的等份,得1,2,3……点,对这些点作一系列垂直于OO 的直线表示反转时的从动件导路,并按照图6-14(c )截取对应的位移量,即可作出凸轮的理论轮廓;以理论轮廓上各点为圆心,以轮子半径为半径作许多小圆,然后作这些小圆的上、下两条包络线,即得凸轮槽的实际轮廓曲线。

6.4 凸轮机构基本尺寸的确定

设计凸轮机构时,不仅要保证从动件实现预定的运动

规律,还要求传力时性能良好,结构紧凑。这些要求与凸

轮机构的压力角、基圆半径、滚子半径等有关。

6.4.1凸轮压力角

图5-15所示为尖顶直动从动件凸轮机构,当不考虑摩

擦时,凸轮施与从动件的力n F 法向力,分成两个分力,r

F 为有效分力,由它推动从动件运动;x F 使导路受压,增加

摩擦力,是有害分力 , 则

αsin n x F F =

αcos n r F F =。

压力角α,是从动件在接触点所受的力的方向与该点

的速度方向的夹角(锐角)。

图6-14移动从动件圆柱凸轮轮廓设计

显然,压力角越小越好。当α大到某一数值时,r F 将小于x F 所引起的摩擦力,凸轮机构将发生自锁。

通常,对于移动从动件的凸轮机构,其推程的许用压力角[α]=30o ;

对于摆动从动件的凸轮机构,其推程的许用压力角[α]=45o 。

其回程的许用压力角[α]=800。

6.4.2基圆半径

如图5-15所示凸轮机构中,则可得到基圆半径0r 与压力角α关系:

ton α=v/(0r +S)ω

基圆半径0r 取得越小,设计的凸轮机构越紧凑,但基圆半径过小会引起压力角α过大,致使机构发生自锁。因此,实际设计中,只能在保证压力角不超过许用值的前提下,考虑缩小凸轮的尺寸。

因而可根据结构要求按常用的经验公式确定凸轮基圆半径

mm r r )10~4(8.10+≥ (6-1)

其中r 为凸轮轴孔半径或安装凸轮处轴半径。

当凸轮与轴做成一体时,则

mm r r )10~4(0+≥ (6-2)

6.4.3滚子半径的选取

滚子半径的选取要考虑滚子的结构、强度及凸轮轮廓的曲线的形状等多方面的因素。 若凸轮理论廓线内凹时,曲率半径为T r +='min ρρ,不管滚子半径多大都可以作出实际廓线。如图6-16(a )所示,

当理论廓线外凸时,最小曲率半径min ρ小等于滚子半径r T 则实际轮廓线上变为相交或尖点, 称为变尖或失真。曲率半径为T r -='m i n ρρ.

对于外凸的凸轮廓曲线,通常取滚子半径r T ≤0.8ρmin 。

四、平底的尺寸确定

如图6-12所示,当用作图法将凸轮轮廓线作出后,则推杆平底长度l 应取

l=2l max +(5~7)mm (6-3)

平底推杆凸轮机构,也会产生“失真”现象。解决办

法,可适当增大凸轮的基圆半径。

6.5 用解析法设计凸轮

图解法设计凸轮,简便易行,但误差较大;所以对精度

要求较高的凸轮,如高速凸轮、靠模凸轮、检验用的样板

凸轮等则往往需要用解析法进行设计,精度高.

用解析法进行设计凸轮,则:

图6-17所示盘形凸轮机构。设过凸轮转轴中心坐标系

xoy ,

B 点的坐标x 、y 为

图6-17盘形凸轮轮廓的解析法设计

?

??-+=++=????sin cos cos sin 00e s s y e s s x )()( (6-4) 其中e 为偏心距,式(6-4)即为凸轮实际轮廓线的方程式。其速度和加速度可通过求导得到,然后编程上机计算。

6.6凸轮轮廓的加工

凸轮轮廓的加工方法通常有两种:

1、铣、锉削加工,应用反转法原理在未淬火凸轮轮坯上通过作图法绘制出轮廓曲线,采用铣床或用手工锉削办法加工而成。必要时可进行淬火处理,但用这种方法则凸轮的变形难以得到修正。此种方法加工的凸轮适用于低速、轻载场合。

2、数控加工,即采用数控线切割机床对淬火凸轮进行加工,加工时应用解析法,求出凸轮轮廓曲线的x 、y 坐标,并将xoy 坐标系的原点(即转轴中心)换算成切割时的起点,而滚子半径相当于钼丝半径再加上放电间隙。为方便起见,轴孔和凸轮曲线可在一次安装条件下一起切割而成。此种加工方法是目前常用的一种凸轮加工方法。

第9章凸轮机构及其设计(有答案)

1.图示凸轮机构从动件推程运动线图是由哪两种常用的基本运动规律组合而成?并指出有无冲击。如果有冲击,哪些位置上有何种冲击?从动件运动形式为停-升-停。 (1) 由等速运动规律和等加速等减速运动规律组合而成。 (2) 有冲击。 (3) ABCD 处有柔性冲击。 2. 有一对心直动尖顶从动件盘形凸轮机构,为改善从动件尖端的磨损情况,将其尖端改为滚子,仍使用原来的凸轮,这时该凸轮机构中从动件的运动规律有无变化?简述理 由。 (1) 运动规律发生了变化。 (见下图 ) (2)采用尖顶从动件时,图示位置从动件的速度v O P 2111=ω,采用滚子从动件时,图示位置的速度 '='v O P 2111ω,由于O P O P v v 1111 22≠'≠',;故其运动规律发生改变。

3. 在图示的凸轮机构中,画出凸轮从图示位置转过60?时从动件的位置及从动件的位移s。 总分5分。(1)3 分;(2)2 分 (1) 找出转过60?的位置。 (2) 标出位移s。

4. 画出图示凸轮机构从动件升到最高时的位置,标出从动件行程h ,说明推程运动角和回程运动角的大小。 总分5分。(1)2 分;(2)1 分;(3)1 分;(4)1 分 (1) 从动件升到最高点位置如图示。 (2) 行程h 如图示。 (3)Φ=δ0-θ (4)Φ'=δ' 0+θ

5.图示直动尖顶从动件盘形凸轮机构,凸轮等角速转动,凸轮轮廓在推程运动角Φ=? 从动件行程h=30 mm,要求: (1)画出推程时从动件的位移线图s-?; (2)分析推程时有无冲击,发生在何处?是哪种冲击? - 总分10分。(1)6 分;(2)4 分 (1)因推程时凸轮轮廓是渐开线,其从动件速度为常数v=r0?ω,其位移为直线, 如图示。

凸轮机构习题

一、填空题 [1]___________________________决定了从动杆的运动规律。 [2]凸轮机构中,凸轮基圆半径愈___________,压力角愈___________ ,机构传动性能愈好。 [3]凸轮机构是由___________________、____________________、 ____________________三个基本构件组成的。 [4]凸轮机构中的压力角是指__________________________________________间的夹角。 [5]凸轮机构常用的从动件运动规律有_______________________________, ________________________________________,__________________________________及__________________________________。 [6]以凸轮的理论轮廓的最小向径为半径所做的圆称为凸轮的______________________。 [7]在设计凸轮机构时,凸轮基圆半径取得越_____________,所设计的机构越紧凑,但是压力角_______________使机构的工作情况变坏。 [8]按凸轮的形状凸轮可分为________________________、____________________________、和___________________________三大类。 [9]在凸轮机构的设计中,适当加大凸轮的________________________是避免机构发生运动失真的有效措施。 [10]通常,可用适当增大凸轮________________________的方法来减小最大压力角。 [11]平底垂直于导路的直动推杆盘形凸轮机构,其压力角等于_______________________。 [12]对于尖顶直动从动件凸轮机构,在其余条件不变的情况下,基圆半径越小,机构的传动效率____________________。 [13]在直动从动件盘形凸轮机构的设计中,若基圆半径减小,则推程的压力角____________________。 [14]设计滚子从动件盘形凸轮机构时,滚子中心的轨迹称为凸轮的_____________________廓线;与滚子相包络的凸轮廓线称为_________________廓线。 [15]在凸轮机构的几种基本的从动件运动规律中,________________________运动规律则没有冲击。 [16]从动件作等速运动的凸轮机构中,其位移线图是_________________线。 [17]用作图法绘制直动从动件盘形凸轮廓线时,常采用____________________法。 [18]在凸轮机构的几种基本的从动件运动规律中,_________________________、___________________________运动规律产生柔性冲击。 [19]凸轮机构中,从动件根据其端部结构型式,一般有________________________________、________________________________、____________________________等三种型式。 [20]盘形凸轮的基圆半径是_________________上距凸轮转动中心的最小向径。 [21]移动从动件盘形凸轮机构,当从动件运动规律一定时,欲降低升程的压力角,可采用的措施是___________________________。 [22]在凸轮机构的几种基本的从动件运动规律中,___________________运动规律使凸轮机构产生刚性冲击。 [23]凸轮的基圆半径是从_____________________到__________________的最短距离。 [24]设计滚子推杆盘形凸轮轮廓线时,若发现凸轮轮廓线有变尖现象,则在尺寸参数的改变上应采取的措施是_______________________或___________________________。 二、判断题 [1]凸轮轮廓的形状取决于从动件的运动规律。( ) [2]凸轮机构中从动件选用等速运动规律时,从动件的运动没有冲击。() [3]凸轮机构中从动件作等加速等减速运动规律时,将会产生刚性冲击。() [4]为了保证凸轮机构传动灵活,必须控制压力角,为此规定了压力角的许用值。( )

凸轮机构习题解答复习与练习题参考答案

凸轮机构习题解答复习与练习题参考答案 一、单项选择题 1 B 2 A 3 C 4 D 5 B 6 A 7.A 8. A 9. C 10 .B 11. C 12. A 13. .B 14. .B 15 . A 16. B 17 . C 18 .B 19 .A 20 .B 21 .B 22 .C 其他答案在文后: 一、单项选择题(从给出的A 、B 、C 、D 中选一个答案) 1 与连杆机构相比,凸轮机构最大的缺点是。 A .惯性力难以平衡 B .点、线接触,易磨损 C .设计较为复杂 D .不能实现间歇运动 2 与其他机构相比,凸轮机构最大的优点是。 A .可实现各种预期的运动规律 B .便于润滑 C .制造方便,易获得较高的精度 D .从动件的行程可较大 3 盘形凸轮机构的压力角恒等于常数。 A .摆动尖顶推杆 B .直动滚子推杆 C .摆动平底推杆 D .摆动滚子推杆 4 对于直动推杆盘形凸轮机构来讲,在其他条件相同的情况下,偏置直动推杆与对心直动推杆相比,两者在推程段最大压力角的关系为关系。 A .偏置比对心大 B .对心比偏置大 C .一样大 D .不一定 5 既不会产生柔性冲击也不会产生刚性冲击,可用于高速场合。 A .等速运动规律 B .摆线运动规律(正弦加速度运动规律) C .等加速等减速运动规律 D .简谐运动规律(余弦加速度运动规律)

6 对心直动尖顶推杆盘形凸轮机构的推程压力角超过许用值时,可采用措施来解决。 A .增大基圆半径 B .改用滚子推杆 C .改变凸轮转向 D .改为偏置直动尖顶推杆 7.()从动杆的行程不能太大。 A. 盘形凸轮机构 B. 移动凸轮机构 C. 圆柱凸轮机构 8.()对于较复杂的凸轮轮廓曲线,也能准确地获得所需要的运动规律。 A 尖顶式从动杆 B. 滚子式从动杆 C. 平底式从动杆 9.()可使从动杆得到较大的行程。 A. 盘形凸轮机构 B 移动凸轮机构 C. 圆柱凸轮机构 10.()的摩擦阻力较小,传力能力大。 A 尖顶式从动杆 B. 滚子式从动杆 C 平底式从动杆 11. ()的磨损较小,适用于没有内凹槽凸轮轮廓曲线的高速凸轮机构。 A. 尖顶式从动杆 B. 滚子式从动杆 )。 C. 平底式从动杆 12.计算凸轮机构从动杆行程的基础是( A 基圆 B. 转角 C 轮廓曲线 )。 13.凸轮轮廓曲线上各点的压力角是( A. 不变的 B. 变化的 )。 14.凸轮压力角的大小与基圆半径的关系是( A 基圆半径越小,压力角偏小 15.压力角增大时,对()。 B. 基圆半径越大,压力角偏小 A. 凸轮机构的工作不利 C. 凸轮机构的工作无影响 B. 凸轮机构的工作有利

凸轮机构习题答案

3-1 什么样的构件叫凸轮什么样的机构是凸轮机构凸轮机构的功用是什么 答:凸轮是一个具有曲线轮廓或凹槽的构件。 凸轮机构一般是由凸轮,从动件和机架三个构件组成的高副机构。凸轮通常作连续等速转动,从动件根据使用要求设计使它获得一定规律的运动,凸轮机构能实现复杂的运动要求,广泛用于各种自动化和半自动化机械装置中。 凸轮机构主要作用是使从动杆按照工作要求完成各种复杂的运动,包括直线运动、摆动、等速运动和不等速运动。 3-2 滚子从动件的滚子半径大小对凸轮工作有什么影响若某一凸轮机构的滚子损坏后,是否可以任取一滚子来代替为什么 答:对于滚子从动件的凸轮机构,滚子半径的大小常常影响到凸轮实际轮廓曲线的形状,设计时要选择合适的滚子半径T r ,否则会出现运动失真的情况。 对于滚子从动件的凸轮机构,如果滚子损坏不能任取一滚子代替。因为如果选取滚子与原有滚子尺寸不同,从动件的运动规律会发生变化;如果希望从动件的运动规律不变,需要选取与原有凸轮相匹配的的滚子,或者修改凸轮,即凸轮在原理论廓线不变的情况下,作其法向等距曲线并使之距离等于新滚子半径得到新的实际轮廓曲线,重新加工凸轮,后者较繁琐,不宜采取。 3-3 凸轮压力角越小越好吗为什么 答:凸轮压力角越小越好。 凸轮机构压力角:推杆在与凸轮的接触点上所受的正压力与推杆上该点的速度方向所夹的锐角。压力角越大,将造成所受的正压力越大,甚至达到无穷大而出现自锁,因而,从减小推力,避免自锁,使机构具有良好的受力状况来看,压力角越小越好。 3-4 为什么平底直动从动件盘形凸轮机构的凸轮轮廓曲线一定要外凸滚子直动从动件盘形凸轮机构的凸轮轮廓曲线却允许内凹,而且内凹段一定不会出现运动失真 答:对于平底直动从动件盘形凸轮机构,只有凸轮廓线外凸,才能保证凸轮轮廓曲线上的所有点都能与从动件平底接触;对于滚子直动从动件盘形凸轮机构,凸轮实际廓线是沿理论廓线,以滚子半径为间距,作其法向等距曲线得到的,当凸轮轮廓曲线内凹时,实际廓线各点的曲率半径为对应理论廓线各点曲率半径与滚子半径之和,因而不管滚子半径多大,实际廓线各点的曲率半径都大于零,所以可以正常运动并且不会出现失真现象。 3-5 何谓凸轮压力角压力角的大小对机构有何影响用作图法求题3-5图中各凸轮由图示位置逆转45°时,凸轮机构的压力角,并标在题3-5图中。 答:从动件所受作用力F 与受力点速度ν间所夹的锐角称为凸轮机构的压力角,用α表示。 αα cos sin F F F F y x == 由上述关系式知,压力角α愈大,有效分力Fy 愈小,有害分力Fx 愈大。当α角大到某一数值时,必将会出现F y

凸轮机构的运动学仿真实验_02

机构与零部件设计(Ⅰ)实验报告姓名 凸轮机构运动学仿真班号 成绩 凸轮机构的运动学仿真 一、实验目的: 1.理解凸轮轮廓线与从动件运动之间的相互关系,巩固凸轮机构设计及运动分析的理论知识。 2.用虚拟样机技术模拟仿真凸轮机构的设计。 二、实验内容: 1.凸轮轮廓线的构建; 2.凸轮机构的三维建模; 3.凸轮机构的运动学仿真。 具体要求:设计对心直动滚子从动件凸轮机构 已知从动件的运动规律为:当凸轮转过Φ=600时,从动件以等加速等减速运动规律上升h=10mm;凸轮再转过Φ'=1200,从动件停止不动;当凸轮再转过Φ=600时,从动件以等加速等减速运动规律下降h=10mm;其余Φs'=1200,从动件静止不动。 已知基圆r b=50mm,滚子半径r=10mm,凸轮厚度10mm。凸轮以等角速度顺时针转动,试设计凸轮机构,并输出从动件运动规律。 实验步骤:

三、实验报告: 将所建立的凸轮廓线、凸轮机构的三维模型、凸轮机构的从运件运动规律附在实验报告中。 机构与零部件设计(Ⅰ)实验报告 凸轮机构运动学仿真

对设计结果进行分析 思考题: 1.在构建凸轮轮廓线的曲线应注意哪些事项?在建立凸轮机构的三维建模时又应注意哪些事项? 建凸轮轮廓曲线时首先该凸轮轮廓曲线分为四段推程阶段(等加速、等减速)、远休止阶段、回程阶段、近休止阶段。建立表达式时较复杂,例如要将上诉规律分为六小段,即b1=30,b2=60,b3=180,b4=210,b5=240,b6=360且a1=0,a2=b1,a3=b2,a4=b3,a5=b4,a6=b5(单位皆为度)。 另知 在最后插入曲线时要将输入的x1、y1等相互对应,且将Z 值变为0. 还要根据设计任务的要求选择凸轮的类型和从动件运动规律 确定凸轮的基圆半径,确定凸轮的轮廓 在建立三维模型,表达式的建立时,要注意参数化曲线的建立以及连杆,运动副的定义,特别注意高副的定义。 2.凸轮轮廓线与从动件运动规律之间有什么内在联系? 答:凸轮轮廓曲线由从动件的运动规律来决定,要根据从动件的运动规律来设计凸轮轮廓的曲线。 ? ?cos )(sin )(s r y s r x b B b B +=+=

凸轮机构设计及运动分析

凸轮机构设计及运动分析 问题描述: 如图1所示为以对心直动尖顶盘形凸轮机构。从动杆位移s随时间变化曲线如图2所示。要求设计凸轮机构并分析从动件速度v,加速度a随时间变化的规律,及应力、应变随时间变化的规律。 任务与要求 1.设计满图2运动规律的凸轮机构;(要有设计计算步骤) 2.对所设计的机构运用ansys软件分析从动件速度、加速度随时间变化的规律; 3.查阅资料、了解所给机构的在生产、生活中的应用,说明其工作原理,并附相应的图片或视频。 凸轮机构设计及运动分析指导书

一、设计的目的 通过设计,训练学生机构设计的能力,掌握运用ANSYS Workbench进行瞬态动力学分析的方法、步骤和过程,提高学生解决实际问题的能力。 二、设计报告的主要要求 设计报告包括设计报告书Word文档和Powerpoint演示文稿两部分。 1.设计报告书内容包括目录、任务书、正文、参考文献、组员工作内容表。 (1)文档格式严格遵守设计书文档规范要求。 (2)目录必须层次清楚,并标有页码数。 (3)正文按章节编写,按照任务书要求合理安排内容,并附有参考文献。 2.Powerpoint演示文稿要求内容简洁,重点突出。 三、人员要求:1人 四、时间安排 1.布置任务、准备、查阅资料:2天; 2.机构设计及动画:6天; 3.Ansys分析:6天; 4.编写报告书、Powerpint演示文稿、验收:2天。 5.答辩。 五、成绩形成: 设计报告书:50分;答辩:50分 组内成员按实际完成工作量评定每位学生最终成绩;不参加答辩的学生没有答辩成绩。 六、参考资料:机械原理的平面机构,ansys机械工程应用精华59例

凸轮机构习题解答

凸轮机构考试复习与练习题 一、单项选择题(从给出的A、B、C、D中选一个答案) 1 与连杆机构相比,凸轮机构最大的缺点是。 A.惯性力难以平衡B.点、线接触,易磨损 C.设计较为复杂D.不能实现间歇运动 2 与其他机构相比,凸轮机构最大的优点是。 A.可实现各种预期的运动规律B.便于润滑 C.制造方便,易获得较高的精度D.从动件的行程可较大 3 盘形凸轮机构的压力角恒等于常数。 A.摆动尖顶推杆B.直动滚子推杆 C.摆动平底推杆D.摆动滚子推杆 4 对于直动推杆盘形凸轮机构来讲,在其他条件相同的情况下,偏置直动推杆与对心直动推杆相比,两者在推程段最大压力角的关系为关系。 A.偏置比对心大B.对心比偏置大 C.一样大D.不一定 5 下述几种运动规律中,既不会产生柔性冲击也不会产生刚性冲击,可用于高速场合。 A.等速运动规律B.摆线运动规律(正弦加速度运动规律) C.等加速等减速运动规律D.简谐运动规律(余弦加速度运动规律) 6 对心直动尖顶推杆盘形凸轮机构的推程压力角超过许用值时,可采用措施来解决。 A.增大基圆半径B.改用滚子推杆 C.改变凸轮转向D.改为偏置直动尖顶推杆 7.()从动杆的行程不能太大。 A. 盘形凸轮机构 B. 移动凸轮机构 C. 圆柱凸轮机构 8.()对于较复杂的凸轮轮廓曲线,也能准确地获得所需要的运动规律。 A 尖顶式从动杆 B.滚子式从动杆 C. 平底式从动杆 9.()可使从动杆得到较大的行程。 A. 盘形凸轮机构 B 移动凸轮机构 C. 圆柱凸轮机构 10.()的摩擦阻力较小,传力能力大。 A 尖顶式从动杆 B. 滚子式从动杆 C 平底式从动杆 11.()的磨损较小,适用于没有内凹槽凸轮轮廓曲线的高速凸轮机构。 A. 尖顶式从动杆 B.滚子式从动杆 C. 平底式从动杆 12.计算凸轮机构从动杆行程的基础是()。 A 基圆 B. 转角 C 轮廓曲线 13.凸轮轮廓曲线上各点的压力角是()。

(完整版)凸轮机构教案

凸轮机构 4.1 凸轮机构的类型及应用 4.1.1 凸轮机构的组成和应用 组成:由凸轮、从动件和机架三部分组成 特点: 1)只要设计出适当的凸轮轮廓曲线,就可以使从动件实现任何预期的运动规律。2)结构简单、紧凑。 3)凸轮机构是高副机构,易于磨损。 4)凸轮轮廓加工比较困难。 应用:只适用于传递动力不大的场合。 应用实例:内燃机配气机构绕线机的凸轮机构凸轮自动送料机构 结论:从动杆的运动规律取决于凸轮轮廓曲线或凹槽曲线的形状。 二、凸轮机构的分类 (一)按凸轮的形状分 1.盘形凸轮(盘形凸轮是一个具有变化向径的盘形构件绕固定轴线回转)

尖顶移动从动杆盘形凸轮机构尖顶摆动从动杆盘形凸轮机构滚子移动从动杆盘形凸轮机构滚子摆动从动杆盘形凸轮机构平底移动从动杆盘形凸轮机构平底摆动从动杆盘形凸轮机构特点:结构简单,但是从动件行程不能太大,否则凸轮运转沉重。 2.移动凸轮(移动凸轮可看作是转轴在无穷 远处的盘形凸轮的一部分,它 作往复直线移动。) 特点:凸轮和从动件都可作往复移动。 3. 圆柱凸轮(圆柱凸轮是一个在圆 柱面上开有曲线凹槽,或是在圆柱端 面上作出曲线轮廓的构件,它可看作 是将移动凸轮卷于圆柱体上形成的。) 特点:从动件可获得较大的行程。 (二)按从动杆的端部型式分 1.尖顶从动件凸轮机构 特点: (1)传动灵敏。 (2)从动杆的构造最简单,但易磨损。 应用:只适用于作用力不大和速度较低的场合(如用于仪表等机构中)。 2.滚子从动件凸轮机构 特点:磨损较小,可用来传递较大的动力,但结构复杂。 应用:常用于速度不高、载荷较大的场合。 3.平底从动件凸轮机构

凸轮机构例题

第三章凸轮机构典型例题 例 1 在图示的对心移动滚子从动件盘形凸轮机构中,凸轮的实际廓线为一圆,其圆心在A点,半径R=40mm,凸轮转动方向如图所示,l OA=25mm,滚子半径r t=10mm,试问: (1)凸轮的理论廓线为何种曲线? (2)凸轮的基圆半径r b=? (3)从动件的升距h=?

解:选取适当的比例尺作机构图如图(b)所示 (1)理论廓线η为半径为R+r t =40+10=50mm的圆。 (2)凸轮的基圆半径r b 凸轮理论廓线的最小向径称为凸轮的基圆半径,如图所示线段OC即为理论廓线η的最小向径,也就是凸轮的基圆半径r b。由图(b)可知 r b=l AC-l AO =(R+r t)-l AO=(40+10)-25=25mm (3)从动件的升距h 从动件上升的最大距离h称为从动件的升距,它等于理论廓线η的最大与最小向径之差。因此, h=(l AO+R+r t)-r b=25+40+10-25=50mm 例 2 如图(a)所示为凸轮机构推杆的速度曲线,它由四段直线组成。要求:画出推杆的位移线图和加速度线图;判断那几个位置有冲击存在,是刚性冲击还是柔性冲击;在图示的F位置。凸轮与推杆之间有无惯性力作用,有无冲击存在。 解:由图(a)所示推杆的速度线图可知 在OA段内,因推杆的速度v=0,故此段为推杆的近休止,推杆的位移及加速度均为零,即s=0,a=0,如图(b)(c)所示。

解: 在AD段内,因v>0,故为推杆的推程段。且在AB段内,因速度线图为上升的斜直线,故推杆先等加速上升,位移线图为抛物线运动曲线,而加速度线图为正的水平直线段;在BC线段内,速度线图为水平直线段,故推杆继续等速上升,位移线图为上升的斜直线,而加速度线图为与δ轴重合的线段;在CD 段内,因速度线图为下降的斜直线,故推杆继续等减速上升,位移线图为抛物线运动曲线,而加速度线图为负的水平直线段。做出推杆的推程段的位移及加速度线图,如图(b)(c)所示。 在DE段内,因v<0,故为推杆的回程段,且速度线图为水平线段,推杆作等速下降运动。位移线图为下降的斜直线,而加速度线图为与δ轴重合的线段,且在D和E处其加速度分别为负无穷大和正无穷大,如图(b)(c)所示。 由推杆速度线图(a)和加速度线图(c)可知,在D及E处,有速度突变,且在加速度线图上分别为负无穷大和正无穷大。故在在D及E处有刚性冲击。在加速度线图上A",B",C",处有加速度值的有限值突变,故在这几处凸轮机构有柔性冲击。 在F处有正的加速度值,故有惯性力,但既无速度突变,也无加速度突变,因此,F处无冲击存在。 例3 图示为一移动滚子从动件盘形凸轮机构,滚子中心位于B0点时为该机构的起始位置。试求: (1)滚子与凸轮廓线在B1' 点接触时,所对应的凸轮转角φ1。 (2)当滚子中心位于B2点时,凸轮机构的压力角α2。 解(1)这是灵活运用反转法的一种情况,即已知凸轮廓线,求当从动件与凸轮廓线上从一点到另一点接触时,凸轮转过的角度。

机械原理大作业——凸轮机构运动分析

机械原理大作业 凸轮机构运动分析 学号 姓名 院系 专业 完成日期 设计题号 指导教师 一、设计如图1所示直动从动件盘形凸轮机构。其原始参数见表1。

图1 行程(mm)升程运 动角 (°) 升程运 动规律 升程许 用压力 角(°) 回程运 动角 (°) 回程运 动规律 回程许用 压力角 (°) 远休止 角 (°) 近休止 角 (°) 35 80 余弦加 速度35 60 3-4-5 多项式 70 100 120 表1 二、计算流程图

凸轮机构分析 建立数学模型 位移方程速度方程 加速度方程 速度线图位移线图加速线图 ds/d Ψ-s 曲线升程压力角回程压力角 确定轴向及基圆半径 压力角图确定滚子半径实际轮廓理论轮廓 轮廓图 结束 三、建立数学模型 1. 位移、速度、加速度、ds/dψ-s 、压力角图 (1)运动方程: A.升程运动方程(余弦加速度): ? ?? ? ? ≤≤π?940 ??????-= )cos(12h 01?φπs )sin(20 011?φπφωπh v =

)cos(202 212 1 ?φπφωπh a = B.远休止方程: ?? ? ??≤≤π?π94 h s =2 02=v 02=a C.回程运动方程(3-4-5多项式): ??? ? ?≤≤π?π34 ])(*6)(*15)( *101[5 0' 040'030'03φφφ?φφφ?φφφ?s s s h s -----+---= ])(*30)(*60)( *30[4 '030'020'00'1 3φφφ?φφφ?φφφ?φωs s s h v --+------ = ])(*120)(*180)( *60[3 ' 020'00'02 0'2 1 3φφφ?φφφ?φφφ?φωs s s h a --+------ = D.近休止方程: ?? ? ??≤≤π?π34 04=s 04=v 04=a (2)源代码及作图(matlab ) syms a1 a2 a3 a4;

凸轮机构练习题

凸轮机构练习题 一、单项选择题(从给出的A、B、C、D中选一个答案) 1 与连杆机构相比,凸轮机构最大的缺点是。 A.惯性力难以平衡B.点、线接触,易磨损 C.设计较为复杂D.不能实现间歇运动 2 与其他机构相比,凸轮机构最大的优点是。 A.可实现各种预期的运动规律B.便于润滑 C.制造方便,易获得较高的精度D.从动件的行程可较大 3 盘形凸轮机构的压力角恒等于常数。 A.摆动尖顶推杆B.直动滚子推杆 C.摆动平底推杆D.摆动滚子推杆 4 对于直动推杆盘形凸轮机构来讲,在其他条件相同的情况下,偏置直动推杆与对心直动推杆相比,两者在推程段最大压力角的关系为关系。 A.偏置比对心大B.对心比偏置大 C.一样大D.不一定 5 下述几种运动规律中,既不会产生柔性冲击也不会产生刚性冲击,可用于高速场合。 A.等速运动规律B.摆线运动规律(正弦加速度运动规律) C.等加速等减速运动规律D.简谐运动规律(余弦加速度运动规律) 6 对心直动尖顶推杆盘形凸轮机构的推程压力角超过许用值时,可采用措施来解决。 A.增大基圆半径B.改用滚子推杆 C.改变凸轮转向D.改为偏置直动尖顶推杆 7.()从动杆的行程不能太大。 A. 盘形凸轮机构 B. 移动凸轮机构 C. 圆柱凸轮机构 8.()对于较复杂的凸轮轮廓曲线,也能准确地获得所需要的运动规律。 A 尖顶式从动杆 B.滚子式从动杆 C. 平底式从动杆 9.()可使从动杆得到较大的行程。 A. 盘形凸轮机构 B 移动凸轮机构 C. 圆柱凸轮机构 10.()的摩擦阻力较小,传力能力大。 A 尖顶式从动杆 B. 滚子式从动杆 C 平底式从动杆 11.()的磨损较小,适用于没有内凹槽凸轮轮廓曲线的高速凸轮机构。 A. 尖顶式从动杆 B.滚子式从动杆 C. 平底式从动杆 12.计算凸轮机构从动杆行程的基础是()。 A 基圆 B. 转角 C 轮廓曲线 13.凸轮轮廓曲线上各点的压力角是()。

凸轮机构例题

凸轮机构例题 1、已知题4图所示的直动平底推杆盘形凸轮机构,凸轮为R= 30mm的偏心圆盘,20mm,试求: (1)基圆半径和升程; (2)推程运动角、回程运动角、远休止角和近休止角; (3)凸轮机构的最大压力角和最小压力角; (4)推杆的位移s、速度v和加速度a方程; (5)若凸轮以W = IOrad/s回转,当AO成水平位置时推杆的速度。 7 匕 题」图题4图解

1、解: ⑴ x0 = 10 = 2AO= 40mnit ⑺ 推程J药角心=lS(r ,回程运动角<5;=180° 1近休止角九=0° ,远休止角玄a才- ⑶由于平底垂盲于导路的平底推杆凸轮机构的圧力甫恒等于零,所以弧二%0 U)如團所示,取旦唯钱与水平线的夹角肯凸轮的转角G M: 推杆的位務右程再5 = x3+x3sh^-20(145b^ 推杆的速度方程対V =20&JCOS^ 推杆的加速度肓程为口一2%%航 <5)当也=1[|曲创池碇于水平位貫时,5M}°或顷° ,所以推杆的速度为 v= (20X LOcasS) mm.??±20Uiiitn/8

2、10图所示对心直动尖顶推杆盘形凸轮机构中,凸轮为一偏心圆,O为凸轮的几何中心,O i为凸轮的回转中心。直线AC与BD垂直,且 Q试计算:=30tnnb (1)该凸轮机构中B、D两点的压力角; (2)该凸轮机构推杆的行程h。 ⑴由區可加.氷口两掠的巫和闻次) 母沖== arct吕[OQ# OB =arctgO. 5 = 25.565° (2) IT S h = = (2 > 30)mir = GG ITJTI 3.如题13图所示的凸轮机构,设凸轮逆时针转动。要求:

机械设计专升本章节练习题(含答案)——凸轮机构

第5章凸轮机构 【思考题】 5-1 凸轮机构的应用场合是什么?凸轮机构的组成是什么?通常用什么办法保证凸轮与从动件之间的接触? 5-2 凸轮机构分成哪几类?凸轮机构有什么特点? 5-3 为什么滚子从动件是最常用的从动件型式? 5-4 凸轮机构从动件的常用运动规律有那些?各有什么特点? 5-5 图解法绘制凸轮轮廓的原理是什么?为什么要采用这种原理? 5-6 什么情况下要用解析法设计凸轮的轮廓? 5-7 设计凸轮应注意那些问题? 5-8 从现有的机器上找出两个凸轮机构应用实例,分析其类型和运动规律? A级能力训练题 1.在凸轮机构的几种基本的从动件运动规律中,运动规律使凸轮机构产生刚性冲 击,运动规律产生柔性冲击,运动规律则没有冲击。 2.在凸轮机构的各种常用的推杆运动规律中,只宜用于低速的情况,宜用于 中速,但不宜用于高速的情况,而可在高速下应用。 3.设计滚子推杆盘形凸轮轮廓线时,若发现凸轮轮廓线有变尖现象,则在尺寸参数的改变 上应采取的措施是或。 4.移动从动件盘形凸轮机构,当从动件运动规律一定时,欲同时降低升程的压力角,可采 用的措施是。若只降低升程的压力角,可采用方法。 5.凸轮的基圆半径是从到的最短距离。 6.设计直动滚子推杆盘形凸轮机构的工作廓线时,发现压力角超过了许用值,且廓线出现 变尖现象,此时应采用的措施是__________________________________________。 7.与其他机构相比,凸轮机构的最大优点是。 (1)便于润滑(2)可实现客种预期的运动规律 (3)从动件的行程可较大(4)制造方便,易获得较高的精度 8.凸轮的基圆半径越小,则凸轮机构的压力角,而凸轮机构的尺寸。 (1)增大(2)减小(3)不变(4)增大或减小 9.设计凸轮廓线对,若减小凸轮的基圆半径r b,则凸轮廓线曲率半径将。 (1)增大(2)减小(3)不变(4)增大或减小

凸轮机构 (教案1)教材

凸轮机构 凸轮机构是机械中的一种常用机构,在自动化、半自动化机械中应用较为广泛。6.1凸轮机构的特点、应用和分类 6.1.1特点 凸轮机构是由凸轮1、从动件2和机架3所组成,如图6-1所示。 可以使从动件得到预定的运动规律; 且结构紧凑。但凸轮机构中包含有高副,不宜传递较大的动力; 同时由于凸轮具有曲线轮廓,它的加工制造比较复杂。 6.1.2应用 凸轮机构应用于各类机械中。 图6-2所示为内燃机的配气机构; 图6-3所示为自动车床上使用的走刀机构; 此外,凸轮机构还应用于其他机械中,不一一列举。 6.1.3类型 凸轮机构的类型是多种多样的,其基本类型可由凸轮和从动件的不同型式来区分。 1.按凸轮的型式分 按凸轮型式分,各类凸轮机构如表6-1所示。 图5-1凸轮机构图5-3自动车床走刀机构 图5-2内燃机配气机构

2 .按从动件的型式分 根据从动件的运动和端部型式区分,基本类型如表6-2所示。 表6-2 凸轮机构从动件的基本类型 表6-1 凸轮的类型

6.2 从动件的运动规律 6.2.1凸轮机构的工作过程 图6-4(a)所示为对心尖顶移动从动件盘形凸轮机构。 在尖顶移动从动件盘形凸轮机构的凸轮 上以向径 r为半径所绘的最大圆称为凸轮的 基圆。 当凸轮以ω等速沿逆时针方向回转Φ 时,从动件尖顶被凸轮轮廓推动,以一定运 动规律由离回转中心最近位置A到达最远位 置B的过程称为推程,这时它所走过的距离 h称为从动件的升程;而与推程对应的凸轮 转角Φ称为推程角。 当凸轮继续回转 s Φ时,以O点为中心的 圆弧BC与尖顶相作用,从动件在最远位置停 留不动,这一过程称为远休止,对应的凸轮 转角 s Φ称为远休止角; 当凸轮继续回转'Φ时,从动件在弹簧力或重力作用下,以一定运动规律回到起始位置,这个过程称为回程,对应的转角'Φ称为回程角。 当凸轮继续回转' Φ s 时,从动件在最近位置停留不动为近休止,' Φ s 称为近休止角。 如果以直角坐标系的纵坐标代表从动件位移S,横坐标代表凸轮转角?(转动时间t),则可以画出S与?之间的曲线,它简称为从动件位移线图,见图6-4(b)。A点为起始点. 由以上可知,从动件的位移线图取决于凸轮轮廓曲线的形状。从动件的不同运动规律,要求凸轮具有不同的轮廓曲线。因此,设计凸轮时必须首先确定从动件的运动规律。从动件的运动规律通常是根据机械的工作要求确定。 6.2.2常用从动件的运动规律 1、等速运动规律 当凸轮等速回转时,从动件上升或下降的速度为一常数,这种运动称为等速运动。图5-5为从动件等速运动时,其位移S、速度v和加速度a是随时间t变化的曲线(推程)。 由于凸轮作等速运动时,tω ?=,故横坐标也可以用?表示。其运动方程见表5-3。 由于速度V0为常数,所以从动件的速度线图为一平行于横轴的直线。 对速度线图积分,可以得到S= V0t,它是一条斜直线。又由图6-5可知, 当速度为常数时,加速度为零,惯性力也等于零,但是在运动开始和终止的瞬间,由于速度突变,此时理论上的加速度为无穷大,其惯性力将引起刚性冲击。 2、等加速、等减速运动规律 这种运动规律推程前半行程作等加速运动,而后半行程作等减速运动;回程则相反,其位移S、速度V和加速度a是随时间t变化的曲线如图6-6所示。其运动方程见表6-3。 图6-4凸轮机构的运动过程及位移曲线

凸轮机构的设计及应用精选文档

凸轮机构的设计及应用 精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

凸轮机构的应用 学院:机械学院 专业:机械电子工程 班级:机电02班 学号: 姓名:王爽 2015年6月1日

凸轮机构的应用 作者:王爽学号: 摘要 凸轮机构是一种典型的高副机构,它具有机构简单、紧凑、工作可靠的特点。凸轮机构可以通过合理设计凸轮的轮廓曲线,精确地完成各种功能,如实现预期的位置及动作时间要求,实现预期的运动规律要求,实现运动和动力特性要求等。现在,随着中国世界工厂地位的确立,越来越多的装备被引进来,也带进来了越来越多的凸轮机构,如包装机械、印刷机械、自动机械等应用大量的凸轮机构,各大公司的机械研发部门开发了很多优良的凸轮运动曲线。可以这么说,由于凸轮机构具有独特的机械特性而不断扩散到各个行业中。在机械高度发展的今天,很多机械构件越来越模块化,您可以随手拿来就用,但凸轮机构还不能这么做,您得计算、分析再设计,这个弯是绕不过去的。它广泛地应用于各种机械,特别是自动机械、自动控制装置和装配生产线中,如自动、、和纺织机中得到广泛应用。 关键词:凸轮轮廓曲线应用包装印刷自动内燃机纺织机 构成:凸轮机构由凸轮、从动件、机架三个基本构建组成 功能:实现预期的位置及动作时间要求 实现预期的运动规律要求

实现运动与动 力特性要求 应用分类: 1.按凸轮的形状 盘形凸轮:凸轮是绕固定轴转动并具有变化向径的盘形构件。 移动凸轮:盘形凸轮的轴心趋于无穷远时就演化成了移动凸轮。 圆柱凸轮:凸轮的轮廓曲线在圆柱体上,凸轮与从动件的相对运动是空间运动。 2.按从动件运动副元素的形状 尖顶从动件:从动件的尖顶能与任意形状的凸轮轮廓保持接触,但尖顶易磨损,只适用于低速轻载的凸轮机构中 曲面从动件:从动件端部做成曲面形状。

机械基础中凸轮机构练习题资料

凸轮机构 一、填空 1.凸轮机构主要是由_______、_______和固定机架三个基本构件所组成。 2.按凸轮的外形,凸轮机构主要分为_______凸轮和_______凸轮两种基本类型。 3.从动杆与凸轮轮廓的接触形式有_______、_______和平底三种。 4.以凸轮的理论轮廓曲线的最小半径所做的圆称为凸轮的_______。 5.凸轮理论轮廓曲线上的点的某点的法线方向(即从动杆的受力方向)与从动杆速度方向之间的夹角称为凸轮在该点的_______。 6.随着凸轮压力角α增大,有害分力F2将会_______而使从动杆自锁“卡死”,通常对移动式从动杆,推程时限制压力角α_______。 7.凸轮机构从动杆等速运动的位移为一条_______线,从动杆等加速等减速运动的位移曲线为一条_______线。 8.等速运动凸轮在速度换接处从动杆将产生_______冲击,引起机构强烈的振动。 9.凸轮机构的移动式从动杆能实现_______。 (a 匀速、平稳的直线运动 b 简偕直线运动 c各种复杂形式的直线运动 10.从动杆的端部形状有_______、_______和平底三种。 11.凸轮与从动件接触处的运动副属于_______。 (a 高副 b 转动副 c 移动副) 12. 要使常用凸轮机构正常工作,必须以凸轮_______。 ( a 作从动件并匀速转动 b 作主动件并变速转动 c 作主动件并匀速转动)13.在要求_______的凸轮机构中,宜使用滚子式从动件。 ( a 传力较大 b 传动准确、灵敏 c 转速较高) 14.使用滚子式从动杆的凸轮机构,为避免运动规律失真,滚子半径r与凸轮理论轮廓曲线外凸部分最小曲率半径ρ最小之间应满足_______。

凸轮机构 (教案1)

凸 轮 机 构 凸轮机构是机械中的一种常用机构,在自动化、半自动化机械中应用较为广泛。 6.1凸轮机构的特点、应用和分类 6.1.1特点 凸轮机构 是由凸轮1、从动件2和机架3所组成,如图6-1所示。 可以使从动件得到预定的运动规律; 且结构紧凑。但凸轮机构中包含有高副,不宜传递较大的动力; 同时由于凸轮具有曲线轮廓,它的加工制造比较复杂。 6.1.2应用 凸轮机构 应用于各类机械中。 图6-2所示为内燃机的配气机构; 图6-3所示为自动车床上使用的走刀机构; 此外,凸轮机构还应用于其他机械中,不一一列举。 6.1.3类型 凸轮机构的类型是多种多样的,其基本类型可由凸轮和从动件的不同型式来区分。 1.按凸轮的型式分 按凸轮型式分,各类凸轮机构如表6-1所示。 图5-1凸轮机构 图5-3自动车床走刀机构 图5-2内燃机配气机构

2.按从动件的型式分 根据从动件的运动和端部型式区分,基本类型如表6-2所示。 表6-2 凸轮机构从动件的基本类型 表6-1 凸轮的类型

6.2 从动件的运动规律 6.2.1凸轮机构的工作过程 图6-4(a )所示为对心尖顶移动从动件盘形凸轮机构。 在尖顶移动从动件盘形凸轮机构的凸轮 上以向径0r 为半径所绘的最大圆称为凸轮的 基圆。 当凸轮以ω等速沿逆时针方向回转Φ 时,从动件尖顶被凸轮轮廓推动,以一定运 动规律由离回转中心最近位置A 到达最远位 置B 的过程称为推程,这时它所走过的距离 h 称为从动件的升程;而与推程对应的凸轮 转角Φ称为推程角。 当凸轮继续回转s Φ时,以O 点为中心的 圆弧BC 与尖顶相作用,从动件在最远位置停 留不动,这一过程称为远休止,对应的凸轮转角s Φ称为远休止角; 当凸轮继续回转'Φ时,从动件在弹簧力或重力作用下,以一定运动规律回到起始位置,这个过程称为回程,对应的转角'Φ称为回程角。 当凸轮继续回转'Φs 时,从动件在最近位置停留不动为近休止,'Φs 称为近休止角。 如果以直角坐标系的纵坐标代表从动件位移S ,横坐标代表凸轮转角?(转动时间t ),则可以画出S 与?之间的曲线,它简称为从动件位移线图,见图6-4(b )。A 点为起始点. 由以上可知,从动件的位移线图取决于凸轮轮廓曲线的形状。从动件的不同运动规律,要求凸轮具有不同的轮廓曲线。因此,设计凸轮时必须首先确定从动件的运动规律。从动件的运动规律通常是根据机械的工作要求确定。 6.2.2常用从动件的运动规律 1、等速运动规律 当凸轮等速回转时,从动件上升或下降的速度为一常数,这种运动称为等速运动。图5-5为从动件等速运动时,其位移S 、速度v 和加速度a 是随时间t 变化的曲线(推程)。 由于凸轮作等速运动时,t ω?=,故横坐标也可以用?表示。其运动方程见表5-3。 由于速度V 0为常数,所以从动件的速度线图为一平行于横轴的直线。 对速度线图积分,可以得到S= V 0t ,它是一条斜直线。又由图6-5可知, 当速度为常数时,加速度为零,惯性力也等于零,但是在运动开始和终止的瞬间,由于速度突变,此时理论上的加速度为无穷大,其惯性力将引起刚性冲击。 2、等加速、等减速运动规律 这种运动规律推程前半行程作等加速运动,而后半行程作等减速运动;回程则相反,其位移S 、速度V 和加速度a 是随时间t 变化的曲线如图6-6所示。其运动方程见表6-3。 图6-4凸轮机构的运动过程及位移曲线

凸轮机构设计-作业题

第九章凸轮机构设计 本章学习任务:凸轮机构的基本知识、其从动件的运动规律、凸轮曲线轮廓的设计、凸轮机构基本尺寸的设计。 驱动项目的任务安排:完成项目中的凸轮机构的具体设计。 思考题 9-1简单说明凸轮机构的优缺点及分类情况? 9-2在直动滚子从动件盘形凸轮机构中,如何度量凸轮的转角和从动件的位移? 9-3试说明等速运动规律,简谐运动规律和五次多项式运动规律的特点。 9-4简单说明从动件运动规律选择与设计的原则。 9-5简单说明凸轮廓线设计的反转法原理。 9-6什么是凸轮的理论廓线和实际廓线,二者有何联系? 9-7何谓凸轮机构的压力角?压力角对机构的受力和尺寸有何影响? 9-8如何选择(或设计)凸轮的基圆半径? 9-9什么是“运动失真”现象?如何选择(或设计)凸轮的滚子半径,才能避免机构的“运动失真”? 习题 9-1何谓凸轮机构传动中的刚性冲击和柔性冲击?试补全题图9-1 所示各段的,s -,v -,a - 曲线,并指出哪些地方有刚性冲击,哪些地方有柔性冲击? s O v O a 题图9-1 2| D| ? 2| D| ? 2| D| ? 9-2何谓凸轮工作廓线的变尖现象和推杆运动的失真现象?它对凸轮机构的工作有何影响?如何加以避免? 9-3力封闭与几何形状封闭凸轮机构的许用应力角的确定是否一样?为什么? 9-4有一滚子推杆盘形凸轮机构,在使用中发现推杆滚子的直径偏小,欲用较大的滚子,问是否可行? 为什么? 9-5有一对心直动推杆盘形凸轮机构,在使用中发现推程压力稍偏大,拟采用推杆偏置的方法来改善,问是否可行?为什么?

45?? | ? | ? 3 2 | ? O 1 9-6 用作图法求出题图 9-6 所示两凸轮机构从图示位置转过 45 时的压力角。 (a ) (b ) 题图 9-6 题图 9-7 9 -7 如题图 9-7 所示盘形凸轮机构是有利偏置,还是不利偏置。如将该凸轮廓线作为直动滚子推杆的理论 廓线,其滚子半径 r r = 8 mm 。试问该凸轮廓线会产生什么问题?为什么?为了保证推杆实现同样的运动规律,应采取什么措施(图中l = 0.001 m /mm )? 9 -8 在题图 9-8 所示的运动规律线图中各段运动规律未表示完全,请根据给定部分补足其余部分(位移 线图要求准确画出,速度和加速度线图可用示意图表示)。 s 1 2 v 3 4 2 s v 1 2 3 4 2 a a 题图 9-8 题图 9-9 9 - 如题图 9-9 中给出了某直动推杆盘形凸轮机构的推杆的速度线图。要求:(1)定性地画出其加速 度和位移线图;(2)说明此种运动规律的名称及特点(v 、a 的大小及冲击的性质);(3)说明此种运动规律的适用场合。 9 -10 在题图 9-10 所示凸轮机构中,已知偏心圆盘为凸轮实际轮廓,如图所示。试求: 1) 基圆半径 R ; 2) 凸轮机构的压力角 ; 3) 凸轮由图示位置转 90°后,推杆移动距离 s 。 2 1 3 4 2 /3 2/3 4/3 5/3 2

相关文档
相关文档 最新文档