文档库 最新最全的文档下载
当前位置:文档库 › 硐室爆破设计word版

硐室爆破设计word版

硐室爆破设计word版
硐室爆破设计word版

硐室爆破课程设计任务书

1、工程概述

1.1工程简介

某公路路基自桩号K49+010至K51+080沿九里冲峡谷山坡布置。桩号K50+20至K50+70路段,因条件适宜,拟用硐室爆破开挖路基。该路段所经山体厚实,坡面平直,坡面走向S40°E,倾向SW,坡度45°。谷底高程100m,山顶高程200米。路面开挖设计高程140m,路基宽20m,设计边坡为70°。

1.2工程地质

爆区为坚硬致密硅质砂岩,岩层产状为S50°E∠10°。无地下水渗入。岩性均一,节理裂隙不甚发育,岩性坚固系数f=10,容重2800kg/。爆岩松散系数1.35,爆岩安息角度32°。

1.3施工要求

(1)离爆区800米处有一移民区,均为普通砖瓦平房,爆破振动速度控制在国家安全允许标准以下。爆区附近常有农民进行生产活动,确保安全。

(2)爆破要做到准爆,路基开挖面没有根坎,大块率在5%以下,边坡围岩稳定,坡顶未受损伤。

(3)在确保路基及设计边坡稳定的前提下,尽量使硐室爆破漏斗剖面接近公路设计剖面,并且留一保护层,在硐室爆破后用钻孔光面爆破处理。

2、方案设计

因爆区的岩层产状走向与坡面的倾向垂直,且该地段条件适宜,根据以往的爆破经验,故选择布置条形药包硐室爆破。

3、爆破参数选择

3.1主要爆破器材

(1)岩石型改性铵油炸药,2#岩石乳化炸药;

(2)毫秒延期塑料导爆雷管及瞬发电雷管,导爆索;

(3) QJ-41型电雷管测试仪;

(4) KG-200型电容式起爆器。

表3-1 岩石型改性铵油炸药主要性能指标

炸药密度爆速

(不小于)

猛度

(不小于)

mm

殉爆距离

(不大于)

cm

做功能力

(不小于)

mL

爆破后有害

气体含量

L

0.90~1.10320012.03298≤60

表3-2 2#岩石乳化炸药主要性能指标

炸药密度爆速

(不小于)

猛度

(不小于)

mm

殉爆距离

(不大于)

cm

做功能力

(不小于)

mL

爆破后有害

气体含量

L

1.00~1.3035001

2.03260≤60

(第二系列)

段别 1 2 3 5 7 9 11 13 15 17 19 20

延期时间

(ms)

0 25 50 110 200 310 460 650 880 1200 1700 2000

3.2 药包定位

3.2.1初步确定药包位置(如图3-1所示)

3-1

点的坐标系

进行爆破漏斗试算,确定实际爆破漏斗的位置,假设药包中心坐标(Xc、Yc),且Xc= Yc=0,以药包中心为坐标原点,建立坐标系,如图所示(图3-1)。

药包中心坐标C(Xc、Yc)为(0、0),BC=20m,∠ABC=45°∠B′CD=70°计算得:

最小抵抗线W=14.14m,爆破作用指数(见表3-3),崩塌破坏系数查表得:(见表3-4):

表3-4爆破作用指数n与地面坡度的关系表(斜坡地面)/(°)20~30 30~45 45~70 n 1.5~1.75 1.25~1.5 1.0~1.25

表3-5 崩塌破坏系数

地面坡度/(°)

土质、软岩、中硬岩石坚硬、致密岩石20~30

30~50 4.0~6.0 2.0~3.0

50~65 6.0~7.0 3.0~4.0 根据公式:

下破裂半径R=W=20m

上破裂半径R′=W=33.49m

得: n B==≈1.0

n B’ ==≈1.36

n= =1.18

3.2.2线装药密度的计算

条形药包硐室爆破通用线装药密度计算公式为:

其中0.4+0.6

式中—条形药包标准单位炸药消耗量,kg/,这里查表得;

W—最小抵抗线,m;

—爆破作用指数函数;

L—计算装药长度,m;

q—条形药包标准抛掷爆破单位长度装药量,kg/m;

e—炸药换算系数,这里取e=1.0。

即:q=1.0×(0.4+0.6×)×1.4× =388kg/m

3.2.3压缩圈半径的计算

根据公式:=0.56计算得到

式中—压缩圈半径,m;

—压缩系数(见表3-5),这里取10;

q—条形药包标准抛掷爆破单位长度装药量,kg/m;

—条形药包硐室爆破炸药密度,这里800kg/。

表3-5 压缩系数值

岩石坚固性系数f 被爆破的介质

0.5 黏土250

2.0~4.0 松软岩石50

4~8 中等坚硬岩石10~20

>8 坚硬岩石10

即:=0.56×=1.233m

为保护水平建基面(图中阴影部分表示边坡保护层),药包中心应高于建基面及药包中心至边坡水平距离2.64,及药包中心点c坐标为(1.233、3.255)。

图3-2 药包中心点c在坐标系的位置

由此循环计算得下表:

表3-6循环计算表

Xc Xy W R R′n B n B′n q

0 0 14.14 22.0 33.3 1.0 1.36 1.18 388 1.233

1.233 3.255 10.97 16.79 33.60 1.158 1.831 1.495 405 1.26 1.26 3.326 10.90 16.72 33.61 1.163 1.845 1.504 406 1.262

药包的布置坐标为c(1.26、3.33),最小抵抗线W为10.9m,下破裂半径R

为16.7m,上破裂半径为R′为33.6m,爆破作用指数n为1.5,条形药包标准抛掷爆破单位长度装药量q为406kg,压缩圈半径为1.26m。

可见漏斗半径(R k) R k =(1.1—0.33)

=(1.1—0.33×1)

= 12.86m

可见漏斗深度(P) P =(0.32n+0.28)W

=(0.32×1.5+0.28)×10.9

=8.28m

具体情况见爆破漏斗及可见漏斗剖面图(如图3-3):

图3-3 典型断面漏斗剖面图

3.2.4硐室爆破数据计算

如上典型断面图3-3:三角形△KDB′(阴影部分)表示被抛出体,三角形△BCB′爆破漏斗面积(实体积),四边形DKBC表示滞留的松散石料,cK表示可见漏斗半径,DP表示可见漏斗深度。

即:S0(△BCB′)=275.04(爆落实方面积)

爆落实方体积V0=S0×50=275.04×50=13572

S1(DKBC)=102.84(爆落滞留面积)

爆落滞留体积V1= S1×50=102.84×50=5142

S2= S0=275.04×1.35=371.3(爆落松方面积)

爆落松方体积V2= S2×50=371.3×50=18565

S3= S2- S1=373.3-102.84=270.46

抛掷松方体积V3= V2- V1=18565-5142=13423

抛掷率E==×100%=72.5%

4、导硐药室布置

4.1药室药包尺寸计算

导硐断面尺寸与药室一致,导硐进口位置边坡稳定,无冲沟切割,要避免雨水集流硐口,同事注意加强硐口支护;为了便于装药及交通,导硐与药室断面相同,导硐药室在开挖过程中要始终重视测量定位工作。

假设药包高G,宽B,即药包面积A=GB===0.5

选择药包宽度B=0.6m,即G=0.84m。

4.2药室断面尺寸的确定

通常药室断面的大小根据药室的装药量来确定,一般情况下,药室断面面积S可按下述计算

==2.00

式中 q—条形药包标准抛掷爆破单位长度装药量,kg/m;

—条形药包硐室爆破炸药密度,这里800kg/ D—不耦合系数,D=2~6.

即选择药室高度为1.6,宽度为1.25米。如图4-1及4-2

图4-1 导硐药室布置剖面图

5装药、堵塞设计

5.1装药设计

条形药包按设计的每米实际装药量从里面向外依次顺序整齐码放,码放要密实,减少裂隙,有主、副起爆体的,装药断面中央压上两根导爆索,在设计的副起爆体位置装2#岩石乳化炸药,且5m一个起爆体,导爆索放在2#岩石乳化炸药中间,导爆索结与主导爆索顺向连接,主起爆体放在药室靠近填塞料一端2.5m 处。

1)尽量选择晴天进行装药和堵塞,在雨天进行装药堵塞必须做好炸药的防雨措施;

2)爆破技术人员在装药前,应对药室和导硐再进行检查,对有水的药室做好防水处理,并用油漆标出装药和堵塞的部位,并全程负责药室知道工作;

3)每个导硐口应由专人负责,记录装入各药室的炸药品种和数量,并于设计数量核对无误后,再填卡、签字或盖章,交爆破负责人;

4)硐室爆破装药时,禁止使用电压高于36V的电灯,更不允许使用明火。

5.2填塞设计

1)堵塞是保证爆破成功的重要环节之一,在药室、导硐设计中,应考虑填塞自锁作用,即药室尽可能放置在主导硐,与条形药室的夹角应尽可能等于或接近与直角;

2)堵塞料的选择应本着就地取材、运输便利的原则,一般利用开挖导硐和

凿岩爆破工程课程设计讲义

题目一:露天台阶深孔爆破设计 某石灰石矿山采区离民宅最近距离约300m。该矿山采用露天深孔开采方式,穿孔用KQGS-150潜孔钻机穿孔,钻孔直径均为165mm,深孔爆破,台阶高度为15m,爆破采用塑料导爆管毫秒雷管分段起爆,主要采用硝铵炸药爆破。随着水泥产销量的不断增加,石灰石需求量为年产480万吨(矿石200万立方米)。因此,为减小爆破振动,保证居民的生活稳定,同时,又不要影响采矿强度和矿山中长期生产计划。

设计内容1、工程概况 2、爆破参数的确定 3、装药量计算 4、露天爆破台阶工作面的炮孔布置 5、装药、填塞和起爆网路设计 6、爆破安全评估 7、采取的安全防护措施。

1.工程概况 矿山采区离民宅最近距离约300m 。该矿山采用露天深孔开采方式,穿孔用KQGS-150潜孔钻机穿孔,钻孔直径均为165mm ,深孔爆破,台阶高度为15m ,爆破采用塑料导爆管毫秒雷管分段起爆,主要采用硝铵炸药爆破。随着水泥产销量的不断增加,石灰石需求量为年产480万吨(矿石200万立方米)。因此,为减小爆破振动,保证居民的生活稳定,同时,又不要影响采矿强度和矿山中长期生产计划。 平均分80次开挖,单次开挖爆破工程量25000m 3,自采场水平挖进约75m ×22m 。 2.爆破参数的确定与装药量计算。 根据爆区台阶高度、钻孔直径和岩石性质(石灰石f 8~10),选择爆破参数 ⑴台阶高度H=15m ⑵钻孔直径d=165mm ⑶单耗q=0.4kg/m 3; ⑷装药度e ρ=0.75t/; ⑸孔深装药T=0.7; ⑹超深h=15d=12x0.165=1.98m 取h=2m ; 钻孔邻近密集系数m=1.2。 ⑺孔深L=h+H=2+15=17m ⑻底盘抵抗线d W =d mq T e 85.7ρ=5.5m d ——孔径,dm ;

巷道爆破设计最终版

目录 第一章工程概况 (1) 1.1主要概况 (1) 第二章爆破工作 (1) 2.1炮眼布置 (1) 2.1.1掏槽眼 (1) 2.1.2辅助眼 (2) 2.1.3周边眼 (2) 2.2钻眼爆破参数 (3) 2.2.1炮眼布置图 (3) 2.2.2炮孔侧面图 (4) 2.2.3炮眼直径 (5) 2.2.4炮眼深度 (5) 2.3装药结构与起爆 (6) 2.3.1掏槽眼装药结构 (7) 2.3.2辅助眼装药结构 (7) 2.3.3周边眼装药结构 (7) 2.3.4炮眼的填塞 (8) 2.3.5起爆方法 (8) 2.3.6联接起爆网络 (8) 2.4编制爆破图表 (8) 2.4.1爆破原始条件 (8) 2.4.2炮眼布置及装药参数 (9) 2.5安全检查 (10) 第三章装岩工作 (10) 3.1装岩设备 (10) 3.2提升工作 (11) 3.3工作面调车与转载 (11) 第四章巷道的支护 (12) 4.1锚喷网的概述 (12)

4.2支护材料 (12) 4.2.1锚杆、砂浆的选用 (12) 4.2.2金属网的选用 (13) 4.2.3混凝土的配比 (13) 4.3临时支护 (14) 4.4永久支护施工程序 (14) 4.4.1搭设脚手架、爆破面整修 (15) 4.4.2第一次喷射混凝土 (15) 4.4.3锚杆钻孔及注浆 (16) 4.4.4挂网 (17) 4.4.5第二次喷射混凝土 (17) 4.5锚杆支护图 (17) 4.6支护施工技术要求 (18) 第五章巷道施工组织与管理 (20) 5.1施工组织 (20) 5.1.1正规循环作业 (20) 5.1.2循环图表的编制 (20) 5.2施工管理制度 (21) 5.2.1工程管理 (21) 5.2.2工程质量管理 (22) 5.2.3经济管理 (22) 5.2.4基本管理制度 (22) 5.3质量保证措施 (23) 小结 (24) 参考文献 (25)

(完整版)☆露天中深孔爆破设计

露天中深孔爆破设计 说 明 书 XXXXXXXXXXXXXXXXXXX 二O一0年八月

目录 1 设计依据和技术要求 (3) 1.1设计依据 (3) 1.2技术要求 (3) 2 工程概况 (4) 2.1 矿区位置及交通条件 (4) 2.2 矿床地质及构造特征 (4) 2.3 生产规模 (4) 2.4 开采方式 (4) 2.5 开拓运输方式 (4) 2.6 露天开采境界 (4) 2.7 开采顺序 (5) 2.8 矿山生产及辅助工程 (5) 2.9 爆破施工环境 (5) 3.爆破方案及参数选择与计算 (5) 3.1、露天采场构成要素及凿岩穿孔 (5) 3.2 爆破方案选择 (5) 3.3 爆破施工顺序 (5) 3.4 爆破参数选择与装药量计算 (6) 4 装药、堵塞和起爆网络设计 (11) 4.1 装药结构 (11) 4.2装药 (12) 4.3堵塞 (12) 4.4 起爆方法及延期时间 (13) 5 爆破安全允许距离计算 (13) 5.1 爆破振动安全允许距离 (13) 5.2 爆破冲击波 (14) 5.3个别飞散物安全允许距离 (14) 6 安全技术与防护措施 (15) 6.1 爆炸物品管理 (15) 6.2 爆破器材的质量检测 (16) 6.3 钻孔作业 (16) 6.4装药与堵塞 (16) 6.5 联线与起爆 (17) 6.6 早爆及其预防 (18) 6.7 盲炮的预防与处理 (19) 7 安全警戒 (19) 7.1 警戒范围 (19) 7.2 放炮组织 (20)

1 设计依据和技术要求 1.1设计依据 1、《爆破安全规程》(GB6722—2003) 2、《民用爆炸物品安全管理条例》(国务院令466号) 3、《工程爆破理论与技术》(中国工程爆破协会编) 4、《爆破工程施工与安全》(中国工程爆破协会编) 1.2技术要求 矿山应用中深孔爆破,要达到以下技术要求,才能既改善爆破质量,又能改善爆破技术的经济指标,降低采矿成本,取得较好的经济效益。 (1)、爆破质量好,破碎块度符合工艺要求,基本上无不合格大块, 无根底,爆堆集中并具有一定散度,满足铲装设备高效率装载的要求; (2)、降低爆破的有害效应,减少后冲、后裂和侧裂、降低爆破地震、噪声、冲击波和飞石的危害; (3)、提高延米爆破量,降低炸药单耗,同时在此前提下,使装载、运输和机械破碎等后续加工工序发挥高效率,降低采矿成本。

爆破工程课程设计范本

爆破工程课程设计

1工程概况 1.1 原始条件 某露天矿山开采闭坑后,拟转入地下开采,需要在露天底形成20~50m的覆盖层。露天采场底部走向长约450m,露天底平均宽30m。露天采场实际最高标高为305m,最低标高为-33m,封闭标高为117m,露天采场上口尺寸为:900m×630m,下口尺寸为410m×20m。原台阶高度12m,现已并段。 1.2 地质条件 矿石类型简单,矿石物质组成也较简单,矿石属于中硫、低磷、贫磁铁矿石。矿体围岩主要为石榴黑云斜长片麻岩和混合花岗岩。岩体稳定性中等,岩石坚固性系数f=8~10,节理裂隙发育,岩石一般比较破碎,强度较低。 1.3 设计任务 利用硐室爆破的方法在B12和B11两条勘探线之间形成高度为25m的覆盖层。 2爆破方案 2.1 爆破类型的确定 硐室爆破按爆破作用程度和结果分为抛掷爆破,松动爆破和加强松动爆破。 按爆破的目的和要求,抛掷爆破分为定向爆破、扬弃爆破和抛散爆破。定向爆破要求爆破的岩土按预定的方向运动并堆积在设定的范围之内。当只要求将爆破的岩土抛掷一定的距离,而不

要求有固定的方向及堆积范围时,称为抛散爆破,扬弃爆破是在地面平坦或坡度小于 30°的地形条件下,将开挖的沟渠、路堑、河道等各种沟槽或基坑内的挖方部分或大部分扬弃到设计开挖范围以外,使被开挖的工程经过爆破基本成型。 根据抛掷作用的方向不同抛掷爆破又可分为单侧抛掷爆破,双侧抛掷爆破,多向抛掷爆破和上向抛掷爆破等类型。一次爆破也能够同时具有多种性能,可一侧抛掷,另一侧松动。 松动爆破仅将土岩松动和破碎,破碎的岩石不产生抛掷。适用于对周围破坏小,不允许有抛掷的地方,一般抵抗线小于15~20m。炸药单耗小,爆堆集中,能有效地控制飞石距离,爆破有害效应小。当地表自然坡度大于60°时,采用松动爆破将岩石松动,破碎的岩石在重力作用下塌落,此时又称为崩塌爆破。 加强松动爆破是介于松动爆破和抛掷爆破之间(0.75

爆破设计方案汇总教材

沈海高速复杂环境爆破设计 一、工程概况 海西高速公路网沈海高速公路,A5标段路线起点(K31+380)位于漳州与龙 岩县交界处乍洋乡埂头坪自然村,与(A4标段)终点对接,路线总体由东北往西 南方向延伸,经林成村,建林成大桥,经岭城村,建岭城大桥、穿岭城隧道,建 沙河大桥跨沙河,经城郊乡东山垄、双城镇东山、至长沟乡,建长沟分离式桥下 穿县道X961,A5标段终点(K43+060)位于龙岩县长沟乡长沟村,与A6标段起 点对接,A5标段路线长11.64km,为双向四车道高速公路,设计时速80km/h,路基 顶宽度24.5m,沥青混凝土路面。 复杂环境部分主要包含四段路线:1、K32+900林成大桥至K34+222岭城隧道 进口(1.32㎞)、2、K36+085岭城隧道出口至K36+898沙河大桥(0.81㎞)、3、K39+482 东山人行天桥至K41+010东山寺(1.78㎞)、4、K41+850长沟大桥至K42+997长 沟中桥(0.94㎞),总爆破开挖石方量预估约12万m3,爆破工期约16个月。我 司受沈海高速A5合同段项目经理部委托,对该工程复杂环境部分进行爆破设计、 施工。 二、爆破环境、地形及地质特征 (1)爆区环境地形、地貌 该公路工程所经位置地形地貌主要为低山,总体趋势是西北高,东南低,山地自然坡度达25度以上,山坡植被发育,较平缓的多为梯田。以下为涉及复杂爆破施工地点的各个环境情况: 1、K32+900林成大桥至K34+222岭城隧道进口 该路段含孔桩、路基、隧道进口施工,沿途环境如下: K32+900为路基开挖,东侧有一220KV高压塔基为钢混结构,最近距离50米, 220KV高压线路横跨路基,土表层最近高度40米,

爆破设计与施工试题库设计案例(岩土爆破作业范围的试题)

4.1. 1风景区 一、爆破方案的选定 根据题干给出工程概况,采用浅孔分层台阶爆破方式进行开挖,开挖边线采用预裂爆破技术进行边坡爆破。 二、爆破参数 爆破参数是爆破方案的核心。科学确定爆破参数,是实现预期爆破效果,确保爆破安全,施工进度和节约成本,提高经济效益的保证。在设计每个爆破参数时都必须从实际出发,以地质勘探资料和爆破理论为依据。并在施工时不断核实,使每个参数都科学合理。 1、孔径和台阶高度 孔径主要由钻孔设备的性能、台阶高度、岩石性质和爆破作业环境决定。对于浅孔台阶爆破,孔径r 控制在40~50mm 较为理想,孔径太小爆破后的光面效果不好,岩面表面不美观。孔径太大,则爆破振动 和飞石的安全控制难度加大。台阶高度不超过5m时,孔径采用小值。本工程充分考虑控制振动强度,和爆破飞石的危害,设计台阶高度为H=1500mm,孔径采用r=40mm。 2、超深h和孔深L 钻孔深度由台阶高度和超深决定,确定超深方法有很多,有按最小抵抗线确定的,也有按孔径大小确定的。 经过多次爆破作业和实践总结,超深大小可取台阶高度的10%~15%计算,则本工程取超深h=0.2m,钻孔深 度L=1.5+0.2=1.7m。这种方法计算简单科学合理,实际爆破开挖的效果较好。 另外在山坡角钻孔深度不足1.7m时,则根据施工要求降低钻孔深度。按照相关参数及单耗计算装药量。 3、最小抵抗线w 最小抵抗线是一个对爆破效果和爆破安全影响较大的参数。确定了最小抵抗线的大小,就可根据炸药威力,岩石性质,岩石的破碎程度,炮孔直径,台阶高度和坡面角等因素进行装药计算。本控制爆破工程的最小抵线按照公式w=(0.4~1.0)H,取w=0.8~1.0m,取W=0.8m相应的炮孔密集系数为1.2。 4、炮孔间距a和炮孔排距b 爆孔间距a根据a=(1.0~2.0)w,本工程取较小值,控制a=1.0m。按照梅花型及等边三角形布置炮孔,则 孔距b=tan60°a/2=0.866m。取b=0.85m,炮孔密集系数m≈1.2。垂直钻孔。 5、炸药单位消耗量q 炸药单位消耗量是土岩爆破的重要参数。准确确定炸药单耗,对提高岩石破碎率,节约爆破成本,确保爆破安全具有重要意义。影响炸药单耗的因素很多,岩石结构及破碎程度,炸药性能,起爆方式,破碎要求都对其有影响。因此,要准确确定炸药单耗参数比较困难,在设计上应根据上述影响因素和以往类似爆破经验确定合理参数。并不断在爆破施工中进行试验校正,以达到准确合理要求,根据类似工程经验总结, 本工程取单位炸药消耗量q=0.35kg/m3计算。单孔装药量与其爆破方量成正比。则单孔装药量 Q=qabH=0.35*1.0*0.85*1.5=0.45kg/孔。 6、装药结构和填塞长度l 本工程为控制爆破飞石,冲炮等爆破危害的发生,采取连续装药结构,确保填塞长度和质量。填塞长度通常为药孔深度的1/3,而对于需严格控制爆破飞石时,则填塞长度取炮孔深度的2/5较为稳妥,这样既能防止飞石又可减少冲炮的发生。本工程取填塞长度l=2/5*L=0.68m。 三、预裂爆破参数 预裂爆破的基本原理是沿着设计轮廓线钻一排小间距的平行炮孔,采用低药量不耦合装药方式,每个装药孔既是爆破孔,又是相邻爆破孔的导向孔。炸药爆炸后,在每个导向孔上产生集中应力,其结果是沿着炮孔连线方向应力集中最大,而出现拉伸裂隙,并且沿炮孔连线方向延伸,从而沿设计的轮廓线先形成一条平整的、贯通的预裂缝,当主爆区爆破产生的应力波传在裂缝时,部分应力波被反射,从而降低了透射到预留坡体中的应力波强度,同时爆轰气体也会沿着先形成的裂隙释放,从而抑制了其它方向裂隙的产生和发展,达到减震的目的:另一方面主爆区向保留区的延伸裂缝被预裂缝切断,保护了预留区岩体的完整性。成功实现预裂爆破,药量的控制是最为关键的。 1.孔径D

中深孔爆破设计与施工方案

沈阳宏昱采石有限公司二采区中深孔爆破设计施工方案 编制人: 审核人: 审批人: 编制单位:中铁九局集团爆破工程有限公司 年月日

目录 一、施工设计 (1) 1、编制依据 (1) 2、工程概述 (2) 3、爆破器材 (3) 4、爆破参数选择与装药量计算 (3) 5、装药、堵塞和起爆网路设计 (4) 6、爆破安全计算 (6) 二、施工组织 (7) 1、施工部署 (7) 1.1人员职责及配备 (7) 2、施工准备 (10) 3、钻孔工程施工组织 (12) 4、装药及填塞组织 (13) 5、起爆网路敷设及起爆站设置 (13) 6、安全警戒与撤离区域及信号标志 (13) 7、主要设施与设备的安全防护 (14) 8、预防事故的措施 (14) 8.1防止火工品丢失、意外爆炸事故预防措施 (15) 8.2防止盲炮发生预防措施 (16)

8.3预防设备伤人事故措施 (16) 8.4防止火灾事故措施 (17) 9、施工质量保证措 (19) 9.1爆破指挥施工质量组织机构 (19) 9.2质量管理制度 (19) 9.3降低大块率措施 (19) 9.4边坡、基底平整度,边坡稳定性保证措施 (20) 9.5质量技术保证措施及质量通病的防治办法 (20) 10、施工安全保证措施 (21) 10.1安全生产管理机构 (21) 10.2安全生产管理制度 (21) 11、工期保证措施 (23) 12、降低成本措施 (24) 13、环境保护措施 (25) 13.1意外爆炸 (25) 13.2噪声 (26) 13.3水排放的控制措施和管理 (27) 13.4固体废弃物排放的控制措施和管理 (27) 13.5有毒烟尘排放的控制措施和管理 (28) 13.6节约用水、节约用电 (28) 13.7节约用纸 (28)

特种爆破课程设计作业100 m钢筋混凝土烟囱设计

一、工程概况 100 m钢筋混凝土烟囱位于原某厂区内,因土地开发需将其拆除。烟囱东侧69m处为一变电器,120m处为马路,马路外侧为民居,距烟囱南侧18 m为4层民房,西侧14 m为废弃水池,75 m有一架空电线。120 m外是长江,北侧80 m有一池塘,东北方向54 m有一废弃砖烟囱,115m有一厂房,周围环境见图1。 该烟囱高100m,为钢筋混凝土筒式圆形结构,因该烟囱建成后该厂即停产,故该烟囱未使用。烟囱筒身采用C30钢筋混凝土整体滑模浇筑,内衬为红砖砂浆砌筑而成。筒身布单层钢筋网,0~10 m范围内竖向钢筋为φ28,环向为φ18,间距均为200 mm。+1.0 m标高处,烟囱外直径7.8 m,混凝土壁厚为40 cm。内衬红砖厚24 cm,隔热层为10 cm,钢筋保护层为10 cm。在烟囱底部正东、正西方向各有一高1.8 m,宽1.0 m的出灰口,在+5.6 m标高处,正南、正北方向各有一高4.8 m,宽3.2 m的烟道口。+30 m处外直径6.57 m,混凝土壁厚为30 cm,内衬红砖厚12 cm,隔热层为5 cm,竖向钢筋为φ22mm,环向钢筋为φ18mm,间距为20cm,见下图2。

图1 爆区周围环境示意图(单位:m) 图2 烟囱结构示意图(单位:m)

二、爆破方案设计 1、烟囱倒塌方式及切口位置确定 根据烟囱周围环境,通过查阅烟囱的原始设计资料和现场实测获得的烟囱结构,各部位尺寸,相邻建筑的方位距离等数据,并充分考虑爆破拆除质量,安全和工期要求,经反复比较,烟囱爆破采用折叠爆破。爆破切口位置布置在距离地面100cm以上,中心线为两个出灰口中间。 2、切口形式及尺寸 此次爆破为100m高钢筋混凝土烟囱,爆破方案的爆破切口形式为梯形切口。切口对应的圆心角为230°,墙厚为D=40cm,烟从底部外周长为L=25m,故切口长度为16m,切口高度为1.8m。夹角为45°。墙厚F=30cm,切口对应圆心角为200°,标高30m处为折叠处,周长为L=21m,故切口长度为12m,切口高度为1.6m。夹角为45°。 3、爆破参数确定 (1)下端爆破参数:炮孔直径由钻孔机确定,此次采用风动凿岩机钻孔,孔径为40mm;最小抵抗线W=0.5壁厚=0.5×40=20cm; 孔深为d=0.68;壁厚=0.68×40=28cm;炮孔间距a=2w=40cm; 炮孔排距b=0.9a=36cm;炸药单耗取1200g/m3;则单孔装药 量Q=qabD=70g;总装药量为Q总=20N=70×150=10500g=10.5kg。 (2)上端爆破参数:炮孔直径由钻孔机确定,此次采用风动凿岩机钻孔,孔径为40mm;最小抵抗线W=0.5壁厚=0.5×30=15cm; 孔深为d=0.68壁厚=0.68×30=21cm;炮孔间距a=2w=30cm;

中深孔爆破规定详细版

文件编号:GD/FS-6801 (管理制度范本系列) 中深孔爆破规定详细版 The Daily Operation Mode, It Includes All Implementation Items, And Acts To Regulate Individual Actions, Regulate Or Limit All Their Behaviors, And Finally Simplify The Management Process. 编辑:_________________ 单位:_________________ 日期:_________________

中深孔爆破规定详细版 提示语:本管理制度文件适合使用于日常的规则或运作模式中,包含所有的执行事项,并作用于规范个体行动,规范或限制其所有行为,最终实现简化管理过程,提高管理效率。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 各市安全生产监督管理局,太原钢铁(集团)有限公司、中条山有色金属集团有限公司、中国铝业山西分公司: 为进一步加强金属非金属露天矿山企业(以下简称露天矿山)安全生产管理,改善作业条件,提高安全生产水平,预防和减少露天矿山生产安全事故,依据《安全生产法》、《金属非金属矿山安全规程》、《爆破作业安全规程》等有关法律、法规和规章规程,针对我省露天矿山存在的突出问题,现就露天矿山中深孔爆破安全管理工作作出如下规定和要求,请认真贯彻执行。 一、全面推行中深孔爆破

(一)露天矿山的爆破工程应当使用中深孔爆破技术,实行中深孔爆破。 (二)中深孔爆破是指炮孔直径大于50毫米,炮孔深度在5米至15米之间,最大深度不超过20米的爆破作业。 (三)露天矿山应配备具有相应从业资格的中深孔爆破作业人员,小型露天矿山可聘请专业爆破作业人员。 (四)爆破作业人员是指从事爆破工作的工程技术人员、爆破员、安全员、保管员和押运员。 爆破作业人员应当参加培训,取得有关部门颁发的相应类别和作业范围、级别的安全作业证后方可上岗。 二、落实中深孔爆破责任 (五)露天矿山主要负责人是本企业爆破安全管

爆破设计与施工第3版岩土爆破设计题有答案

全国工程爆破技术人员统一培训教材第3版2013版岩土爆破设计题(讲授样题,非考试试题) 4.1 设计题 设计1 风景区山坡开挖台阶爆破设计 某风景区改建工程中需要对一处山坡进行开挖,待开挖的山坡长22m,宽6.5m,高约7.5m。爆区周围环境复杂,山坡脚距湖1.5m,距开挖区1m处有围墙,距开挖区4m为石碑和凉亭,属于国家重点文物,是重点保护目标。施工中要控制飞石,飞石避免落入湖中,还要控制爆破产生的振动强度。要求采用浅孔分层台阶爆破,开挖边线采用预裂爆破。 设计要求内容如下: (1)孔距、排距、孔深、超深、单孔装药量、装药结构、填塞长度; (2)请给出预裂爆破设计:孔径、孔间距、孔深、线密度,单孔药量(可不计导爆索药量)、装药结构、(沿孔深的装药量分布)、填塞长度; (3)起爆网路设计(只说明孔内、孔间、排间雷管段位即可,包含预裂孔); (4)安全防护措施。 设计提示:炮孔直径40mm、单孔药量不大于0.5Kg,单位炸药消耗量按0.35Kg/m3计算。 分析:此工程周围环境十分复杂。距开挖区1m 处有围墙,4m 处有国家级重点文物石碑和凉亭,都需要保护,因此要严格控制爆破振动;山坡角距湖仅1.5m,飞石要避免落入湖中,需控制爆破产生的飞石。 为达到减振和保护国家重点文物的目的,设计采用浅孔分层台阶爆破,开挖边线采用预裂爆破,炮孔直径为40mm。采用松动爆破,单位炸药消耗量取0.35kg/m3 计算,并严格将单孔装药量控制在0.5kg 以内。 由单孔最大装药量和炸药单耗,计算得单孔能爆破的最大岩石体积为 1.43 m3,设计如下: (1)开挖爆破 台阶高度:按开挖深度7.5m 左右,考虑到单孔装药量要控制在0.5kg 以内,故取台阶高度H=1.5m,即本工程分 5 层开挖;炮孔为垂直孔。

深孔爆破设计书

深孔爆破设计书 设计编号:2012XXBC-36 编制人: 编制日期:年月日 技术审核: 审查日期:年月日 批准人: 批准日期:年月日 陕西富达矿山工程有限公司

情况概述 表1 1、爆破地点: 1095平台 1、爆区地质情况及岩性: 爆区植被丰富,岩石为石灰岩和风化岩,硬度为中性。 3、爆破的目的和要求: 目的:为水泥厂提供矿石 要求:岩体破碎,抛掷效果好。 4、炮孔布置:梅花形布孔方式: 3 排 21 孔 钻孔角度: 80 度、炮孔总进尺 273 米 5、爆破规模: 爆破总量: 2822.4 m3 总装药量: 1134 kg(其中:2#岩石炸药: 1110 kg,乳化炸药: 24 kg) 6、爆破方案: 装药结构:连续装药爆破网路联接方式:串联 起爆顺序:前→中→后延时情况: 1段3段5段

爆破参数选择与计算 表2 爆破参数采用的计算公式计算结果备注 孔径(D) 90 90 孔深(L) 13 13 根据地形 抵抗线(W) W=(24_34)d 2.5 孔距(a) A=(8_12)d 4.0 采用宽孔距小排距技术 排距(b) B=0.6a 2.8 采用宽孔距小排距技术 超钻深度(h) (0.1_0.15)H 1 填塞长度(L填) L=(16_32)d 4 根据地形炸药单耗(q) 0.4 0.4 时间间隔 同排孔间0 0 排间25ms 50ms 孔内分段段间0 0 深孔爆破主要技术参数

表3 项目单位设计实际备注阶段高度m 10_20 12 根据地形炸药单耗kg/m30.4 0.43 雷管单耗个/m30.0052 0.0052 孔径mm 90 90 底盘抵抗线m 2.5 2.5 孔距m 4 4 排距m 2.8 2.8 炮孔密集系数 1.5 延米孔装药量kg/m 6 6 单孔起炸药包数个 1 1 排间延迟时间ms 25ms 50ms 超深系数% 7.7 7.7 根据地形充填系数% 31 31 根据地形炮孔倾角度80 80 根据地形爆破量M32822.4 2642.2 炮孔排数排 3 3 孔数个21 21 炸药总量kg 1134 1140.6 雷管总量发21 21 总进尺m 273 274.1 总填塞长度m 84 84 爆破网路计算 表5

隧道爆破专项设计方案(最终版本)

赣龙铁路GL-5标段隧道工程 联络线项目部新龙门隧道 新龙门隧道 爆破专项方案 编制:李欢芳 复核:钮刚 审核:吴智 中铁五局赣龙铁路工程指挥部联络线项目部

二零一三年十一月 1. 设计说明 (4) 1.1 设计依据 (4) 1.2工程要求和目的 (4) 1.3爆破设计原贝卩 (5) 2. 工程概况 (5) 2.1爆破周围环境状况 (6) 2.2爆破方案的确定 (6) 3. 隧道爆破方案 (6) 3.1明挖方案 (6) 3.2洞身掘进方案 (6) 4. 隧道爆破设计 (7) 4.1根据安全允许距离计算炸药总量(瞬发爆破最大装药量) (7) 4.1隧道明挖部分施工 (9) 4.2隧道洞身皿级围岩施工方案 (9) 4.3隧道洞身W、V级围岩施工方案 (14) 4.3隧道爆破效果验证 (14) 4.4工期安排及主要设备情况 (15) 6.爆破安全控制措施 (19) 6.1爆破警戒布置 (21) 6.2爆破安全防护措施 (21) 6.3隧道爆破施工安全保障措施 (22) 6.4爆破作业特殊处理措施 (24) 7爆破施工安全及管理 (25)

7.1房屋调查及危房防护 (25) 7.2爆破震动测试 (25) 7.3设备安全防护 (25) 7.4安全警戒及讯号标志 (25) 7.5起爆信号 (25) 7.6事故预防措施 (26) 8. 爆破指挥部组织机构 (26) 8.1爆破工作人员具备条件 (27) 8.2爆破领导人的职责 (27) 8.3爆破工程技术人员的职责 (28) 8.5爆破班长的职责 (28) 8.6爆破员的职责 (28) 9. 爆破作业中可能出现的危险性预测和应急救援预案 (29) 9.1爆破作业中可能出现的危险性预测 (29) 9.2爆炸应急预案 (29) 9.3飞石伤人应急救援预案 (30)

爆破案例

案例一、1998年“6.10”爆破事故 1998年6月10日四点班,采三队施工的己18-17-23101采面,当班跟班干部工会主席韩文清,因八点班煤没有出完,溜子没有推过,当班的任务是收尾干剩余的工作,再从采面10#-5#柱采23m,于18时30分开始放炮出煤,19时40分炮放完。该班放炮员杨付兴检查后认为无事,就坐在4#柱休息。约21时班长沈三庭过来,对杨说炮已放完,机尾处巳开始过溜子,没啥事了,杨付兴于21时40分就提前升井了。到22时45分,溜子推到7#-6#柱段时,因6#柱中间有一个底眼炮没有放响,影响过溜子,沈三庭就用手镐刨煤,刨响瞎炮,崩伤沈三庭右手及面部,送往总医院。 事故原因: 1、放炮员没有认真进行放炮后检查,瞎炮没有及时发现,给事故埋下了隐患。 2、当班班长沈三庭身为班长,明知放炮后留有瞎炮,却违章处理,是造成事故的直接原因。 3、跟班干部管理不到位,责任制不落实,对现场违章现象没有制止。 防范措施: 1.严格执行规程规定,放炮后放炮员、班组长、瓦检员三人必须一同到现场进行检查, 发现瞎炮必须按规定进行处理。 2.严格劳动纪律,放炮员必须待采面煤出完后,溜子推过去,确认无瞎炮等情况存在时, 方可经当班第一安全责任者签字后升井。否则,必须在现场执行交接班制度。 处理意见: 1、对放炮员杨付兴给予开除矿籍留矿使用一年之处分: 2、建议免去青果三队当班跟班干部韩文清工会主席职务。 案例二、2000年“1.14”爆破事故 2000年1月14日八点班,采一队施工的己17-22030采面,接班后经检查无其它情况,符合打眼条件,打眼工李平生等四人配合放炮员打眼装药,分两段作业,即一组自机尾向下打眼,另一组自机头向上打眼,李平生等二人分在第一组,7时20分,? 当自机尾向下打25.5m(该处巷道采高最低,只有1.1m,距断层4.5m,上班此处为斜子,底眼下扎,没有起爆)处底眼时,打响瞎炮,将打眼工李平生面部、头部崩伤。 事故原因 l、上一班此处为斜子,底眼打好后装药没有起爆,也没有向下一班交班;八点班检查溜子已推过,没有发现底眼炮。 2、八点班打眼工没有按照作业规程中要求炮眼与煤壁向机头方向有10-15度的夹角进行打眼。防范措施: 1、严格执行程序化放炮作业制度,做好炮后检查工作。 2、加强放炮现场管理,重点做好特殊地段的打眼、装药租放炮情况.做到心中有数,并认真执行交接班制度。 案例三、2001年“10.26”爆破事故

【精品】爆破设计与施工试题库设计题及案例分析题

全国工程爆破技术人员统一考试 爆破设计与施工试题库设计题与案例分析题 4。1.1风景区 一、爆破方案的选定 根据题干给出工程概况,采用浅孔分层台阶爆破方式进行开挖,开挖边线采用预裂爆破技术进行边坡爆破. 二、爆破参数 爆破参数是爆破方案的核心。科学确定爆破参数,是实现预期爆破效果,确保爆破安全,施工进度和节约成本,提高经济效益的保证。在设计每个爆破参数时都必须从实际出发,以地质勘探资料和爆破理论为依据.并在施工时不断核实,使每个参数都科学合理。 1、孔径和台阶高度 孔径主要由钻孔设备的性能、台阶高度、岩石性质和爆破作业环境决定。对于浅孔台阶爆破,孔径r控制在40~50mm较为理想,孔径太小爆破后的光面效果不好,岩面表面不美观。孔径太大,则爆破振动和飞石的安全控制难度加大。台阶高度不超过5m时,孔径采用小值。本工程充分考虑控制振动强度,和爆破飞石的危害,设计台阶高度为H=1500mm,孔径采用 r=40mm。

2、超深h和孔深L 钻孔深度由台阶高度和超深决定,确定超深方法有很多,有按最小抵抗线确定的,也有按孔径大小确定的。经过多次爆破作业和实践总结,超深大小可取台阶高度的10%~15%计算,则本工程取超深h=0。2m,钻孔深度L=1.5+0.2=1.7m.这种方法计算简单科学合理,实际爆破开挖的效果较好。 另外在山坡角钻孔深度不足1。7m时,则根据施工要求降低钻孔深度。按照相关参数及单耗计算装药量。 3、最小抵抗线w 最小抵抗线是一个对爆破效果和爆破安全影响较大的参数.确定了最小抵抗线的大小,就可根据炸药威力,岩石性质,岩石的破碎程度,炮孔直径,台阶高度和坡面角等因素进行装药计算。本控制爆破工程的最小抵线按照公式w=(0。4~1.0)H,取w=0.8~1。0m,取W=0.8m相应的炮孔密集系数为1.2。 4、炮孔间距a和炮孔排距b 爆孔间距a根据a=(1。0~2.0)w,本工程取较小值,控制a=1.0m。按照梅花型及等边三角形布置炮孔,则孔距b=tan60°a/2=0.866m.取b=0。85m,炮孔密集系数m≈1。2。垂直钻孔。 5、炸药单位消耗量q

小型露天采石场中深孔爆破方案设计

小型露天采石场中深孔爆破方案设计湖南金泰安全评价有限责任公司 2013年7月 目录前言 (2) 一、中深孔爆破设计................................... 3 二、爆 破安全允许距离 ................................. 8 三、中深孔爆破安全对策措施.......................... 10 四、结论.. (13)

附图:1、小型露天采石场中深孔爆破基本要素图2、微差爆破炮孔布置形式图 1 前言根据国家安全生产监督管理总 局第39号令的有关规定:小型露天采石 场应当采用中深孔爆破,严禁采用扩壶 爆破、掏底爆破、掏挖开采和不分层的“一面墙”等开采方式;又根据湖南省安全 生产监督管理局湘安监[2013]13号文关于 印发《湖南省小型露天采石场矿长保护 矿工生命安全七条规定》的通知的第三 条规定:必须按规定采用中深孔爆破, 确保安全距离满足要求,严禁采用扩壶 爆破、掏底崩落。为了保护矿工生命安全,在保证安全的前提下提高爆破效率 和生产能力,现制定《小型露天采石场 中深孔爆破方案设计》,可以作为实施中 深孔爆破的设计依据。 2 一、中深孔爆破设计小型露天采石场多

开采石灰岩矿,矿岩中等稳固,地质构造较简单,应采用中深孔爆破。按阶段(台阶)高度H=10m0和阶段坡面角=70布置倾斜钻孔,多采用等边三角形平行孔排列,还可采用方形或矩形布孔(见附图1及2),设计爆破参数和主要内容说明如下:1、孔径与孔深穿孔设备多用KQD70型钻机,孔径取70mm,孔深可按下式计算: L = 式中: L- -孔深,m; h- -超钻深度,取h=1.0m(满足h=0.35W的要求)。d2、底盘最小抵抗线(W)d底盘抵抗线的大小与炮孔直径、炸药威力、装药密度、岩石可爆性、要求破碎程度及阶段(台阶)高度等因素有关,现按下列四种方法确定:(1)按单孔的装药条件计算 W= d d (2)按孔径等因素的经验公式计算 W(0.24KH+0.36) d 3 上两式中:Wd- -底盘抵抗线,m;d- -钻孔直径,0.7dm(经验公式中取d=70mm);32——装药密度,取0.9g/cm,即900kg/m(按硝铵炸药取数);3q——单位炸药消耗量,在岩石硬度系数f=10时取q=0.5kg/m;——装药系数,取0.78(见下页);L——孔深,11.6m;m ——钻孔邻近系数,取1.0;H——阶段(台阶)高度,10m;K——与岩石坚固性f值相关的系数(f=10时、k=0.7);7.85、0.24、0.36、150——均为常数。综上所述,本设计确定W= 2.5m。 d (3)按W与d的关系式计算 d -1 W= 35d = 35×0.7×10= 2.5m。 d 上式中35为常数。(4)按倾斜孔的安全作业条件检验,得出Wd≥2.5m符合安全要求。3、孔距和排距孔距a和排距b可按下式计算:孔距:a = mW = 1×2.5 = 2.5m d排距:b = 0.9a = 2.3m 上式中0.9为等边三角形排列时的常数。4 4、单孔装药量第一排孔:Q = qaWH = 0.50×2.5×2.5×10 = 31.3kg/孔 d后排孔:Q = KqabH = 1.1×0.5×2.5×2.3×10 = 31.6kg/孔上式中: Q- -单孔装药量,kg/孔;3q- -炸药单耗,0.5kg/m(按硝铵炸药、乳化炸药取数); a- -孔距,取2.5m; b- -排距取2.3m;W- -底盘抵抗线取2.5m;dH- -台阶高度取10m; 5、装药长度(L) 1 = 装药系数:= 6、填塞长度(L) 2按公式:L≥0.75wd = 0.752.5 = 1.9m 2(上式中0.75为中深孔的系数) 本设计单孔填塞长度= 11.6-9.1 = 2.5m>1.9m,装药条件可行,用黄泥混砂填塞。 7、单孔崩矿量(Qcp)第一排孔:Qcp = aWdHr = 2.5×2.5×10×2.5×0.85=133t/孔后排孔:Qcp = abHr = 2.5×2.3×10×2.5×0.85=122t/孔 5 3上两式中矿岩容重r = 2.5t/m、爆破效率ε≥0.85(可靠),其他参数同前。 8、爆破需求量按采石场生产能力10万t/a、年工作250天,采出矿石量400t/d 计算,应安排每三天爆破一次,每次爆破孔数15个(3排中深孔),爆破矿石量1830t,可以满足生产的需要,则一次爆

隧道光面爆破课程设计

隧道光面爆破课程设计 随着爆破技术在水利、交通、采矿等领域都己经得到了广泛应用,为了获得最佳的爆破效果,对爆破参数进行优化,并控制达到所要求的爆破质量不仅是技术上的要求,而且对于提高经济效益也是至关重要的。针对不同的煤层条件和环境做出最优爆破设计及其有效实施是决定爆破质量得关键。在达到预期的爆破效果的前提下,通过改进爆破方法、调整爆破参数、以达到降低成本的目的是爆破优化的重要目标。爆破设计一般情况下是靠经验多次调整得到的,这种过程使得在类似的工程中的爆破参数和方法长期以来难以改变,制约了技术进步,也无法了解和研究成本优化的可能性。大量的理论研究和长期的爆破实践表明,尽管实际工程中因条件、环境等的差异而产生不同的爆破效果,但这些效果相应的爆破参数有着内在的联系,在客观上存在一定程度的规律性,虽然这种客观规律在现在的条件下还不能被明确的表达出来,但人们仍然可以通过爆破参数间的联系了解这种规律,并利用这种隐含的规律来指导实践。随着经验的积累,这种客观规律的透明度也将不断提高,最终为人们所掌握,这一过程就是爆破参数的调整、爆破方法改进、爆破优化进步的过程。通过对客观现象的理论分析并结合实践的反复验证从而了解、描述这种隐含的规律,并完成爆破经验的积累和升华就是爆破优化所面对的重要目标。 要求:本次爆破设计要在结合工程条件的基础上,优化爆破参数,考虑爆破振动效应,制定合理的爆破方案。

目录 一、工程概述 (04) 1、设计依据 (04) 2、设计要求 (04) 3、工程地质条件 (04) 4、爆破规模及爆破区周边环境 (04) 二、设备选型 (04) 1、炸药的选择 (04) 2、钻孔设备的选择 (04) 3、供风设备的选择 (04) 三、穿孔爆破参数 (05) 1、掏槽方式的选择 (05) 2、爆孔参数的确定 (05) 3、炮眼的布置 (07) 4、炮眼分布 (08) 四、确定装药结构 (08) 1、装药结构的选择 (08) 五、网络敷设 (09) 1、起爆方式的种类 (10) 2、起爆网路的选择 (10) 3、雷管段别的选择 (10) 4、爆破网路敷设图 (10) 六、计算爆破工程量 (10) 1、爆破体积 (10) 2、炸药量 (10) 七、最大炸药量的计算 (10) 1、爆破地震安全距离 (10) 2、爆破地震强度计算 (10) 3、冲击波安全距离计算 (11) 八、预测爆破效果及安全距离 (11) 九、警戒距离、施工及安全组织 (11) 1、爆破警戒 (11) 2、安全组织与施工 (12) 十、爆破设计感想 (12) 十一、参考文献 (13) 十二、附图

深孔爆破设计方案

东平铁路DK5+00-Dk15+00段石方爆破方案和施工组织设计一.概况 根据指挥部提供的该段路基的设计图,该路基出露岩石为石灰岩、砂岩、板岩。此段内岩石开挖方量约55万立方米,最高挖深为16.3米。 路堑开挖断面为倒梯形,大部分为全路堑拉槽爆破开挖。直线路基宽度约为15m,上口最大宽度约为57.16m,开挖断面为347.1m2(如图1)。两侧边坡坡度均为1:1.5,按照设计要求,局部路段需实施光面爆破。 s=347.1 平方米 图1典型开挖断面炮眼布置图 二.爆破施工方案 考虑到该段路堑地表地势比较平坦,爆破方量比较分散,为加快施工进度,经比较决定:采用全断面一次成型深孔爆破方案。即在该段路堑全长范围内按爆破方案设计要求一次成孔,集中装药、一次起爆成型。对于永久铁路边坡光面爆破,根据实际情况和设计要求在涮坡时实施或另行设计。 主要爆破区域的爆破穿孔采用瑞典阿特拉斯高风压钻机,钻孔直径为Ф120m m。Ф90m m的钻机主要用于边坡光面爆破和零星小方量路段爆破。 三.爆破施工设计 1.主体拉槽爆破参数设计 根据现有施工设备,钻孔直径取φ120m m。 孔深由台阶高度和钻孔超深确定。 爆破台阶高度及路堑的开挖深度,该段路基的开挖深度为:

H =6.2-16.3 m 。 钻孔超深可按以下经验公式确定: h = (0.15-0.35) W d : (1) 其中:W d 为底盘抵抗线。本设计中钻孔超深的取值为:h = 1.5 m 。 钻孔深度按:L =H +h 计算。 孔网参数按常规设计取值。孔网参数不仅取决于钻孔直径,而且和梯段高度(即爆深)有关。对于φ120 m m 的钻孔,当爆深H >15m 时,宜采用4×5 m 的孔网参数。根据路基宽度的实际尺寸,并考虑到保护路肩的要求,炮眼间距a =4 m ,排距b =5m ;当爆深15m >H >10m 时,宜采用 3.5×4.5m 的孔网参数,炮眼间距a = 3.5 m ,排距b =4.5 m ;当爆深H <10m 时,可以考虑采用φ120 m m 的钻孔,其孔网参数应为4×3m , 炮眼间距a = 4.0 m ,排距b =3.0 m ;当爆深H <6.0 m 时,可以考虑采用φ90 m m 的钻孔和 2.5×3.0的孔网参数,炮眼间距a = 3.0 m ,排距b =2.5 m ;考虑到路基的设计尺寸和保护边坡的要求,为便于爆破网路联接的简单划一,取矩形布置。为改善爆破效果,钻孔倾角取α=750° 钻孔长度按正下式计算: α sin h H l d += (2) 单孔装药量:Q =q a b H (3) 式中:Q -单孔装药量,k g ; a b H = V :为单孔爆破岩石体积;其中a 为炮眼间距;b 为炮孔排距;H 为台阶高度,在此取炮眼深度,m 。 q -经验参数,即炸药单耗,根据爆破岩石性质,取q =0.40k g /m 3; 钻孔布置见图2。 炮孔布置剖面示意图 置示意图

各类中深孔爆破设计方案

各类中深孔爆破设计方案 2.1 矿区概述 2.1.1 矿区地理和交通 矿区地处山坡斜坡部位,所处地势总体为东部低,西部高;工作区最低为矿区南西部冲沟口处,海拔标高1920米;最高为矿区北西部的山坡处,海拔标高2278米,相对高差358米,地形坡度一般15~40°之间。属低浅切割地貌区。 隆阳区板桥镇秋山村宝石山石场位于市隆阳区(市区)42°方向,平距约19千米处。矿区地理坐标(极值):东经99°15′28″~99°15′31″,北纬25°14′53″~25°15′01″。矿区由四个拐点圈定(详见地形地质图),矿区面积0.019Km2,开采标高2060-2100米,矿区围拐点坐标见表4-1。行政区划隶属隆阳区板桥镇秋山村宝石山村民小组管辖。 320国道经过矿区西部,有一条约6千米的简易矿山公路与西部国道相联通;矿区至隆阳区(市区)运距为23千米。交通较为方便,详见交通图(图1)。 4.10凿岩爆破 本采石场以机械开采为作业方式,台阶高度10m,凿岩采用VF-9/7型空压机驱动与之匹配的KQD-70型潜孔钻机,钻孔直径为70mm。爆破采用中深孔微差爆破技术,炸药选用2#露天岩石炸药。

在爆破作业中需要做好各种防措施,采点之间签订统一爆破协议,并派遣专人在300m爆破警戒围上站岗放哨,发出明确的爆破信号和解除爆破信号。 4.10.1钻孔形式和炮孔布孔方式 (1)、钻孔方式:采用中深孔潜孔钻机钻孔,多排炮孔时炮孔倾角取80°,最后一排炮孔取75°;采用单排炮孔时,倾角取75°。(2)、布孔方式:一次爆破量较少时用单排孔,一次爆破量较大时,则采用V型孔布置方式。 4.10.2爆破参数的选择 (1)、炮孔直径d 炮孔直径取决于选定的钻机类型,采用KQD-70型潜孔钻机,钻孔直径取70mm。 (2)、底盘抵抗线Wp (a)、矿区的台阶为斜坡面,其坡角在750。为了克服台阶底部的

相关文档