文档库 最新最全的文档下载
当前位置:文档库 › 动态规划算法设计

动态规划算法设计

动态规划算法设计
动态规划算法设计

算法设计与分析实验报

决实际问题。

1、天平平衡问题:已知一个天平左右两端共有n个挂钩,且

有m个不同质量的钩码,求将钩码全部挂到钩子上使天平平衡

的方法的总数。试设计求解该问题的动态规划算法。

2、数塔问题:对于诸如下图的数塔,若从顶层走到底层,每

一步只能走到相邻的结点,求经过的结点的数字之和最大的路

径。试设计求解该问题的动态规划算法。

1.天平平衡问题的解题思路或算法思想:

1. 天平平衡问题的程序:

package com.t7;

public class Tianping{

public static void main(String[] args) {

int m = 27; //全部钩码的重量之和的二分之一,问题中的n

int n = 9; //钩码的数量,即题目中的m(个钩码)

int a[] = {10,9,8,7,6,5,4,3,2};

int h[] =new int[1001];

h[0]=1;

for (int i = 1; i <=n; i++) {

for (int j = m; j >=1; j--) {

if(j>=a[i-1]){

h[j]=h[j]+h[j-a[i-1]];

}

}

}

for (int j = 0; j <=m; j++)

System.out.print(h[j]+"");

}

}

实例:

2. 数塔问题的程序:

package com.t4;

import java.util.Scanner;

public class Main

{

public static void main(String [] args){

System.out.print("输入数组的层数: ");

Scanner scan=new Scanner(System.in);

int n=scan.nextInt();//定义数塔层数n;

int d[][]=new int[n][n];

System.out.print("输入数组元素:");

for(int i=0;i

{

for(int j=0;j

{

if(i>=j)

d[i][j]=scan.nextInt();

}

}

int result = dataTower(d);

2)

实验心得体会:

实验成绩:指导教师:年月日

动态规划算法原理与的应用

动态规划算法原理及其应用研究 系别:x x x 姓名:x x x 指导教员: x x x 2012年5月20日

摘要:动态规划是解决最优化问题的基本方法,本文介绍了动态规划的基本思想和基本步骤,并通过几个实例的分析,研究了利用动态规划设计算法的具体途径。关键词:动态规划多阶段决策 1.引言 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数

经典算法——动态规划教程

动态规划是对最优化问题的一种新的算法设计方法。由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的没计法对不同的问题,有各具特色的表示方式。不存在一种万能的动态规划算法。但是可以通过对若干有代表性的问题的动态规划算法进行讨论,学会这一设计方法。 多阶段决策过程最优化问题 ——动态规划的基本模型 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。因此各个阶段决策的选取不能任意确定,它依赖于当前面临的状态,又影响以后的发展。当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线。这种把一个问题看做是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题称为多阶段决策最优化问题。 【例题1】最短路径问题。图中给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路的长度。现在,想从城市A到达城市E,怎样走路程最短,最短路程的长度是多少? 【分析】把从A到E的全过程分成四个阶段,用k表示阶段变量,第1阶段有一个初始状态A,两条可供选择的支路ABl、AB2;第2阶段有两个初始状态B1、 B2,B1有三条可供选择的支路,B2有两条可供选择的支路……。用dk(x k,x k+1)表示在第k阶段由初始状态x k到下阶段的初始状态x k+1的路径距离,Fk(x k)表示从第k阶段的x k到终点E的最短距离,利用倒推方法求解A到E的最短距离。具体计算过程如下: S1:K=4,有:F4(D1)=3,F4(D2)=4,F4(D3)=3 S2: K=3,有: F3(C1)=min{d3(C1,D1)+F4(D1),d3(C1,D2)+F4(d2)}=min{8,10}=8 F3(C2)=d3(C2,D1)+f4(D1)=5+3=8 F3(C3)=d3(C3,D3)+f4(D3)=8+3=11 F3(C4)=d3(C4,D3)+f4(D3)=3+3=6

动态规划讲解大全(含例题及答案)

动态规划讲解大全 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著Dynamic Programming,这是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。 动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法。不象前面所述的那些搜索或数值计算那样,具有一个标准的数学表达式和明确清晰的解题方法。动态规划程序设计往往是针对一种最优化问题,由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的设计方法对不同的问题,有各具特色的解题方法,而不存在一种万能的动态规划算法,可以解决各类最优化问题。因此读者在学习时,除了要对基本概念和方法正确理解外,必须具体问题具体分析处理,以丰富的想象力去建立模型,用创造性的技巧去求解。我们也可以通过对若干有代表性的问题的动态规划算法进行分析、讨论,逐渐学会并掌握这一设计方法。 基本模型 多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题就称为多阶段决策问题。 记忆化搜索 给你一个数字三角形, 形式如下: 1 2 3 4 5 6 7 8 9 10 找出从第一层到最后一层的一条路,使得所经过的权值之和最小或者最大. 无论对与新手还是老手,这都是再熟悉不过的题了,很容易地,我们写出状态转移方程:f(i, j)=a[i, j] + min{f(i+1, j),f(i+1, j + 1)} 对于动态规划算法解决这个问题,我们根据状态转移方程和状态转移方向,比较容易地写出动态规划的循环表示方法。但是,当状态和转移非常复杂的时候,也许写出循环式的动态规划就不是那么

南京邮电大学算法设计实验报告——动态规划法

实验报告 (2009/2010学年第一学期) 课程名称算法分析与设计A 实验名称动态规划法 实验时间2009 年11 月20 日指导单位计算机学院软件工程系 指导教师张怡婷 学生姓名丁力琪班级学号B07030907 学院(系) 计算机学院专业软件工程

实验报告 实验名称动态规划法指导教师张怡婷实验类型验证实验学时2×2实验时间2009-11-20一、实验目的和任务 目的:加深对动态规划法的算法原理及实现过程的理解,学习用动态规划法解决实际应用中的最长公共子序列问题。 任务:用动态规划法实现求两序列的最长公共子序列,其比较结果可用于基因比较、文章比较等多个领域。 要求:掌握动态规划法的思想,及动态规划法在实际中的应用;分析最长公共子序列的问题特征,选择算法策略并设计具体算法,编程实现两输入序列的比较,并输出它们的最长公共子序列。 二、实验环境(实验设备) 硬件:计算机 软件:Visual C++

三、实验原理及内容(包括操作过程、结果分析等) 1、最长公共子序列(LCS)问题是:给定两个字符序列X={x1,x2,……,x m}和Y={y1,y2,……,y n},要求找出X和Y的一个最长公共子序列。 例如:X={a,b,c,b,d,a,b},Y={b,d,c,a,b,a}。它们的最长公共子序列LSC={b,c,d,a}。 通过“穷举法”列出所有X的所有子序列,检查其是否为Y的子序列并记录最长公共子序列并记录最长公共子序列的长度这种方法,求解时间为指数级别的,因此不可取。 2、分析LCS问题特征可知,如果Z={z1,z2,……,z k}为它们的最长公共子序列,则它们一定具有以下性质: (1)若x m=y n,则z k=x m=y n,且Z k-1是X m-1和Y n-1的最长公共子序列; (2)若x m≠y n且x m≠z k,则Z是X m-1和Y的最长公共子序列; (3)若x m≠y n且z k≠y n,则Z是X和Y的最长公共子序列。 这样就将求X和Y的最长公共子序列问题,分解为求解较小规模的问题: 若x m=y m,则进一步分解为求解两个(前缀)子字符序列X m-1和Y n-1的最长公共子序列问题; 如果x m≠y n,则原问题转化为求解两个子问题,即找出X m-1和Y的最长公共子序列与找出X 和Y n-1的最长公共子序列,取两者中较长者作为X和Y的最长公共子序列。 由此可见,两个序列的最长公共子序列包含了这两个序列的前缀的最长公共子序列,具有最优子结构性质。 3、令c[i][j]保存字符序列X i={x1,x2,……,x i}和Y j={y1,y2,……,y j}的最长公共子序列的长度,由上述分析可得如下递推式: 0 i=0或j=0 c[i][j]= c[i-1][j-1]+1 i,j>0且x i=y j max{c[i][j-1],c[i-1][j]} i,j>0且x i≠y j 由此可见,最长公共子序列的求解具有重叠子问题性质,如果采用递归算法实现,会得到一个指数时间算法,因此需要采用动态规划法自底向上求解,并保存子问题的解,这样可以避免重复计算子问题,在多项式时间内完成计算。 4、为了能由最优解值进一步得到最优解(即最长公共子序列),还需要一个二维数组s[][],数组中的元素s[i][j]记录c[i][j]的值是由三个子问题c[i-1][j-1]+1,c[i][j-1]和c[i-1][j]中的哪一个计算得到,从而可以得到最优解的当前解分量(即最长公共子序列中的当前字符),最终构造出最长公共子序列自身。

2设计动态规划算法的主要步骤为

2设计动态规划算法的主要步骤为: (1)找出最优解的性质,并刻划其结构特征。(2)递归地定义最优值。(3)以自底向上的方式计算出最优值。(4)根据计算最优值时得到的信息,构造最优解。 3. 分治法与动态规划法的相同点是:将待求解的问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。 两者的不同点是:适合于用动态规划法求解的问题,经分解得到的子问题往往不是互相独立的。而用分治法求解的问题,经分解得到的子问题往往是互相独立的。 贪心选择算法与动态规划算法的异同点:同:都要求问题具有最优子结构性质;异:动态规划算法为自底向上的方式解各子问题,贪心算法为自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每做一次贪心选择问题就转换为规模更小的字问题。 6. 分治法所能解决的问题一般具有的几个特征是:(1)该问题的规模缩小到一定的程度就可以容易地解决; (2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质; (3)利用该问题分解出的子问题的解可以合并为该问题的解; (4)原问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。 P:也即是多项式复杂程度的问题。 NP就是多项式复杂程度的非确定性问题。 NPC(NP Complete)问题 ADT 抽象数据类型 分析问题→设计算法→编写程序→上机运行和测试 算法特性1. 确定性、可实现性、输入、输出、有穷性 算法分析目的2. 分析算法占用计算机资源的 情况,对算法做出比较和评价,设计出额更好 的算法。 3. 算法的时间复杂性与问题的规模相关,是 问题大小n的函数。 算法的渐进时间复杂性的含义:当问题的规模 n趋向无穷大时,影响算法效率的重要因素是 T(n)的数量级,而其他因素仅是使时间复杂度 相差常数倍,因此可以用T(n)的数量级(阶) 评价算法。时间复杂度T(n)的数量级(阶)称为 渐进时间复杂性。 最坏情况下的时间复杂性和平均时间复杂性有什么不同? 最坏情况下的时间复杂性和平均时间复杂性 考察的是n固定时,不同输入实例下的算法所 耗时间。最坏情况下的时间复杂性取的输入实 例中最大的时间复杂度: W(n) = max{ T(n,I) } , I∈Dn 平均时间复杂性是所有输入实例的处理时间 与各自概率的乘积和: A(n) =∑P(I)T(n,I) I∈Dn 为什么要分析最坏情况下的算法时间复杂 性?最坏情况下的时间复杂性决定算法的优 劣,并且最坏情况下的时间复杂性较平均时间 复杂性游可操作性。 1.贪心算法的基本思想? 是一种依据最优化量度依次选择输入的分级处理方法。基本思路是:首先根据题意,选取一种量度标准;然后按这种量度标准对这n个输入排序,依次选择输入量加入部分解中。如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。 贪心选择算法与动态规划算法的异同点:同:都要求问题具有最优子结构性质;异:动态规划算法为自底向上的方式解各子问题,贪心算法为自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每做一次贪心选择问题就转换为规模更小的字问题。

算法合集之《动态规划算法的优化技巧》

动态规划算法的优化技巧 福州第三中学毛子青 [关键词] 动态规划、时间复杂度、优化、状态 [摘要] 动态规划是信息学竞赛中一种常用的程序设计方法,本文着重讨论了运用动态规划思想解题时时间效率的优化。全文分为四个部分,首先讨论了动态规划时间效率优化的可行性和必要性,接着给出了动态规划时间复杂度的决定因素,然后分别阐述了对各个决定因素的优化方法,最后总结全文 [正文] 一、引言 动态规划是一种重要的程序设计方法,在信息学竞赛中具有广泛的应用。 使用动态规划方法解题,对于不少问题具有空间耗费大、时间效率高的特点,因此人们在研究动态规划解题时更多的注意空间复杂度的优化,运用各种技巧将空间需求控制在软硬件可以承受的范围之内。但是,也有一部分问题在使用动态规划思想解题时,时间效率并不能满足要求,而且算法仍然存在优化的余地,这时,就需要考虑时间效率的优化。 本文讨论的是在确定使用动态规划思想解题的情况下,对原有的动态规划解法的优化,以求降低算法的时间复杂度,使其能够适用于更大的规模。 二、动态规划时间复杂度的分析 使用动态规划方法解题,对于不少问题之所以具有较高的时间效率,关键在于它减少了“冗余”。所谓“冗余”,就是指不必要的计算或重复计算部分,算法的冗余程度是决定算法效率的关键。动态规划在将问题规模不断缩小的同时,记录已经求解过的子问题的解,充分利用求解结果,避免了反复求解同一子问题的现象,从而减少了冗余。 但是,动态规划求解问题时,仍然存在冗余。它主要包括:求解无用的子问题,对结果无意义的引用等等。 下面给出动态规划时间复杂度的决定因素: 时间复杂度=状态总数*每个状态转移的状态数*每次状态转移的时间[1] 下文就将分别讨论对这三个因素的优化。这里需要指出的是:这三者之间不是相互独立的,而是相互联系,矛盾而统一的。有时,实现了某个因素的优化,另外两个因素也随之得到了优化;有时,实现某个因素的优化却要以增大另一因素为代价。因此,这就要求我们在优化时,坚持“全局观”,实现三者的平衡。 三、动态规划时间效率的优化 3.1 减少状态总数 我们知道,动态规划的求解过程实际上就是计算所有状态值的过程,因此状态的规模直接影响到算法的时间效率。所以,减少状态总数是动态规划优化的重要部分,本节将讨论减少状态总数的一些方法。

动 态 规 划 算 法 ( 2 0 2 0 )

01背包问题的动态规划算法、蛮力法和空间优化算法 算法思想: (1)【导师实战恋爱教-程】、动态规划算法:解决背包物品价值最大化问题的最优解,是建立在每一个子问题的最优解的前提下完成的。设Valu【扣扣】e[i,j]表示的是i个物品放进背包容量为j的背包的价值,令i从0【⒈】增至n(物品总数量),j从0增至c(背包总容量)。Value[n,c]就是我【О】们要的背包价值最大化的解。为了得到这个解必须要把之前的都解【1】决,每一个问题的最优解的算法又根据以下确定:当物品重【6】量w小于背包体积j时,此物品不放进背包,价值与上一次【⒐】价值相同;当物品重量w不小于背包体积j时,此物品是否放进背【5】包,取决于Value[i-1,j]和Value[i-1,j-w]+v的大小。写成表达式【2】则为以下内容: ? Va【б】lue[i-1,j]? weight[i]j Value[i,j] ? Max(Value[i-1,j],Value[i-1,j-w[i]]+v[i])? weight[i]=j 而这个表达式的约束条件就是当物品数量为0(i=0)时和背包容量为0(j=0)时,最大价值为0。 (2)、空间优化算法:动态规划法的空间复杂度为O(nw),现将空间复杂度优化到O(w)。我使用的方法为建立一个新的一维数组V[w+1],此数组与上述动态规划的Value数组不同的是只用于记录上一行的价值,如

当我需要求第i行的价值的时候,v数组中存放的是第i-1行的价值。然后从后往前(背包容量从c到0)计算价值、覆盖数组,因为每一次计算背包容量j大小的价值可能会用到j-w的价值,如果从前往后计算的话则数组已被更新,所以要从后往前计算。计算价值的方法也是和上面大致相同:如果物品体积w小于背包容量j,则判断V [j]和V[j-w]+v的大小;如果大于背包容量,则放不进去,V[j]价值不变。 写成表达式如下: ? V[j]? weight[i]j ? Max(V[j],V[j-w[i]]+value[i])? weight[i]=j 由于使用一维数组的方法,内容还一直被覆盖,所以无法得出背包中具体有哪些物品。 (3)、穷举法:用于验证动态规划方法是否正确。以n=4为例,创建一个v[4]的数组,用0和1表示第i个物品是否放进背包,如0001表示只有第四个物品放进背包。然后数组从0000~1111,计算每次摆放的重量以及价值。如果重量小于背包重量,且价值大于当前最大价值,则记录当前的最大价值以及数组。原理是这样在实施的时候为了记录背包的解,将0000和1111看成0和15的二进制形式,所以让i从0到15进行增长,每次将i转换成二进制格式放进数组中,这样做就可以记录最大价值时的i,转换成二进制则可获得具体物品。 伪代码如下: For i 0~2n-1

算法设计动态规划(编辑距离)

《算法设计与分析》课程报告 课题名称:动态规划——编辑距离问题 课题负责人名(学号): 同组成员名单(角色):无 指导教师:左劼 评阅成绩: 评阅意见: 提交报告时间:2010年 6 月 23 日

动态规划——编辑距离问题 计算机科学与技术专业 学生指导老师左劼 [摘要]动态规划的基本思想与分治法类似,也是将待求解的问题分解成若干份的子问题,先分别解决好子问题,然后从子问题中得到最终解。但动态规划中的子问题往往不是相互独立的,而是彼此之间有影响,因为有些子问题可能要重复计算多次,所以利用动态规划使这些子问题只计算一次。将字符串A变换为字符串所用的最少字符操作数称为字符串A到B的编辑距离。 关键词:动态规划矩阵字符串操作数编辑距离

一、问题描述 1、基本概念:设A和B是2个字符串。要用最少的字符操作将字符串A转换为字符串B。字符串操作包括: (1) 删除一个字符; (2) 插入一个字符; (3) 将一个字符改为另一个字符。 将字符串A变换为字符串B所用的最少字符操作数称为字符串A 到B的编辑距离,记为d(A,B)。 2、算法设计:设计一个有效算法,对于给定的任意两个字符串A 和B,计算其编辑距离d(A,B)。 3、数据输入:输入数据由文件名为input.txt的文本文件提供。文件的第1行为字符串A,第二行为字符串B。 4、结果输出:将编辑距离d(A,B)输出到文件ouput.txt的第一行。 输入文件示例输出文件示例 input.txt output.txt fxpimu 5 xwrs 二、分析 对于本问题,大体思路为:把求解编辑距离分为字符串A从0个字符逐渐增加到全部字符分别想要变为字符串B该如何变化以及变化的最短距离。 具体来说,首先选用数组a1存储字符串A(设长度为n),a2存储字符串B(设长度为m),d矩阵来进行具体的运算;这里有两个特殊情况比较简单可以单独考虑,即A的长度为0而B不为0还有A不为0B为0,这两种情况最后的编辑距离分别为m和n;讨论一般情况,d矩阵为d[n][m],假定我们从d[0][0]开始一直进行以下操作到了d[i][j]的位置,其中删除操作肯定是A比B长,同理,插入字符操作一定是A比B短,更改字符操作说明一样长,我们所要做的是对d[i][j-1]

常见动态规划算法问题策略分析

常见动态规划算法问题 策略分析

目录 一、动态规划策略 (1) 1.动态规划介绍 (1) 2.求解动态规划问题步骤 (1) 二、几种动态规划算法的策略分析 (1) 1.装配线调度问题 (1) 2.矩阵链乘问题 (2) 3.最长公共子序列(LCS) (3) 4.最大字段和 (4) 5.0-1背包问题 (4) 三、两种解决策略 (5) 1.自底向上策略 (5) 2.自顶向上(备忘录)策略 (5) 3.优缺点分析 (5) 四、总结 (6)

一、动态规划策略 1.动态规划介绍 动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多 阶段最优化决策解决问题的过程就称为动态规划。 基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的 求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部 解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。 依次解决各子问题,最后一个子问题就是初始问题的解。 由于动态规划解决的问题多数有重叠子问题这个特点,为减少重复计算,对每一个子问题只解一次,将其不同阶段的不同状态保存在 一个二维数组中。 与分治法最大的差别是:适合于用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的(即下一个子阶段的求解是建 立在上一个子阶段的解的基础上,进行进一步的求解)。 2.求解动态规划问题步骤 (1)确定最优解结构 (2)递归定义最优解的值 (3)自底向上计算最优解的值 (4)重构最优解 二、几种动态规划算法的策略分析 1.装配线调度问题 分析:首先确定最优解结构,分析问题可知大致分为两种情况:

动态规划算法

动态规划算法: 引言: 动态规划算法是求解最有问题的一种高效率的算法。其使用的原则是优化原则,即整体的最优解可以通过局部的最优解获得。问题求解的过程可以概括成两句话:自顶向下的分析,自下向上的计算。 典型例题 例1、数塔问题:设有一个三角形数塔,顶点节点称为根结点,每个节点有一个数值。从顶点出发,可以想左走也可以向右走。搜索从顶点出发向下走至塔底的所有路径中节点和最大的路径及最大和值。 问题分析: 1 选择最佳算法: 贪心算法----不能求最优解; 穷举算法----当塔层数很大时,计算量过大。 其它算法? 2 选择最佳数据结构表示数据: g[I,j,1]:表示为置[I,j]结点本身数值; g[I,j,2]:能取得的最大值; g[I,j,3]:前进方向,0---向下;1—向右下。 源程序: program d1; const n=5; var i,j:integer; g:array[1..n,1..n,1..3] of integer; begin for i:=1 to n do begin for j:=1 to i do begin read(g[i,j,1]); g[i,j,2]:=g[i,j,1];g[i,j,3]:=0; end; readln; end; for i:=n-1 downto 1 do for j:=1 to i do if g[i+1,j,2]>g[i+1,j+1,2] then g[i,j,2]:=g[i,j,2]+g[i+1,j,2] else begin g[i,j,2]:=g[i,j,2]+g[i+1,j+1,2]; g[i,j,3]:=1 end;

动态规划算法举例分析

动态规划算法 1. 动态规划算法介绍 基本思想是将待求解问题分解成若干子问题,先求解子问题,最后用这些子问题带到原问题,与分治算法的不同是,经分解得到的子问题往往是不是相互独立,若用分治则子问题太多。 2. 适用动态规划算法问题的特征 (1)最优子结构 设计动态规划算法的第一步骤通常是要刻画最优解的结构。当问题的最优解包含了其子问题的最优解时,称该问题具有最优子结构性质。问题的最优子结构性质提供了该问题可用动态规划算法求解的重要线索。 在动态规划算法中,问题的最优子结构性质使我们能够以自底向下的方式递归地从子问题的最优解逐步构造出整个问题的最优解。同时,它也使我们能在相对小的子问题空间中考虑问题。 (2)重叠子问题 可用动态规划算法求解的问题应具备的另一基本要素是子问题的重叠性质。在用递归算法自顶向下解此问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只解一次,而后将其解保存在一个表格中,当再次需要解此子问题时,只有简单地用常数时间查看一下结果。通常,不同的子问题个数随输入问题的大小呈多项式增长。因此,用动态规划算法通常只需要多项式时间,从而获得较高的解题效率。 (3)备忘录方法

动态规划算法的一个变形是备忘录方法。备忘录方法也是一个表格来保存已解决的子问题的答案,在下次需要解此子问题时,只要简单地查看该子问题的解答,而不必重新计算。与动态规划算法不同的是,备忘录方法的递归方式是自顶向下的,而动态规划算法则是自底向上递归的。因此,备忘录方法的控制结构与直接递归方法的控制结构相同,区别在于备忘录方法为每个解过的子问题建立了备忘录以备需要时查看,避免了相同子问题的重复求解。 备忘录方法为每个子问题建立一个记录项,初始化时,该记录项存入一个特殊的值,表示该子问题尚未求解。在求解过程中,对每个待求的子问题,首先查看其相应的记录项。若记录项中存储的是初始化时存入的特殊值,则表示该子问题是第一次遇到,则此时计算出该子问题的解,并保存在其相应的记录项中。若记录项中存储的已不是初始化时存入的特殊值,则表示该子问题已被计算过,其相应的记录项中存储的是该子问题的解答。此时,只要从记录项中取出该子问题的解答即可。 3. 基本步骤 a 、找出最优解的性质,并刻画其结构特征。 b 、递归地定义最优值。 c 、以自底向上的方式计算出最优值。 d 、根据计算最优值时得到的信息构造一个最优解。(可省) 例1-1 [0/1背包问题] [问题描述] 用贪心算法不能保证求出最优解。在0/1背包问题中,需要对容量为c 的背包进行装载。从n 个物品中选取装入背包的物品,每件物品i 的重量为i w ,价 值为 i v 。对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳 装载是指所装入的物品价值最高,即∑=n i i i x v 1 取得最大值。约束条件为 c x w n i i i ≤∑=1 , {}() n i x i ≤≤∈11,0。

动态规划算法的应用

动态规划算法的应用 一、实验目的 1.掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优值计算方法。 2.熟练掌握分阶段的和递推的最优子结构分析方法。 3.学会利用动态规划算法解决实际问题。 二、实验内容 题目一:数塔问题 给定一个数塔,其存储形式为如下所示的下三角矩阵。在此数塔中,从顶部出发,在每一节点可以选择向下走还是向右走,一直走到底层。请找出一条路径,使路径上的数值和最大。 输入样例(数塔): 9 15 10 6 8 2 18 9 5 19 7 10 4 16 输出样例(最大路径和): 59 三、实验步骤 (1)需求分析 通过动态规划法解决数塔问题。从顶部出发,在每一节点可以选择向下或者向右走,一直走到底层,以找出一条数值最大的路径。 (2)概要设计 本次实验程序主要用到二维数组,以及通过动态规划法进行比较每个数的大小。主要运用两个for循环语句实现动态规划。

(3)详细设计 第一步,输入给定的二维数组并打印出相应的数组: int array[5][5]={{9}, /* */{12,15}, /* */{10,6,8}, /* */{2,18,9,5}, /* */{19,7,10,4,6}}; int i,j; for(i=0;i<5;i++) { for(j=0;j<5;j++) cout<0;j--) { for(i=0;i<=4;i++) { if(array[j][i]>array[j][i+1]) array[j-1][i]=array[j][i]+array[j-1][i]; else array[j-1][i]=array[j][i+1]+array[j-1][i]; } } 第三步,输出最大路径的值。 cout<

动态规划算法实验报告

实验标题 1、矩阵连乘 2、最长公共子序列 3、最大子段和 4、凸多边形最优三角剖分 5、流水作业调度 6、0-1背包问题 7、最优二叉搜索树 实验目的掌握动态规划法的基本思想和算法设计的基本步骤。 实验内容与源码1、矩阵连乘 #include #include using namespace std; const int size=4; //ra,ca和rb,cb分别表示矩阵A和B的行数和列数 void matriMultiply(int a[][4],int b[][4],int c[][4],int ra ,int ca,int rb ,int cb ) { if(ca!=rb) cerr<<"矩阵不可乘"; for(int i=0;i

动态规划算法及其应用

湖州师范学院实验报告 课程名称:算法 实验二:动态规划方法及其应用 一、实验目的 1、掌握动态规划方法的基本思想和算法设计的基本步骤。 2、应用动态规划方法解决实际问题。 二、实验内容 1、问题描述 1 )背包问题 给定 N 种物品和一个背包。物品 i 的重量是 C i ,价值为 W i ;背包的容量为 V。问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品,对每种物品只有两个选择:装入或不装入,且不能重复装入。输入数据的第一行分别为:背包的容量 V,物品的个数 N。接下来的 N 行表示 N 个物品的重量和价值。输出为最大的总价值。 2)矩阵连乘问题 给定 n 个矩阵:A1,A2,...,An,其中 Ai 与 Ai+1 是可乘的,i=1 , 2... , n-1。确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。输入数据为矩阵个数和每个矩阵规模,输出结果为计算矩阵连乘积的计算次序和最少数乘次数。 3 )LCS问题 给定两个序列,求最长的公共子序列及其长度。输出为最长公共子序列及其长度。 2、数据输入:文件输入或键盘输入。 3、要求: 1)完成上述两个问题,时间为 2 次课。 2)独立完成实验及实验报告。 三、实验步骤 1、理解方法思想和问题要求。 2、采用编程语言实现题目要求。 3、上机输入和调试自己所写的程序。 4、附程序主要代码: (1) #include int max(int a, int b) { return (a > b)? a : b; } int knapSack(int W, int wt[], int val[], int n) { if (n == 0 || W == 0) return 0;

动态规划的matlab算法

动态规划的matlab算法,源码来自书上,只作分享用 function [p_opt,fval]=dynprog(x,DecisFun,ObjFun,TransFun) k=length(x(1,:)); x_isnan=~isnan(x); f_vub=inf; f_opt=nan*ones(size(x)); d_opt=f_opt; t_vubm=inf*ones(size(x)); tmp1=find(x_isnan(:,k)); tmp2=length(tmp1); for i=1:tmp2 u=feval(DecisFun,k,x(i,k)); tmp3=length(u); for j=1:tmp3 tmp=feval(ObjFun,k,x(tmp1(i),k),u(j)); if tmp<=f_vub f_opt(i,k)=tmp; d_opt(i,k)=u(j); t_vub=tmp; end end end %??Dò???? for ii=k-1:-1:1 tmp10=find(x_isnan(:,ii)); tmp20=length(tmp10); for i=1:tmp20 u=feval(DecisFun,ii,x(i,ii)); tmp30=length(u); for j=1:tmp30 tmp00=feval(ObjFun,ii,x(tmp10(i),ii),u(j)); tmp40=feval(TransFun,ii,x(tmp10(i),ii),u(j)); tmp50=x(:,ii+1)-tmp40; tmp60=find(tmp50==0); if ~isempty(tmp60) tmp00=tmp00+f_opt(tmp60(1),ii+1); if tmp00<=t_vubm(i,ii) f_opt(i,ii)=tmp00; d_opt(i,ii)=u(j); t_vubm(i,ii)=tmp00; end

动态规划法求解生产与存储问题

动态规划 一·动态规划法的发展及其研究内容 动态规划是运筹学的一个分支,是求解决策过程最优化的数学方法。20世纪50年代初美国数学家等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,把多阶段问题转化为一系列的单阶段问题,逐个求解 创立了解决这类过程优化问题的新方法——动态规划。1957年出版的他的名著《Dynamic Proggramming》,这是该领域的第一本著作。 动态规划问世以来,在经济管理·生产调度·工程技术和最优控制等方面得到了广泛的应用。例如最短路线·库存管理·资源分配·设备更新·组合·排序·装载等问题,采用动态规划法求解比用其他方法更为简便。 二·动态规划法基本概念 一个多阶段决策过程最优化问题的动态规划模型通常包括以下几个要素: 1.阶段 阶段(stage)是对整个过程的自然划分。通常根据时间顺序或是空间特征来划分阶段,对于与时间,空间无关的“静态”优化问题,可以根据其自然特征,人为的赋予“时段”概念,将静态问题动态化,以便按阶段的顺序解优化问题。阶段变量一般用k=….n.表示。

1.状态 状态(state)是我们所研究的问题(也叫系统)在过个阶段的初始状态或客观条件。它应能描述过程的特征并且具有无后效性,即当某阶段的状态给定时,这个阶段以后的过程的演变与该阶段以前各阶段的状态无关。通常还要求状态是可以直接或者是间接可以观测的。描述状态的变量称为状态变量(State Virable)用s 表示,状态变量的取值集合称为状态集合,用S表示。变量允许取值的范围称为允许状态集合(set of admissble states).用x(k)表示第k阶段的状态变量,它可以是一个数或者是一个向量。用X(k)表示第k阶段的允许状态集合。 n 个阶段的决策过程有n+1个状态变量,x(n+1)是x(n)的演变的结果。 根据演变过程的具体情况,状态变量可以是离散的或是连续的。为了计算方便有时将连续变量离散化,为了分析的方便有时又将离散的变量视为连续的。 2.决策 当一个阶段的状态确定后,可以做出各种选择从而演变 到下一阶段的某个状态,这种选择手段称为决策 (decision),在最优控制问题中也称为控制(control)描述决策的变量称为决策变量(decision virable)。 变量允许取值的范围称为允许决策集合(set of

动态规划算法设计

算法设计与分析实验报 告 决实际问题。 1、天平平衡问题:已知一个天平左右两端共有n个挂钩,且 有m个不同质量的钩码,求将钩码全部挂到钩子上使天平平衡 的方法的总数。试设计求解该问题的动态规划算法。 2、数塔问题:对于诸如下图的数塔,若从顶层走到底层,每 一步只能走到相邻的结点,求经过的结点的数字之和最大的路 径。试设计求解该问题的动态规划算法。 1.天平平衡问题的解题思路或算法思想:

1. 天平平衡问题的程序: package com.t7; public class Tianping{ public static void main(String[] args) { int m = 27; //全部钩码的重量之和的二分之一,问题中的n int n = 9; //钩码的数量,即题目中的m(个钩码) int a[] = {10,9,8,7,6,5,4,3,2}; int h[] =new int[1001]; h[0]=1; for (int i = 1; i <=n; i++) { for (int j = m; j >=1; j--) { if(j>=a[i-1]){ h[j]=h[j]+h[j-a[i-1]]; } } } for (int j = 0; j <=m; j++) System.out.print(h[j]+""); } } 实例: 2. 数塔问题的程序: package com.t4; import java.util.Scanner; public class Main { public static void main(String [] args){ System.out.print("输入数组的层数: "); Scanner scan=new Scanner(System.in); int n=scan.nextInt();//定义数塔层数n; int d[][]=new int[n][n]; System.out.print("输入数组元素:"); for(int i=0;i=j) d[i][j]=scan.nextInt(); } } int result = dataTower(d);

动态规划理论(精华)

动态规划理论 一.动态规划的逆向思维法 动态规划是一种思维方法,没有统一的、具体的模式。动态规划可以从多方面去考察,不同的方面对动 态规划有不同的表述。我们不打算强加一种统一的表述,而是从多个角度对动态规划的思维方法进行讨 论,希望大家在思维具体问题时,也能够从多个角度展开,这样收获会更大。 逆向思维法是指从问题目标状态出发倒推回初始状态或边界状态的思维方法。如果原问题可以分解成 几个本质相同、规模较小的问题,很自然就会联想到从逆向思维的角度寻求问题的解决。 你也许会想,这种将大问题分解成小问题的思维不就是分治法吗?动态规划是不是分而治之呢?其实, 虽然我们在运用动态规划的逆向思维法和分治法分析问题时,都使用了这种将问题实例归纳为更小的、 相似的子问题,并通过求解子问题产生一个全局最优值的思路,但动态规划不是分治法:关键在于分解 出来的各个子问题的性质不同。 分治法要求各个子问题是独立的(即不包含公共的子问题),因此一旦递归地求出各个子问题的解后, 便可自下而上地将子问题的解合并成原问题的解。如果各子问题是不独立的,那么分治法就要做许多不 必要的工作,重复地解公共的子问题。 动态规划与分治法的不同之处在于动态规划允许这些子问题不独立(即各子问题可包含公共的子问题) ,它对每个子问题只解一次,并将结果保存起来,避免每次碰到时都要重复计算。这就是动态规划高效

的一个原因。 动态规划的逆向思维法的要点可归纳为以下三个步骤: (1)分析最优值的结构,刻画其结构特征; (2)递归地定义最优值;0 (3)按自底向上或自顶向下记忆化的方式计算最优值。 【例题1】背包问题描述: 有一个负重能力为m的背包和n种物品,第i种物品的价值为v,重量为w。在不超过背包负重能力的前 提下选择若干个物品装入背包,使这些的物品的价值之和最大。每种物品可以不选,也可以选择多个。 假设每种物品都有足够的数量。 分析: 从算法的角度看,解决背包问题一种最简单的方法是枚举所有可能的物品的组合方案并计算这个组合 方案的价值之和,从中找出价值之和最大的方案。显然,这种靠穷举所有可能方案的方法不是一种有效 的算法。 但是这个问题可以使用动态规划加以解决。下面我们用动态规划的逆向思维法来分析这个问题。 (1)背包问题最优值的结构 动态规划的逆向思维法的第一步是刻画一个最优值的结构,如果我们能分析出一个问题的最优值包含 其子问题的最优值,问题的这种性质称为最优子结构。一个问题的最优子结构性质是该问题可以使用动 态规划的显著特征。 对一个负重能力为m的背包,如果我们选择装入一个第 i 种物品,那么原背包问题就转化为负重能力 为 m-w 的子背包问题。原背包问题的最优值包含这个子背包问题的最优值。若我们用背包的负重能力来 划分状态,令状态变量s[k]表示负重能力为k的背包,那么s[m]的值只取决于s[k](k≤m)的值。因此背包

相关文档