文档库 最新最全的文档下载
当前位置:文档库 › PROE中齿轮副运动仿真的制作

PROE中齿轮副运动仿真的制作

PROE中齿轮副运动仿真的制作
PROE中齿轮副运动仿真的制作

在PROE中进行单级圆柱齿轮副的运动仿真 在新的PROE(3以上版本)中可以使用齿轮副连接方式控制两个连接轴之间的速度关系,齿轮副中的每个齿轮都需要有两个主体和一个接头连接。第一主体(指定为托架)通常保持固定不动。第二主体能够运动,根据所创建的齿轮副的类型,可称为齿轮 、小齿轮或齿条。齿轮副连接可约束两个连接轴的速度,但是不能约束接头连接的主体相对空间方位。

在齿轮副中,两个运动主体的表面不必相互接触就可以工作,因为齿轮副被视为速度约束。并非基于模型几何,因此可直接指定齿轮比。

下面结合实例介绍使用齿轮副连接方式控制输入轴与输出轴之间速度比的基本操作方法,请注意体会其中的技巧知识。

创建单级圆柱齿轮减速器机构,然后进行运动仿真。

设计步骤

一.新建一个名为“asm17-2”的文件(装配文件),采用毫米、牛、秒单位制,进入PROE的装配模块

二.首先向装配文件中调入第一个零件“BASE.prt”,(这是一个装配的支架性的零件)操作过程如图所示:

1选择“插入”,“元件”,“装配”命令或单击调入按钮,然后在系统弹出的“打开”对话框中选取零件“BASE”后,单击“打开”按钮,

系统立即在绘图区中调入该零件。

2同时系统还弹出装配操控板,要求用户将打开的零件按照一定的装配约束关系进行空间定位,单击常规装配约束类型中的按钮表示系统将在默认位置装配该元件,即将该零件定义为机构的基础主体。 三.调入零件“gear1.prt”,然后创建第一个销钉连接,操作过程如下

1选择“插入”,“元件”,“装配”命令或单击调入按钮然后在系统弹出的“打开”对话框中选取零件“gear1.prt”后,单击“打开”按钮,系统立即在绘图区中调入该零件。

2同时系统还弹出装配操控板,要求用户将打开的零件按照一定的装配约束关系进行空间定位,单击预定的连接集中的“销钉”连接方式。在该零件(gear1)上选择轴线,在第一个零件(BASE)上选择轴线以定义轴对齐约束,然后分别选择两零件的对应圆柱端面以定义平移约束。

3最后单击装配操控板中的打勾按钮,即可完成第一个销钉连接的定义。

四.调入零件“gear2.prt”,(相啮合的另一个齿轮件),然后添加两齿轮的相切约束,操作过程如下:

1选择“插入”,“元件”,“装配”命令或单击调入按钮然后在系统弹出的“打开”对话框中选取零件“gear2.prt”后,单击“打开”按钮,系统立即在绘图区中调入该零件。

2在该零件(gear2)上选择轴线,在第一个零件(BASE)上选择轴线

以定义轴对齐约束,然后分别选择两零件的对应圆柱端面以定义平面对齐约束。(请注意这时的一开始并不指定“销钉”约束,而是用类似销钉的方式固定第二零件,再用相切齿面的方式让齿轮副啮合,最后再用销钉方式定义全部约束)

3此时系统立即显示轴线对齐约束和平面对齐约束后的装配结果,读者会发现此时两齿轮相啮合的轮齿之间有干涉现象。

4取消“放置”菜单上滑面板中的“允许假设”复选框的选中状态,然后选择“放置”菜单上滑面板中的“新建约束”选项,表示将添加一个相切放置约束。

注意1:(对于PROE5的版本,在“放置”键的菜单滑面板中点击“新建集”,在“约束类型”下的框中选择相切)

注意2:(对于锥齿轮副,在放置第二个运动件的设置中,可直接设置成销钉,不对齿面相切作出约束)

5然后分别选择两齿轮的两个相啮合面以定义相切约束。

6系统立即将两相啮合齿面之间添加了相切约束。(齿面不再干涉,有一个指定的齿面有相对很少接触)

五.接下来开始将齿轮“gear2.prt”修改为销钉连接方式以创建第二个销钉连接

请注意(在PROE5版本中,在定义好齿面相切后,要取消先行的菜单滑面板中的各项已定条件后才能再次进行“销钉”约束)

在操控板中单击预定义的连接集中的“销钉”连接方式。

在绘图区中选择零件“gear2”上的轴线

在绘图区窗口中选择零件“BASE”中的轴线

在绘图区中选择零件“gear2”中的前表面

在绘图区中选择零件“BASE”中的前圆柱端面

最后单击装配操控板中的打勾按钮,系统便成功完成零件“gear2”的销钉连接。

六.选择“应用程序”/“机构”命令,PROE系统立即进入机构模块的操作界面,同时在绘图区中显示出所创建的两个销钉连接。

七.接下来为单级圆柱齿轮减速器机构添加齿轮副连接方式,操作过程如下:

1选择“插入”,“齿轮”命令或单击机构工具中的齿轮按钮,系统提示“选取一个运动轴”,在绘图区中选择运动轴1(第一个齿轮的轴线)。

2然后在“齿轮副定义”的对话框的“类型”下拉列表中选择“标准”选项,在“齿轮1”的选项卡中输入齿轮1的节圆直径96。

3接下来在“齿轮副定义”对话框中选择“齿轮2”选项卡,系统提示“选择一个运动轴”,在绘图区中选择运动轴2(第二个齿轮的运动轴线)。

4在“齿轮副定义”对话框的“齿轮2”选项卡中输入齿轮2的节圆直径192。

5单击“齿轮副定义”对话框中的“确定”按钮,系统便成功创建齿轮副连接。

八.开始标识基础和拖动刚创建好的单级圆柱齿轮减速器机构模型,

操作过程如下:

1依次选择“视图”/“加亮主体”命令或者单击加亮按钮,系统在绘图区中将主体加亮显示。

2.单击各界面要求的按钮,选择“FRONT”选项。

3.单击“手形按钮”在零件“gear1”即第一个齿轮上选取一点。

4.鼠标拾取点处出现一个黑色拖动控制句柄,此时无须再次单击鼠标,拖动该点即可拖动齿轮副机构模型按预期方式转动。

5.单击“拖动”对话框中的“关闭”按钮,结束拖动操作。

九.接下来创建伺服电动机以使驱动机构运转。操作过程如下:

十.进行齿轮副的运动学分析,操作过程如下:

1.选择“插入”/“伺服电动机”命令或单击定义伺服电动机的快捷键按钮,系统弹出“伺服电动机定义”对话框,在“类型”选项卡的“从动图元”选项区域中选中“运动轴”单选按钮。

2.系统提示“选取一个运动轴”,在绘图区中选择第一个齿轮的轴线作为运动轴。(“Comnnection_1.axis_1”)

3.在“轮廓”选项卡的“规范”选项区域中选择“速度”选项,在“模”选项区域中选择“常数”选项,在“A”文本框中输入值“72”在“图形”选项区域中选中“位置”复选框,同时取消“速度”复选框中选中状态,最后单击作速度图指示的按钮。(72值的含义为720度,故可以改为36,意为360度,如果第一个运动件是大件的话,可以使得转速较低以便看得更加清楚)

4.系统在“图形工具”窗口中绘图显示伺服电动机在10秒内完成二

次旋转。(输入36后,系统将会显示在10秒钟内完成一次旋转) 5.最后单击“伺服电动机定义”对话框中的“确定”按钮,系统便成功创建了伺服电动机。

进行齿轮副的运动学分析操作过程(续)

1.选择“分析”/“机构”命令或单击机构分析快捷键按钮,系统弹

出“分析定义”对话框。在“名称”文本框中保持系统默认名称,在“类型”选项区域中选择“运动学”选项,在“优先选项”选项卡中保持系统的默认设置。

2.在“分析定义”对话框的“电动机”选项卡中确保列出了伺服电

动机“ServoMotor1”。如果未列出,则可单击插入按钮,然后添加伺服电动机“ServoMotor1”。最后单击“运行”按钮。

3.单级圆柱齿轮减速器机构中的零件“Gear1”在伺服电动机的驱动

下开始回转运动两周,同时带动零件“Gear2”进行运动仿真。

4.最后单击“分析定义”对话框中的“确定”按钮。(退出)

十一.接下来需要将上面刚完成的运动分析保存为回放文件,并查看单级圆柱齿轮减速器机构的运动结果,操作过程如下:

1选择“分析”/“回放”命令或单击标有前进后退播放按钮,系统弹出“回放”对话框,在“结果集”下拉列表框中系统自动选择了前面的分析结果文件“AnalysisDefinition1”,单击对话框中的标有前进后退播放按钮。

2系统弹出“动画”对话框,单击标有前进的按钮。

3单级圆柱齿轮减速器机构中的零件“Gear1”在伺服电动机的驱动

下开始回转运动,同时带动零件“Gear2”转动。当零件“Gear1”回转两周后,机构自动重新开始进行运动仿真。

4最后单击“回放”对话框中的“关闭”按钮,系统便停止机构的运动仿真。

5此时系统重新返回到“回放”对话框,单击对话框中的“保存”按钮,可将分析结果保存为“AnalysisDefinition1.pbk”文件。

6最后单击“回放”对话框中的“关闭”按钮。

注意:不存成文件,一但退出,将丢失分析结果,只有重新建立分析文件,才能再次出现分析结果文件。

十二.将装配件存盘。在主菜单栏中依次选择“文件”/“保存”命令,或者单击工具条中的保存按钮,系统弹出“保存对象”对话框,直接单击“确定”按钮,将装配件以原来的文件 名进行保存。

至此,利用PROE顺利完成了单级圆柱齿轮减速器的运动仿真。

整理:hyfjy

2011-7-10

机构运动仿真基本知识

机构仿真是PROE的功能模块之一。PROE能做的仿真内容还算比较好,不过用好的兄弟不多。当然真正专做仿真分析的兄弟,估计都用Ansys去了。但是,Ansys研究起来可比PROE麻烦多了。所以,学会PROE的仿真,在很多时候还是有用的。我再发一份学习笔记,并整理一下,当个基础教程吧。希望能对学习 仿真的兄弟有所帮助。 术语 创建机构前,应熟悉下列术语在PROE中的定义:主体(Body) - 一个元件或彼此无相对运动的一组元件,主体内DOF=0。 连接(Connections) - 定义并约束相对运动的主体之间的关系。 自由度(Degrees of Freedom) - 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的总自由度。 拖动(Dragging) - 在屏幕上用鼠标拾取并移动机构。 动态(Dynamics) - 研究机构在受力后的运动。 执行电动机(Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。 齿轮副连接(Gear Pair Connection) - 应用到两连接轴的速度约束。 基础(Ground) - 不移动的主体。其它主体相对于基础运动。 机构(Joints) - 特定的连接类型(例如销钉机构、滑块机构和球机构)。 运动(Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。 环连接(Loop Connection) - 添加到运动环中的最后一个连接。 运动(Motion) - 主体受电动机或负荷作用时的移动方式。 放置约束(Placement Constraint) - 组件中放置元件并限制该元件在组件中运动 的图元。 回放(Playback) - 记录并重放分析运行的结果。 伺服电动机(Servo Motor) - 定义一个主体相对于另一个主体运动的方式。可在机构或几何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。LCS - 与主体相关的局部坐标系。LCS 是与主体中定义的第一个零件相关的缺 省坐标系。 UCS - 用户坐标系。 WCS - 全局坐标系。组件的全局坐标系,它包括用于组件及该组件内所有主体 的全局坐标系。 运动分析的定义 在满足伺服电动机轮廓和机构连接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。运动分析不考虑受力,它模拟除质量和力之外的运动的所有方面。因此,运动分析不能使用执行电动机,也不必为机构指定质量属性。运动分析忽略模型中的所有动态图元,如弹簧、阻尼器、重力、力/力矩以及执行电动机等,所有动态图元都不影响运动分析结果。

二级圆柱齿轮减速器建模及仿真

二级圆柱齿轮减速器建模及仿真 任务书 1.设计的主要任务及目标 在已有减速器设计的基本理论基础上,利用CAD绘图软件进行二维平面设计,建立齿轮、轴、轴承、端盖、上箱体及下箱体的三维参数化模型,将各零件进行装配并且运用Pro/E绘图软件对其进行运动仿真。 2.设计的基本要求和内容 1、根据减速器设计的原始资料,研究减速器各组成部件设计及校核方法; 2、对二级圆柱齿轮减速器设计进行功能分解,确立系统的整体结构; 3、研究二级圆柱齿轮减速器系统设计中相关技术; 4、采用 Pro/E 软件,设计一个二级圆柱齿轮减速器实现减速器的三维模型生 成,以及由此生成三维动态仿真,进行工作过程仿真。 3.主要参考文献 [1] 宋正和,张子泉主编机械设计基础北京交通大学出版社,2007.5 [2] 罗圣国,吴宗泽主编机械设计手册高等教育出版社,2006.5 [3] 濮梁贵,纪名刚主编机械设计高等教育出版社, 2001 [4] 卢颂峰,王大康主编机械设计毕业设计北京工业大学出版社, 1993 [5] 机械设计手册联合编写组机械设计手册中册化学工业出版社, 1982 [6] 张富洲主编机械设计毕业设计西北工业大学出版社 1998 4.进度安排

二级圆柱齿轮减速器建模及仿真 摘要:减速器(又称减速机、减速箱)是一台独立的传动装置,它由密闭的箱体、互相啮合的一对或几对齿轮、传动轴及轴承等组成。常安装在电动机(或其他原动机)与工作机之间。作为一种重要的动力传递装置,在机械化生产中起着不可替代的作用。减速器主要运用齿轮传动装置而实现运作。 本设计简述了带式输送机的动力传递装置—二级直齿圆柱齿轮减速器的设计过程。主要包括传动方案设计、电动机的选择、V带设计选择、,齿轮传动设计及轴的设计选择和校核等。其间设计过程多次运用CAD、Pro/e软件设计绘制减速器装配图零件图来优化完整本设计,最终实现减速器的运动仿真并完成减速器的模拟设计。 关键词:减速器,传动装置,齿轮传动 Two cylindrical gear reducer modeling and simulation Abstract:Reducer ( also known as reducer, reducer ) is an independent transmission device, which is composed of a sealed box, meshing pair or several pairs of gear, shaft and bearing. Often mounted on the motor ( or other prime mover ) and working machine. As a kind of important power transmission device, the mechanized production plays an irreplaceable role. Reducer mainly used gear transmission device and operation. The design of the belt conveyor power transfer device - two straight tooth cylindrical gear reducer design process. Mainly includes the transmission scheme design, the choice of motor, V belt design, selection, design of gear and shaft design and checking. During the design process to use manyCAD, Pro/e software design drawing speed reducer assembly drawing parts drawing to optimize the entire design, final implementation reducer reducer motion simulation and simulation design. Key words: reducer, gear, gear transmission

行星齿轮的三维建模与运动仿真

北京工业大学耿丹学院 毕业设计(论文) 基于Solidwork的行星齿轮的三维建模与运动仿真 所在学院 专业 班级 姓名 学号 指导老师 年月日

摘要 行星齿轮减速器是一种至少有一个齿轮的几何轴线绕着固定位置转动圆周运动的传动,变速器通常和若干行星轮和传递载荷的作用,为了使功率分流。渐开线行星齿轮传动具有以下优点:传动比大,结构紧凑,体积小、质量小,效率高,噪音低,运转平稳,因此被广泛应用于冶金,工程机械,起重,运输,航空,机床,电气机械及国防工业等部门,作为减速、变速或增速的齿轮传动装置 NGW型行星齿轮传动机构的传动原理:当高速轴由电机驱动,带动太阳轮,然后带动行星轮转动,内齿圈固定,然后带动行星架输出运动的,在行星架上的行星轮既自转和公转,具有相同的结构。二级,三级或多级传输。NGW型行星齿轮传动机构主要由太阳齿轮,行星齿轮,内齿圈,行星架,命名为基本成分后,也被称为zk-h型行星齿轮传动机构。 本设计是基于行星齿轮结构设计的特点,和SolidWorks三维建模和运动仿真。行星齿轮和各种类型的特性的比较,确定方案;其次根据输入功率,相应的输出转速,传动比的传动设计、总体结构设计;三维建模并最终完成了SolidWorks,和模型的装配,并完成了传动部分的运动仿真和运动分析。 关键词:行星齿轮减速器、运动仿真、装配、三维建模

Abstract Planetary gear reducer is driving a at least one gear geometric axis rotated around a circular motion of fixed position, the transmission is usually and planetary gear and transfer load, in order to make the power split. Involute planetary gear transmission has the following advantages: large transmission ratio, compact structure, small volume, small mass, high efficiency, low noise, smooth operation, so it is widely used in metallurgy, engineering machinery, lifting, transportation, aviation, machine tools, electrical machinery and defense industry and other departments, as gear reducer, gear or the growth The transmission principle of NGW type planetary gear transmission mechanism: when the high-speed shaft driven by a motor, to drive the sun gear, and the planet wheel is driven to rotate, the inner gear ring is fixed, and then drives the planetary frame outputting motion, on the planet carrier planet wheel both rotation and revolution, has the same structure. The two level, three level or multilevel transmission. The NGW type planetary gear transmission mechanism mainly consists of a sun gear, planet gear, inner gear ring, a planetary frame, named after the basic components, also known as the ZK-H type planetary gear transmission mechanism. This design is the design of planetary gear structure based on SolidWorks, and 3D modeling and motion simulation. Comparison of characteristics of planetary gears, and various types of determination scheme; secondly according to the input power, the output speed of the overall design, transmission design, ratio; 3D modeling and finished SolidWorks, assembly and model, and the motion simulation and motion analysis of the transmission part. Keywords: planetary gear reducer, assembly, motion simulation, 3D modeling

教你如何用proe做装配动画(A)

第1章运动仿真 本章重点 应力分析的一般步骤 边界条件的创建 查看分析结果 报告的生成和分析 本章典型效果图

1.1机构模块简介 在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。对于提高设计效率降低成本有很大的作用。Pro/ engineer中“机构”模块是专门用来进行运动仿真和动态分析的模块。PROE的运动仿真与动态分析功能集成在“机构”模块中,包括Mechanism design(机械设计)和Mechanism dynamics(机械动态)两个方面的分析功能。 使用“机械设计”分析功能相当于进行机械运动仿真,使用“机械设计”分析功能来创建某种机构,定义特定运动副,创建能使其运动起来的伺服电动机,来实现机构的运动模拟。并可以观察并记录分析,可以测量诸如位置、速度、加速度等运动特征,可以通过图形直观的显示这些测量量。也可创建轨迹曲线和运动包络,用物理方法描述运动。

使用“机械动态”分析功能可在机构上定义重力,力和力矩,弹簧,阻尼等等特征。可以设置机构的材料,密度等特征,使其更加接近现实中的结构,到达真实的模拟现实的目的。如果单纯的研究机构的运动,而不涉及质量,重力等参数,只需要使用“机械设计”分析功能即可,即进行运动分析,如果还需要更进一步分析机构受重力,外界输入的力和力矩,阻尼等等的影响,则必须使用“机械设计”来进行静态分析,动态分析等等。 1.2总体界面及使用环境 在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图1-3所示的“机构”下拉菜单,模型树增加了如图1-4所示“机构”一项内容,窗口右边出现如图1-5所示的工具栏图标。下拉菜单的每一个选项与工具栏每一个图标相对应。用户既可以通过菜单选择进行相关操作。也可以直接点击快捷工具栏图标进行操作。 图1-1 由装配环境进入机构环境图

传动系统(驱动系统)的力学建模与仿真SimDriveLine

——传动系统(驱动系统)的力学建模与仿真 SimDriveline是Simulink?的扩展,它为传动系统(驱动系统)的力学建模与仿真提供有力的工具。这些工具包括像齿轮、转动轴和离合器等部件;标准的变速器模板;发动机和轮胎模型。SimDriveline专门为传动系的力学分析进行了易用性和计算速度方面的优化。它实现了与MathWorks控制系统设计和代码生成产品的集成,这样不仅可以进行控制器设计,而且还能够把机械系统模型生成实时代码,在实时环境中对控制器进行测试。 SimDriveline可以广泛用于汽车、航空、国防和工业领域。它尤其适合于 汽车和航空传动系统的控制器开发。 特点 ?在Simulink下对传动系力学进行定义的 建模环境 ?通用的齿轮结构库 ?动态元件库,包括离合器和转动限位器 (Rotational stops)、液力变矩器和扭转的 弹簧-减震器 ?通用的变速器模板 ?车辆部件的基本模型,包括发动机、纵向 车辆动力学和轮胎 强大功能 传动系统的建模 SimDriveline为在Simulink环境中建立传动系模型提供了有效的途径。用户可以使用模块图网络描述来表示一个系统。不同的模块代表不同的部件,如齿轮、离合器和液力变矩器。连接不同模块之间的线代表旋转部件,如驱动轴。在SimDriveline中,用户可以拥有Simulink的所有功能。使用传感器模块,用户可以测量速度、加速度和转矩,并且把这些测量信号值传给标准的Simulink 模块。Simulink信号能够通过执行器模块对驱动转矩进行定义,或者预先设定传动轴的动力学参数。SimDriveline为实现完全的机械系统3-D仿真器提供了另外一条有效的途径,它完全专注于旋转机械的力学仿真。每一根杆件的运动被限制于绕某个轴的转动,用户可以通过一个简单的惯性质量部件为每根杆件进行质量参数赋值。只对每根杆件的旋转速度进行记录的结果就是加快仿真执行的速度。 齿轮、离合器和动力学元件建模 SimDriveline包括了很多部件的模块库,这些模块定义了连接轴之间的部件的运动和转矩关系。

基于CATIA的齿轮参数化设计建模及运动仿真

基于CATIA的齿轮参数化建模及运动仿真 作者:许昌军 指导老师:朱梅 (安徽农业大学工学院 07机械设计制造及其自动化 合肥230036) 摘要:文章介绍了运用参数化三维软件CATIA对渐开线直齿轮及斜齿轮进行参数化三维建模。通过GSD模块中的fog方式生成参数方程建立渐开线,再通过镜像、剪切、特征阵列等命令建立齿轮轮廓,通过拉伸、开槽等命令建立渐开线齿轮三维模型,大大提高了设计人员的工作效率。然后用建模的直齿轮创建直齿轮库,最后进入电子样机运动模块(KIN)对两啮合齿轮进行运动仿真及干涉分析。 关键词:参数化 CATIA 运动仿真 渐开线直齿轮 1 引言 本文基于CATIA 的三维建模环境, 设计开发了渐开线直齿轮参数化设计系统, 建立零件的3D模型, 为渐开线直齿轮的传动、仿真、优化设计、有限元分析打下基础。用户只需根据修改齿轮参数就可以生成新的渐开线直齿轮, 减少繁琐复杂的重复劳动, 从而大大提高设计效率。 1.1CATIA软件介绍 CATIA(Computer Aided Tri-dimensional Interface Application) 是法国达索(Dassault Systemes)飞机公司于1975年开始发展起来的一整套完整的3D CAD /CAM/CAE软件,CATIA V5作为新一代的CATIA版本,提供更多的新功能,其界面更加人性化,基于Windows的操作界面非常友好,因此使得复杂、枯燥的设计工作变得轻松而又愉快。CATIA以强大的曲面设计功能在飞机、汽车、轮船等设计领域享有很高的荣誉。 2 CATIA参数化设计分析 基于特征参数化设计的关键是特征及其相关尺寸、公差的描述,包括数据特性描述、规则特性描述、关系特性描述。数据特性描述包含特征的静态信息和制造特性;规则或方法属性定义特征特定的设计和制造特性;关系特性描述特征间的相互依赖关系或定义形状特征间的位置关系。形状特征实际上是几何实体的无任何语义的结构化组合,形状特征月特征(语义特征)间是一对多的关系,这体现了特征的应用多视角性。参数化设计的关键在于参数、公式、表格、特征等驱动图形以达到改变图像的目的,方便设计过程,提高设计效率。

proe小球运动教程

1.1机构模块简介 在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计

的机构,来达到在虚拟的环境中模拟现实机构运动的目的。对于提高设计效率降低成本有很大的作用。Pro/ engineer中“机构”模块是专门用来进行运动仿真和动态分析的模块。PROE的运动仿真与动态分析功能集成在“机构”模块中,包括Mechanism design(机械设计)和Mechanism dynamics(机械动态)两个方面的分析功能。 使用“机械设计”分析功能相当于进行机械运动仿真,使用“机械设计”分析功能来创建某种机构,定义特定运动副,创建能使其运动起来的伺服电动机,来实现机构的运动模拟。并可以观察并记录分析,可以测量诸如位置、速度、加速度等运动特征,可以通过图形直观的显示这些测量量。也可创建轨迹曲线和运动包络,用物理方法描述运动。 使用“机械动态”分析功能可在机构上定义重力,力和力矩,弹簧,阻尼等等特征。可以设置机构的材料,密度等特征,使其更加接近现实中的结构,到达真实的模拟现实的目的。如果单纯的研究机构的运动,而不涉及质量,重力等参数,只需要使用“机械设计”分析功能即可,即进行运动分析,如果还需要更进一步分析机构受重力,外界输入的力和力矩,阻尼等等的影响,则必须使用“机械设计”来进行静态分析,动态分析等等。 1.2总体界面及使用环境 在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图1-3所示的“机构”下拉菜单,模型树增加了如图1-4所示“机构”一项内容,窗口右边出现如图1-5所示的工具栏图标。下拉菜单的每一个选项与工具栏每一个图标相对应。用户既可以通过菜单选择进行相关操作。也可以直接点击快捷工具栏图标进行操作。 图1-1 由装配环境进入机构环境图

齿轮传动系统的动力学仿真分析

齿轮传动系统的动力学仿真分析 摘要:本文对建立好的整体机械系统的虚拟样机模型进行运动学和动力学的仿真分析,通过仿真分析,可以方便地得出齿轮传动系统在特定负载和特定工况下的转矩,速度,加速度,接触力等,仿真分析后,可以确定各个齿轮之间传递的力和力矩,为零件的有限元分析提供基础。 关键词:传动系统动力学仿真 adams 虚拟样机 中图分类号:th132 文献标识码:a 文章编号: 1007-9416(2011)12-0207-01 随着计算机图形学技术的迅速发展,系统仿真方法论和计算机仿真软件设计技术在交互性、生动性、直观性等方面取得了较大进展,它是以计算机和仿真系统软件为工具,对现实系统或未来系统进行动态实验仿真研究的理论和方法。 运动学仿真就是对已经添加了拓扑关系的运动系统,定义其驱动方式和驱动参数的数值,分析其系统其他零部件在驱动条件下的运动参数,如速度,加速度,角速度,角加速度等。对仿真结果进行分析的基础上,验证所建立模型的正确性,并得出结论。 本文中所用的动力学仿真软件是adams软件。adams软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格郎日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。adams

软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等。虚拟样机就是在adams软件中建的样机模型。 1、运动参数的设置 先在造型软件ug中将齿轮传动系统造型好,如下图所示。在已经设置好运动副的齿轮传动系统的第一级齿轮轴上绕地的旋转副上 给传动系统添加一个角速度驱动。然后进行仿真。在进行仿真的过程中,单位时间内仿真步数越多,步长越短,越能真实反映系统的真实结果,但缺点是仿真时间也随之变长,占用的系统空间也就越大。所以应该在兼顾仿真真实性与所需物理资源和仿真时间的基础上,选择一个合适的仿真时间和仿真的步长。 在仿真之前先设置系统所用到的物理量的单位,在工程实际中,角速度一般使用的单位是r/min,所以在系统的基本单位中把时间的单位设为min,角度的单位设成rad,而在adams中转速单位为 rad/min。本过程仿真的运动过程为:系统从加速运动到额定转速,平稳运动一段时间后,再减速运动直到停止。运动过程用函数来模拟,输入的角速度驱动的函数表达式为: step( time ,0 ,0 ,2.5 ,9168.8)+ step(time ,7.5 ,0 ,10 ,-9168.8),此函数表达式的含义为:系统从开始加速运动一直到2.5s时达到了系统的额定转速 9168.8rad/min(1460r/min),从2.5s到7.5s的时间段内,系统以额定转速运动,在7.5s到10s的时间段内,系统从额定转速减速

proe运动仿真

proe5.0装配体运动仿真 基础与重定义主体 基础是在运动分析中被设定为不参与运动的主体。 创建新组件时,装配(或创建)的第一个元件自动成为基础。 元件使用约束连接(“元件放置”窗口中“放置”页面)与基础发生关系,则此元件也成为基础的一部份。 如果机构不能以预期的方式移动,或者因两个零件在同一主体中而不能创建连接,就可以使用“重定义主体”来确认主体之间的约束关系及删除某些约束。 进入“机构”模块后,“编辑”—>“重定义主体”进入主体重定义窗口,选定一个主体,将在窗口里显示这个主体所受到的约束(仅约束连接及“刚体”接头所用的约束)。可以选定一个约束,将其删除。如果删除所有约束,元件将被封装。、、 特殊连接:凸轮连接 凸轮连接,就是用凸轮的轮廓去控制从动件的运动规律。PROE里的凸轮连接,使用的是平面凸轮。但为了形象,创建凸轮后,都会让凸轮显示出一定的厚度(深度)。 凸轮连接只需要指定两个主体上的各一个(或一组)曲面或曲线就可以了。定义窗口里的“凸轮1”“凸轮2”分别是两个主体中任何一个,并非从动件就是“凸轮2”。 如果选择曲面,可将“自动选取”复选框勾上,这样,系统将自动把与所选曲面的邻接曲面选中,如果不用“自动选取”,需要选多个相邻面时要按住Ctrl。 如果选择曲线/边,“自动选取”是无效的。如果所选边是直边或基准曲线,则还要指定工作平面(即所定义的二维平面凸轮在哪一个平面上)。 凸轮一般是从动件沿凸轮件的表面运动,在PROE里定义凸轮时,还要确定运动的实际接触面。选取了曲面或曲线后,将会出线一个箭头,这个箭头指示出所选曲面或曲线的法向,箭头指向哪侧,也就是运动时接触点将在哪侧。如果系统指示出的方向与想定义的方向不同,可反向。 关于“启用升离”,打开这个选项,凸轮运转时,从动件可离开主动件,不使用此选项时,从动件始终与主动件接触。启用升离后才能定义“恢复系数”,即“启用升离”复选框下方的那个“e”。 因为是二维凸轮,只要确定了凸轮轮廓和工作平面,这个凸轮的形状与位置也就算定义完整了。为了形象,系统会给这个二维凸轮显示出一个厚度(即深度)。通常我们可不必去修改它,使用“自动”就可以了。也可自已定义这个显示深度,但对分析结果没有影响。 需要注意: A.所选曲面只能是单向弯曲曲面(如拉伸曲面),不能是多向弯曲曲面(如旋转出来的鼓形曲面)。 B.所选曲面或曲线中,可以有平面和直边,但应避免在两个主体上同时出现。 C.系统不会自动处理曲面(曲线)中的尖角/拐点/不连续,如果存在这样的问题,应在定义凸轮前适当处理。

proe运动仿真经典教程!47

proe运动仿真经典教程!47 ProE野火运动仿真经典教程 关键词:PROE 仿真运动分析重复组件分析连接回放运动包络轨迹曲线版权:原创文章,转载请注明出处 机构仿真是PROE的功能模块之一。PROE能做的仿真内容还算比较好,不过用好的兄弟不多。当然真正专做仿真分析的兄弟,估计都用Ansys去了。但是,Ansys研究起来可比PROE麻烦多了。所以,学会PROE的仿真,在很多时候还是有用的。坛子里关于仿真的教程也有过一些,但很多都是动画,或实例。偶再发放一份学习笔记,并整理一下,当个基础教程吧。 希望能对学习仿真的兄弟有所帮助。 术语 创建机构前,应熟悉下列术语在PROE中的定义: 主体 (Body) - 一个元件或彼此无相对运动的一组元件,主体内DOF=0。 连接 (Connections) - 定义并约束相对运动的主体之间的关系。自由度(Degrees of Freedom) - 允许的机械系统运动。连接的作用是约束主体之间的相对 运动,减少系统可能的总自由度。 拖动 (Dragging) - 在屏幕上用鼠标拾取并移动机构。 动态 (Dynamics) - 研究机构在受力后的运动。 执行电动机 (Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。 齿轮副连接 (Gear Pair Connection) - 应用到两连接轴的速度约束。 基础 (Ground) - 不移动的主体。其它主体相对于基础运动。 接头 (Joints) - 特定的连接类型(例如销钉接头、滑块接头和球接头)。

运动 (Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。 环连接 (Loop Connection) - 添加到运动环中的最后一个连接。 运动 (Motion) - 主体受电动机或负荷作用时的移动方式。放置约束(Placement Constraint) - 组件中放置元件并限制该元件在组件中运动的图元。 回放 (Playback) - 记录并重放分析运行的结果。 伺服电动机 (Servo Motor) - 定义一个主体相对于另一个主体运动的方式。可在接头或几 何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。 LCS - 与主体相关的局部坐标系。LCS 是与主体中定义的第一个零件相关的缺省坐标系。 UCS - 用户坐标系。 WCS - 全局坐标系。组件的全局坐标系,它包括用于组件及该组件内所有主体的全局坐标系。 运动分析的定义 在满足伺服电动机轮廓和接头连接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。运动分析不考虑受力,它模拟除质量和力之外的运动的所有方面。因此,运动分析不能使用执行电动机,也不必为机构指定质量属性。运动分析忽略模型中的所有动态图元,如弹簧、阻尼器、重力、力/力矩以及执行电动机等,所有动态图元都不影响 运动分析结果。 如果伺服电动机具有不连续轮廓,在运行运动分析前软件会尝试使其轮廓连续,如果不能使 其轮廓连续,则此伺服电机将不能用于分析。 使用运动分析可获得以下信息: 几何图元和连接的位置、速度以及加速度

CATIA运动仿真小教程

CATIA运动仿真小教程 1. 仿真之前的准备 将要仿真的模型所需的部件在装配模式下按照技术要求进行装配。装配时请注意,在能满足合理装配的前提下,尽量少用约束,以免造成约束之间互相干涉,影响下一步运动仿真。 2.运动仿真 通过“开始(S)”——“数字模拟”——“DMU Kinematics” 进入到运动仿真的模式下,开始进行仿真设置: (1)先建立一个新机制(New Mechanism);命令在“插入(I)”菜单下, (2)对装配部件进行约束设置,命令在旋转铰里面,点击其图标右下方的箭头,点击后,出现所有铰定义图标 按顺序分别是:旋转铰(Revolute joint),棱镜铰(prismatic joint),圆柱铰(Cylinderical joint),螺纹铰(Screw joint),球铰(Spherical joint),平面滑动铰(Planner joint),刚性连接(Rigid joint),点-线铰,滑动曲线铰,滚动曲线铰,点-曲面铰,万向节铰,双万向节铰,齿轮铰,齿轮-齿条铰,缆绳铰,坐标系铰。 各个铰接的的方法见文献《CATIA 机械运动分析与模拟实例》,上有很详细的介绍。 (3)设置固定件,点击固定零件图标,点击后出现New Fixed Part(新固定零件)对话框 ,不用理它,在图形区选择要固定的零件即可。 各种铰链设置合理,系统会自动提示:

,也就是说,机制可以仿真了。 (a.)仿真使用“命令模拟”时,点击,就会出现运动模拟对话框,在对话框内拖动鼠标,由大到小或有小到大改变角和实数的范围,然后点击下面的黑色开始键,就可以看到仿真运动了。对话框示例如下 (b.)仿真采用“模拟”时,点击,即可进入 和

PROE运动仿真分析基础教程

机构仿真之运动分析基础教程 机构仿真是PROE的功能模块之一。PROE能做的仿真容还算比较好,不过用好的兄弟不多。当然真正专做仿真分析的兄弟,估计都用Ansys去了。但是,Ansys研究起来可比PROE麻烦多了。所以,学会PROE的仿真,在很多时候还是有用的。我再发一份学习笔记,并整理一下,当个基础教程吧。希望能对学习仿真的兄弟有所帮助。 术语 创建机构前,应熟悉下列术语在PROE中的定义: 主体(Body) - 一个元件或彼此无相对运动的一组元件,主体DOF=0。 连接(Connections) - 定义并约束相对运动的主体之间的关系。 自由度(Degrees of Freedom) - 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的总自由度。 拖动(Dragging) - 在屏幕上用鼠标拾取并移动机构。 动态(Dynamics) - 研究机构在受力后的运动。 执行电动机(Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。 齿轮副连接(Gear Pair Connection) - 应用到两连接轴的速度约束。 基础(Ground) - 不移动的主体。其它主体相对于基础运动。 机构(Joints) - 特定的连接类型(例如销钉机构、滑块机构和球机构)。 运动(Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。 环连接(Loop Connection) - 添加到运动环中的最后一个连接。 运动(Motion) - 主体受电动机或负荷作用时的移动方式。 放置约束(Placement Constraint) - 组件中放置元件并限制该元件在组件中运动的图元。 回放(Playback) - 记录并重放分析运行的结果。 伺服电动机(Servo Motor) - 定义一个主体相对于另一个主体运动的方式。可在机构或几何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。 LCS - 与主体相关的局部坐标系。LCS 是与主体中定义的第一个零件相关的缺省坐标系。 UCS - 用户坐标系。 WCS - 全局坐标系。组件的全局坐标系,它包括用于组件及该组件所有主体的全局坐标系。 运动分析的定义 在满足伺服电动机轮廓和机构连接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。运动分析不考虑受力,它模拟除质量和力之外的运动的所有方面。因此,运动分析不能使用执行电动机,也不必为机构指定质量属性。运动分析忽略模型中的所有动态图元,如弹簧、阻尼器、重力、力/力矩以及执行电动机等,所有动态图元都不影响运动分析结果。 如果伺服电动机具有不连续轮廓,在运行运动分析前软件会尝试使其轮廓连续,如果不能使其轮廓连续,则此伺服电机将不能用于分析。 使用运动分析可获得以下信息: 几何图元和连接的位置、速度以及加速度 元件间的干涉 机构运动的轨迹曲线 作为Pro/ENGINEER 零件捕获机构运动的运动包络 运动分析工作流程 创建模型:定义主体,生成连接,定义连接轴设置,生成特殊连接 检查模型:拖动组件,检验所定义的连接是否能产生预期的运动

UG教程,齿轮设计,运动仿真,仿真加工

计算机辅助设计及制造三次作业练习 班级:机妍 15 姓名:左海涛 学号:5220150233 指导老师:曹建树 1

目录 一、深沟球轴承自顶向下装配设计 (3) 1.问题描述 (3) 2.实现过程 (4) 2.1新建装配和组件 (4) 2.2设计轮廓图 (6) 2.3设计轴承外圈 (6) 2.4设计轴承内圈 (9) 2.5设计保持架 (10) 2.6设计滚珠 (13) 2.7设计完成 (15) 二、机构运动仿真 (17) 1. 问题描述 (17) 2.实现过程 (17) 2.1新建运动仿真 (17) 2.2新建连杆 (18) 2.3新建运动副 (19) 2.4新建传动副 (22) 2.5新建3D接触 (23) 2.6开始仿真 (24) 三、餐具加工 (27) 1.问题描述 (27) 2.实现过程 (27) 2.1整体粗加工 (27) 2.2外表面精加工 (36) 2.3内表面精加工 (42)

一、深沟球轴承自顶向下装配设计 1.问题描述 试设计如下图所示深沟球轴承,具体尺寸如下所示,要求采用自顶向下的装配设计方法。 图1 轴承装配图 图2 轴承尺寸图

2.实现过程 2.1新建装配和组件 (1)打开NX8.5软件:开始→程序→NX8.5。 (2)新建装配:点击“新建”,出来“新建”对话框,类型为“装配”,修改新文件名里的“名称”和“文件夹”,注意更改的文件夹路径为英文目录下才有效,点击“确定”,如图3所示。 图3 新建装配 (3)点击菜单栏“装配”→组件→新建组件。 (4)在弹出的“新组件文件”对话框里,名称为“模型”,注意修改“新文件名”的名称及文件夹路径,路径应该与开始新建的“装配”一致,如图4所示。

ProE丝杠螺杆螺母的运动仿真教程

第一步当然是建模咯,这个我就不说了 第二步新建组件,创建一根轴,这根轴是用来给螺杆做销钉定义用的 第三步插入螺杆元件,用销钉~~~怎么定义应该知道吧,轴对齐,面对齐,不知道的先学装配的基础教程 第四步插入螺母元件,先用圆柱连接,使两个元件同轴 定义好之后别急着打钩~~~按左下角的新设置

第五步新设置一个槽连接(槽连接就是点在线上运动~~),这个是最关键的,先选螺杆上的一条螺纹边 一定要是同一条线~~~~螺纹线会分成很多段,按ctrl把整条线都选上,建议选内螺纹,好选 选好线后选点,这个点毫无疑问在螺母上,可以选螺母的内螺纹的一个定点,一定要是和在螺杆上的那条螺纹线匹配的那条!!! 意思就是这一点是在刚才选的螺纹线上运动的

这个定义好之后槽连接就定义好了,别急着打钩,还有呢 第六步因为现在的螺母还会旋转 所以我们再定义一个平面连接,使它不会转动,选择面的时候要注意,不要选到螺杆的平面,到时候螺母随螺杆一起旋转了 现在终于可以打钩了~~~到此,装配就完成了 接下来就是仿真了 第七步在应用程序里选机构

第八步定义一个伺服电机,轴在螺杆上,选速度,A=100 第九步就可以分析了 类型选动态,时间稍微长点吧,如果你觉得分析有可能失败,那就短点,因为如果装配有问题,或计算两很大的话电脑计算的会很慢

点运行就可以看到动了 每次看不一定都要在分析里看,因为那计算,可能会很慢,可以在回放里看 记得要保存哦,不然下次就又要分析了

终于完成了。。。。写图文教程真累 而且表达能力欠缺,希望朋友们多多提意见啊 本来想做视频的,老大说有可能会出期刊。。只好图文了

应用CATIA做运动仿真

应用CATIA做运动仿真,按如下步骤做: 1. 仿真之前的准备 将要仿真的模型所需的部件在装配模式下按照技术要求进行装配。装配时请注意,在能满足合理装配的前提下,尽量少用约束,以免造成约束之间互相干涉,影响下一步运动仿真。2. 运动仿真 通过“开始(S)”——“数字模拟”——“DMU Kinematics” 进入到运动仿真的模式下,开始进行仿真设置: (1)先建立一个新机制(New Mechanism);命令在“插入(I)”菜单下, (2)对装配部件进行约束设置,命令在旋转铰里面,点击其图标右下方的箭头,点击后,出现所有铰定义图标 按顺序分别是:旋转铰(Revolute joint),棱镜铰(prismatic joint),圆柱铰(Cylinderical joint),螺纹铰(Screw joint),球铰(Spherical joint),平面滑动铰(Planner joint),刚性连接(Rigid joint),点-线铰,滑动曲线铰,滚动曲线铰,点-曲面铰,万向节铰,双万向节铰,齿轮铰,齿轮-齿条铰,缆绳铰,坐标系铰。 各个铰接的的方法见文献《CATIA 机械运动分析与模拟实例》,上有很详细的介绍。 (3)设置固定件,点击固定零件图标,点击后出现New Fixed Part(新固定零件)对话框 ,不用理它,在图形区选择要固定的零件即可。 各种铰链设置合理,系统会自动提示:

,也就是说,机制可以仿真了。 (a.)仿真使用“命令模拟”时,点击,就会出现运动模拟对话框,在对话框内拖动鼠标,由大到小或有小到大改变角和实数的范围,然后点击下面的黑色开始键,就可以看到仿真运动了。对话框示例如下 (b.)仿真采用“模拟”时,点击,即可进入 和

ProE齿轮机构仿真

Pro/E齿轮机构仿真 时间:2013-3-26 15:24:44 作者:未知来源:网络文摘查看:252 评论:0 本次设计用pro/e三维造型软件进行建模,各零件建好后,进行装配,进而实现模拟仿真运动分析。 1建立机构模型 经装配后,得到跑步机的仿真模型。 图1 仿真实体 2运动仿真 2.1进入机械设计环境 单击菜单栏中的【应用程序】【机构】命令,进入机械设计环境。 单击菜单栏中的【编辑】【连接】命令,弹出【连接组件】对话框。单击该对话框的【运行】,检查装配的连接情况。若连接成功,系统弹出【确认】对话框。单击该对话框中的【是】按钮,确认检查情况。 2.2定义圆锥齿轮连接 单击【模型】工具【齿轮】,弹出【齿轮副定义】对话框,如图2所示。接受默认名称和传动类型标准,选择如图2所示的大齿轮的连接作为连接轴;系统将会自动选择齿轮的主体和托架,输入节圆直径45,如图7-2所示。 单击【齿轮副定义】对话框中的【齿轮2】选项卡,选取如图3所示的小齿轮的连接作为连接轴;系统将会自动选择齿轮的主体和托埽输入节圆直径18,如图3所示;单击该对话框中的【确定】按钮,此时,在齿轮机构中将显示齿轮副连接的标志,如图4所示。

图2 【齿轮副定义】对话框 图3 齿轮2的定义

图4 齿轮副连接标志 2.3 创建驱动器 单击【模型】工具栏【伺服电动机】按钮,弹出【伺服电动机定义】对话框,如图5所示。接受默认名称,在绘图区选择如图5所示的连接轴作为伺服电动机的驱动对象,并单击【反向】按钮。 图5【伺服电动机定义】对话框 在如图5所示的对话框中单击【轮廓】面板,在如图6所示的【规范】选项组下拉列表中选择【速度】选项。其余均接受对话框中当前项的选择,默认当前轴的位置为零位置。在【模】选项组下拉列表中选择【常数】选项,表示驱动器以常数形式运行。在【A】,文本框中输

proe机构运动仿真教程

proe机构运动仿真教程 典型效果图 1.1机构模块简介 在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。对于提高设计效率降低成本有很大的作用。Pro/ engineer中“机构”模块是专门用来进行运动仿真和动态分析的模块。 PROE的运动仿真与动态分析功能集成在“机构”模块中,包括Mechanism design(机械设计)和Mechanism dynamics (机械动态)两个方面的分析功能。 使用“机械设计”分析功能相当于进行机械运动仿真,使用“机械设计”分析功能来创建某种机构,定义特定运动副,创建能使其运动起来的伺服电动机,来实现机构的运动模拟。并可以观察并记录分析,可以测量诸如位置、速度、加速度等运动特征,可以通过图形直观的显示这些测量量。也可创建轨迹曲线和运动包络,用物理方法描述运动。 使用“机械动态”分析功能可在机构上定义重力,力和力矩,弹簧,阻尼等等特征。可以设置机构的材料,密度等特征,使其更加接近现实中的结构,到达真实的模拟现实的目的。

如果单纯的研究机构的运动,而不涉及质量,重力等参数,只需要使用“机械设计”分析功能即可,即进行运动分析,如果还需要更进一步分析机构受重力,外界输入的力和力矩,阻尼等等的影响,则必须使用“机械设计”来进行静态分析,动态分析等等。 1.2总体界面及使用环境 在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图1-3所示的“机构”下拉菜单,模型树增加了如图1-4所示“机构”一项内容,窗口右边出现如图1-5所示的工具栏图标。下拉菜单的每一个选项与工具栏每一个图标相对应。用户既可以通过菜单选择进行相关操作。也可以直接点击快捷工具栏图标进行操作。 图1-1 由装配环境进入机构环境图 图1-2 机构模块下的主界面图 图1-3 机构菜单图1-4 模型树菜单图1-5 工具栏图标图1-5所示的“机构”工具栏图标和图1-3中下拉菜单各选项功能解释如下:

相关文档
相关文档 最新文档